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Abstract

An approach to the revision of logic programs under the answer set semantics is presented.

For programs P and Q, the goal is to determine the answer sets that correspond to the revision

of P by Q, denoted P ∗Q. A fundamental principle of classical (AGM) revision, and the one

that guides the approach here, is the success postulate. In AGM revision, this stipulates that

α ∈ K ∗ α. By analogy with the success postulate, for programs P and Q, this means that the

answer sets of Q will in some sense be contained in those of P ∗ Q. The essential idea is that

for P ∗ Q, a three-valued answer set for Q, consisting of positive and negative literals, is first

determined. The positive literals constitute a regular answer set, while the negated literals

make up a minimal set of naf literals required to produce the answer set from Q. These literals

are propagated to the program P , along with those rules of Q that are not decided by these

literals. The approach differs from work in update logic programs in two main respects. First,

we ensure that the revising logic program has higher priority, and so we satisfy the success

postulate; second, for the preference implicit in a revision P ∗ Q, the program Q as a whole

takes precedence over P , unlike update logic programs, since answer sets of Q are propagated

to P . We show that a core group of the AGM postulates are satisfied, as are the postulates

that have been proposed for update logic programs.

KEYWORDS: answer set programming, belief change, belief revision

1 Introduction

Answer set programming (ASP) (Baral 2003) has proven to be well-suited to problems

in knowledge representation and reasoning (KR). The advent of efficient provers

(Simons et al. 2002; Leone et al. 2006; Gebser et al. 2007) has led to the successful

application of ASP in both KR and constraint satisfaction problems. However, an

important consideration is that in any nontrivial domain, an agent’s knowledge of

the domain will almost certainly be incomplete or inaccurate, or it may become

out of date as the domain evolves. Thus, over time an agent will need to adjust its

knowledge after receiving new information concerning the domain.
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In ASP there has been a substantial effort in developing approaches to updating

a knowledge base, where a knowledge base is expressed as a logic program under

the answer set semantics. In general, one is given a sequence of logic programs

(P1, . . . , Pn) where informally rules in Pi in some fashion or other take precedence

over rules in Pj for j < i. However, it isn’t clear that such approaches capture a

notion of revision or update of logic programs, so much as they capture a notion of

priority or preference between rules in a program. Thus such approaches generally

fail to satisfy properties that would be expected to hold for revision in classical

logic. Part of the reason is that revision appears to be intrinsically more difficult

in a nonmonotonic setting (such as in ASP) than in a monotonic one, such as in

classical logic. We also suggest that part of the problem is that extant approaches

enforce a notion of priority at the level of the individual rule; instead we propose

that the notion of priority given in a revision is a program level notion, in that for

a revision specified as P1 ∗ P2, program P2 taken as a whole has priority over P1.

In this paper, an approach to the revision of logic programs is presented. A

major goal is to investigate the extent to which AGM-style revision is compatible

with an extended logic programming framework. A logic program is regarded as

a representation of an agent’s epistemic state, while the corresponding answer sets

are taken as representing the agent’s beliefs. The approach describes revision, in

that the postulate of success is adhered to; the idea is that for a revision of P1

by P2, beliefs (viz. elements of an answer set) given by P2 should overrule those in

P1. This is carried out by first determining 3-valued answer sets of P2. Each such

answer set is a pair (X+, X−), where X+ is a regular answer set of P2, and X− is a

minimum set of negation as failure literals necessary to produce the answer set X+.

The information in each such 3-valued answer set, together with the rules of P2 not

used in the definition of the answer set, and along with the program P1, is used to

define an answer set (or answer sets) of P1 ∗ P2.

The assumption of success leads to an approach with a different emphasis from

previous approaches. In particular, for the revision of P1 by P2, the program P2

is treated as having higher priority than the program P1; this is in contrast with

previous work, wherein the rules in P2 are treated as having higher priority than

(some or all of) the rules in P1. We suggest that this distinction separates approaches

addressing priorities in logic programs from revision. As well, it leads to an approach

with better properties than earlier work. For example, the approach is syntax

independent, in that if two programs are strongly equivalent, then they behave the

same with respect to revision. As well, a prototype has been implemented.

We argue that this approach is an appropriate interpretation for a notion of

revision in logic programs. Furthermore, the approach may be applied in cases

where a problem is expressed as a sequence of NP-complete problems; for example,

it allows the natural specification of a problem in which a 3-colouring of a graph is

to be found, followed by a Hamiltonian path among the yellow vertices. We discuss

these issues in more detail in the next section, after formal preliminaries have been

presented. After this, intuitions are given, and the following section presents the

formal details and properties of the approach. We conclude with a discussion that

includes the applicability of the approach and future work. Proofs are for the most

part straightforward, and are abbreviated due to space constraints.
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2 Background

