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Abstract

A neural network model with dynamic thresholds, asymmetric connections, and clustered memories simulates
spread activation that is hypothesized for semantic networks in the brain. By altering the parameters of the dynamic
threshold a large range of disturbances can be generated in the model. These disturbances show metaphorical
resemblance to certain general clinical descriptions of mental disturbances found in psychiatric patients engaged in
various cognitive tasks. Even though the model is highly theoretical and metaphoric, it may help to gain certain
insights into the relation between alterations of certain neural parameters, for example, thresholds and connectivity,
and clinical symptoms in patients. (JINS, 2000,6, 608–619.)

Keywords: Dynamic neural networks, Semantic networks, Cognitive task, Working memory, Concrete and abstract
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INTRODUCTION

Recently neural network models have been used to simu-
late many normal and pathological mental functions. The
simulation of normal cognitive functions such as learning,
memory, recognition, and categorization has provided im-
pressive results (Hinton, 1981, 1986; Rumelhart & McClel-
land, 1986). Simulations of cognitive disorders such as
disturbances of memory activation and associations have
also shown considerable achievements (Cohen & Servan-
Schreiber, 1992, 1993; Hermann et al., 1993; Hinton & Shal-
lice, 1991; Hoffman, 1987, 1992; Hoffman & Dobscha, 1989;
Hoffman et al., 1994; Servan-Schreiber et al., 1996). Typi-
cally simulations of cognitive disturbances involve a de-
cline in the performance of a neural computation task as a
direct consequence of a change in one of the networks’ pa-
rameters, usually the threshold function. However, both the
neuroscience literature and clinical experience suggest that
brain functions are more complicated (Tucker, 1998; Van-
Praag, 1997; Wilson, 1993). Neuroscience teaches us that
many neuronal parameters (e.g., threshold, connectivity, and

inputs) continuously change over time, and that a “bal-
anced” interaction among many dynamic changes occurs dur-
ing the normal functioning of the brain system (Globus, 1992;
King, 1991). Clinical experience indicates an extraordinary
variability (or spectrum) in the manifestation of cognitive
disturbances (Spitzer & Williams, 1995; Tucker, 1998; Wil-
son, 1993).

It seems that while simple neural network models (i.e.,
models of fixed inputs, connections, and threshold alter-
ations) are sufficient for simulating circumscribed mental
disturbances, more complex models are required for simu-
lating the complex variety (or spectrum manifestations) of
mental disorders. Thus, increasing the intricacy of the model
to approximate some of the complexities in the brain may
serve to illustrate certain spectrum manifestations in men-
tal disturbances not explained otherwise. In this work, the
application of (1) dynamic threshold function, (2) asymmet-
ric connections, (3) clustering of memory patterns, and
(4) “internal inputs” offer the necessary complexity to sim-
ulate variability and spectrum phenomena in mental dis-
turbances. To demonstrate that certain common neural
mechanisms can generate a wide variability in different cog-
nitive functions, four different mental functions and their
relevant tasks are chosen. The model simulates the distur-
bances typically described in the psychiatric literature for
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each of these cognitive tasks. The cognitive functions and
their corresponding tasks are summarized in Table 1.

Normal and Abnormal Cognitive Functions

Normal thinking tends to be linear, with each idea follow-
ing the previous one in a relatively ordered association. The
thinking process isgoal-directedand appropriate to the rel-
evant information at hand (e.g., answering a question in the
course of a discussion). As such, the associations are re-
lated to one another, to the incoming information, and to a
particular outcome or response.

With loosening of associationpatients clearly demon-
strate a breakdown in linear and goal-directed thought. Ideas
are disconnected or obliquely related, sometimes to the ex-
tent that the listener cannot understand the speech of the
speaker. Consequently, the patient’s thinking may be en-
tirely unrelated to conversational topics, or what may start
out being related quickly gets off track (i.e., derailed). In
contrast,poverty of thoughtinvolves few associations at all,
as if the patient’s thoughts are fixated to few ideas. As such,
the patient may manifest repetitive, stereotyped, and per-
severative thinking. Poverty of thought may be under- or
overproductive, but in either case it reflects thinking that is
neither linear nor goal-directed. For purposes of the model
in this article, we emphasize these two types of thought
disorder.

In thelexical decision taskparticipants are asked to iden-
tify words from nonwords that are flashed on a screen. If, in
addition, prior to the word stimulus, a meaningful associ-
ated word is presented, the task is performed more quickly
and with fewer errors. This phenomenon has been termed
“priming,” and was found to be significantly impaired in
patients who suffer from thought disorders (Manschreck
et al., 1988). Indirect priming is the condition where the as-
sociated word is indirectly relevant to the word stimulus;
for example, chalk is associated with milk through the in-
termediate concept of white. Indirect priming has been found
to be even more impaired in thought-disordered patients
(Manschreck et al., 1988). For the purpose of the model in
this work we emphasize the associations between the word
stimuli. Nonassociated word stimuli take longer to recog-
nize and correlate, with more errors in the lexical decision
task.

