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1. Introduction
Starting with the seminal work of Katok and Spatzier on Anosov actions [11], smooth local
classification of abelian actions with hyperbolic features has deserved a lot of attention.
Hyperbolicity implies existence of invariant geometric structures whose properties were
exploited in obtaining very strong local classification results [6, 17]. The main goal of
local classification is completely understanding the dynamics of smooth actions, which
are small perturbations of the given action.

For actions with no hyperbolicity, such as parabolic and elliptic actions, there are no
convenient invariant geometric structures and the methods from the hyperbolic theory
are not applicable [5]. Also, for parabolic and elliptic actions the local classification
results are weaker than for hyperbolic actions and the methods used are more analytical.
For elliptic abelian actions the main feature allowing local classification has been the
Diophantine property [12, 13] for torus translations, while the main strategy for proving
local classification results has been the method of successive iterations labeled in the 1960s
by the KAM method after Kolmogorov, Arnold and Moser, who devised it for the purpose
of showing persistence of Diophantine tori in Hamiltonian dynamics. The method has been
more recently adapted to certain kinds of parabolic continuous-time actions in [7] and later
used in [3, 18]. This adapted method is described for general Lie group actions in [2].

In this paper we apply this adapted KAM method of successive iterations to a
class of discrete-time abelian actions that are parabolic, meaning that the derivative
of the action has polynomial growth. We describe a class of discrete abelian actions
on a (2n+ 1)-dimensional Heisenberg nilmanifold, which on the induced torus have
certain Diophantine properties. For the purpose of this introduction we call these actions
‘Diophantine’. We show that these Diophantine actions belong to a finite-dimensional
(4g − 1)-dimensional family of algebraic actions for which we prove a local classification
result. Namely we show that a small perturbation of the family around the Diophantine
member contains a smooth conjugate of that Diophantine action. This implies that every
perturbed family contains an element which is dynamically the same as the Diophantine
action. This phenomenon has been previously labeled transversal local rigidity and has
been studied for classes of continuous-time actions [3, 7]. For discrete abelian actions,
we are not aware of any results in the literature where transversal local rigidity is proved
and where it does not follow from a stronger local (or global) rigidity result for actions
of Z or R.

The analytic method of obtaining local classification results interprets the local conjuga-
tion problem as a nonlinear operator, which after linearization describes the cohomology
over the unperturbed actions. The linearized version of the local classification problem
is precisely the first cohomology group with coefficients in smooth vector fields. If the
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first cohomology is finite dimensional and both first and second coboundary operators
have inverses with sufficiently nice tame norm estimates, then one can reasonably hope to
employ the KAM iterative method. Tameness means that the Cr norm of the solution can
be bounded by the Cr+σ norm of the given data, where r is arbitrarily large while σ is
a constant. In short, the analytic method has two major ingredients: a detailed analysis of
the first cohomology and coboundary operators, and an application of the KAM iteration.
Such detailed analysis of cohomology is usually hard to perform, and usually needs to use
the full machinery of the representation theory, which is why results are often restricted to
actions on manifolds of smaller dimension and simpler structure of representation spaces.
This is the main reason that there is a lack of local rigidity results for parabolic actions on
higher step nilmanifolds.

We remark that even when careful analysis of first cohomology is possible, the inverses
of coboundary operators may lack tameness, in which case the KAM method may not
work. Namely, in [8], we carried out analysis of the first cohomology for the discrete
parabolic homogeneous action on SL(2, R)× SL(2, R)/�. However, the inverse of the
second coboundary operator turned out not to be tame; in fact, Tanis and Wang [14] proved
that there can be no tame inverse (see also [15, Theorem 2.2]). No local classification
results have been obtained for this example.

In this paper we perform detailed analysis of cohomology for a class of discrete-time
actions with Diophantine properties on (2n+ 1)-dimensional Heisenberg nilmanifolds. It
turns out that their cohomology is finite dimensional and we can obtain tame estimates for
solutions of coboundary operators. Once we get complete cohomological information, we
use the KAM method to prove transversal local rigidity. This is similar to the proof of the
main results in [2, 7], except that in the case of discrete actions we have somewhat more
complicated (linear and nonlinear) operators to work with. As far as we know this is the
first example of a discrete parabolic (but not elliptic) abelian action for which some kind
of local rigidity property holds.

The analysis of first cohomology for the corresponding continuous-time group actions
on Heisenberg nilmanifolds has been carried out in [1]. In the continuation of the work
presented in this paper, we intend to address local classification of the Rk actions described
in [1] as well as their discrete subactions.

1.1. Setting. Let n ≥ 2 be an integer. The Heisenberg group over R
n is the set H :=

H(n) = R
n × R

n × R, and it is equipped with the group multiplication

(x, ξ , t) · (x′, ξ ′, t ′) = (x + x′, ξ + ξ ′, t + t ′ + 1
2 (x

′ − x · ξ ′)).

The Lie algebra of H is the vector space R
n × R

n × R, which is generated by the vector
fields

(Xi)
n
i=1, (�i)

n
i=1, Z

that satisfy the commutation relations

[Xi , Xj ] = 0, [�i , �j ] = 0, [Xi , �j ] = δijZ, i, j ∈ {1, 2, . . . , n}.
The set � := Z

n × Z
n × 1

2Z ⊂ H is the standard lattice of H. The lattice is cocompact and
the compact quotient manifold M := �\H is called the standard Heisenberg nilmanifold.
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Even though our proofs are written for the case of the standard lattice �, this not
a restriction; the results in fact automatically hold for general lattices of H due to the
complete description of all lattices in H and the corresponding representation of �\H by
Tolimieri in [16].

Let L2(M) be the space of complex-valued square-integrable functions on M. As in [1],
we define the Laplacian on L2(M) by

� := −Z2 −
n∑
i=1

X2
i +�2

i . (1)

Then � is an essentially self-adjoint, non-negative operator, and (I + �)s is defined by the
spectral theorem for all s > 0. The space Ws(M) is the Sobolev space of s-differentiable
functions defined to be the maximal domain of (I + �)s , and it is equipped with the inner
product

〈f , g〉s := 〈(I + �)sf , g〉. (2)

The norm of a function f ∈ Ws(M) is denoted ‖f ‖s . Because M is compact, we have

C∞(M) :=
⋂
s≥0

Ws(M).

For m ∈ Z
2n, let

m := (m1, m2, . . . , m2n),
m1 := (m1, m2, . . . , mn), m2 := (mn+1, mn+2, . . . , m2n).

(3)

Then let

τ := (τ1, τ2, . . . , τn, 0), η := (0, η1, η2, . . . , ηn)

be Diophantine over Zn in R
n and satisfy

n∑
j=1

τjηj = 0. (4)

By Diophantine, we mean that there are constants c := cτ ,η > 0 and γ := γτ ,η > 0 such
that for any m ∈ Z

2n and p ∈ Z, we have

|τ · m − p| > c|m1 · m1|−γ if m1 �= 0,
|η · m − p| > c|m2 · m2|−γ if m2 �= 0.

(5)

The above condition is saying that the vectors of the form τ and η are simultaneously
Diophantine, which is the natural condition that has appeared in previous works on
classification of perturbations of actions by translations on the torus (for example in [19]
or [13]).

Next let

Yτ :=
n∑
i=1

τiXi , Yη :=
n∑
i=1

ηi�i
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and notice that these vector fields commute because

[Yτ , Yη] = 0 (6)

is equivalent to (4).
We consider the Z

2 right action on M given by

ρ(m1, m2)(x) := x exp(m1Yτ +m2Yη). (7)

The action ρ induces a Z
2 action on L2(M) (which we also denote by ρ), defined by

ρ(m1, m2)(f ) := f ◦ ρ(m1, m2).

1.2. Results on cohomological rigidity. Let ρ : Zk → Diff∞(M) be a smooth Z
k action

on a compact manifold M. Let V be a ρ-module, by which we mean that there is a Z
k

action on V, which we label by ρ∗. Let Cl(Zk , V ) denote the space of multilinear maps
from Z

k × · · · × Z
k to V.

Then we have the cohomology sequence

C(Zk , V )
d1−→ C1(Zk , V )

d2−→ C2(Zk , V ), (8)

where the operators d1 and d2 are defined as follows. For H ∈ C(Zk , V ) = V and β ∈
C1(Zk , V ), define

d1H(g) = ρ∗(g)H −H ,

(d2β)(g1, g2) = (ρ∗(g2)β(g1)− β(g1))− (ρ∗(g1)β(g2)− β(g2)). (9)

The first cohomologyH 1
ρ (V ) over the action ρ with coefficients in the module V is defined

to be Ker(d2)/Im(d1). Elements of Ker(d2) are called cocycles over ρ with coefficients in
V, and elements of Im(d1) are called coboundaries over ρ with coefficients in V.

We consider here two situations:
(1) V = C∞(M) and ρ∗(g)f = f ◦ ρ(g) for any g ∈ Z

k and any f ∈ C∞(M); and
(2) V = Vect∞M and ρ∗(g)X = Dρ(g)X ◦ ρ(g)−1 for any g ∈ Z

k and any X ∈
Vect∞M .

We say that H 1
ρ (C

∞(M)) is constant if up to a modification by a constant cocycle, every
cocycle is a coboundary. This means that H 1

ρ (C
∞(M)) is isomorphic to R

k .
Now let M be the homogeneous space � \G, where G is a Lie group with Lie algebra

g and � is a lattice in G. Let ρ be a Z
k action on M by right multiplication. Then ρ

induces an action ρ∗ on g via the adjoint operator ad. This action makes g into a module,
so one can consider the cohomology H 1

ρ (g), which is of course finite dimensional. If
H 1
ρ (Vect∞M) = H 1

ρ (g), that is, if the cohomology with coefficients in vector fields is
the same as the cohomology over ρ with coefficients in constant vector fields, then we say
that H 1

ρ (Vect∞M) is constant. In particular, the constant H 1
ρ (Vect∞M) is exceptionally

small: it is finite dimensional.

THEOREM 1.1. For the action ρ defined in §1.1, bothH 1
ρ (C

∞(M)) andH 1
ρ (Vect∞M) are

constant. Moreover, in both cases, the operators d1 and d2 have tame inverses. Namely,
there exist positive constants σ and s0, and there exists a left inverse d∗

i of d∗
i , for i = 1, 2,
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such that for all s ≥ s0 there is a constant Cs > 0 such that ‖d∗
i γi‖s ≤ Cs‖γi‖s+σ , where

γi is a cochain in Im(di ).

The above theorem forH 1
ρ (C

∞(M)) is a direct consequence of the following two results
which contain precise information on estimates for the norms of solutions to cohomo-
logical equations, which is essential for application of the KAM method. The precise
formulation of Theorem 1.1 for H 1

ρ (Vect∞M), with concrete estimates, is Proposition 3.7
in §3.5. The property of a cohomology group described in Theorem 1.1 is usually in the
literature referred to as tame splitting in cohomology. For more details on cohomology
operators and splitting in cohomology, we refer to [3], [8] or [13].

We define the first coboundary operators associated to the generators of ρ. These are
operators Lτ and Lη on L2(M) given by

Lτf := f ◦ ρ(1, 0)− f ,
Lηf := f ◦ ρ(0, 1)− f .

(10)

THEOREM 1.2. For any s ≥ 0 and for any ε > 0, there is a constant Cs,ε := Cs,ε,τ ,η > 0
such that for any f , g ∈ C∞(M) of zero average with respect to the Haar measure, and
that satisfy Lτg = Lηf , there is a solution P ∈ C∞(M) such that

LτP = f and LηP = g

and

‖P ‖s ≤ Cs,ε(‖f ‖s+max{2γ , 3n/2+1+ε} + ‖g‖s+2γ ),

where γ is the Diophantine exponent in (5).