2.1 Formal preliminaries

Our language is built from a finite set of atoms P = {a, b, . . .}. A literal is an atom a

or its negation ¬a; L is the set of literals. For a set X of literals, not(X) = {not a |
a ∈ X}. For a literal l, not l is sometimes referred to as a naf (negation as failure)

literal or weakly negated literal. For l ∈ L, atom(l) is the atom corresponding to l;

for a set X of literals, atom(X) = {atom(l) | l ∈ X}. A rule r is of the form

L0 ← L1, . . . , Ln, not Ln+1, . . . , not Lm (1)

where L0, . . . , Lm are literals and 0 � n � m. If n = m then r is positive. If m = 0,

then r is called a fact. We also allow the situation where L0 is absent, in which case

we denote the head by ⊥; and r is called a constraint. The literal L0 is called the head

of r, and the set {L1, . . . , Ln, not Ln+1, . . . , not Lm} is the body of r. We use head (r)

to denote the head of rule r, and body(r) to denote the body of r. Furthermore,

body+(r) = {L1, . . . , Ln} and body−(r) = {Ln+1, . . . , Lm}. An (extended ) logic program,

or simply a program, is a finite set of rules.

A set of literals X is consistent if it does not contain a complementary pair a,

¬a of literals and does not contain ⊥. We say that X is logically closed iff it is

either consistent or equals L. The smallest set of literals being both logically closed

and closed under a set P of positive rules is denoted by Cn(P ). The reduct, PX ,

of P relative to a set X of literals is defined by PX = {head (r) ← body+(r) | r ∈
P , body−(r) ∩X = ∅} (Gelfond and Lifschitz 1990). A set X of literals is an answer

set of a logic program P if Cn(PX) = X. The set of answer sets of program P

is denoted by AS (P ). A program P is consistent just if it has an answer set not

equal to L. Thus a program with no answer sets is also counted as inconsistent.

For example, the program P = {a ←, b ← a, not c, c ← not b} has answer sets

AS (P ) = {{a, b}, {a, c}}.
Two programs P1 and P2 are equivalent, written P1 ≡ P2, if both programs have

the same answer sets. Two programs are strongly equivalent (Lifschitz et al. 2001),

written P1 ≡s P2, just if P1 ∪ P3 ≡ P2 ∪ P3 for every logic program P3.

2.2 Belief revision

Belief revision is the area of KR that is concerned with how an agent may incorporate

new information about a domain into its knowledge base. In belief revision, a

formula α is to be incorporated into the agent’s set of beliefs K , so that the resulting

knowledge base is consistent when α is. Since α may be inconsistent with K , revision

may also necessitate the removal of beliefs from K in order to retain consistency.

By a principle of informational economy, as many beliefs as possible are retained

from K . A common approach in addressing belief revision is to provide a set of

rationality postulates for belief change functions. The AGM approach (Alchourrón

et al. 1985; Gärdenfors 1988) provides the best-known set of such postulates. An

agent’s beliefs are modelled by a set of sentences, called a belief set, closed under the

logical consequence operator of a logic that includes classical propositional logic.
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Subsequently, various researchers have argued that it is more appropriate to

consider epistemic states as objects of revision. An epistemic state K effectively

includes information regarding how the revision function itself changes following

a revision. The belief set corresponding to epistemic state K is denoted Bel(K).

Formally, a revision operator ∗ maps an epistemic state K and new information α to

a revised epistemic state K ∗ α. For set of formulas Ψ, define Ψ + α as Cn(Ψ ∪ {α}).
Then, the basic AGM postulates for revision can be given as follows:

(K ∗ 1) Bel(K ∗ α) = Cn(Bel(K ∗ α))
(K ∗ 2) α ∈ Bel(K ∗ α)
(K ∗ 3) Bel(K ∗ α) ⊆ Bel(K) + α

(K ∗ 4) If ¬α /∈ Bel(K) then Bel(K) + α ⊆ Bel(K ∗ α)
(K ∗ 5) Bel(K ∗ α) is inconsistent, only if � ¬α
(K ∗ 6) If α ≡ ψ then Bel(K ∗ α) = Bel(K ∗ ψ)

Thus, the result of revising K by α is an epistemic state in which α is believed in the

corresponding belief set (K ∗ 1, K ∗ 2); whenever the result is consistent, the revised

belief set consists of the expansion of Bel(K) by α (K ∗ 3, K ∗ 4); the only time that

Bel(K) is inconsistent is when α is inconsistent (K ∗ 5); and revision is independent

of the syntactic form of the formula for revision (K ∗ 6). (As well, there are two

extended postulates (K ∗ 7) and (K ∗ 8) that extend (K ∗ 3) and (K ∗ 4) to relating

revision by a conjunction and the individual conjuncts. Like (K ∗ 3) and (K ∗ 4)

they are are not appropriate in a nonmonotonic framework (below) and we do not

consider them further.)

Belief revision is usually expressed with respect to an underlying logic governed by

a Tarskian consequence operator. It can be observed that two of the postulates, (K∗3)

and (K ∗ 4), are inappropriate in a system governed by a notion of nonmonotonic

consequence. As an example, consider where the agent believes that a particular

individual is a bird and that it can fly. If it is subsequently learned that the bird was

a penguin, the agent would also modify its knowledge base so that it believed that

the individual did not fly. This example then violates both (K ∗ 3) and (K ∗ 4). Note

that we can’t circumvent this counterexample by simply excluding states of affairs

where there are no flying penguins, since we would want to allow the possibility

that a penguin (perhaps an extremely fit penguin) flies, even though penguins, by

default, do not fly. In consequence we focus on postulates (K ∗ 1), (K ∗ 2), (K ∗ 5)

and (K ∗ 6), which we refer to as the core AGM postulates.