Working memory is a short-term memory activated and
held in mind to monitor and respond correctly to stimuli
(Goldman-Rakic, 1994). For example, in delay response tasks
the rule for responding to the task is held in mind during the
delay period and guides the responses. In theobject alter-
nation taskthe participant is asked to choose between two
objects according to a predetermined rule: for example to
choose between a blue and a red object by alternating the
color each time. If the participant performing the task has
difficulty maintaining the alternation rule over the delay pe-
riod he will make errors by choosing the same color twice
in a row, or by choosing in an irregular manner violating
the rule.

In thesorting taskthe participant is asked to sort a deck
of cards bearing stimuli that vary in number, color, and shape.
As each card in the stack comes up the participant has to
match it to a set of reference cards. Matching is based on
one dimension (e.g., color) that is arbitrarily selected by the
experimenter. The experimenter then informs the partici-
pant whether he or she is right or wrong, and the patient
attempts to get as many correct matches as possible. After
the patient achieves a specific number of consecutive cor-
rect matches, the sorting principle is shifted without warn-
ing, and the patient must modify his responses accordingly.
Failure in the task occurs when the patient fails to create or
maintain the principle that guides the sorting; this is some-
times termed the loss of a set. Other errors frequently doc-
umented for patients suffering from mental disturbances
involve perseverations, where the patients fail to change set,
and thus continue to respond according to the previous prin-
ciple (Berman et al., 1995). For the purpose of the model in
this work, the loss of set and the inability to shift to a new
set are emphasized.

Modeling Disturbances in Cognitive
Functions by Neural Networks

According to network models of the mental lexicon, seman-
tic information is represented as nodes in a neural network
(Collins & Loftus, 1975). These nodes become activated for
a short period of time when used for speech production or
understanding (Collins & Loftus, 1975; Collins & Quillian,
1970). Based on this description, thought is sometimes con-
ceptualized assequences of memory retrievals(Collins &

Table 1. External~Ei ! and internal~Ii ! inputs for the entire cognitive task simulations

Cognitive function Cognitive task External input~Ei ! Internal input~Ii !

Organized speech Goal-directed associations 1, 2, 3–* 1, 4, 7 None
Priming Lexical decision task 1, 2–* 1, 7 None
Working memory Object alternation task 1, 2, 7, 8–* 1, 2, 7, 8 1, 2–* 1, 7
Abstraction and categorization Sorting task 3, 4, 7–* 1, 6, 8–* 1, 5, 9–* 1, 2, 3–*

3, 4, 8–* 1, 2, 7–*1, 4, 8 None

*Change of input.
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Loftus, 1975), or activation ofsemantic concepts(Neely,
1991), which once activated in acoherent sequenceguide
speech formation (Desse, 1987; Maher et al., 1983). This
description is in line with Quillian’s (Collins & Loftus, 1975)
basic theory of thesemantic network model. In his semantic
system, concepts are represented asnodesandconnections
of a network structure.Concepts, which are represented by
the nodes in the semantic network, can be represented by
attractors, or memoriesof a neural network(NN) model.

Typically a simulation of a “pathology” in a neural net-
work model involves altering the threshold function (i.e.,
the bias or the gain; Figure 1) or the connection values of
synaptic strength (Cohen & Servan-Schreiber, 1993; Herz
et al., 1991; Hinton & Shallice, 1991; Hoffman, 1992;
Rumelhart & McClelland, 1986; Servan-Schreiber et al.,
1996). However, within the simulation all parameters are
maintained constant. Pathology is simulated by distur-
bances in the regular memory activation process or, in other
words, by disturbances in the process of convergence to the
relevant attractor (Hoffman, 1992). The model can activate
a memory (i.e., normality) or fail to activate a memory (i.e.,
pathology); thus within the pathological state there is only
one limited type of failure, the inability to converge and ac-
tivate the memory. However as mentioned above, in psy-
chiatric clinical experience a multitude of abnormal cognitive
patterns exist. For example, memories can be activated cor-
rectly but not in the “right” order. Pathology of memory ac-
tivations (e.g., concepts in speech or response decisions) can
be disturbed in a variety of forms, from mild irregularities
to total confusion (e.g., from tangentiality and derailment
to loosening of associations and word salad (Andreasen,
1997; Andreasen & Olsen, 1982)). A memory can be acti-
vated correctly, but then activated repeatedly again and again
in the wrong settings, thus becoming a disturbance or an
abnormality (i.e., perseveration (Andreasen & Olsen, 1982)).

Hoffman (1987, 1992; Hoffman & Dobscha, 1989) pre-
sented a Hopfield-likeattractor neural network(ANN)

model that becomes overloaded due to synaptic deletion,
causing spurious memories to emerge. He suggested that
this model could explain mechanisms underlying some
schizophrenic symptoms such as hallucinations and delu-
sions. Cohen and Servan-Schreiber (1992, 1993; Servan-
Schreiber et al., 1996) presented connectionist feed-forward
back-propagation networks that are able to simulate normal
and schizophrenic performance in several attention and
language-related tasks. Horn and Ruppin (Hermann et al.,
1993) investigated the effect of synaptic compensation on
the dynamic behavior of the ANN. Spontaneous, stimulus-
independent retrieval of stored patterns that occur due to
compensation are used as a framework to simulate the un-
derlying mechanisms of loosening of associations.