THEOREM 1.3. For any s ≥ 0 and for any ε > 0, there is a constant Cs,ε := Cs,ε,τ ,η > 0
such that for any f , g, φ ∈ C∞(M) of zero average, and that satisfy Lηf − Lτg = φ,
there exists a non-constant function P ∈ C∞(M) such that

‖g − LηP ‖s ≤ Cs,ε‖φ‖s+σ(n,γ ,ε),
‖f − LτP ‖s ≤ Cs,ε‖φ‖s+σ(n,γ ,ε),
‖P ‖s ≤ Cs,ε(‖f ‖s+σ(n,γ ,ε) + ‖g‖s+σ(n,γ ,ε)),

where σ(n, γ , ε) := max{2γ , 3n+ 1 + ε}.
Remark 1.4. Results of this section can be viewed as the first step of obtaining discrete
counterparts of the results of Cosentino and Flaminio on Lie group actions on Heisenberg
nilmanifolds [1]. An additional difficulty in the discrete case is that the space of
obstructions to solutions of the cohomological equation is infinite dimensional in each
irreducible, infinite-dimensional representation. We trust that the following general result
holds: for actions of Lie groups P considered in [1], every non-degenerate lattice subaction
of P satisfies the statement of Theorem 1.1.

Remark 1.5. The Diophantine constants in (5) could have different values for τ and for η.
It would not affect results, only the values of the constants in the estimates. For simplicity
we used the same γ throughout.
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Remark 1.6. We note that for a typical element of the action ρ, the first cohomology is
infinite dimensional as a consequence of the results of Flaminio and Forni in [9]. The
results in [9] hold for nilmanifolds of any step, and it is an interesting open problem to
construct Rk and Z

k homogeneous actions satisfying Theorem 1.1 on nilmanifolds of step
greater than two.

1.3. Transversal local rigidity result. Let ρ be a smooth action of a discrete group
G by diffeomorphisms of a smooth compact manifold M. Suppose that there exists a
finite-dimensional family {ρλ}λ∈Rd of smooth G actions on M such that ρ0 = ρ, and the
family is C1 transversally, that is, it is C1 in the parameter λ.

The action ρ is transversally locally rigid with respect to the family {ρλ} if every
sufficiently small perturbation of the family ρλ in a neighborhood of λ = 0 intersects the
smooth conjugacy class of ρ, where the smooth conjugacy class of ρ consists of all actions
{h ◦ ρ ◦ h−1 : h ∈ Diff∞(M)}. By sufficiently small we mean that the perturbed family
consists of sufficiently small perturbations of the elements in the initial family, in a fixed
Cl norm determined by the given initial family data, and that transversally in the direction
of the parameter λ the perturbed family is close to the initial one in the C1 topology. The
precise smallness conditions we need are given in Theorem 3.10, which is the more precise
formulation of our main local rigidity result.

THEOREM 1.7. Let ρ be the Z2 action defined in (7), where τ and η are Diophantine as in
(5). Then ρ is transversally locally rigid with respect to an explicit (4n− 1)-dimensional
family of homogeneous Z2 actions.

The explicit family of actions is defined in §3.1.

1.4. Structure of the paper. The paper has two parts with analysis of different flavor. In
§2 we prove the cohomological results in Theorems 1.2 and 1.3. These results are further
used in §3.5 to prove Proposition 3.7. All these results together imply directly Theorem 1.1.
The main analytic tool for the proof of cohomological results is representation theory on
the Heisenberg nilmanifold. The calculation in finite-dimensional representation is signifi-
cantly simpler and is written in the appendix. The main calculation in infinite-dimensional
representation is done in §2.3. In the second part of the paper we apply cohomological
results to prove Theorem 1.7. We describe the finite-dimensional family relative to which
transversal rigidity holds in §3.2 and we prove the main iterative step needed for Theorem
1.7 in §3.6.

2. Proofs of Theorems 1.2 and 1.3
2.1. Representation spaces. Let L2(M) be the Hilbert space of complex-valued
square-integrable functions with respect to the H-invariant volume form for M. By the
Stone–von Neumann theorem, the space L2(M) decomposes into an orthogonal sum of
irreducible, unitary representations that are unitarily equivalent to certain one-dimensional
or infinite-dimensional models that we describe at the top of §§2.2 and 2.3. Moreover, by
irreducibility, Sobolev spaces Ws(M) are also decomposable in the above sense, because
vector fields in h split into irreducible, unitary representation spaces, and the infinitesimal
representations of h extend to representations of the enveloping algebra. For this reason,

https://doi.org/10.1017/etds.2021.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.79


3118 D. Damjanović and J. Tanis

we may prove our Sobolev estimates concerning coboundary operators (Theorems 1.2 and
1.3) in simpler, orthogonal components ofWs(M), and then we glue the estimates together
at the end (see (50)).

2.2. Finite-dimensional representations. The one-dimensional representations are uni-
tarily equivalent to characters ρm of R2n in L2(T2n), for m ∈ Z

2n, and are given by

ρm(x, ξ , t)f = e2πim·(x,ξ)f . (11)

For each integer 1 ≤ j ≤ n, the derived representations of ρm are

Xj = 2πimj , �j = 2πimn+j , Z = 0.

Write

ρ :=
⊕

m∈Z4

ρm.

So, given f ∈ L2(T2n), we have the orthogonal decomposition

f (x, ξ) =
∑

m∈Z4

fme
2πim·(x,ξ),

where � acts on irreducible, unitary representations of L2(T2n) by

ρm(�) = 4π2m · m.

For s > 0, the subspace of s-differentiable functions isWs(T2n) ⊂ L2(T2n), defined to
be the maximal domain of the operator (I + ρ(�))s/2 on L2(T2n) with inner product and
norm given by (2). In particular,

‖f ‖2
s =

∑
m∈Z2n

(1 + 4π2m · m)s |fn|2. (12)

We denote the space of smooth functions in L2(T2n) by

W∞(T2n) :=
⋂
s≥0

Ws(T2n).

Furthermore, for every s, we have Ws(T2n) = C〈1〉 ⊕Ws
0 (T

2n), where Ws
0 (T

2n) is the
Sobolev space of s-differentiable, zero-average functions on T

2n. So, it follows that

W∞(T2n) = C〈1〉 ⊕W∞
0 (T2n),

where W∞
0 (T2n) = ⋂

s≥0 W
s
0 (T

2n).
The two propositions below establish Theorems 1.2 and 1.3 in the case of

finite-dimensional representations. The proofs are straightforward and deferred to the
appendix.

PROPOSITION 2.1. There is a constant Cτ ,η > 0 such that for any zero-average f , g ∈
W∞

0 (T2n) that satisfy Lτg = Lηf , there is a solution P ∈ W∞(T2n) such that

LτP = f and LηP = g
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and, for any s ≥ 0,

‖P ‖s ≤ Cτ ,η(‖f ‖s+2γ + ‖g‖s+2γ ).

PROPOSITION 2.2. There is a constant Cτ ,η > 0 such that for any φ ∈ W∞(T2n) and any
non-constant zero-average functions f , g ∈ W∞

0 (T2n) that satisfy Lηf − Lτg = φ, there
is a non-constant function P ∈ W∞(T2n) such that for any s ≥ 0,

‖g − LηP ‖s ≤ Cτ ,η‖φ‖s+2γ ,
‖f − LτP ‖s ≤ Cτ ,η‖φ‖s+2γ ,
‖P ‖s ≤ Cτ ,η(‖f ‖s+2γ + ‖g‖s+2γ ).

2.3. Schrödinger representations. Next we consider the irreducible, infinite-dimensional
representations. By the Stone–von Neumann theorem, any infinite-dimensional
representation is unitarily equivalent to a Schrödinger representation of H on L2(Rn)

with a parameter h �= 0. When acting on the right, this is

(μh(x, ξ , t)φ)(y) = e−iht+iε|h|1/2ξ ·y−(1/2)ihξ ·xφ(y − |h|1/2x), (13)

where ε = sign(h) = ±1. For integers 1 ≤ j ≤ n, we have

μh(Xj ) = −|h|1/2 ∂

∂yj
, μh(�j ) = iε|h|1/2yj , μh(Z) = −ih.

The derived representation extends to the enveloping algebra of the Lie algebra of H.
In §1.1, we noted that we will work with the standard lattice and, in this case, the

Schrödinger representations are parameterized by h ∈ 2πZ \ {0} (see [1, §3.2]). Then
observe that

|Z| = |h|
and define the operator � in the model μh to be

μh(�) := 1
2π

(
|μh(Z)| −

n∑
i=1

μh(X
2
i )+ μh(�

2
i )

)

= |h|
2π

(
1 +

n∑
i=1

y2
i − ∂2

∂y2
i

)
,

which is homogeneous in |h|. The operator μh(�) is related to μh(�) by

μh(�) = 1
2π
(μh(�)+ |μh(Z)| + μh(Z)

2). (14)

Define Ws(μh, Rn) ⊂ L2(Rn) to be Hilbert Sobolev space of s-differentiable functions,
that is, the maximal domain of the operator μh(�)s on L2(Rn) with inner product

〈μh(�)sf , g〉L2(Rn) =
( |h|

2π

)s〈(
I +

n∑
i=1

y2
i − ∂2

∂y2
i

)s
f , g

〉
L2(Rn)

.

Denote the Sobolev norm of this operator by

|||f |||s := 〈μh(�)sf , f 〉L2(Rn). (15)
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Clearly, the space of smooth functions in L2(Rn) with respect to μh(�) is the Schwartz
space

S(Rn) =
⋂
s≥0

Ws(μh, Rn).

Following [1], estimates of linear operators with respect to the Laplacian (1) are a
consequence of such estimates in the homogeneous norm. This estimate differs from
Lemma 3.15 of [1] in that our homogeneous operator μh(�) includes the term |μh(Z)|,
whereas that operator in [1] does not. The argument below is the same as in [1, Lemma
3.15].

LEMMA 2.3. Let T : S(Rn) → S(Rn) be a linear map for the representation μh such
that for every s ≥ 0, there are a constant Cs > 0 and some t ≥ 0 satisfying

|||Tf |||s ≤ Cs |||f |||s+t .
Then, for every s ≥ 0, there is a constant Cs,t = 2(s+t)/2 max0≤k≤s{Ck} > 0 such that

‖Tf ‖s ≤ Cs,t‖f ‖s+t .
Proof. First let s ≥ 0 be an integer. Then

‖Tf ‖2
s =

〈(
I − μh(Z)

2 −
n∑
i=1

μh(Xi)
2 + μh(�i)

2
)s
Tf , Tf

〉

≤
s∑
k=0

(
s

k

)
(1 + h2)s−k〈μh(�)kTf , Tf 〉. (16)

By the definition of |||Tf |||k , by (14) and because all terms are positive, we have

(16) ≤
s∑
k=0

(
s

k

)
(1 + h2)s−kC2

k 〈μh(�)k+t f , f 〉

= max
0≤k≤s

{C2
k }〈(I − μh(Z)

2 + μh(�))
sμh(�)

t/2f , μh(�)t/2f 〉. (17)

Because μh(Z)2 is a constant, (I − μh(Z)
2 + μh(�)) and μh(�) commute. Then, using

that −μh(Z)2 is positive again, we have

(17) ≤ max
0≤k≤s

{C2
k }〈(I − μh(Z)

2 + 2πμh(�))s+t f , f 〉
= max

0≤k≤s
{C2
k }〈(I + μh(�)+ 2π |μh(Z)|)s+t f , f 〉

≤ 2s+t max
0≤k≤s

{C2
k }‖f ‖2

s+t .

The estimate for s ≥ 0 follows by interpolation.

We will use the above lemma to reduce our estimates to the case h = 1. Because the
norm (15) is homogeneous in h, by rescaling by the factor |h|s/2 from |||f |||s , we can
restrict ourselves to the case |h| = 2π , as in [1]. In what follows, we set h = 2π , as the
argument for h = −2π is analogous.
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Then, to simplify notation, we write

Xj = − ∂

∂yj
, �j = iyj , Z = −i

and we refer to the Schrödinger representation on L2(Rn) as

μ := μ2π .

For s > 0, we denote Ws(Rn) := Ws(μ, Rn).
It will be convenient to define the Sobolev spaceWs(Rn−1) that is the maximal domain

of the operator I + ∑n
i=2 y

2
i − (∂2/∂y2

i ) on L2(Rn−1). We use the same notation for the
inner product, where in this setting

〈f , g〉s :=
〈(
I +

n∑
i=2

y2
i − ∂2

∂y2
i

)s
f , g

〉
L2(Rn−1)

.