Note that nonmonotonic formalisms can nonetheless be treated from the stand-

point of classical (AGM) revision; the issue is to express revision in terms of a

monotonic foundation. Thus (Delgrande et al. 2008) addresses revision in ASP from

the standpoint of the SE models of a program. This is in contrast to the work here,

and previous work, which addresses belief change at the level of a logic program

rather than with respect to the underlying models.

Various revision operators have been defined; see (Satoh 1988; Williams 1995;

Delgrande and Schaub 2003) for representative approaches. Perhaps the best known

approach is the Dalal revision operator (Dalal 1988). This operator is defined as

follows. Let ψ, μ be formulas of propositional logic, and let  be the symmetric
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difference of two sets. Then the Dalal revision ψ∗d μ is characterised by those models

of μ that are closest to models of ψ, where the notion of closeness is given by the

Hamming distance between interpretations. Formally, ψ ∗d μ, is defined as follows.

For formulas α and β, define:

||min (α, β)
def
= min�({|w  w′| | w ∈ Mod (α), w′ ∈ Mod (β)}).

Then, Mod (ψ ∗d μ) is given as

{w ∈ Mod (μ) | ∃w′∈Mod (ψ) s.t. |w  w′| = ||min (ψ, μ)}.

2.3 Logic program updates

Previous work in ASP that addresses an agent’s evolving knowledge base has

generally been termed logic program update or update logic programs. In such

approaches one begins with an ordered logic program, comprised of a sequence

of logic programs (P1, . . . , Pn). Rules in higher-ranked sets are, in some fashion or

another, preferred over those in lower-ranked sets. Commonly this is implemented by

using the ordering on rules to adjudicate which of two rules should be applied when

both are applicable and their respective heads conflict; see for example (Inoue and

Sakama 1999; Alferes et al. 2000; Eiter et al. 2002). Alternatively, other approaches

use the ordering to “filter” rules, e.g. (Zhang and Foo 1998). Hence, in one fashion

or another, some rules are selected over others, and these selected rules are used to

determine the resulting answer sets.

A major stream of research in ASP has addressed prioritised or preference logic

programs, where a prioritised logic program is a pair (P ,<) in which < is an

ordering over rules in program P . The intuition is that some rules take precedence

over (or override or are more important than) other rules. Syntactically, the form

of an update logic program, given as a total order on programs, is of course an

instance of a prioritised logic program. We suggest that an update logic program

is in fact best regarded as a prioritised logic program. (Indeed some approaches to

updating logic programs are defined in terms of a prioritised logic program (Foo and

Zhang 1997; Zhang and Foo 1998).) This is most clearly seen in those approaches

where the focus is on rules whose heads conflict. Thus, for example in the approach

of (Eiter et al. 2002), preferences come into play only between two rules when the

head of one is the complementary literal of the other. The following example, due

to Patrick Krümpelmann, is illuminating:

P1 = {b←}, P2 = {¬a← b}, P3 = {a←}

In update logic programs, the rule in P2 is dropped, since its head conflicts with

the higher-ranked rule in P3. Yet dropping the rule in P1 yields a consistent result.

Moreover, since it is the lowest-ranked rule, arguably it should be disregarded.

We can summarise the preceding by suggesting that previous work is essentially

based at the rule level, in that higher-ranked rules preempt lower-ranked rules. In

contrast, the approach here is based at the program level ; that is for a revision

P1 ∗ P2, the program P2 is considered as a whole to have priority over P1, in that
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program P2’s answer sets in a sense have priority over those of P1. This is effected

in a revision P1 ∗P2 by first determining answer sets of P2, and then augmenting, as

appropriate, these answer sets with additional information via P1. (There is more to

it than this, as described in the next section. For example, rules in P1 may result in

other rules in P2 being applied. However the essential point remains, that the answer

sets of P1 are first determined, and then subsequently augmented.) Arguably this is

the appropriate level of granularity for revision: If an agent learns new information

given in a program P , it is the program as a whole that comprises the agent’s (new)

knowledge. That is, a rule r ∈ P isn’t an isolated piece of knowledge, but rather,

given possible negation as failure literals in body(r), the potential instantiation of r

depends non-locally on the entire program P .

(Eiter et al. 2002) suggests a number of alternative postulates that may be

considered for update program updates. For our use, they are given as follows:

Initialisation: AS (∅ ∗ P ) = AS (P ).

Idempotency: AS (P ∗ P ) = AS (P ).

Tautology: If head (r) ∈ body+(r), for all r ∈ P2, then

AS (P1 ∗ P2) = AS (P1).

Associativity: AS (P1 ∗ (P2 ∗ P3)) = AS ((P1 ∗ P2) ∗ P3).

Absorption: if AS (P2) = AS (P3) then AS (P1 ∗ P2 ∗ P3) = AS (P1 ∗ P2).