A dynamic threshold neural network(DTNN) has been
applied to a variety of findings in semantic activation and
memory effects (Horn & Usher, 1989, 1990). Hermann and
coworkers (Hermann et al., 1993) have used the DTNN to
simulate serial concept activation. By applying dynamic
threshold activity (Horn & Usher, 1989, 1990), transient se-
rial memory retrievals are accomplished by the DTNN. Such
models have been recently proposed in the neural network
literature on the basis of synaptic delays (Abbott et al., 1997;
Wickliffe & Warren, 1997), neural adaptation (Bliss &
Gardner-Medwin, 1973; Stone et al., 1998), or slow inhibi-
tion (Abbott et al., 1997; McNaughton, 1982). Varying the
noise level at the unit level in the DTNN model, Hermann
et al. (1993) demonstrate the well-documented semantic
priming phenomena (Manschreck et al., 1988; Neely, 1977).
They have also used thesameDTNN to simulate some neuro-
anatomical and neuropsychological findings in Alzheimer’s
disease (AD). Random synaptic deletion of the DTNN units
resulted in a reduction of transitions between memory re-
trievals. It was suggested that synaptic deletion simulates
neuronal loss in AD, and reduction of transitions between
memory retrievals simulates the decrease of semantic mem-
ory in neuropsychological tests of such patients.

Fig. 1. The input–output threshold of each neuron is modeled by a sigmoid function. AxisX indicates the input value
and axisY the “firing” probability of the unit. Zero stands for “no firing” and 1 stands for maximal firing rate. Thresh-
old manipulations include alterations of gain (left graph) or alterations of bias (right graph) that is used in the present
work.
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Our interest in sequences of memory retrievals, or coher-
ent activations of semantic concepts, in asemantic network
model, leads us to continue and study thethreshold dynam-
ics of the DTNN. This paper presents a new representation
of a semantic network model. The random memory patterns
of the DTNN are clustered into classes of near (Hamming
distance) patterns, and asymmetric connections are as-
signed between the units of the DTNN, which represent
memory patterns of the same class. Each memory pattern
can represent a concrete concept or a node in the semantic
network, while each class of associated concepts or “near
nodes” in the semantic network can represent an abstract
concept. Abstract concepts are represented in the network
by activation of a linear combination of a connected group
of memory patterns that represent the concrete concepts that
constitute it. Using thisdynamic threshold semantic neural
network(DTSNN) model, we attempt to simulate the four
cognitive functions described above.

METHODS

The DTSNN Model

The network is constructed fromN neurons, characterized
by two-valued variablesSi [ $21,1% corresponding to non-
active and active states. Each neuron is subject to a dy-
namic threshold variableui (Horn & Usher, 1989, 1990).
Neurons are connected through synaptic strength values
called weightsWij (the connection between neuroni and
neuronj !. The postsynaptic potential,hi , is the weighted
sum of the states of the neurons from which it receives
connections:

hi ~t! 5 (
j51

N

wji Sj ~t!. (1)

The dynamic equation for the output of the units is given
by:

Si ~t 1 1! 5 FT @hi ~t! 2 ui ~t! 1 Ei ~t! 1 Ii ~t!# , (2)

where the neuron state,FT , is a threshold dependent sto-
chastic function:

FT~x! 5 511 with probabilityS11 e
2

2{x
T D21

21 with probabilityS11 e
2{x
T D21 , (3)

whereT represents the “slope” of threshold (i.e., the “tem-
perature” of the model; Figure 1).

The originalexternalinput to the networkEi ~t! consists
of a linear combination of subset of memory patterns:

Ei ~t! 5 e (
k[U

mi
k. (4)

This value represents the composite input from the exter-
nal world to the model, where the parametere is the relative
weight of the external inputs andU is a set of indexes of the
memory patterns in the composite external input.

In addition, we choose to add another compositeinternal
input to the network:

Ii ~t! 5 d (
k[V

mi
k, (5)

whered is the relative weight of the combined internal in-
puts andV is a set of indexes of the memory patterns in the
composite internal input. One can regard this value as rep-
resenting the short-time working memory of the model,
which is created by fast learning or adaptation of the model
to new situations. At this stage we did not try to model the
dynamic behavior of the internal input, which will require
further investigation.

Thethreshold dynamicis given by Horn and Usher (1989,
1990):

ui ~t 1 1! 5 ui ~t!/c 1 bSi ~t 1 1!. (6)

According to this equation, while a neuron is active, its
dynamic thresholdui ~t! increases asymptotically (i.e., inte-
gration of the neuron activity) to the value

umax 5 cb/~c 2 1! (7)

and deactivates the corresponding neuron. The parameters
b andc ~c . 1! represent the rate of increase and decay of
the dynamic threshold respectively. The dynamic threshold
provides the motion of the network in the memory-concept
space; neurons that are active for a relatively large time are
deactivated, and the network’s state evolves into a new
pattern.