Definition 2.4. Denote the norm of Ws(Rn−1) by |f |s .

2.3.1. Change of variable. Define

τ =
√√√√ n∑
j=1

τ 2
j .

Let A = [a1, a2, . . . , an] ∈ O(n) be an n× n matrix with orthonormal rows ai such that

a1 = 1
τ
(τ1, τ2, . . . , τn).

Observe that (τj ) and (ηj ) span a two-dimensional subspace of Rn, so we can choose a2

to be such that

(η1, η2, . . . , ηn) ∈ span({a1, a2}).
Further, choose the signs of the vectors aj , for 2 ≤ j ≤ n, so that A ∈ SO(n). Then A is
the determinant one rotation of Rn such that

A(τ1, τ2, . . . , τn) = (τ , 0, . . . , 0),
A(η1, η2, . . . , ηn) = (ν1, ν2, 0, . . . , 0)

(18)

for some (ν1, ν2) ∈ R
2.

For y = (y1, y2, . . . , yn), define z = (z1, z2, . . . , zn) via matrix–vector multiplication
by

z = Ay.

Therefore,

f (y) := f ◦ A−1(z). (19)

Clearly, because A is an orthogonal matrix, the operator UA : L2(Rn, dy) →
L2(Rn, dz) given by

UAf = f ◦ A−1
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is unitary. Let μ̃ be the representation on H such that for any g ∈ H, μ̃(g) : L2(Rn, dz) →
L2(Rn, dz) is given by

μ̃(g) := UAμ(g)U
−1
A .

So, μ̃ is unitarily equivalent to μ.
Now we compute a basis for h in terms of the derived representations of μ̃. For each

j ∈ {1, 2, . . . , n}, let (xj ,t , λj ,t , zj ,t )t∈[−1,1] be smooth curves in H such that

Xj = d

dt
μ(xj ,t )|t=0, �j = d

dt
μ(λj ,t )|t=0, Zj = d

dt
μ(zj ,t )|t=0.

Then set

X̃j = d

dt
μ̃(xj ,t )|t=0, �̃j = d

dt
μ̃(λj ,t )|t=0, Z̃j = d

dt
μ̃(zj ,t )|t=0.

Let A−1 be the matrix

A−1 = (bij )

for some coefficients bij . A calculation shows that for j ∈ {1, 2, . . . , n},

X̃j = −
n∑
k=1

bjk
∂

∂zk
, �̃j = i

n∑
j=k

bjkzk , Z̃ = −i.

One can check that these operators satisfy the commutation relations

[X̃i , X̃j ] = 0, [�̃i , �̃j ] = 0, [X̃i , �̃j ] = δij Z̃

for i, j ∈ {1, 2, . . . , n}.

LEMMA 2.5. We have

μ̃(�) = I +
n∑
i=1

z2
i − ∂2

∂z2
i

.

Proof. By definition,

μ̃(�) = I +
n∑
i=1

−X̃2
i − �̃2

i . (20)

Notice that

X̃2
i =

(
−

n∑
j=1

bij
∂

∂zj

)2

=
n∑

j ,m=1

bij bim
∂2

∂zj ∂zm
.
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Because the columns of A−1 are orthonormal, we get

n∑
i=1

X̃2
i =

n∑
i=1

n∑
j ,m=1

bij bim
∂2

∂zj ∂zm

=
n∑

j ,m=1

n∑
i=1

bij bim
∂2

∂zj ∂zm

=
∑

1≤j �=m≤n

∂

∂zj ∂zm

n∑
i=1

bij bim +
n∑
j=1

∂2

∂z2
j

n∑
i=1

b2
ij

=
n∑
j=1

∂2

∂z2
j

.

Similarly,

n∑
i=1

�̃2
i = −

n∑
j ,m=1

n∑
i=1

bij bimzj zm

= −
∑

1≤j �=m≤n
zj zm

n∑
i=1

bij bim −
n∑
j=1

z2
j

n∑
i=1

b2
ij

= −
n∑
j=1

z2
j .

Hence,

(20) = I +
n∑
i=1

z2
i − ∂2

∂z2
i

.

Finally, we compute the operator μ̃(exp(Yκ )) for κ ∈ {τ , η}.

LEMMA 2.6. For any f ∈ L2(Rn) and z ∈ R
n, we have

μ̃(exp(Yτ ))f (z) = f (z− (τ , 0, . . . , 0)),

μ̃(exp(Yη))f (z) = exp(iν2z2)f (z)

for some ν2 ∈ R
∗.

Proof. To help keep track of which coordinate system we are working in, note that UAf =
f ◦ A−1, where z = Ay. So,

UA : L2(Rn, dy) → L2(Rn, dz), U−1
A : L2(Rn, dz) → L2(Rn, dy)

and of course the Schrödinger representation μ satisfies

μ(g) : L2(Rn, dy) → L2(Rn, dy)
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for any g ∈ H. Then

μ̃(exp(Yτ ))f (z) := UAμ(exp(Yτ ))U
−1
A f (z)

= μ(exp(Yτ ))U
−1
A f (A−1z)

= μ(exp(Yτ ))U
−1
A f (y)

= U−1
A f (y1 − τ1, . . . , yn − τn)

= f (A(y1 − τ1, . . . , yn − τn))

= f (Ay − A(τ1, . . . , τn))

= f (z− (τ , 0, . . . , 0)).

Next, recall that η = (0, η1, η2, . . . , ηn) ∈ R
2n and define η := (η1, η2, . . . , ηn). Then

μ(exp(Yη)) is the multiplication operator

μ(exp(Yη))f (y) = eiη·y · f (y).

So,

μ̃(Yη)f (z) := UAμ(exp(Yη))U
−1
A f (z)

= μ(exp(Yη))U
−1
A f (A−1z)

= μ(exp(Yη))U
−1
A f (y)

= eiη·yU−1
A f (y)

= eiη·yf (Ay)

= eiη·A−1zf (z)

= eiAη·zf (z). (21)

Now recall from (18) that Aη = (ν1, ν2, 0, . . . , 0) for some (ν1, ν2) ∈ R
2, so

(21) = exp(i(ν1z1 + ν2z2))f (z). (22)

Furthermore, observe that the assumption [Yτ , Yη] = 0 from (6) is equivalent to the
condition

n∑
j=1

τjηj = 0.

We also have A−1(τ , 0, . . . , 0) = (τj ), where A−1 = (bij ). Then, for all 1 ≤ j ≤ n,

bj1 = τj

τ
.
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Because A ∈ SO(n), we have

a1j = bj1 = τj

τ
.

Hence,

ν1 = (Aη)1 =
n∑
j=1

a1j ηj = 1
τ

n∑
j=1

τjηj = 0. (23)

Because A is a rotation and ν1 = 0, we get that |ν2| = |η| > 0. Finally, because A is
a real matrix and η ∈ R

n, it follows that ν2 ∈ R
∗. The lemma now follows from (22)

and (23).

For κ ∈ {τ , η}, the operator Lκ is defined on functions of the z-variable by

Lκ := μ̃(exp(Yκ ))− I ,

so, by the above lemma,

Lκf (z) =
{
f (z− (τ , 0, . . . , 0))− f (z) if κ = τ ,

[exp(iν2z2)− 1]f (z) if κ = η.
(24)

The coordinates (z3, z4, . . . , zn) will not play a central role, so for any f ∈ L2(Rn) and
for any z ∈ R

n, define

z3 := (z3, z4, . . . , zn) ∈ R
n−2,

fz3(z1, z2) := f (z).

For j = 1, 2, let Fj be the Fourier transform in the zj -variable, so

F1fz3(ω1, z2) :=
∫
R

fz3(z1, z2)e
−2πiω1z1 dz1,

F2fz3(z1, ω2) :=
∫
R

fz3(z1, z2)e
−2πiω2z2 dz2.

We begin with a short lemma.

LEMMA 2.7. For any s ≥ 0 and for any ε ∈ (0, 1), there is a constant Cε > 0 such that for
any z ∈ R

n and for any f ∈ Ws+n/2+ε(Rn), the functions f, F1f and F2f are continuous
on R

n, and

|fz3(z1, z2)| ≤ Cε(
1 +

∑n

i=1
z2
i

)s/2 |||f |||s+n/2+ε , (25)

|F2fz3(z1, ω2)| ≤ Cε(
1 + ω2

2 +
∑

1≤i≤n
i �=2

z2
i

)s/2 |||f |||s+n/2+ε . (26)
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Similarly, for any (ω, z2) ∈ R
2, for any r ≥ 0 and for any f ∈ Ws+r+n/2+ε(Rn),

|fz3(z1, z2)| ≤ Cε

(1 + z2
1)
r/2

(
1 +

∑n

i=2
z2
i

)s/2 |||f |||s+r+n/2+ε , (27)

|F1fz3(ω1, z2)| ≤ Cε

(1 + ω2
1)
r/2

(
1 +

∑n

i=2
z2
i

)s/2 |||f |||r+s+n/2+ε . (28)

Proof. The Sobolev embedding theorem implies that there is a constant Cε > 0 such that∥∥∥∥(
I +

n∑
i=1

z2
i

)s/2
f

∥∥∥∥
C0,ε(Rn)

≤ Cε

∣∣∣∣∣∣∣∣∣∣∣∣(I +
n∑
i=1

z2
i

)s/2
f

∣∣∣∣∣∣∣∣∣∣∣∣
n/2+ε

≤ Cε

∣∣∣∣∣∣∣∣∣∣∣∣(I +
n∑
i=1

z2
i − ∂

∂z2
i

)s/2
f

∣∣∣∣∣∣∣∣∣∣∣∣
n/2+ε

= Cε |||f |||s+n/2+ε .

This implies the first inequality and that f is continuous. The inequality (26) follows in the
same way by applying the inverse Fourier transform F−1

2 . Then F2f is also continuous.
For (28), the Sobolev embedding theorem again gives a constant Cε > 0 such that∥∥∥∥(I + ω2

1)
r/2

(
I +

n∑
i=2

z2
i

)s/2
F1f

∥∥∥∥
C0,ε (Rn)

≤ Cε

∥∥∥∥(
I − ∂2

∂ω2
1

−
n∑
i=2

∂2

∂z2
i

)(n/2+ε)/2
(I + ω2

1)
r/2

(
I +

n∑
i=2

z2
i

)s/2
F1f

∥∥∥∥
L2(Rn)

≤ Cε

∥∥∥∥(
I + z2

1 −
n∑
i=2

∂2

∂z2
i

)(n/2+ε)/2(
I − ∂2

∂z2
1

)r/2(
I +

n∑
i=2

z2
i

)s/2
f

∥∥∥∥
L2(Rn)

≤ Cε |||f |||r+s+n/2+ε .

The estimate of (27) follows as above.

2.3.2. Invariant operators and cohomological equations. For any m ∈ Z, let πm,τ be
the formal operator

πm,τf (z) := F1f

(
m

τ
, z2, . . . , zn

)
. (29)

Now we record a decay estimate of |πm,τ (f )|s with respect to m, which will be used later
in the splitting result, Theorem 1.3. Recall Definition 2.4 for the meaning of |f |s .

COROLLARY 2.8. For any ε > 0, there is a constant Cε > 0 such that for any
s, r ≥ 0 and for any m ∈ Z, the operator πm,τ satisfies the following estimate. For any
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f ∈ Wr+s+3n/2−1+ε(Rn), we have

|πm,τ (f )|s ≤ Cε

(
1 +

∣∣∣∣mτ
∣∣∣∣)−r

|||f |||r+s+3n/2−1+ε .