Augmentation: If AS (P2) ⊆ AS (P3), then AS (P1 ∗ P2 ∗ P3) = AS (P1 ∗ P3).

Disjointness: If atom(P1) ∩ atom(P2) = ∅, then

AS ((P1 ∪ P2) ∗ P3) = AS (P1 ∗ P3) ∪ AS (P2 ∗ P3).

Parallelism: If atom(P2) ∩ atom(P3) = ∅, then

AS (P1 ∗ (P2 ∪ P3)) = AS (P1 ∗ P2) ∪ AS (P1 ∗ P3).

Non-Interference: If atom(P2) ∩ atom(P3) = ∅, then

AS (P1 ∗ P2 ∗ P3) = AS (P1 ∗ P3 ∗ P2).

Many of these postulates are elementary and expected, yet most extant approaches

have problems with them. In particular, most approaches do not satisfy tautology and

so for instance the addition of a rule p← p may produce different results. Moreover,

those that do satisfy tautology most often do so by specifically addressing this

principle. It seems reasonable to suggest that the reason for this lack of adherence

to basic postulates is that belief change with respect to ASP is a program-level

operation, and not a rule-level operation.

3 Logic program revision: Intuitions

The overall goal is to come up with an approach to revision in logic programs (call

it LP revision) under the answer set semantics, where the approach adheres insofar

as possible to intuitions underlying classical (AGM) revision. In essence, a major

goal is to examine the extent to which the AGM approach may be applied with

respect to answer set programming. As described earlier, we take a logic program P

as specifying an agent’s epistemic state. The answer sets of P , AS (P ), represent the

beliefs of the agent, and so are analogous to a belief set in AGM revision.

A key characteristic of AGM revision, and one that guides the approach here,

is the success postulate. Recall that in the AGM approach, the success postulate
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stipulates that α ∈ Bel(K ∗α), or in terms of models, that Mod (Bel(K ∗α)) ⊆ Mod (α).

Informally, in a revision by α, the logical content of α is retained. By analogy with

the success postulate, for a revision of P1 by P2, the content of P2 is given by its

answer sets, and so in the revision P1 ∗ P2, the answer sets of P2 should in some

sense be contained in those of P1 ∗ P2. This notion is fundamental; as well, it has

very significant ramifications in an approach to LP revision.

For example, consider the following programs, where we want to determine P1∗P2:

Example 3.1

P1 = {b←, c← not d}
P2 = {a← not b}

By our interpretation of the success postulate, since {a} is an answer set of P2, it

should appear in the answer sets of P1 ∗ P2 (that is, {a} should be a subset of some

answer set of P1 ∗ P2). However, a was derived by the failure of being able to prove

b in P1. Consequently, if the answer sets of P2 are to appear among the answer

sets of P1 ∗ P2, then the reasons for the answer sets of P2 should also be retained.

Consequently b should not appear in the answer sets of P1 ∗ P2. Hence we would

want to obtain {a, c} as the answer set of P1 ∗P2. This example serves to distinguish

the present approach from previous work, in that in previous work the assertion of

a fact overrides an assumption of negation as failure at any level. Thus in previous

work on update logic programs for the above example one would obtain the answer

set {b, c}.
So adherence to a success postulate requires that, if a literal not p is used in a

higher-ranked set of rules, it should override positive occurrences in lower-ranked

sets. This also is in keeping with our assertion in the previous section, that in a

revision we consider a program as a whole, and not at the individual rule level.

However, it might plausibly be objected that often one wants to retain facts (such

as b in P1), and so such facts should obtain in the revision P1 ∗ P2. We suggest

instead that in such an instance, such (protected) facts should in fact be given higher

priority. We return to this point in Section 5, where we discuss the notion of a

revision methodology.

In working towards an answer set for a revision P1 ∗ P2, we first determine

an answer set for P2. However, we need to keep track of not just those literals

that are (positively) derivable, but also a set of not literals necessary for the

construction of the answer set. Consequently, we deal with three-valued answer

sets. Thus for Example 3.1, in considering P1, we need to keep track of the fact that

a was derived in P2 and that moreover not b was used in this derivation, thereby

necessitating the blocking of any later deriving of b in lower ranked rule sets. We

write the three valued answer set of P2 in Example 3.1 as ({a}, {b}). The three value

answer set for P1 ∗ P2 then is ({a, c}, {b, d}); and the corresponding answer set for

P1 ∗ P2 is {a, c}.
Consider next a variation of Example 3.1 where again we are to determine answer

sets for P1 ∗ P2:
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Example 3.2

P1 = {b←, c← not d}
P2 = {a← not b, a← not e}

The atom a may be obtained by not b or not c in P2. By appeal to a principle of

informational economy (Section 2), in a three valued answer set we retain a minimum

number of not literals sufficient to derive the answer set. This commitment to a

minimum number of not literals in turn means that there are fewer restrictions when

next considering P1. In the present example, this means that P2 has two three-valued

answer sets: ({a}, {b}) and ({a}, {c}). This leads to the three valued answer sets for

P1 ∗P2: ({a, c}, {b}) and ({a, b}, {c}); and corresponding answer sets {a, c} and {a, b}.
Consider finally the programs:

Example 3.3

P1 = {b←}
P2 = {a← b}

P2 has answer set ∅ (and three-value answer set (∅, ∅)). However in next considering

P1 in the revision P1 ∗ P2, one should be able to use the non-satisfied rule a ← b

and obtain an answer set {a, b} for P1 ∗ P2. This is by way of an extended notion of

informational economy, in which a maximal justifiable set of beliefs is desirable. So

rules of P2 that are neither applied nor refuted should nonetheless be available for

later steps in the revision.