The network learns its memory patterns by Hebbian rule
with asymmetric connection between associated patterns
(Herz et al., 1991). Assignment of asymmetric connections
between successive memory patterns causes the next con-
vergence to occur into the next memory pattern in a se-
quence of associative memories. The weight between the
i -th and thej-th neuron is:

Wij 5
1

N (
k51

P

mi
kmj

k 1 l{
1

N (
l51

L

(
k,q[Gl

kÞq

mi
kmj

q, (8)

whereP is the number of memory patterns,L is the number
of categories,Gl is a set of indexes of the memory patterns
in thel-th category (i.e.,Gl contains the indexes of the mem-
ory patterns of thel-th category), and the parameterl is the
“strength” of the asymmetric connections.

Simulation of Cognitive Tasks
by the DTSNN

The NN memory patterns represent the predetermined se-
mantic concrete concepts acquired by learning; each mem-
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ory pattern represents a node of the semantic network.
Semantic activation is simulated by memory retrieval,
namely convergence into one of the memory patterns of
DTSNN. By adding asymmetric connections between the
units of the DTSNN, we simulate connections, or associa-
tions, between near concepts or nodes in the semantic net-
work. Abstract concepts are then represented in the network
by a linear combination of aconnected groupof memory
patterns; these are the concrete concepts that constitute each
abstract concept.

All the cognitive tasks that were chosen to be simulated
by the model are performed by the same neural network
model; only the input modalities vary between the different
simulations. In the current realization, the network is con-
structed from 600 neurons, and learns (Equation 8) nine ran-
dom memory patterns, each representing a concrete concept.
The nine random memory patterns areclusteredinto three
clusters with three patterns, each according to their Ham-
ming distance. We label the first clusterG1, and its memory
patterns 1, 2, and 3; the second clusterG2, and its memory
patterns 4, 5, and 6; and the third clusterG3, and its mem-
ory patterns 7, 8, and 9. The three memory patterns of each
cluster are associated by asymmetric connections (Equa-
tion 8). The subsets are chosen to represent three different
categories or abstract concepts (Figure 2).Acorrelation value
of .7 between the network state and one of the memory pat-
terns is chosen to define the memory retrieval state (all mem-
ory patterns are partially activated continuously).

Theexternal inputs~Ei ! are constructed from a linear com-
bination of theU set of memory patterns (Equation 4;
Table 1), and theinternal inputs~Ii ! are constructed from a
linear combination of theV set of memory patterns (Equa-
tion 5; Table 1). One can view the external input as a mix-

ture of information coming from the environment, in this
case a mixture of concepts embedded in words or sen-
tences, while the internal inputs can represent an internal
rule, which is acquired by the short-term memory system.
The model can organize an external input information into
sequences of ordered input-dependent memory retrievals
using the internal input as a guiding rule for its behavior.
We assume that choosing the input patterns for the retrieval
of memories from the same category may simulate the ac-
tivation of associated semantic concepts, whereas the re-
trieval of memories from different categories may simulate
the activation of nonassociated semantic concepts.

Semantic priming is simulated with associated input pat-
terns (small Hamming distance and asymmetric connec-
tions), which represent neighboring nodes in the semantic
network or concepts from the same category (e.g.,1 5 red
and 2 5 yellow, both colors; Figure 1). Nonpriming is
simulated by presenting input patterns from different cat-
egories (large Hamming distance and no asymmetric con-
nections), which represent far nodes in the semantic network
(1 5 red, 7 5 circle). Priming phenomena are measured by
the average time between consecutive convergences into the
relevant pairs of memories, which is achieved for each in-
put representation. Frequent convergence into pairs of
patterns from the same category, in contrast to fewer con-
vergences into pairs from different categories, may simu-
late the priming effect.

For the simulation of the object alternation task the ex-
ternal input is set to a linear combination of memories1
(red), 2 ( yellow), 7 (circle), and8 (square). This external
input represents the stimulus of this task, which is com-
posed of circles and squares alternately colored in red and
yellow. The internal inputs are1 (red) and2 ( yellow), which
represent the rule ofcolor alteration, for the first half of the
simulation, and1 ( yellow) and7 (square), which represent
the rule ofcolor–shape alteration, for the second part of
the simulation.

For modeling a sorting task by the DTSNN, we assume
that each feature on the cards (form, color, and number) can
be represented by a memory pattern; for example,two-red-
squaresare represented as memory patterns1, 6, and8 (15
red color, 65 number two, 85 square form; Figure 1). Next,
we assume that an abstract concept, likecolor can be rep-
resented as a linear combination of all the concrete con-
cepts that it stands for, such as all the colors (1 5 red, 2 5
yellow, 3 5 green). Performing a sorting test is simulated
by the DTSNN by presenting an external input (Equa-
tion 4) composed of memory patterns that specify the card
to sort (e.g., memory patterns1–6–8for red-two-squares),
together with an internal input (Equation 5) comprised of
the set of memory patterns that represent the abstract con-
cept, or rule, to follow (e.g., memory patterns1–2–3for col-
or). These two sets of memory patterns (i.e.,U andV ! are
matched by the system, and since one memory pattern will
always appear twice (in this case memory pattern1), it will
have a higher probability of being activated. In the presen-
tation we will not deal with the very relevant problem of

Fig. 2. Concepts and abstract concept are represented in the model
by memory patterns that are clustered into categories. Memories
1, 2, and 3 represent colorsred, yellow, andgreen. Memories 4, 5,
and 6 represent numbers1, 2, and3. Memories 7, 8, and 9 repre-
sent shapescircle, square, andtriangle. These representations are
used for the simulation of the various mental tasks.
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how does the system acquire (or does not acquire) a new
abstract concept. At this stage, we prefer to avoid this prob-
lem by assuming that the participant acquires a new ab-
stract concept as soon as he gets a positive answer from the
tester. By this we acknowledge the fact that the model can-
not simulate errors that are caused by interference in ab-
stract concept acquisition.