Proof. First let f ∈ S(Rn). Because F1 commutes with (I − ∑n
i=2(∂

2/∂z2
i )+ z2

i )
s/2, for

any m ∈ Z, we have

|πm,τ (f )|s =
∥∥∥∥(
I −

n∑
i=2

∂2

∂z2
i

+ z2
i

)s/2
F1fz3

(
m

τ
, z2

)∥∥∥∥
L2(Rn−1)

=
∥∥∥∥F1

((
I −

n∑
i=2

∂2

∂z2
i

+ z2
i

)s/2
fz3

)(
m

τ
, z2

)∥∥∥∥
L2(Rn−1)

. (30)

Then (28) gives∣∣∣∣F1

((
I −

n∑
i=2

∂2

∂z2
i

+ z2
i

)s/2
fz3

)(
m

τ
, z2

)∣∣∣∣ ≤ Cε

(1 + (m/τ)2)r/2
(
1 +

∑n

i=2
z2
i

)(n−1+ε)/2

×
∣∣∣∣∣∣∣∣∣∣∣∣(I −

n∑
i=1

∂2

∂z2
i

+ z2
i

)s/2
fz3

∣∣∣∣∣∣∣∣∣∣∣∣
r+3n/2−1+2ε

≤ Cε

(1 + (m/τ)2)r/2
(
1 +

∑n

i=2
z2
i

)(n−1+ε)/2 |||f |||s+r+3n/2−1+2ε ,

so

(30) ≤ Cε

(
1 +

∣∣∣∣mτ
∣∣∣∣)−r

|||f |||r+s+3n/2−1+2ε .

The next lemma shows that for any m ∈ Z, πm,τ are invariant operators for μ̃(exp(Yτ ))

on sufficiently regular functions.

LEMMA 2.9. For any m ∈ Z and for any ε > 0,

πm,τLτ = 0

holds on Wn/2+ε(Rn).

Proof. Lemma 2.7 shows that for any m ∈ Z and any f ∈ Wn/2+ε(Rn), πm,τf is
continuous on R

n−1. Moreover,

πm,τ μ̃(exp(Yτ ))f (z) = πm,τf (z− (τ , 0, . . . , 0))

= πm,τf (z).

For any s > 2, define

Annτ := {f ∈ S(Rn) : πm,τ (f ) ≡ 0 for all m ∈ Z}.
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PROPOSITION 2.10. For any f ∈ Annτ , the cohomological equation

LτP = f (31)

has a unique solution P inL2(Rn) and, moreover, for any ε > 0, there is a constantCε > 0
such that for any s ≥ 0,

‖P ‖s ≤ Cε

τ
‖f ‖s+3n/2+1+ε .

Proof. Let s ≥ 0, f ∈ S(Rn) and T : S(Rn) → S(Rn) be the linear map

Tf (z) =
∞∑
m=1

f (z1 +mτ , z2, . . . , zn), (32)

which converges absolutely and uniformly on compact sets.
By (24), the cohomological equation (31) is

P(z− (τ , 0, . . . , 0))− P(z) = f (z).

Clearly, there is at most one L2(Rn) solution P to the above equation. Because Tf is a
solution,

LτTf = f

on R
n.

Because f ∈ Annτ , the Poisson summation formula gives that for any z ∈ R
n,∑

m∈Z
f (z1 +mτ , z2, . . . , zn) = 0.

By combining the above equality with (32), we get that

Tf (z) =
∞∑
m=0

f (z1 −mτ , z2, . . . , zn), (33)

which is again convergent.
Now we estimate the homogeneous norm |||Tf |||s . By (25) and formula (32), we get that

for all z ∈ (R+ ∪ {0})× R
n−1,∣∣∣∣(I +

n∑
i=1

z2
i − ∂

∂z2
i

)s/2
Tf (z)

∣∣∣∣ (34)

≤
∞∑
m=0

∣∣∣∣(I +
n∑
i=1

z2
i − ∂

∂z2
i

)s/2
f (z1 +mτ , z2, . . . , zn)

∣∣∣∣
≤

∞∑
m=0

∣∣∣∣(I − ∂2

∂(z1 +mτ)2
+ (z1 +mτ)2 +

n∑
i=2

z2
i − ∂2

∂z2
i

)s/2
× f (z1 +mτ , z2, . . . , zn)

∣∣∣∣. (35)
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Let r = n+ 1 + 2ε, so equation (25) gives

(35) ≤ Cε

∞∑
m=0

(
1 + (z1 +mτ)2 +

n∑
i=2

z2
i

)−r/2∣∣∣∣∣∣∣∣∣∣∣∣(I +
n∑
i=1

z2
i − ∂2

∂z2
i

)s/2
f

∣∣∣∣∣∣∣∣∣∣∣∣
r+n/2+ε

= Cε

∞∑
m=0

(
1 + (z1 +mτ)2 +

n∑
i=2

z2
i

)−(n+1+2ε)/2

|||f |||s+3n/2+1+3ε

≤ Cε

τ

(
1 +

n∑
i=1

z2
i

)−(n/2+ε)
|||f |||s+3n/2+1+3ε .

Using (33), we get by a completely analogous argument that for all z ∈ R
− × R

n−1,∣∣∣∣(I +
n∑
i=1

z2
i − ∂

∂z2
i

)s/2
Tf (z)

∣∣∣∣ ≤ Cε

τ

(
1 +

n∑
i=1

z2
i

)−(n+ε)/2
|||f |||s+3n/2+1+3ε .

It follows that

|||Tf |||s ≤ Cε

τ
|||f |||s+3n/2+1+3ε .

Because s ≥ 0 was arbitrary, we have shown that the above estimate in terms of the norm
that is homogeneous in h holds for any s ≥ 0. Then we apply Lemma 2.3 to get the estimate
with respect to the Laplacian. So,

‖Tf ‖s ≤ Cε

τ
‖f ‖s+3n/2+1+3ε .

The lemma is now proved with P = Tf .

Now we find a solution with Sobolev estimates to the equation LηP = f . For any m ∈
Z, define πm,η to be the formal operator

πm,ηf (z1, z3, . . . , zn) := f

(
z1,

2πm
ν2

, z3, . . . , zn

)
.

We get as in Corollary 2.8 that for any s ≥ 0 and ε > 0, πm,η : Ws+3n/2−1+ε(Rn) →
Ws(Rn−1) and, by Lemma 2.7 that for any f ∈ Wn/2+ε(Rn), πm,ηf is continuous on
R
n−1.
As in Lemma 2.9, it can be immediately verified that for any m ∈ Z, πm,η is invariant

for the operator μ̃(exp(Yη)). Define

Annη := {f ∈ S(Rn) : πm,η(f ) ≡ 0 for all m ∈ Z}.
We have a corresponding estimate for the cohomological equation LηP = f .

COROLLARY 2.11. For any f ∈ Annη, the equation

LηP = f
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has a unique solution P inL2(Rn) and, moreover, for any ε > 0, there is a constantCε > 0
such that for any s ≥ 0,

‖P ‖s ≤ Cε

ν2
‖f ‖s+3n/2+1+ε .

Proof. Writing (24) as a Fourier transform, we get

F2Lηfz3(z1, ω2) = F2fz3

(
z1, ω2 − ν2

2π

)
− F2fz3(z1, ω2). (36)

Then, setting τ = (ν2/2π), the corollary follows in the same way as Proposition 2.10, using
the decay estimate (26) in place of (25).

Next, we prove Theorem 1.2 for Schrödinger representations.

THEOREM 2.12. For any f , g ∈ S(Rn) that satisfy Lτg = Lηf , there is a solution P ∈
S(Rn) such that

LτP = f and LηP = g.

Moreover, for any ε > 0, there is a constant Cε > 0 such that for any s ≥ 0,

‖P ‖s ≤ Cε

τ
‖f ‖s+3n/2+1+ε .

Proof. Let m ∈ Z. Because πm,τ is invariant for μ̃(exp(Yτ )), we have that

0 ≡ πm,τLτg = πm,τLηf .

From the formulas for πm,τ and Lη, see (29) and (24), respectively, we get

[Lη, πm,τ ] = 0.

Moreover, for any (z2, . . . , zn) ∈ R
n−1,

0 = Lηπm,τf (z2, . . . , zn) = [exp(iν2z2)− 1]F1f

(
m

τ
, z2, . . . , zn

)
.

So, we get that off a countable set of z2 ∈ R,

F1f

(
m

τ
, z2, . . . , zn

)
= 0.

Lemma 2.7 shows that F1f is continuous, which implies that πm,τf ≡ 0. Because m ∈ Z

was arbitrary, we conclude that f ∈ Annτ .
Proposition 2.10 now implies that there is a unique function P in L2(Rn) that is a

solution to

LτP = f

and, for any ε > 0, there is a constant Cε > 0 such that

‖P ‖s ≤ Cε

τ
‖f ‖s+3n/2+1+ε .
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Finally, because [Yη, Yτ ] = 0, we use Lτg = Lηf and get

Lτg = LηLτP = LτLηP .

So, Lτ (g − LηP) = 0 and, because g − LηP ∈ L2(Rn), it follows that

g = LηP

in L2(Rn).

Now we will prove Theorem 1.3 in the case of Schrödinger representations. Recall from
Lemma 2.6 that ν2 �= 0.

THEOREM 2.13. For any f , g, φ ∈ S(Rn) that satisfy Lηf − Lτg = φ, there exists a
non-constant function P ∈ S(Rn) such that the following holds. For any s ≥ 0 and for
any ε > 0, there is a constant Cs,ε > 0 such that

‖g − LηP ‖s ≤ Cs,ε(τ
−1 + τ ε)‖φ‖s+3n+1+2ε ,

‖f − LτP ‖s ≤ Cs,ε

ν2
(1 + τ 1+ε)‖φ‖s+3n+1+2ε ,

‖P ‖s ≤ Cs,ε(τ
−1 + τ ε)(‖f ‖s+3n+1+ε + ‖g‖s+3n+1+2ε).

Proof. Notice that if f = g = 0, then φ = 0 and the above statement holds trivially.
Without loss of generality, we assume that f �= 0.

Let ψ ∈ S(R), whose Fourier transform is compactly supported on [−(1/2τ), (1/2τ)]
and satisfies Fψ(0) = 1. For each m ∈ Z, define the functional �m,τ on L2(Rn−1) by

�m,τF(z2, . . . , zn) = e2πiz1m/τψ(z1)F (z2, . . . , zn). (37)

Below, �m,τ will be a component of an operator that maps sufficiently regular functions
to coboundaries. See (39) and Lemma 2.16 for details. For now, we have the following
estimate.

LEMMA 2.14. For any s ∈ 2N, for any m ∈ Z and for any F ∈ Ws(Rn−1), there is a
constant Cs > 0 such that

|||�m,τF |||s ≤ Cs‖
(
I + z2

1 − ∂2

∂z2
1

)s/2
ψ‖L∞(R)

s/2∑
k=0

(
1 +

∣∣∣∣mτ
∣∣∣∣)2k

|F |s−2k .

Proof. Because ψ is supported on [−1/2, 1/2], we have

|||�m,τF |||s =
∥∥∥∥((

z2
1 − ∂2

∂z2
1

)
+

(
I +

n∑
i=2

z2
i − ∂2

∂z2
i

))s/2
(e−2πiz1m/τψF)

∥∥∥∥
L2(Rn)

.

(38)
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Then, because z2
1 − (∂2/∂z2

1) and (I + ∑n
i=2 z

2
i − (∂2/∂z2

i )) commute, the triangle
inequality gives

(38) ≤ Cs

s/2∑
k=0

∥∥∥∥(
z2

1 − ∂2

∂z2
1

)k(
I +

n∑
i=2

z2
i − ∂2

∂z2
i

)s/2−k
(e−2πiz1m/τψF)

∥∥∥∥
L2(Rn)

≤ Cs

s/2∑
k=0

∥∥∥∥(
z2

1 − ∂2

∂z2
1

)k
e−2πiz1m/τψ

∥∥∥∥
L∞(R)

∥∥∥∥(
I +

n∑
i=2

z2
i − ∂2

∂z2
i

)s/2−k
F

∥∥∥∥
L2(Rn−1)

.

Note that �m,τ depends on ψ . Then we formally define the operator Rψ on L2(Rn) by

Rψ := I −
∑
m∈Z

�m,τπm,τ . (39)

Over the next two lemmas, we describe properties of Rψ .