These examples have dealt with a single occurrence of revision. Clearly the process

can be iterated to a sequence of programs. Informally, an answer set for a sequence of

programs is determined by finding 3-valued answer sets for higher-ranked programs,

and propagating these answer sets, along with undecided rules, to lower ranked

programs. Consequently, answer sets are built incrementally, with literals at a higher

level being retained at lower levels. In the next subsection, for generality, we work

with sequences of programs rather than just pairs.

4 Logic program revision: Approach

This section describes an approach to LP revision based on the intuitions of the

previous subsection. Consider by way of analogy, classical AGM revision: For a

revision K ∗α, the formula α is to be incorporated in K; since Bel(K)∪{α} may well

be inconsistent, formulas in Bel(K) may be dropped in order to obtain a consistent

result. Similarly in a revision of programs P1 ∗ P2: we would like the result to be

consistent if possible.

In outline, the goal is to determine answer sets for P1 ∗P2. To this end, an answer

set X of P2 is determined and it, along with the rules in P2, say P ′2, that do not

take part in the definition of X, are propagated to P1. Since the result should be
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consistent, we consider maximal subsets of P1 that are consistent with P ′2∪X and use

these to determine the resulting answer sets for the revision. We begin by defining

the relevant notion of an answer set with respect to revision.

By a three-valued interpretation we will mean an ordered pair of sets X =

(X+, X−) where X+, X− ⊆ L and X+ ∩ X− = ∅. The intuition is that members

of X+ constitute an answer set of some program, while X− contains a minimum

set of assumptions necessary for the derivation of X+. A (canonical) program

corresponding to a 3-valued interpretation X = (X+, X−) is given by

Pgm(X) = {a← | a ∈ X+} ∪ {⊥ ← a | a ∈ X−}.

The consequence relation Cn(.) on definite programs is extended to arbitrary logic

programs by the simple expedient of treating a weakly negated literal not l as a new

atom. Thus for example Cn({a←, b← a, c← not d}) is {a, b}.
The next definition extends the notion of reduct to 3-valued interpretations.

Definition 4.1

Let P be a logic program and X = (X+, X−) a 3-valued interpretation.

PX , the min-reduct of P wrt X, is the program obtained from P by:

1. deleting every rule r ∈ P where body−(r) ∩X+ �= ∅, and

2. replacing any remaining rule r ∈ P by

head(r)← body+(r), not(body−(r) \X−).

Part 1 above is the same as in the standard definition of reduct. In Part 2, just those

naf literals appearing in X− are deleted from the bodies of the remaining rules. The

following definition extends the notion of an answer set to 3-valued answer sets.

Definition 4.2

Let P be a logic program and X = (X+, X−) a 3-valued interpretation.

X = (X+, X−) is a 3-valued answer set for P if Cn(PX+
) = Cn(PX) = X+ and for

any Y = (X+, Y −) where Y − ⊂ X− we have that Cn(PY ) �= X+.

The set of 3-valued answer sets of program P is denoted 3AS (P ).

Thus for 3-valued answer set X = (X+, X−) of P , we have that X+ is an answer set

of P . As well, 3-valued answer sets include sufficient negation as failure literals for

the derivation of the answer set. Thus, for {a ← not b, a ← not c} there are two

3-valued answer sets ({a}, {b}) and ({a}, {c}) along with answer set {a}.
As suggested at the start of the section, in a revision P1 ∗ P2 we need to isolate a

subset of P1 that is consistent with P2. We give the necessary definition next.

Definition 4.3

Let P1, P2 be logic programs. Define P1 ↓P2 by:

If P2 is not consistent, then P1 ↓P2 =L.

Otherwise:

P1 ↓P2 = {P ′ ∪ P2 | P ′ ⊆ P1 and P ′ ∪ P2 is consistent and

for P ′ ⊂ P ′′ ⊆ P1, P
′′ ∪ P2 is inconsistent.}
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Thus for P ∈ P1 ↓P2, P consists of P2 together with a maximal set of rules from

P1 such that P is consistent.

Given a sequence of logic programs (P1, . . . , Pn), the revision process can now be

informally described as follows:

1. Let Xn ∈ 3AS (Pn); that is, Xn = (X+
n , X

−
n ) is a 3-valued answer set for Pn.

2. In the general case, one has a 3-valued answer set Xi+1 = (X+
i+1, X

−
i+1) from the

revision sequence (Pi+1, . . . , Pn). A maximal set of rules in (Pi, . . . , Pn) consistent

with Xi+1 is used to determine a 3-valued answer set Xi = (X+
i , X

−
i ) for the

revision sequence (Pi, . . . , Pn).