External and internal inputs (i.e.,Ei andIi ! for each task
simulation are presented in Table 1. To summarize, input-
dependent sequences of memory retrievals, or coherent ac-
tivations of semantic concepts, are chosen for the simulation
of normal thought processes that guide coherent goal-
directed speech. The activation of different associated pairs
of semantic concepts is used for the simulation of priming
phenomena. Finally, linear combinations of a connected
group of memory patterns are suggested to simulate catego-
rization or abstract concepts, which are relevant for decision-
making in a sorting task. The model’s performance for all
the different tasks is checked with the same set of dynamic
threshold parameters.

Challenging the Network Performance for
Simulating Interferences in Cognitive Tasks
The dynamic threshold parametersb, c, and umax, which
locally control the activity level of each unit, have a global
organizing capacity essential for the network’s computa-
tional abilities as a whole system. We chose to study the
effect of changes in these relevant dynamic threshold pa-
rameters on the performance of each of the four cognitive
tasks that are simulated by the DTSNN. The other param-
eters of the network were set at constant values ofT 5 0.4
(the threshold gain; Equation 3 and Figure 1, left),e 5 0.25
(the relative weight of the external inputs; Equation 4),d 5
0.25 (the relative weight of the internal inputs; Equation 4)
andl 5 0.1 (the strength of the asymmetric connections;
Equation 8). It is important to emphasize that, although these
latest parameters are relevant to the network dynamics, we
prefer in this research to concentrate on the dynamic thresh-
old parameters. The dynamic threshold parametersspaceof
b, c, andumax are presented in Figure 3. The model perfor-
mances were tested for a wide range of dynamic threshold
parameter values. Optimal performances of all four task sim-
ulations (semantic sequencing, priming, working memory,
and sorting task) occur when the threshold dynamic param-
eters are around the values ofb5 0.1,c51.125, andumax5
0.9. Any significant alteration of these values causes some
major breakdown or disturbances in the performance of the
model, thus causing specific sets of typical disturbances in
each of the four simulations. After testing the model’s ac-
tivity for a large number of points in the threshold param-
eter space, the five points in Table 2 have been chosen to
demonstrate the model’s normal and disturbed activity.

SIMULATION RESULTS

The five points of interest (Table 2) are described as five
different combinations of threshold dynamics:

1. The point of optimal threshold variables is the combina-
tion of threshold parameters where the model simulates
well-organized sequences of spread activation.

2. The point of high and fast threshold dynamics.

3. The point of low and slow threshold.

4. The point of fast, but optimal, levels of threshold.

5. The point of slow, but optimal, levels of threshold.

The last four points describe dynamic threshold combi-
nations that generate various irregularities that make part of
an entire range of disturbances in the model.

The simulations results are presented in Figures 4 to 7,
each corresponding to a task according to Table 1 (i.e., the
simulation in Figure 4 corresponds to thinking, the simula-
tion in Figure 5 corresponds to priming, the simulation in
Figure 6 corresponds to object alternation, and the simula-
tion in Figure 7 corresponds to the sorting task). Each graph
within each figure is a different simulation run under a dif-
ferent combination of threshold parameters (Table 2).

Axis X for each graph indicatestime, where time is mea-
sured as the number of iterations in the model, that is, the
number of times in which all the units are updated. AxisY
for each graph indicates the correlation between the state of
the model at the given time and the memory patterns em-
bedded in (or learned by) the system. For example, a curve
marked with the number2 that reaches the level of 1 indi-
cates high correlation between the state of the network and
memory pattern number2. In other words, it indicates that
the network converged to memory number2 and has acti-
vated the information represented by this network pattern

Fig. 3. The dynamic threshold parameters space. Each point in
this space represents a different combination of dynamic thresh-
old values, which result in different behavior of the system. The
plotted line correspond tobandcvalues resultant in constantumax5
0.9 (Equation 7).
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(see introduction above). Although numbers can be the same
for different simulations (e.g., thinking, priming, and sort-
ing), in each simulation they mean different information.
For example, in thinking the memories are concepts and ideas
in the stream of speech, while in the sorting task they are
decisions and responses to the card stimuli.

In all simulations the input is changed in the middle of
the simulation (vertical line in the figures). In the first three
simulations (Figures 4, 5, and 6, of thinking, priming, and
object alteration) inputs in the second half of the simula-
tions originate from patterns that are clustered in different
categories (see Figure 2 and Table 1). In the last simulation
(the sorting task in Figure 7), the vertical line indicates when
the rule of deciding according to color is stopped. For each
simulation the input is presented at the top and the graph
indicates the convergences over time. If there is a rule or a
guiding principle it is presented in each figure under the
input specifications.