LEMMA 2.15. For any s ≥ 0 and for any ε > 0, there is a constant Cs,ε > 0 such that for
any non-zero f ∈ Ws+n/2+ε(Rn), we can choose ψ such that Rψf �= 0 and

‖Rψf ‖s ≤ Cs,ε(1 + τ s+1+ε)‖f ‖s+3n/2+ε .

Proof. We first claim that we can choose ψ such that Rψf �= 0 and, for some universal
constant C(0)s > 0, ∥∥∥∥(

I + z2
1 − ∂2

∂z2
1

)s/2
ψ

∥∥∥∥
L∞(R)

≤ C(0)s (1 + τ s).

Fix ψ . So, for some C(0)s > 0, the above estimate holds. If Rψf �= 0, then the claim is
holds, so suppose that Rψf = 0. Hence,

f (z) = ψ(z1)
∑
m∈Z

exp(2πiz1m/τ)F1f

(
m

τ
, z2, . . . , zn

)
.

So, we can perturb ψ to a smooth function compactly supported in [−(1/2τ), (1/2τ)]
satisfying Fψ0(0) = 1, ψ0 �= ψ and Rψf �= 0, where also∥∥∥∥(

I + z2
1 − ∂2

∂z2
1

)s/2
ψ0

∥∥∥∥
L∞(R)

≤ (C(0)s + 1)(1 + τ s). (40)

This proves the claim.
Now we say that s ∈ N is even and let Rψf �= 0, where ψ satisfies (40). By the triangle

inequality and Lemma 2.14, we get a constant C(1)s > C
(0)
s + 1 such that

|||Rψf |||s ≤ |||f |||s +
∑
m∈Z

|||�m,τ πm,τ f |||s

≤ |||f |||s + C(1)s (1 + τ s)
∑
m∈Z

s/2∑
k=0

(
1 +

∣∣∣∣mτ
∣∣∣∣)2k

|πm,τ f |s−2k . (41)
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By Corollary 2.8, there is a constant Cε > 0 such that for any m ∈ Z,(
1 +

∣∣∣∣mτ
∣∣∣∣)2k

|πm,τ f |s−2k ≤ Cε

(
1 +

∣∣∣∣mτ
∣∣∣∣)2k(

1 +
∣∣∣∣mτ

∣∣∣∣)−(2k+1+ε)
|||f |||s+3n/2+ε

≤ Cε(1 + τ)s+1+ε(1 + |m|)−(1+ε)|||f |||s+3n/2+ε .

Hence, there is a constant Cs,ε > 0 such that

(41) ≤ |||f |||s + Cs,ε(1 + τ)s+1+ε ∑
m∈Z

(1 +m2)−(1+ε)/2|||f |||s+3n/2+ε

≤ Cs,ε(1 + τ)s+1+ε |||f |||s+3n/2+ε .

By interpolation, the above estimate holds for all s ≥ 0. Because Rψ is a linear operator
and the estimate holds for all s, Lemma 2.3 gives the estimate for s ≥ 0.

Next we show that the operator Rψ is a projection into Annτ and it commutes with Lη.

LEMMA 2.16. Let ψ be as in the previous lemma. Then

Rψ : S(Rn) → Annτ

and

RψLτ = Lτ , [Rψ , Lη] = 0

on S(Rn).

Proof. Let f ∈ S(Rn). By the previous lemma, Rψf ∈ S(Rn), so we need to show that
Rψf is in the kernel of every πm,τ . Using the property that Fψ is supported on the interval
[−(1/2τ), (1/2τ)] and Fψ(0) = 1, we get that for any m ∈ Z,

πm,τRψf = πm,τ f −
∑
k∈Z

πm,τ�k,τ πk,τ f

= πm,τ f − πm,τ�m,τ πm,τ f

= πm,τ f − πm,τ f

= 0. (42)

This implies that Rψ : S(Rn) → Annτ .
By Lemma 2.9, for any m ∈ Z, πm,τLτ = 0. We have

RψLτ =
(
I −

∑
m∈Z

�m,τ πm,τ

)
Lτ

= Lτ .

Finally, we prove that [Lη, Rψ ] = 0. We have

�m,τπm,τLηf (z) = exp(2πiz1m/τ) ψ(z1)[πm,τLηf ](z2, . . . , zn)

= exp(2πiz1m/τ) ψ(z1)F1[Lηf ]
(
m

τ
, z2, . . . , zn

)
= (exp(iν2z2)− 1) exp(2πiz1m/τ) ψ(z1)F1f

(
m

τ
, z2, . . . , zn

)
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= Lη exp(2πiz1m/τ) ψ(z1)F1f

(
m

τ
, z2, . . . , zn

)
= Lη�m,τF1f

(
m

τ
, z2, . . . , zn

)
= Lη�m,τπm,τf .

This proves that [Lη, Rψ ] = 0 and finishes the proof of the lemma.

Now we prove Theorem 2.13. Let

φ = Lηf − Lτg

be as in the theorem and recall from the beginning of its proof that we take f �= 0. By
Lemmas 2.15 and 2.16, we can choose ψ such that there is a non-constant function P that
is a solution to Rψf = LτP and, for a fixed constant C(1)s > 0,∥∥∥∥(

I − ∂2

∂z2
1

)s/2
ψ

∥∥∥∥
L∞(R)

≤ C(1)s .

In particular, Lemma 2.16 implies that

Rψφ = RψLηf − RψLτg

= LηRψf − Lτg

= LηLτP − Lτg

= Lτ (LηP − g). (43)

Then, by Proposition 2.10 and by Lemmas 2.15 and 2.5, we get that for any s ≥ 0 and for
any ε > 0, there is a constant Cs,ε > 0 such that

‖LηP − g‖s = ‖LηP − g‖s (44)

≤ Cs,ε

τ
‖Rψφ‖s+3n/2+1+ε

≤ Cs,ε(τ
−1 + τ s+ε)‖φ‖s+3n+1+2ε . (45)

To estimate ‖LτP − f ‖s , because Rψf = LτP and by Lemma 2.5,

‖LτP − f ‖s = ‖LτP − f ‖s
= ‖LτP − Rψf + Rψf − f ‖s
= ‖(Rψ − I )f ‖s . (46)

Notice that by Lemma 2.16,

(Rψ − I )Lτg = 0.

Then, using Lηf − Lτg = φ, we get

(Rψ − I )Lηf = (Rψ − I )φ + (Rψ − I )Lτg

= (Rψ − I )φ. (47)
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Then, by Lemma 2.16 again, we get

Lη(Rψ − I )f = (Rψ − I )φ.

We conclude by Corollary 2.11 and Lemmas 2.15 and 2.5 that

(46) ≤ Cs,ε

ν2
‖(Rψ − I )φ‖s+3n/2+1+ε

≤ Cs,ε

ν2
(1 + τ s+1+ε)‖φ‖s+3n+1+2ε . (48)

Finally, because LτP = Rψf , Proposition 2.10 and Lemma 2.15 give

‖P ‖s ≤ Cs,ε

τ
‖Rψf ‖s+3n/2+1+ε

≤ Cs,ε(τ
−1 + τ s+ε)‖f ‖s+3n+1+2ε .

At the start of the proof of Theorem 2.13, we assumed that f �= 0. If we instead choose
g �= 0, then by first applying the Fourier transform, the same argument proves the above
estimates in terms of ‖φ‖s+3n+1+ε and

‖P ‖s ≤ Cs,ε(τ
−1 + τ s+ε)‖g‖s+3n+1+2ε .

This completes the proof of Theorem 2.13.

Proof of Theorem 1.2. The regular representation of H on L2(M) decomposes as

L2(M) = C〈1〉 ⊕
⊕

m∈Z2n\{0}
Pm ⊕

⊕
h∈Z

Ph,

where each Pm is an abelian representation of R2n equivalent to a character given by (11),
and each Ph is equivalent to a countable collection of Schrödinger representations μh of
H on L2(Rn) given by (13). The subspace of zero-average functions in L2(M) is denoted
L2

0(M), which therefore decomposes as

L2
0(M) =

⊕
m∈Z2n\{0}

Pm ⊕
⊕
h∈Z

Ph

= L2
0(T

2n)⊕
⊕
h∈Z

Ph.

As indicated in §2.1, vector fields in h split into the unitary components in the above Hilbert
space. Then the decomposition of the Sobolev space of s-differentiable, zero-average
functions is

Ws
0 (M) = Ws

0 (T
2n)⊕

⊕
h∈Z

Ws(Ph), (49)

where Ws
0 (T

2n) and Ws(Ph) are s-order Sobolev spaces on the torus T
2n and of the

representation Ph, respectively.
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Now, in Theorem 1.2, we are given zero-average functions f , g ∈ C∞(M) that satisfy
Lτg = Lηf and we aim to find a solution P ∈ C∞(M) such that

LτP = f , LηP = g.

Write

f = ft ⊕
⊕
h∈Z

fh, g = gt ⊕
⊕
h∈Z

gh,

where ft , gt ∈ W∞
0 (T2n) and, for each h ∈ Z, fh, gh ∈ Ph. Proposition 2.1 and Theorem

2.12 give smooth solutions Pt ∈ W∞
0 (T2n) and {Ph}h∈Z ⊂ W∞(Ph) satisfying the esti-

mate of Theorem 1.2 in the finite- and infinite-dimensional representations, respectively.
Define P ∈ C∞(M) by

P := Pt ⊕
⊕
h∈Z

Ph.

So, there exists a constant Cs,ε := Cs,ε,τ ,η > 0 such that

‖P ‖2
Ws(M) = ‖Pt‖2

s +
∑
h∈Z

‖Ph‖2
s

≤ Cs,ε(‖ft‖s+2γ + ‖gt‖s+2γ )
2 + Cs,ε

∑
h∈Z

‖fh‖2
s+3n/2+1+ε

≤ Cs,ε(‖f ‖s+max{2γ , 3n/2+1+ε} + ‖g‖s+2γ )
2.

(50)

Proof of Theorem 1.3. This follows from Proposition 2.2 and Theorem 2.13 as in the proof
of Theorem 1.2.

3. Proof of Theorem 1.7
We fix now Yτ and Yη with τ · η = 0 and τ and η Diophantine, as in the main setting. We
denote by ρ the Z

2 action generated by Yτ and Yη as described in (7) in §1.1.
In this section we prove Theorem 1.7. We will apply here a similar method which

was applied in [7]. The method consists in taking successive iterations and adjustment
of the parameter λ at each step. The procedure is outlined in a general theorem which
was proved in [2]. There, a set of conditions in cohomology is given, which imply
transversal local rigidity of a finite-dimensional family of Lie group actions. This general
theorem was then used in [3] to obtain transversal local rigidity of certain R

2 actions
on two-step nilmanifolds. Even though we have a similar situation here, we cannot
unfortunately use the general theorem from [2] because that theorem is for Lie group
actions, and here we have a discrete group action. This is the only difference though; the
method of successive iterations is completely parallel to that used in the above-mentioned
papers.

We write the proof of Theorem 1.7 here in the case where the manifold is the
five-dimensional Heisenberg nilmanifold, that is, in the case n = 2. This is the lowest
dimensional case in which our result holds. We chose to present the proof for concrete
n for the benefit of the reader because computations are more clear and notation is
simpler. Otherwise, the proof is clearly completely parallel for any n ≥ 2. We stress the
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points in computation of cohomology where dimension matters, and how it affects the
computation.

We will first compute in §3.1 the cohomology with coefficients in constant vector
fields (that is, in the Lie algebra h) for the action ρ. Then we describe in §3.2 the
finite-dimensional family ρλ of algebraic actions to which this action belongs, where
ρ0 = ρ. This family is completely determined by the cocycles (with values in h) over
ρ. Then we move on to analyze the conjugacy operator and the commutator operator in
§§3.3 and 3.4 and their linearized operators. The linearizations of these two operators are
corresponding to the first and the second coboundary operators for the cohomology over ρ
with coefficients in smooth vector fields Vect∞M . Using the results from the previous
part of the paper (specifically Theorem 1.3), we show in §3.5 that this cohomology
sequence splits and that the first cohomology with coefficients in Vect∞M is the same
as the cohomology with coefficients in h. This allows us to prove Theorem 1.7 by showing
convergence of successive iterations in §3.6.