3. A 3-valued answer set X1 = (X+
1 , X

−
1 ) for the revision sequence (P1, . . . , Pn) then

yields the answer set X+
1 for the full sequence (P1, . . . , Pn).

With this setting, we can give the main definition for the answer sets of a revision

sequence of programs. To this end, a revision problem is given by a sequence

(P1, . . . , Pn) of logic programs; the goal is to determine answer sets of the sequence

under the interpretation that a higher-indexed program, taken as a single entity,

takes priority over a lower-indexed program. We write the revision sequence in

notation closer to that of standard belief revision, as P1 ∗ . . . ∗ Pn; our goal then is

to characterise the answer sets of P1 ∗ . . . ∗ Pn.

Definition 4.4

Let P = (P1, . . . , Pn) be a sequence of logic programs.

X is an answer set of P1 ∗ . . . ∗ Pn iff there is a sequence:

((P r
1 , X1), . . . , (P

r
n , Xn))

such that for 1 � i � n, P r
i is a logic program and Xi is a 3-valued interpretation,

and:

1. i.) P r
n = Pn and

ii.) Xn is a 3-valued answer set for Pn.

2. for i < n:

i.) P r
i ∈ Pi ↓ (P r

i+1 ∪ Pgm(Xi+1)) and

ii.) Xi is a 3-valued answer set for P r
i .

3. X = X+
1 .

The set of answer sets of P1 ∗ . . . ∗ Pn is denoted AS (P1 ∗ . . . ∗ Pn).

The case of binary revision is of course simpler. Though redundant, it is instructive,

and so we give it next.

Definition 4.5

Let P1, P2 be logic programs. X is an answer set of P1 ∗ P2 if:

1. there is a 3-valued answer set X2 of P2 and,

2. for some P ∈ P1 ↓ (P2 ∪ Pgm(X2)), X is an answer set of P .
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4.1 Examples

Consider the examples given earlier. For Example 3.1 we have:

P1 = {b←, c← not d}
P2 = {a← not b}

For P1 ∗ P2 we obtain:

P r
2 = P2, X2 = ({a}, {b})
P r

1 = {c← not d} ∪ {a←, ⊥ ← b}, X1 = ({a, c}, {b, d}).

Thus, P2 has 3-valued answer set ({a}, {b}) – {a} is a (standard) answer set for P2,

and it depends on, at minimum, the assumption of b being false by default. This

in turn requires a commitment to the non-truth of b in next considering P1. The

program P r
1 given by rules of P1 consistent with ({a}, {b}) consists of the single

rule c← not d along with an encoding of the 3-valued interpretation ({a}, {b}). We

obtain the 3-valued answer set ({a, c}, {b, d}), with corresponding answer set {a, c}.
This shows that a fact, in this case b, may be withdrawn without its negation ¬b
being asserted. We elaborate on this point in the context of an overall revision

methodology in Section 5.

Consider next Example 3.2:

P1 = {b←, c←}
P2 = {a← not b, a← not c}

P2 has two 3-valued answer sets ({a}, {b}) and ({a}, {c}). Again, {a} is a (standard)

answer set for P2, but it depends on, at minimum, the assumption of either b or c

being false by default. This in turn requires a commitment to the falsity of one of b

or c in next considering P1. As a result, the 3-valued answer set ({a}, {b}) yields the

program P r
1 given by {c ←, a ←, ⊥ ← b}, while the 3-valued answer set ({a}, {c})

yields the program {b ←, a ←, ⊥ ← c}. Consequently for the revision we obtain

two 3-valued answer sets ({a, c}, {b}) and ({a, b}, {c}), with corresponding answer

sets {a, c} and {a, b}.
For Example 3.3, where P1 = {b←} and P2 = {a← b}, we obtain:

P r
2 = P2, X2 = (∅, ∅)
P r

1 = {b←} ∪ {a← b}, X1 = ({a, b}, {}).

Thus there is one 3-valued answer set, ({a, b}, ∅), with answer set {a, b}.
We consider two more small examples to further illustrate the approach.

P1 = {a←, b←}
P2 = {⊥ ← a, b}

For P1 ∗ P2, there are two 3-valued answer sets, ({a}, ∅), ({b}, ∅) with corresponding

answer sets {a}, {b}. This is what would be desired: P2 requires that a and b cannot

be simultaneously true, while P1 states that a and b are both true. In this case, P2 is

retained, with a “maximal” part of P1 also held. Last, consider:

P1 = {a←, d← b}
P2 = {b← not a, c← not ¬a}
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In this case, P2 has three-valued answer set ({b, c}, {a,¬a}); hence the derivation of

b and c relies on the possibility of a being true, and of a being false. There is one

3-valued answer set for P1 ∗ P2, ({b, c, d}, {a,¬a}), with answer set {b, c, d}.

4.2 Properties

Section 2.2 noted that four of the basic AGM postulates are appropriate in a

nonmonotonic framework. With respect to these postulates, we obtain the following:

Theorem 4.1

Let P1, P2, P3 be logic programs.

(A ∗ 1) AS (P1 ∗ P2) ⊆ 2L.