Simulation of Normal Cognitive
Performances on the Tasks

The point of optimal sequence activity in the model simu-
lates the normal performance on the four different tasks (Fig-
ures 4a, 5a, 6a, and 7a). An ordered sequence of activation
of memories1, 2, and3 for the first half of the iterations,
and1, 4, and7 for the second half (Figure 4a) is considered
to simulate linear, goal-oriented (i.e., input-dependent) think-
ing. Notice that in the first half of the simulation, memories
from the same category are activated (i.e.,1, 2, and3 are
color categories in Figure 3), while in the other half of the
simulation memories from separate categories are activated.

The activation of memory patterns1 and2 simulates the
two word-stimuli for the lexical decision task (Figure 5a).
Ordered output sequences of memories1 and2 simulate the
normal priming for the lexical decision task (Figure 5a). Ac-
tivation of memories that are part of different clusters, that

Table 2. Threshold dynamic parameters~b, c, andumax) that were used for the
simulation of the disturbances in the different cognitive tasks

Threshold dynamic variables b c umax

a) The point of optimal threshold .1 1.125 0.9
b) The point of high and fast threshold dynamics .15 1.02 7.65
c) The point of slow and low levels of threshold .15 1.5 0.45
d) The point of fast but optimal levels of threshold .22 1.324 0.9
e) The point of slow but optimal levels of threshold .0089 1.01 0.9

Fig. 4. Each grapha, b, c, d, ande is a different
simulation run under a different combination of
threshold parameters presented in the previous Fig-
ure 3. AxisX indicatestime, where time is mea-
sured as the number of iterations in the model, i.e.,
the number of times in which all the units are up-
dated. AxisY indicates the correlation between the
state of the model at the given time and the mem-
ory patterns embedded in (or learned by) the sys-
tem. The input is presented as a mixture of memory
patterns—see also Table 2. The input is changed
in the middle of the simulation (vertical line). (a)
Simulation of goal directed input-dependent think-
ing. (b) Simulation of loosening of associations.
(c) Simulation of perseverative ideation. (d,e) Sim-
ulations of fast and slow ideations, respectively.
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Fig. 5. (a) Simulation of normal priming (Memory Activation “1” simulates the prime and the Memory Activation “2”
simulates the target concept). (b) Simulation of errors of lexical decisions. (c) Simulation of perseverative responses.
(d,e) Simulation of fast and slow performances, respectively.

Fig. 6. (a) Simulation of “normal” object alternation task. (b) Simulation of errors of the object alternation task.
(c) Simulation of perseverative responses. (d,e) Simulation of fast and slow performances, respectively.

Simulation of cognitive disturbances 615

https://doi.org/10.1017/S1355617700655108 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617700655108


is, memories1 and 7 in (last 60 iterations of Figure 5a),
may simulate indirect priming, that is, when the prime is
related to the target via an additional associated concept (see
introduction above). Note that in the latest case, where pat-
terns are from different categories, the activation delay is
longer than in the first case, where patterns are from the
same categories.

In the object alteration task the presented stimuli areyel-
low or red circle and red or yellow square, which repre-
sented external inputs1, 2, 7, and8 (Figure 6). The colors
and shapes change randomly, that is, the circle may be blue
in one iteration and red in the next iteration. In the first part
of the simulated object alteration task, the rule is to alter-
nate between yellow and blue colors and ignore the shapes,
that is, alternate between memory1 and memory2, repre-
sented by1 and2 in the internal input (Figure 6a). In the
second part of the simulated object alteration task, the rule
is to alternate betweenred andsquare, that is, alternate be-

tween memory1 and memory7, represented by1 and7 in
the internal input (Figure 6a); note that in this case the al-
teration rate is slower.

For the first part of the sorting task simulation (Figure 7
up to the vertical line), the internal input is set to a linear
combination of memories1, 2, and3, the first iterations,
which represent thecolor concept, while different external
input sets (cards) are presented. For the second part of the
simulation, thecolor conceptis stopped and additional cards
are presented at the external input (after the vertical line,
Figure 7). Simulation of normal responses activatescolor
memorieswhen the color principle is activated, while other
different memories are activated when the color principle is
stopped (Figure 7a). It is important to reemphasize that the
acquisitionof the abstract concept is not simulated; rather it
is artificially set upby the internal input (Equation 5). As
such, the model is limited to simulation of the actual main-
tenance of the principle once it has been acquired.

Fig. 7. The inputs are concrete stimuli of different colors and shapes. The card stimulus is simulated by a sum of input
patterns from the different concrete concepts (e.g., the first card at the top of Figure 7a withone green circlewill be a
sum of memories3, 4, and7). Activation of a color concept simulates a correct response to the sorting task (i.e.,
choosing according to color). The color principle (represented first by3 and then by1) is activated when different input
sets (cards) are presented. The color concept is stopped at a point marked by the vertical line. (a) Simulation of normal
responses (color memories) are activated when the color principle is held in working memory and other different color
concepts when the color principle is stopped. (b) Simulation of total failure on the task. (c) Tendency to repeat concepts
1 and2 simulates the tendency to perseverate activating color concepts even though the internal input of the color
principle was stopped. (d,e) Simulation of errors combined with different velocities.
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Simulation of Pathological Cognitive
Performances on the Tasks

As mentioned above, beyond the point of optimal sequence
activity, the model simulates cognitive disturbances for the
four different tasks. Panelsb, c, d, ande in Figures 4, 5, 6,
and 7 present typical “abnormal” results, each correspond-
ing to a simulation with a different dynamic threshold com-
bination according to Table 2. We choose to cluster together
the simulation results of all the cognitive tasks for each point
of dynamic threshold parameters in order to emphasize the
similar “abnormalities” that occur in all the tasks.