For a vector field H ∈ Vect∞M , we denote by Hc its component in the center direction
and by HT the remainder, that is, the component of H in the off-center directions. We
denote by Ave(H) the constant vector field (that is, an element in h) which is obtained by
taking the average of H with respect to the Haar measure.

For two vector fields F , G ∈ Vect∞M , we use the notation ‖F , G‖r := max{‖F‖r ,
‖G‖r }, where ‖ · ‖r denotes the Cr norm.

3.1. Constant cohomology for the discrete-time action. We have

DeYτ (X1) = X1, DeYτ (X2) = X2, DeYτ (Z) = Z.

Furthermore,

eYτ et�1 = (eYτ et�1e−Yτ )eYτ

= exp(eadYτ t�1)e
Yτ = exp(t�1 + t[Yτ , �1])eYτ

= exp(t (�1 + τ1Z))e
Yτ .

Therefore, for a constant vector field

H = h1X1 + h2X2 + h3�1 + h4�2 + h5Z,

where hi are constants, we have

DeYτ (H) = h1X1 + h2X2 + h3�1 + h4�2 + (h5 − h3τ1 − h4τ2)Z.

Another way to write this is

DeYτ (H) = H + [Yτ , H ].
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A similar computation can be done for DeYη . In the matrix form, we have

DeYτ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 τ1 τ2 1

⎞⎟⎟⎟⎟⎟⎠ , DeYη =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−η1 −η2 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

A pair of constant vector fields (F , G) ∈ h × h is a cocycle over the Z
2 action generated

by Yτ and Yη if

(DeYτ − Id)G = (DeYη − Id)F ,

which implies that

[Yτ , G] = [Yη, F ]. (51)

Because H is two-step nilpotent, this condition is only on the off-center coordinates of
F and G. More precisely, if F = f1X1 + f2X2 + f3�1 + f4�2 + f5Z and G = g1X1 +
g2X2 + g3�1 + g4�2 + g5Z, then (51) implies that gi and fi for i = 1, 2, 3, 4 satisfy the
relation

τ1g3 + τ2g4 + η1f1 + η2f2 = 0. (52)

Since the constants f5 and g5 are arbitrary, the space of constant cocycles has dimension
nine.

A pair of constant vector fields (F , G) is a coboundary if

(DeYτ − Id)H = F , (DeYη − Id)H = G,

that is, if

[Yτ , H ] = F , [Yη, H ] = G. (53)

This implies that off-center coordinates of both F and G must be zero, and the center ones
must satisfy certain relations. More precisely, if H = h1X1 + h2X2 + h3�1 + h4�2 +
h5Z, the equations (53) imply that

f5 = τ1h3 + τ2h4, g5 = −η1h1 − η2h2 (54)

and these equations always have solutions for coefficients of H.
This implies that the first cohomology is seven dimensional, and each cohomology class

is represented by cocycles (F , G) of the following form: F = f1X1 + f2X2 + f3�1 +
f4�2 and G = g1X1 + g2X2 + g3�1 + g4�2, where the coefficients gi and fi for i =
1, 2, 3, 4 satisfy the relation (52).

It is clear from the above computation that the dimension of the constant cohomology
over the action generated by Yτ and Yη in the case where the manifold is a (2n+
1)-dimensional Heisenberg nilmanifold is parallel to what we wrote above in the case
n = 2 and that the resulting cohomology has dimension 4n− 1.
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3.2. The finite-dimensional family of Z2 algebraic actions. For easier notation, in the
rest of the paper we let Y1 = Yτ and Y2 = Yη. In what follows we will use the fact that
in h we have exp(X + Y + 1

2 [X, Y ]) = exp(X)exp(Y ). In the remainder of the paper the
brackets [·, ·] denote the bracket in the Lie algebra h, so each bracket which appears as a
result has a vector field in the Z-direction only.

We define now a nine-dimensional family of Z2 actions ρλ on M = � \H generated
by the following maps:

yλ
i (x) = x · exp(Yi + F λ

i ) (55)

for i = 1, 2, subject to the commutativity relation yλ
1 ◦ yλ

2 = yλ
2 ◦ yλ

1 , where F λ
i ∈ h. In

particular, at the parameter λ equal to 0, F 0
i = 0 and y0

i = yi , where y1 = exp Y1 and
y2 = exp Y2 are generators of our original action ρ.

The following lemma is a simple computation.

LEMMA 3.1. The two maps yλ
1 and yλ

2 commute if and only if one of the following
equivalent conditions hold.
(1) [Y1 + F λ

1 , Y2 + F λ
2 ] = 0.

(2) [Y1, F λ
2 ] − [Y2, F λ

1 ] + [F λ
1 , F λ

2 ] = 0.

If F λ
i = f 1

i X1 + f 2
i X2 + f 3

i �1 + f 4
i �2 + f 5

i Z, the coefficients f ki ∈ R for i = 1, 2
and k = 1, 2, 3, 4, 5, commutativity implies that the coefficients are subject to the relation

τ1f
3
2 + τ2f

4
2 + η1f

1
1 + η2f

2
1 = f 1

2 f
3
1 + f 2

2 f
4
1 − f 3

2 f
1
1 − f 4

2 f
2
1 . (56)

Therefore, the parameter λ is understood here as a vector in the nine-dimensional space:

{f ki ∈ R, i = 1, 2, k = 1, 2, 3, 4, 5, subject to relation (56)}.
Within this nine-dimensional family of actions we impose identifications via conjuga-

cies obtained by constant vector fields. More precisely, if

yλ
i (x) = x · exp(Yi + F λ

i )

and, for some H ∈ h and h(x) := x · exp H , we have

h ◦ yλ
i (x) = yi ◦ h,

then

x · exp(Yi + F λ
i ) exp H = x · exp H exp Yi .

This implies that

Yi + F λ
i +H + 1

2 [Yi + F λ
i , H ] = Yi +H + 1

2 [H , Yi].

Thus,

F λ
i + 1

2 [F λ
i , H ] + [Yi , H ] = 0.
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This implies that in the off-center direction the components of F λ
i are trivial and, for the

center direction, we have

(F λ
i )c = −[Yi , H ].

In particular, this defines a coordinate change H which produces conjugate algebraic
actions in the family, and each conjugacy class is two dimensional, determined only by
the values (F λ

i )c (i = 1, 2).
So, the nine-dimensional family of algebraic actions modulo the algebraic conjugacy

classes gives a seven-dimensional family of non-conjugate algebraic actions. This is the
family ρλ in Theorem 1.7.

In the case where the manifold is a (2n+ 1)-dimensional Heisenberg nilmanifold, the
dimension of the family of non-conjugate algebraic actions in Theorem 1.7 is 4n− 1 and
the family is described as in (55).

3.3. The commutator operator. Now we analyze the commutator operator for
non-algebraic perturbations of translations which generate ρ. Recall that ρ is the Z

2

action generated by the translation maps yi , i = 1, 2, where yi(x) = x · exp(Yi) and Yi are
the two commuting elements in H.

LEMMA 3.2. Let F , G ∈ Vect∞M be two sufficiently small vector fields so that the maps
f (x) = x · exp(Y1 + F(x)) and g(x) = x · exp(Y2 +G(x)) are in Diff∞M . If f and g
commute, then the vector fields F and G satisfy the following nonlinear equation:

F ◦ y2 − F + 1
2 [Y2, F ◦ y2 + F ] − (G ◦ y1 −G+ 1

2 [Y1, G ◦ y1 +G])+ E(F , G) = 0,
(57)

where

E(F , G) = (F ◦ g − F ◦ y2)− (G ◦ f −G ◦ y1)

+ 1
2 [Y2, F ◦ g − F ◦ y2] − 1

2 [Y1, G ◦ f −G ◦ y1]

+ 1
2 [G, F ◦ g] − 1

2 [F , G ◦ f ]. (58)

Proof. The commutation f ◦ g = g ◦ f implies that

x · exp(Y2 +G) exp(Y1 + F ◦ g) = x · exp(Y1 + F) exp(Y2 +G ◦ f ).
Hence,

x·exp(Y1 + Y2 +G+ F ◦ g + 1
2 [Y2, F ◦ g] − 1

2 [Y1, G] + 1
2 [G, F ◦ g])

= x · exp(Y1 + Y2 + F +G ◦ f + 1
2 [Y1, G ◦ f ] − 1

2 [Y2, F ] + 1
2 [F , G ◦ f ]).

The above implies the nonlinear equation directly due to the following very simple
fact: x · exp(Y + F) = x · exp(Y +G) with Y ∈ h and F , G ∈ Vect∞M if and only if
F = G.

The following immediate consequence of the lemma above will be used later.

COROLLARY 3.3. In the setting of Lemma 3.2, |Ave[Y2, F ] − Ave[Y1, G]| ≤ C‖F‖1‖G‖1.
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3.4. The conjugation operator. Here we analyze the conjugation operator for conjuga-
cies close to the identity, we derive the linear part of the conjugacy operator and estimate
the error.

LEMMA 3.4. Let f (x) = x · exp(Y + F(x)) be a diffeomorphism of M, where Y ∈ h and
F ∈ Vect∞M is a smooth vector field. Let h ∈ Diff∞M be a diffeomorphism close to
the identity given by a small vector field H ∈ Vect∞M via h(x) = x · exp H(x). Then
g := h−1 ◦ f ◦ h is a diffeomorphism close to f given by G ∈ Vect∞M via g(x) = x ·
exp(Y +G(x)) and

G=H −H ◦g+ 1
2 [H +H ◦g, Y ] +F ◦h+ [H , F ◦h] + 1

2 [H , H ◦g] − 1
2 [F ◦h, H ◦g].

Proof. We have

h−1◦f ◦ h(x) = x · exp H(x) exp(Y + F ◦ h(x)) exp(−H ◦ h−1 ◦ f ◦ h(x))
= x · exp(H + Y + F ◦ h+ 1

2 [H , Y ] + [H , F ◦ h])(x) exp(−H ◦ g)(x)
= x · exp(H + Y −H ◦ g + F ◦ h+ 1

2 [H , Y ] + [H , F ◦ h]

− 1
2 [H , −H ◦ g] − 1

2 [Y , H ◦ g] − 1
2 [F ◦ h, H ◦ g])(x).

This implies the equality claimed for G.

3.5. Linearizations of the conjugacy and the commutator operators: first and second
coboundary operators on vector fields, splitting. The linear part of the nonlinear equation
(57) defines the second coboundary operator on vector fields over the action ρ generated
by y1 and y2.

Definition 3.5. Let d2 : Vect∞M × Vect∞M → Vect∞M be the linear operator defined
by

d2(F , G) = F ◦ y2 − F + 1
2 [Y2, F ◦ y2 + F ] − (G ◦ y1 −G+ 1

2 [Y1, G ◦ y1 +G]).

We say that a pair of smooth vector fields (F , G) generates a cocycle over the action ρ if
(F , G) ∈ Ker d2.

The first coboundary operator on vector fields over the action ρ is given by the following
definition.

Definition 3.6. Let H ∈ Vect∞M . Then we define d1 : Vect∞M → Vect∞M ×
Vect∞M by

d1(H) = (H ◦ y1 −H + 1
2 [Y1, H ◦ y1 +H ], H ◦ y2 −H + 1

2 [Y2, H ◦ y2 +H ]).

It is an easy exercise to check that Im d1 ⊂ Ker d2. The first cohomology over ρ with
coefficients in vector fields is the quotient space H 1

ρ (Vect∞M) := Ker d2/Im d1. Notice
that for constant vector fieldsH ∈ h cocycles and coboundaries defined here coincide with
those defined in §3.1. The subsequent proposition has as a corollary that for our fixed action
ρ the cohomology H 1

ρ (Vect∞M) is the same as the cohomology H 1
ρ (h) with coefficients

in the constant vector fields h which was computed in §3.1.
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PROPOSITION 3.7. If the two vector fields F , G ∈ Vect∞M satisfy d2(F , G) = � and
(Ave F , Ave G) is in the trivial cohomology class in H 1

ρ (n), then there exist H , F̃ , G̃ ∈
Vect∞M such that (F , G) = d1H + (F̃ , G̃) and the following estimates hold:

‖F̃‖s ≤ Cs‖�‖s+σ ,

‖G̃‖s ≤ Cs‖�‖s+σ ,

‖H‖s ≤ Cs,r ,S,T ,�‖F‖s+σ . (59)

Proof. Recall that we disintegrate an arbitrary vector field H ∈ Vect∞M into H = Hc +
HT , where Hc is the component of H in the direction of Z and HT is the component of H
in all the directions other than Z. So, one can view HT as HT = ∑

hitXi + h̄it�i , where
hit , h̄

i
t are smooth functions.