(A ∗ 2) If X ∈ AS (P2) then there is X ′ ∈ AS (P1 ∗ P2) such that X ⊆ X ′.
(A ∗ 5a) AS (P1 ∗ P2) =L iff AS (P2) =L
(A ∗ 5b) AS (P1 ∗ P2) = ∅ iff AS (P2) = ∅
(A ∗ 6) If P2 ≡s P3 then AS (P1 ∗ P2) = AS (P1 ∗ P3).

Proof

(A ∗ 1) is a direct consequence of Definition 4.5. (A ∗ 2) follows from the fact that

if X ∈ AS (P2) then there is a three-valued answer set (X,Y ) ∈ 3AS (P2), and that

P1 ↓ (P2∪Pgm((X,Y ))) by definition has an answer set. Similarly, for (A∗5a) we have

that if AS (P2) =L then AS (P1∗P2) =L, and if AS (P2) �=L then AS (P1∗P2) �=L,

both following directly from Definition 4.3. (A ∗ 5b) follows analogously.

For (A ∗ 6) we have, in outline: By assumption we have that P2 ≡s P3, and

so for any program R, P2 ∪ R ≡s P3 ∪ R. In particular, let X ∈ 3AS (P2). Then

P2 ∪ Pgm(X) ≡s P3 ∪ Pgm(X).

We next make use of the small result: If P ≡s P ′ then for program R and

S ∈ R ↓P we have that there is S ′ ∈ R ↓P ′ such that AS (S) = AS (S ′). The proof of

this claim is straightforward: Let S ∈ R ↓P . S is of the form R′ ∪ P where R′ ⊆ R.

We have that R′ ∪ P ≡s R′ ∪ P ′ since P ≡s P ′. So for S ′ = R′ ∪ P ′ we have that

S ′ ∈ R ↓P ′; as well, S ≡s S ′ and so AS (S) = AS (S ′).

So, consider again X ∈ 3AS (P2). We have that P2 ∪ Pgm(X) ≡s P3 ∪ Pgm(X)

and so, applying the above small result we have that for S ∈ P1 ↓ (P2 ∪ Pgm(X))

there is S ′ ∈ P1 ↓ (P3 ∪ Pgm(X)), such that AS (S) = AS (S ′), and so if follows that

AS (P1 ∗ P2) = AS (P1 ∗ P3). �

Thus the result of revision is a set of answer sets (A ∗ 1), which is to say, if an

agent’s beliefs are given by a set of answer sets corresponding to potential states

of the world, then a revision sequence also yields a set of such beliefs. The key

property of the approach is given by (A ∗ 2), corresponding to the success postulate:

in a revision P1 ∗ P2, beliefs as expressed in P2 override those of P1. The two

parts of (A ∗ 5) hold by virtue of the fact that in a revision P1 ∗ P2, only some

consistent (with P2) subset of P1 is used in the revision. (A ∗ 6) is a version of

independence of syntax. The postulate fails if P2 ≡s P3 is replaced by P2 ≡u P3 or

AS (P2) = AS (P3): a counterexample is given by P1 = {b←}, P2 = {a← not b}, and
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P3 = {a ← not c}. Consequently, appropriate versions of the core AGM postulates

hold in the approach.

With regards to the postulates given in Section 2.3 for logic program updates, we

obtain the following.

Theorem 4.2

Let P1, P2, P3 be logic programs.

Then P1, P2, P3 satisfy initialisation, idempotency, and non-interference.

As well, we obtain:

SAbsorption: if P2 ≡s P3 then AS (P1 ∗ P2 ∗ P3) = AS (P1 ∗ P2).

These principles are elementary but nonetheless desirable. As mentioned, most

approaches to update logic programs fail to satisfy tautology, and in fact they

generally do so when a revised program is inconsistent. The present approach also

fails to satisfy tautology, and in the same situation, but in this case the lack of this

principle is intended: tautology is incompatible with (A ∗ 5) and (A ∗ 6) in the case

that the revised program is inconsistent. Note that it is straightforward to modify

the approach so that tautology is satisfied, at the expense of (A ∗ 5) and (A ∗ 6), by

the simple expedient of modifying Definition 4.5, Part 2, to be

2. X is an answer set for P1 ∪ P2 ∪ Pgm(X2).

The remaining principles listed in Section 2 can be argued to be undesirable,

with the possible exception of associativity. Not surprisingly, absorption fails at the

level of answer sets, though not at the level of strong equivalence (as given by

SAbsorption). Augmentation would seem to be related to a notion of monotonicity,

and hence is undesirable. Disjointness and parallelism both clearly fail. Arguably

both should fail; consider the the case where P2 = ∅. Disjointness in this situation

reduces to:

AS (P1 ∗ P3) = AS (P1 ∗ P3) ∪ AS (P3)

which is clearly undesirable.

Implementation A prototype implementation has been written in C (Tasharrofi 2009),

and making use of the solver clasp (Gebser et al. 2007). The prototype is at an

early stage of development, and results concerning benchmarks or scalability have

not yet been obtained.