Simulationb, the second simulation for all tasks (Fig-
ures 4b, 5b, 6b, and 7b), is achieved when the dynamic
threshold parameters are set to the values in Row 2 of Table 2,
namely, the point of high and fast threshold dynamics. Here
the number of convergences is significantly reduced (i.e.,
increased spaces of no convergence between activations),
and when a convergence of the network occurs, it is not al-
ways input dependent (i.e., a convergence to a memory that
is not included in the input). This is most evident in the sim-
ulation of thinking (Figure 4b) where, in the first half of the
simulations, there are very few partial activations, while in
the second half of the same simulation, activations are not
according to the inputs (i.e., memory3 is activated even
though only memories1, 4, or 7 are presented). The same
trend of reduced activations and errors also characterizes
simulations of other tasks.

Simulation c, the third simulation for all tasks (Fig-
ures 4c, 5c, 6c, and 7c), is achieved when the dynamic thresh-
old parameters are set to the values in Row 3 of Table 2,
that is, the point of slow and low levels of threshold. Here,
again, there are very few convergences at all, and when the
network converges, it tends to be stuck in that state for the
entire simulation; for example, in Figure 5c, memory num-
ber1 is continuously correlated with the state of the system.
When input is changed, the network responds with an at-
tempt to activate another memory, but this is indicated by
occasional activation of another memory or by fluctuation
in correlations only. In the simulation of the sorting task
activation of color memories tends to persist even after the
sorting rule is stopped.

Simulation d, the fourth simulation for all tasks (Fig-
ures 4d, 5d, 6d, and 7d), is performed when the dynamic
threshold parameters are set to the values in Row 4 of
Table 2, that is, the point of fast but optimal levels of thresh-
old. Here the simulations are dominated by significantly
more activations or, in other words, faster activity. Further-
more, the activation of memories are mostly input depen-
dent, for example, in the simulations of the sorting task
and the object alternation tasks. In the sorting task there
still persists a tendency to activate color concepts even when
the rule to choose based on colors stops. Errors inse-
quencemay occur for this threshold combination, it is ev-
ident in the thinking simulation where only1 and 3
memories are reactivated in the first half of the simulation
(Figure 4d).

Simulation e, the fifth simulation for all tasks (Fig-
ures 4e, 5e, 6e, and 7e), is performed when the dynamic
threshold parameters are set to the values described in Row 5
of Table 2 (i.e., the point of slow but optimal levels of thresh-
old). Strikingly the activity in the model is very slow; how-
ever, the convergences tend to be input dependent in most
cases.

DISCUSSION

One of the more perplexing phenomena in the study of men-
tal disorders (i.e., psychiatric signs and symptoms) is the
difficulty in relating to the rich and variant spectrum of
phenomena (Wilson, 1993; Tucker, 1998). Symptoms and
cognitive disturbances appear mixed and in different com-
binations. This makes it difficult to create sets of distinct
homogeneous disturbances, and even more, to relate these
disturbances to any biological marker or hypothesized source
for the symptoms (Van-Praag, 1997). The model in this work
is useful only to the extent that it shows that a hypothetical
origin of a mental disorder (in this case, the altered param-
eters of threshold dynamics) can be manifested by a large
set of varying expressions, that probably lie in a spectrum
range and not as distinct sets of disturbances.

Many recent studies (see, e.g., Cohen & Servan-Schreiber,
1992, 1993; Hermann et al., 1993; Hinton, 1981, 1986; Hin-
ton & Shallice, 1991; Hoffman, 1987, 1992; Hoffman &
Dobscha, 1989; Hoffman et al., 1994; Rumelhart & Mc-
Clelland, 1986) suggest that memory activation into mental
states that govern thought and speech might be simulated
by the activity of an attractor NN model. In this study
we employ a dynamic threshold semantic neural network
(DTSNN) as a framework for simulation and performance
analysis of a large variety of cognitive tasks in different con-
ditions. By clustering the random memory patterns of the
network into classes of neighboring patterns and assigning
asymmetric connections between the units of the network
that represent memory patterns of the same class, we have
created a representation of a semantic network model. Each
memory pattern can represent a concrete concept or a node
in the semantic network, whereas each class of associated
concrete concepts can represent an abstract concept. The
model can be further refined by using the degree of mem-
bership of each concept in its associated class or classes to
set the strength of its asymmetric connections to other con-
cepts in its class. By adding an internal input to the network
we naturally represent a short-term working memory. The
dynamics processes of acquiring this working memory
should be further investigated. One possible way is that any
new meaningful stimulus (one that causes the system to con-
verge), will be kept for a short time as part of the internal
input, and that the linear combination of these short-term
memories would form an internal rule that may govern the
system behavior.