The equation d2(FT , GT ) = � (since d2 is a linear operator) splits then in the off-center
directions into finitely many functional equations each of which has a form

f ◦ y2 − f − (g ◦ y1 − g) = φ.

Since by assumption (Ave F , Ave G) is assumed to be in the trivial constant cohomol-
ogy class, it implies in particular that all the off-center components are 0 (see §3.1).

Now we may apply Theorem 1.3, which for each of these finitely many equations gives
as an output smooth functions f̃ , g̃, h such that

f = h ◦ y1 − f + f̃ , g = g ◦ y2 − g + g̃

such that the corresponding estimates hold. Putting these coordinate functions all together
gives functions F̃T , G̃T , Ht such that (d2(F̃T , G̃T ))T = �T , (FT , GT ) = (d1HT )T +
(F̃T , G̃T ) and F̃T , G̃T , HT satisfy the estimates (59).

Now let Fc, Gc be the components of F and G in the center direction. Then, because
the Z components within the brackets do not contribute, we have

d2(Fc, Gc) = Fc ◦ y2 − Fc + 1
2 [Y2, FT ◦ y2 + FT ]

− (
Gc ◦ y1 −Gc + 1

2 [Y1, GT ◦ y1 +GT ]
) = �c.

Since we already have (FT , GT ) = (d1HT )T + (F̃T , G̃T ), we can substitute this in the
above expression to obtain(
Fc − 1

2 [Y1, HT ◦ y1 +HT ]
) ◦ y2 − (

Fc − 1
2 [Y1, HT ◦ y1 +HT ]

)
− ((

Gc − 1
2 [Y2, HT ◦ y2 +HT ]

) ◦ y1 − (
Gc − 1

2 [Y2, HT ◦ y2 +HT ]
)) = �′

c, (60)

where

�′
c = �c − 1

2 [Y2, F̃T ◦ y2 + F̃T ] + 1
2 [Y1, G̃T ◦ y1 + G̃T ].

Clearly, since for any s we have ‖F̃T ‖s , ‖G̃T ‖s ≤ ‖�̃T ‖s+σ , it follows that ‖�′
c‖s ≤

‖�̃‖s+σ , where σ is re-defined to be σ + 1.
The vector field HT is determined only up to a constant vector field, so we may choose

HT so that Ave Fc = Ave[Y1, HT ]. This forces Fc − 1
2 [Y1, HT ◦ y1 +HT ] to have the
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average 0. Moreover, because of the assumption that (Ave F , Ave G) is in the trivial
cohomology class, we also have that Ave Fc = Ave Gc.

So, the equation (60) is again the same type of equation as in Theorem 1.3. By applying
the theorem, we get F̃c, G̃c, Hc such that

Fc − 1
2 [Y1, HT ◦ y1 +HT ] = Hc ◦ y1 −Hc + F̃c,

Gc − 1
2 [Y2, HT ◦ y2 +HT ] = Hc ◦ y2 −Hc + G̃c.

This clearly implies that

(Fc, Gc) = (d1H)c + (F̃c, G̃c).

Putting the c- and T-components together gives the solution. Estimates (59) are
direct consequences of coordinate-wise estimates which are obtained already in
Theorem 1.3.

3.6. Set-up of the perturbative problem and the iterative scheme. We will frequently
refer here to [7], so we recommend that the reader has that paper at hand.

We consider here a family of perturbations ρ̃λ of ρλ, which are generated by commuting
maps ỹλ

1 and ỹλ
2 , where, for i = 1, 2,

ỹλ
i (x) = x · exp(Yi + F̃ λ

i ). (61)

Here F̃ λ
i are small vector fields such that ỹλ

1 and ỹλ
2 commute.

Now let h be a diffeomorphism of the manifold, close to the identity, defined via the
smooth vector field H as follows:

h(x) = �θ · exp H(x).

The iterative step consists of the following: given the perturbation ρ̃λ of ρλ, define
a new perturbation ρ̄λ which is a conjugation of ρ̃λ via h, so ρ̄λ is generated by two
diffeomorphisms ȳλ

i , i ∈ {1, 2}, defined by

ȳλ
i = h−1 ◦ ỹλ

i ◦ h.

In each iterative step this is done for the λ parameter in some ball, and it is shown
that in that ball there is a parameter for which the new family of perturbations is much
(quadratically) closer to ρ for parameters in some smaller ball. The next proposition shows
that that this process is controlled in the sequence of Cr norms.

We will need to control derivatives of each perturbed family ρ̃λ in the direction of the
parameter λ as well, so we will use the following norms for a family of vector fields F̃ λ

i :
‖F̃ λ

i ‖0,k stands for the supremum of the Ck norms of F̃ λ
i in the λ variable. ‖F̃ λ

i ‖r ,k is the
same only taken over all the derivatives of F̃ λ

i in the manifold direction. As before, we
reserve the notation ‖F̃ λ

i ‖r for the usual Cr norm on M of the vector field F̃ λ
i ∈ Vect∞M

for a fixed parameter λ.
The following is an immediate corollary of the classical implicit function theorem and

we will use it for the maps which compute averages of vector fields for actions in the
perturbed family.
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LEMMA 3.8. There exists an open ball O = O(Id, R) in C1(Rd , Rd), there exist a
neighborhood U of 0 ∈ R

d and a C1 map � : O → U such that for every G ∈ O,
G(�(G)) = 0.

Now we state the main iterative step proposition where we show that one can obtain
indeed estimates which are needed for the convergence of the process to a smooth
conjugation map.

PROPOSITION 3.9. There exist constants C̄ and r0 such that the following holds.
Given the family ρ̃λ

n of perturbations of ρ0 generated by ỹλ
i,n (i = 1, 2), assume that for

all λ in a ball B centered at 0, for r ∈ N and t > 0:
(1) ‖F̃ λ

i,n‖0 ≤ εn < 1;
(2) the map λ �→ F̃ λ

i,n is C2 in λ, ‖F̃ λ
i,n‖0,1 ≤ εn and ‖F̃ λ

i,n‖0,2 ≤ Kn;
(3) the map �n : λ �→ Ave(F̃ λ

i,n) is in O and has a zero at λn;
(4) ‖F̃ λ

i,n‖r0+r ≤ δr ,n;

(5) t r0ε
1−(1/(r+r0))
n δ

(1/(r+r0))
r < C̄.

There exists a Hn ∈ Vect∞M such that hn defined by h(x) = x · exp Hn(x) is such that
the newly formed family of perturbations ρ̃λ

n+1 of ρ, generated by ỹλ
i,n+1 = h−1 ◦ ỹλ

i,n ◦ h,
with ỹλ

i,n+1(x) = x exp(Yi + F̃ λ
i,n+1(x)), satisfies the following:

(a) ‖Hn‖r ≤ Crt
2r0‖F̃ λn

i ‖r ;
(b) ‖F̃ λ

i,n+1‖0 ≤ Kn‖λ − λn‖ + Err(t , r), where

Errn+1(t , r) := Cε2
n + Cδ

(r0+1)/(r0+r)
r ,n ε

2−((r0+1)/(r0+r))
n + Crt

−r δr ,n
+ Cr0 t

2r0ε
2−(1/(r0+r))
n δ

1/(r0+r)
r ,n + Cr0 t

2r0ε
3−(1/(r0+r))
n δ

2/(r0+r)
r ,n ;

(c) ‖F̃ λ
i,n+1‖r0+r ≤ Crt

2r0δr ,n := δr ,n+1;
(d) the map �n+1 := λ �→ Ave(F̃ λ

i,n+1) satisfies

‖�n+1 −�n‖(0) ≤ Errn+1(t , r),

‖�n+1 −�n‖(1) ≤ Knt
r0εn + Errn+1(t , r).

If �n+1 is in O, then it has a zero at λn+1 ∈ B which satisfies

‖λn+1 − λn‖ ≤ CErrn+1(t , r)+ CKn(Knt
r0εn + Errn+1(t , r))2;

(e) F̃ λ
i,n+1 is C2 in λ and

‖F̃ λ
i,n+1‖0,2 ≤ (1 + Ctr0ε

1−(1/(r+r0))
n δ

1/(r+r0)
r ,n )Kn =: Kn+1(t , r).

Proof. As was mentioned in [7, Remark 6.3], the proof of the iterative step is universal
given tame splitting for vector fields (Proposition 3.7). We repeat the main points here
for the sake of completeness with fewer details than in the proof of the corresponding
proposition in [7, Proposition 6.2].

In this proof, as is customary whenever there is a loss of regularity for solutions
of linearized equations, we will use the smoothing operators. For the construction of
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smoothing operators on C∞(M), see the following in [10]: Example 1.1.2(2), Definition
1.3.2, Theorem 1.3.6 and Corollary 1.4.2. There exists a collection of smoothing operators
St : C∞(M) → C∞(M), t > 0, such that the following holds:

‖StF‖s+s′ ≤ Cs,s′ t
s′ ‖F‖s ,

‖(I − St )F‖s−s′ ≤ Cs,s′ t
−s′‖F‖s . (62)

Smoothing operators on C∞(M) clearly induce smoothing operators on Vect∞M via
smoothing operators applied to coordinate maps.

It is easy to see that averages of F with respect to the Haar measure on M, in various
directions in the tangent space, do not affect the properties of smoothing operators listed
above, so without loss of generality we may assume that St are such that averages of StF
are the same as those of F.

Given F̃ λ
i,n, we first apply the smoothing operators to it and write F̃ λ

i,n = St F̃
λ
i,n + (I −

St )F̃
λ
i,n. Now Ave(F̃ λ

i,n) = Ave(St F̃ λ
i,n). From the commutativity of F̃ λ

i,n for i = 1 and i = 2
(see Corollary 3.3), it follows that |Ave[Y2, F̃1,n] − Ave[Y1, F̃2,n]| ≤ C‖F̃1,n‖1‖F̃2,n‖1 ≤
Cε2

n and clearly the same holds after application of the corresponding smoothing
operators. Now we can apply Proposition 3.7 to St F̃ λ

i,n − Ave(F̃ λ
i,n)T , i = 1, 2 (recall that

Ave(F̃ λ
i,n)T are averages in the off-center directions). Proposition 3.7 gives existence ofHn

such that

‖(St F̃1,n − Ave(F̃1,n)T , St F̃2,n − Ave(F̃2,n)T )− δ1Hn‖r ≤ C‖�‖r+σ ,

where (see (58))

� := E(F̃1,n, F̃2,n).

From the expression for E in (58), we have the following estimate for �:

‖�‖r ≤ C‖F̃ λ
i,n‖r‖F̃ λ

i,n‖r+1,

where we use short notation ‖F̃ λ
i,n‖r for the maximum of the norms for i = 1 and i = 2.

Also, from Proposition 3.7, we have

‖H‖r ≤ C‖St F̃ λ
i,n − Ave(F̃1,n)T ‖r+σ ≤ Ctσ‖F̃ λ

i,n‖r .
From Lemma 3.4, it follows that if we define hn by hn(x) = x · exp Hn(x), and ỹλ

i,n+1 =
h−1 ◦ ỹλ

i,n ◦ h, with ỹλ
i,n+1(x) = x · exp(Yi + F̃ λ

i,n+1(x)), then F̃ λ
i,n+1 satisfy the following,

after applying the interpolation estimates and the smoothing estimates and assumptions (2)
and (3) (compare to [7, (6.7)]):

‖F̃ λ
i,n+1‖0 ≤ Kn‖λ − λn‖ + Cε2

n + Cδ
(r0+1)/(r0+r)
r ,n ε

2−((r0+1)/(r0+r))
n

+ Crt
−r δr ,n + Cr0 t

2r0ε
2−(1/(r0+r))
n δ

1/(r0+r)
r ,n + Cr0 t

2r0ε
3−(1/(r0+r))
n δ

2/(r0+r)
r ,n .