5 Discussion

This paper has described an approach to logic program revision in which the focus

is on revision as understood in the belief revision community. Consequently, the key

success postulate is taken seriously. The intuition is that a logic program represents

an agent’s epistemic state, while the answer sets are a representation of the agent’s

contingent beliefs. This leads to an approach with quite different properties than

other approaches that have appeared in the literature. In particular, for a revision

P1 ∗ P2 the program P2 is treated as a whole as having higher priority than P1, in

https://doi.org/10.1017/S1471068410000281 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000281


578 James P. Delgrande

that answer sets of P2 are propagated to P1. This has an important consequence,

and requires the use of three-valued interpretations, in that literals assumed to be

false at a higher ranked program can override literals used as facts in a lower-ranked

program. This is in contrast to logic program update, where one selects rules to

apply, giving preference to rules in P2, and then applies these selected rules.

Arguably the approach helps cast light on the logic-program-update landscape. We

have suggested that update logic program approaches are more appropriately viewed

as dealing with preferences or priorities over rules, rather than revision or update

per se. The approach at hand seems to fall somewhere between a syntactic approach

and a semantic one, such as (Delgrande et al. 2008). The answer sets obtained

exhibit reasonable properties – for example, the core AGM postulates are satisfied,

including syntax independence under strong equivalence and a success postulate;

and the appropriate set of logic program update postulates are also satisfied. The

approach would seem to have some hope for practical implementation. A prototype

implementation is available. At present it is essentially a “proof of concept” and is

a subject of current investigation.

Applicability and Evaluation of the Approach As indicated in the introduction, a

primary aim of this paper is to investigate the extent to which classical notions

of belief revision may be applied in revising logic programs under the answer

set semantics. We have claimed that the approach is intuitive, in that it reflects

plausible notions concerning revision. In contrast to related work, it satisfies a suite

of desirable formal properties. On the other hand, as with belief revision in classical

logic, there is not necessarily a single best approach to logic program revision, but

rather different approaches will be more or less suitable in different areas. To this end

we can consider circumstances in which the present approach would be applicable.

It would be applicable, clearly, in a problem in which the answer sets of more

recent programs are to hold sway over the answer sets of lower-ranked programs.

This would be the case with program refinement for example, where elaborations

taking care of special cases are incorporated into an existing program. As well, the

approach can be directly applied to problems involving a sequence of NP complete

problems, for example in a situation where the solution to one problem feeds as

input into a second. A representative example described earlier involves finding a

three colouring for a graph, and then finding a Hamiltonian path on the vertices of

a specific colour.

These considerations also suggest the following revision methodology. A logic

program will most often be comprised of two parts, a problem instance consisting

of facts, and a problem description consisting of rules with variables. Typically the

facts will be of highest importance – thus in the example of finding a Hamiltonian

path among yellow-coloured vertices, one would not want to revise the underlying

graph. Hence any approach to logic program change will want to isolate portions of

the knowledge base (usually the problem instance) as being incontrovertible. It is a

strength of the present approach that this can already be effected in an application,

since if the facts are given as the first revising program in a sequence, the success

postulate guarantees that the facts will not be modified.
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Future work There has been little work on logic program change with respect to

disjunctive logic programs. A major reason for this is that most approaches to update

logic programs focus on rules with conflicting heads. In a disjunctive program, it

is not immediately clear what it means for two rules to have conflicting heads.

Consequently it isn’t obvious how approaches to update logic programs can be

extended to deal with disjunction in the head. An obvious extension to the present

approach then is to apply it to disjunctive programs. The key issue is to extend the

definition of a three-valued interpretation to disjunctive rules. There seems to be no

barrier to such an extension, and this would seem to be a useful yet (presumably)

straightforward extension.

A more difficult problem is to define revision so that the result of a revision is

a single logic program expressed in the language of the revising programs. That

is, intuitively and ideally, the result of P1 ∗ . . . ∗ Pn should be a logic program P ,

expressed in the language atom(P1)∪. . .∪atom(Pn). (That is, auxiliary atoms would be

expressly forbidden.) Arguably this is the real problem of revision in logic programs,

and there has been no substantial progress in this area due to its difficulty. The

present approach may allow insight into how such an approach to revision can be

carried out. In fact, it already allows the formation of single logic program that can

be considered as a candidate for the revision P1 ∗ . . . ∗ Pn. We have the result:

Theorem 5.1

Given the assumptions and terms of Definition 4.4 where (X+
1 , X

−
1 ) is a 3-valued

answer set of P1 ∗ . . . ∗ Pn we have that: X+
1 is an answer set of P r

1 ∪ P r
2 ∪ . . .∪ P r

n .

Note that P r
n = Pn and so the highest-ranked program is retained, along with other

rules from remaining programs that aren’t excluded by higher-ranked programs.

Hence, we can use the approach to obtain a single program from a sequence of

programs. However, this is a weak result, since the above result guarantees only that

a single answer set of Pn will be retained in the program resulting from the revision

P1 ∗ . . . ∗ Pn. Hence one obtains a very credulous revision operator, in that many

potential answer sets are ruled out. It may be that the set of programs obtained

according to Theorem 5.1 can be merged into a single program, but this task in turn

requires a nuanced approach to merging logic programs.
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