The simulations show that by varying the dynamic pa-
rameters of the threshold large and rich sets of disturbances
can be obtained in the activity of the model. Slower and
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faster activity, errors, and persistent convergences are some
of these disturbances. The disturbances can be viewed as
lying on a continuum. For example, it has been demon-
strated that gradual changes in threshold velocity rates cor-
respond to gradual changes in convergence frequency (i.e.,
faster or slower memory activations). Errors typically oc-
cur when the threshold combination is not optimal; how-
ever, errors are not related to convergence velocity, and they
can occur in slow or in fast memory activations. Errors can
be in theorderof memory activation or in thetypeof mem-
ory activation. When a memory is activated, even though it
does not correspond to any of the input patterns, it is then
defined asnon-input-dependentmemory activation. Persis-
tence of activity can be the case where the model activates
the same memory continuously, but it can also be the case
when the previous memory is activated over and over again
even though the input has already been changed.

These mixtures of different disturbances appear to vari-
ous extents in the simulations of abnormal conditions. They
are rough simulations of clinical descriptions from patients
that suffer from a variety of mental disorders. It is empha-
sized that these are merely metaphorical resemblances and
that quantification and correlations to the specific task data
are required for a more specific simulation of the tasks. Met-
aphorically, alterations in the velocity of memory activa-
tions may simulate alterations in the velocity of ideation or
speech: for example, the symptoms related toflight of ideas
or pressure of speech(Andreasen, 1997; Ariety & Gold-
stein, 1959). Errors involving order of memory activations
and of non-input-dependent memory activations may sim-
ulate thought disorders such as loosening of associations and
delusions. Loosening of association can be the case where
the goal-directed sequences are disrupted by memories ac-
tivated not according to the relevant sequence. When a mem-
ory is activated regardless of input (i.e., non-input-memory
activation) it may simulate an idea or thought that does not
have any roots in the events of the real world: for example,
the idea of being persecuted even though nothing is really
happening to suggest threat. Persistence of the same mem-
ory or reactivation of previous memories even though new
ones are presented may simulate poverty of thought and per-
severations (Andreasen & Olsen, 1982). When the different
tasks are considered, the failures have been attributed to a
variety of reasons, among them the tendency to perseverate
and respond to previous stimuli (Andreasen, 1983).

As emphasized above, quantification and correlations of
simulation results to the specific task data is required for a
more authentic simulation of the tasks. However, even at
the metaphorical phase of this work, the model is useful for
predicting a spectrum of varying patterns of disorders rather
than sets of homogeneous error types. In other words the
model both describes and predicts that the relations be-
tween an original hypothetical mechanism of neural pathol-
ogy and its resulting disturbances do not have a one-to-one
correlation, but rather a spectrum or range of alterations.

The dynamic threshold parameters were chosen as the hy-
pothetical neural mechanism that is generating the distur-

bances. This choice came out of the realization that the
threshold dynamics have a crucial effect on the organiza-
tional activity of the model (regarding ordered conver-
gences and patterns of memory activations; Horn & Usher,
1989, 1990). Interestingly, the importance of threshold dy-
namics can be found in recent neuroscience literature (Fuster,
1997; Globus, 1992; King, 1991; Roland, 1993; Rumelhart
& McClelland, 1986). Indirectly, threshold may relate also
to another aspect of brain research, that of connectivity. In-
creased thresholds cut off inputs from outputs in the units
of the model by deactivating each unit. Although this is not
an accurate description of a disconnection syndrome (Friston,
1996), with some imagination one may view “input–output
disconnection” as a kind of disconnection. The emphasis on
the role of threshold activity in mental disorders has been
notably described by Cohen and Servan-Schreiber (1992)
and other work by Cohen (Cohen & Servan-Schreiber, 1993).
The disconnection theory developed by Friston and associ-
ates (1996, 1998; Friston & Frith, 1995; Friston et al., 1994;
Frith, 1992) for mental disturbances, especially in schizo-
phrenia is a leading approach to understanding this mental
disorder. Fast and high threshold dynamics in the model dis-
connect the input from the output in the model, and this re-
sults in errors and jumps (Figures 4b, 5b, 6b, and 7b), which
can simulate thought disorders in schizophrenia.

The model simulation results may offer an objective clas-
sification system of various thought disorders by their typ-
ical errors. There are still many points in the threshold space
that show interesting disturbances. The model may help to
design cognitive tests for more careful classification and di-
agnosis of the various thought disorders. One may think of
some continuoustrajectories in the dynamic-threshold
parameters space(Figure 3) that can be relevant for de-
scribing thecourse of some mental diseases, such as schizo-
phrenia. Loosening of associations is more typical of the
acute psychotic phases of the disease, while poverty of
thought content more frequently characterizes the postpsy-
chotic, residual stages of the disease. Schizophrenia pro-
gresses from one psychotic phase to another, and accordingly
a progressive degradation of mental ability with poverty of
thought content occurs. The relation between the distur-
bances in the model and the threshold parameters may
broaden our insight into what such parameters, or their de-
rivatives, might be in biological systems.

In summary, even though the model is highly theoretical
and metaphoric, if threshold dynamics in the model can help
us to gain certain insights into the relation between thresh-
olds or connectivity and clinical symptoms in real brains of
patients, then the model can be useful as a theoretical tool
for further research.
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