(63)

For the Cr0+r norm of the new error F̃ λ
i,n+1, as usual in this type of proofs, we only need a

‘linear’ bound with respect to the corresponding norm of the old error. This follows easily
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from the conjugacy relation and we obtain for any s ≥ 0:

‖F̃ λ
i,n+1‖s ≤ Cst

2r0‖F̃ λ
i,n‖s ,

which, as in [7], implies that

‖F̃ λ
i,n+1‖s ≤ Cst

2r0δr ,n.

The remaining two statements (e) and (d) follow exactly in the same way as in the proof of
[7, Proposition 6.2].

Given Proposition 3.9 (compare to [7, Proposition 6.2]), we can now apply the
convergence of the successive iterative scheme proved in [7, §7]. Consequently, we obtain
the following theorem, which is a more precise statement of our main transversal local
rigidity result in Theorem 1.7.

THEOREM 3.10. There exist l > 0, ε > 0, R > 0 such that if a family ρ̃λ of perturbations
of ρ generated by ỹλ

i is ε close to ρ in the Cl norm for parameters λ in an R-ball around
0, and in the C1 norm in the parameter λ direction, then there exists a small parameter λ̄
such that the action ρ̃λ̄ is conjugate to ρ via h, that is, for i = 1, 2, we have

h ◦ yi = ỹλ̄
i ◦ h,

where h is a smooth diffeomorphism order of ε close to the identity in the C1 norm.
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A. Appendix. Proof of Propositions 2.1 and 2.2
The classical Diophantine condition (5) stated in §1.1 is clearly equivalent to the following
condition: there are constants c := cτ ,η > 0 and γ := γτ ,η > 0 such that for any m ∈ Z

2n

and p ∈ Z, we have

|τ · m − p| > c|m · m|−γ if m1 �= 0,

|η · m − p| > c|m · m|−γ if m2 �= 0. (A.1)

We will use the above version of the Diophantine condition to prove the splitting results
for finite-dimensional representations in this section. The same splitting results were
needed and used in three other works so far: [4, 13, 19] and they follow closely Moser’s
splitting construction on the circle in [12]. Our presentation here is somewhat different
in that it follows a general splitting construction which applies to abelian actions where
cohomological equations in irreducible representations have a finite-dimensional space of
obstructions (as in [8], for example).
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For any m ∈ Z
2n and for any κ ∈ {τ , η}, define the constant ζ(m, κ) by

ζ(m, κ) := exp(2πi(m · κ))− 1.

The next lemma describes the operator Lκ on smooth functions in L2(T2n). Its proof is
straightforward and follows from the Diophantine condition (A.1).

LEMMA A.1. Let h = ∑
m∈Z2n hm exp(2πim · (x, ξ)) ∈ W∞

0 (T2n) be a smooth, zero-
average function with coefficients (hm). Then, for κ ∈ {τ , η},

Lκh(x, ξ) =
∑

m∈Z2n\{0}
hmζ(m, κ) exp(2πim · (x, ξ)).

Moreover, there is a constant Cτ ,η > 0 such that for any m ∈ Z
2n \ {0},

|ζ(m, τ )|−1 ≤ Cτ ,η|m · m|γ if m1 �= 0,

|ζ(m, η)|−1 ≤ Cτ ,η|m · m|γ otherwise,

where, for j = 1, 2, mj is defined in (3) and γ is the exponent in the Diophantine condition
for τ , η; see (A.1).

We now prove the estimates from Theorems 1.2 and 1.3 in the context of
finite-dimensional representations.

Proof of Proposition 2.1. Because f , g ∈ W∞(T2n) are zero-average functions, there are
coefficients (gm), (fm) ∈ �2(Z2n), with f0 = g0 = 0, such that

g =
∑

m∈Z2n\{0}
gm exp(2πim · (x, ξ)),

f =
∑

m∈Z2n\{0}
fm exp(2πim · (x, ξ)). (A.2)

By Lemma A.1, we get

Lτg(x, ξ) =
∑

m∈Z2n\{0}
gmζ(m, τ ) exp(2πim · (x, ξ)),

Lηf (x, ξ) =
∑

m∈Z2n\{0}
fmζ(m, η) exp(2πim · (x, ξ)).

Then, because (exp(2πim · (x, ξ)))m∈Z2n is an orthogonal basis for L2(T2n), Lτg =
Lηf implies that for any m ∈ Z

2n \ {0},
gmζ(m, τ ) = fmζ(m, η).

From the definition of ζ and the Diophantine property for τ and η (see (A.1)), we get that
for any m ∈ Z

2n \ {0}, ⎧⎪⎪⎨⎪⎪⎩
ζ(m, τ ) �= 0 if m1 �= 0,

ζ(m, τ ) = 0 if m1 = 0,

ζ(m, η) �= 0 if m1 = 0.

(A.3)
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Hence,

gm = fm
ζ(m, η)

ζ(m, τ )
if m1 �= 0,

fn = 0, otherwise.
(A.4)

Now define the sequence (Pm)m∈Z2n by P0 = 0 and, for any non-zero m, set

Pm :=

⎧⎪⎨⎪⎩
fm

ζ(m, τ )
if m1 �= 0,

gn

ζ(m, η)
otherwise.

(A.5)

Let

P :=
∑

m∈Z2n

Pm exp(2πin · (x, ξ)).

Then a calculation formally gives LτP = f , LηP = g, where the first equation follows
from the second equalities in (A.3) and (A.4), and the second equation follows from the
first equality in (A.4) and equation (A.5).

Now we estimate the Sobolev norm of P. Recall from (12) that for any f ∈ W∞(T2n)

and for any s ∈ N,

‖f ‖s = ‖(1 + 4π2(m · m))s/2f ‖�2(Z2n) < ∞.

Set s ∈ N. By Lemma A.1 and formula (A.5), for any m ∈ Z
2n \ {0} such that m1 �= 0, we

have

|Pm| = |fm|
|ζ(m, τ )| ≤ Cτ ,η(1 + 4π2m · m)γ |fm|.

On the other hand, when m1 = 0, we have

|Pm| = |gm|
|ζ(m, η)| ≤ Cτ ,η(1 + 4π2m · m)γ |gm|.

Then, for any s ∈ N, there is a constant Cτ ,η > 0 such that

‖P ‖2
s =

∑
m∈Z2n\{0}

m1 �=0

(1 + 4π2m · m)s |Pm|2 +
∑

m∈Z2n\{0}
m1=0

(1 + 4π2m · m)s |Pm|2

≤ Cτ ,η
∑

m∈Z2n\{0}
(1 + 4π2m · m)s+2γ (|fm|2 + |gm|2). (A.6)

By interpolation, the above estimate holds for any s ≥ 0. Hence, for any s ≥ 0,

(A.6) = Cτ ,η(‖f ‖2
s+2γ + ‖g‖2

s+2γ ) ≤ Cτ ,η(‖f ‖s+2γ + ‖g‖s+2γ )
2.

We conclude that

‖P ‖s ≤ Cτ ,η(‖f ‖s+2γ + ‖g‖s+2γ ).
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Proof of Proposition 2.2. Let s ∈ N. Let f , g be given by (A.2) and write φ as

φ =
∑

m∈Z2n

φm exp(2πim · (x, ξ)),

where (φm) ∈ �2(Z2n). Because φ = Lηf − Lτg, we get

φ0 = 0.

By assumption, f and g also have zero average, so

f0 = g0 = 0.

Define P by the sequence (Pm)m∈Z given in (A.5), where P0 = 0.
Let R be the orthogonal projection in L2(T2n) onto the space generated by⋃

m∈Z2n

m1 �=0

{exp(2πim · (x, ξ))}.

That is, for any h = ∑
m∈Z2n hm exp(2πi(m · (x, ξ))) in L2(T2n),

Rh(x, ξ) =
∑

m∈Z2n

m1 �=0

hm exp(2πi(m · (x, ξ))).
(A.7)

A direct calculation gives the next lemma.

LEMMA A.2. The following equalities hold on L2(T2n):

RLη = LηR, RLτ = Lτ .

Now let P be defined by (A.5). Then

LτP =
∑

m∈Z2n

m1 �=0

fm exp(2πim · (x, ξ)) = Rf .

By the above equality and Lemma A.2, we get as in (43): Rφ = Lτ (LηP − g). From
(A.7), it follows that for any m ∈ Z

2n such that m1 = 0, (Rφ)m = 0. Moreover, for any
h ∈ L2(T2n), we get from the definition of Lτ that for such m,

(Lτh)m = 0.

This means that∑
m∈Z2n

m1 �=0

(Rφ)m exp(2πim · (x, ξ)) = Rφ(x, ξ) = Lτ (LηP − g)(x, ξ)

=
∑

m∈Z2n

m1 �=0

(LηP − g)mζ(m, τ ) exp(2πim · (x, ξ)).

By orthogonality, it follows that for all m ∈ Z
2n \ {0} with m1 �= 0,

(Rφ)m = (LηP − g)mζ(m, τ ). (A.8)
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Note that the definition of Pm gives

(LηP − g)m = Pmζ(m, η)− gm = 0.

So, by the above equality, formula (A.8) and Lemma A.1, we get that for any m ∈ Z
2n,

|(LηP − g)m| = |(Rφ)m|
|ζ(m, τ )| ≤ Cτ ,η(1 + 4π2m · m)γ |(Rφ)m|.

Hence,

‖LηP − g‖2
s =

∑
m∈Z2n

m1 �=0

(1 + 4π2m · m)s |(LηP − g)m|2

≤ Cτ ,η
∑

m∈Z2n

m1 �=0

(1 + 4π2m · m)s+2γ |(Rφ)m|2

= Cτ ,η‖Rφ‖2
s+2γ ≤ Cτ ,η‖φ‖2

s+2γ .

Next, as in (46), we get

‖LτP − f ‖s = ‖(R − I )f ‖s .
By Lemma A.2, it follows as in (47) that

Lη(R − I )f = (R − I )Lηf = (R − I )φ.

Next, a calculation proves that for any m ∈ Z
2n \ {0} such that m1 = 0,

|((R − I )f )m| ≤ |((R − I )φ)m|
|ζ(m, η)| ≤ Cτ ,η(1 + 4π2m · m)γ |((R − I )φ)m|.

Then, using Lemma A.1, we conclude that

‖(R − I )f ‖s ≤ Cτ ,η‖(R − I )φ‖s+2γ ≤ Cτ ,η‖φ‖s+2γ .

The third inequality in Proposition 2.2 holds because P is the same function from
Proposition 2.1, which gives

‖P ‖s ≤ Cτ ,η(‖f ‖s+2γ + ‖g‖s+2γ ).

Now, if P is non-constant, then we are done. So, suppose that P is constant and therefore
zero. Notice that by the above estimate, φ = 0 implies that f = 0, which contradicts the
assumption that f �= 0. So, we conclude that there is some m0 ∈ Z

2n such that

φm0 �= 0.

Then define

P̃ (x, ξ) := φm0 exp(2πim0 · (x, ξ)).
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By the orthogonal decomposition of φ, we have ‖P̃ ‖s ≤ ‖φ‖s . So, the above estimates of
‖LηP − g‖s and ‖LτP − f ‖s imply that

‖LηP̃ − g‖s = ‖(LηP − g)+ LηP̃ ‖s
≤ ‖LηP − g‖s + ‖LηP̃‖s
≤ (Cτ ,η + 1)‖φ‖s+2γ

and, analogously, ‖Lτ P̃ − f ‖s ≤ (Cτ ,η + 1)‖φ‖s+2γ .
This concludes the proof of Proposition 2.2.
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[7] D. Damjanović and A. Katok. Local rigidity of homogeneous parabolic actions: I. A model case. J. Mod.
Dyn. 5(2) (2011), 203–235.
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