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Abstract

A neural network model with dynamic thresholds, asymmetric connections, and clustered memories simulates
spread activation that is hypothesized for semantic networks in the brain. By altering the parameters of the dynamic
threshold a large range of disturbances can be generated in the model. These disturbances show metaphorical
resemblance to certain general clinical descriptions of mental disturbances found in psychiatric patients engaged in
various cognitive tasks. Even though the model is highly theoretical and metaphoric, it may help to gain certain
insights into the relation between alterations of certain neural parameters, for example, thresholds and connectivity,
and clinical symptoms in patientsliNS 2000,6, 608—619.)

Keywords: Dynamic neural networks, Semantic networks, Cognitive task, Working memory, Concrete and abstract
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INTRODUCTION inputs) continuously change over time, and that a “bal-
. anced” interaction among many dynamic changes occurs dur-
Recently neural network models have been use_d to S'mqhg the normal functioning of the brain system (Globus, 1992;
Ia_\te many normal and pat_h_olog|cal _mental functions. _TheKing, 1991). Clinical experience indicates an extraordinary
simulation of normal cognitive functions such as leammg’variability (or spectrum) in the manifestation of cognitive

memory, recognition, and categorization has provided im'disturbances Spitzer & Williams. 1995: Tucker. 1998 Wil-
pressive results (Hinton, 1981, 1986; Rumelhart & McClel-_ - 1993) (Sp ' ’ ’ '

Ia}nd, 1986). Simulations of_cognitive disorde_rs_such aS |t seems that while simple neural network models (i.e.,
disturbances of memory activation and associations havﬁ]odels of fixed inputs, connections, and threshold alter-

glskc‘) s.rg)owrlggznsig%;a}bl_lie achleve{ntlantlsgégf):q: & szrr\]/al'litions) are sufficient for simulating circumscribed mental
chreioer, ’ ; ermann et al,, ; Hinton aldisturbances, more complex models are required for simu-

lice, 1991; Hoffman, 1987, 1992; Hoffman & Dobscha, 1989,;Iating the complex variety (or spectrum manifestations) of

Hoffman et al., 1994; Servan-Schreiber et al., 1996). Typiy,oa)| gisorders, Thus, increasing the intricacy of the model

cally simulations of cognitive disturbances involve a de-to approximate some of the complexities in the brain may

gl_metm the performar}ce Or: a neqral comftuhtatlor: tasllz ‘:"S erve to illustrate certain spectrum manifestations in men-
Irect consequence of a change in one of the NEWOTKS Pag, sty rhances not explained otherwise. In this work, the

rameters, “S“"’P”V the thresholq function. However, both the, plication of (1) dynamic threshold function, (2) asymmet-
neuroscience literature and clinical experience suggest th:ﬁ connections, (3) clustering of memory patterns, and

brain functions are more complicated (Tucker, 1998; Van—é4) “internal inputs” offer the necessary complexity to sim-

Praag, 1997; Wilson, 1993). Neuroscience teache_s us th ate variability and spectrum phenomena in mental dis-
many neuronal parameters (e.g., threshold, connectivity, a rbances. To demonstrate that certain common neural

mechanisms can generate a wide variability in different cog-
) ) ) _nitive functions, four different mental functions and their
Reprint requests to: Dr. Amir B. Geva, Electrical and Computer Engi- | K h Th del si | he di
neering Department, Ben-Gurion University of the Negev, P.O.B. 653, Beer!© evant ta$ sarec O_Sen' . € moae s!mg at.es the distur-
Sheva 84105, Israel. E-mail: geva@ee.bgu.ac.il bances typically described in the psychiatric literature for
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each of these cognitive tasks. The cognitive functions and Working memory is a short-term memory activated and
their corresponding tasks are summarized in Table 1. held in mind to monitor and respond correctly to stimuli

(Goldman-Rakic, 1994). For example, in delay response tasks

the rule for responding to the task is held in mind during the
Normal and Abnormal Cognitive Functions delay period and guides the responses. Indhject alter-

nation taskthe participant is asked to choose between two
Normal thinking tends to be linear, with each idea follow- objects according to a predetermined rule: for example to
ing the previous one in a relatively ordered association. Thghoose between a blue and a red object by alternating the
thinking process igoal-directedand appropriate to the rel- color each time. If the participant performing the task has
evantinformation at hand (e.g., answering a question in thgifficulty maintaining the alternation rule over the delay pe-
course of a discussion). As such, the associations are reiod he will make errors by choosing the same color twice
lated to one another, to the incoming information, and to dn a row, or by choosing in an irregular manner violating
particular outcome or response. the rule.

With loosening of associatiopatients clearly demon- | the sorting taskthe participant is asked to sort a deck
strate a breakdown in linear and goal-directed thought. Ideagf cards bearing stimuli that vary in number, color, and shape.
are disconnected or obliquely related, sometimes to the exAs each card in the stack comes up the participant has to
tent that the listener cannot understand the speech of th@atch it to a set of reference cards. Matching is based on
speaker. Consequently, the patient's thinking may be enone dimension (e.g., color) that is arbitrarily selected by the
tirely unrelated to conversational topics, or what may starexperimenter. The experimenter then informs the partici-
out being related quickly gets off track (i.e., derailed). Inpant whether he or she is right or wrong, and the patient
contrastpoverty of thoughinvolves few associations at all, attempts to get as many correct matches as possible. After
as if the patient’s thoughts are fixated to few ideas. As suchthe patient achieves a specific number of consecutive cor-
the patient may manifest repetitive, stereotyped, and pefrect matches, the sorting principle is shifted without warn-
severative thinking. Poverty of thought may be under- oring, and the patient must modify his responses accordingly.
overproductive, but in either case it reflects thinking that isFailure in the task occurs when the patient fails to create or
neither linear nor goal-directed. For purposes of the modednaintain the principle that guides the sorting; this is some-
in this article, we emphasize these two types of thoughtimes termed the loss of a set. Other errors frequently doc-
disorder. umented for patients suffering from mental disturbances

In thelexical decision tasparticipants are asked to iden- involve perseverations, where the patients fail to change set,
tify words from nonwords that are flashed on a screen. If, inand thus continue to respond according to the previous prin-
addition, prior to the word stimulus, a meaningful aSSOCi-Cip|e (Berman et al., 1995). For the purpose of the model in

ated word is presented, the task is performed more quicklyhjs work, the loss of set and the inability to shift to a new
and with fewer errors. This phenomenon has been termesget are emphasized.

“priming,” and was found to be significantly impaired in

patients who suffer from thought disorders (Manschreck

etal., 1988). Indirect priming is the condition where the as-Modeling Disturbances in Cognitive

sociated word is indirectly relevant to the word stimulus; Functions by Neural Networks

for example, chalk is associated with milk through the in-

termediate concept of white. Indirect priming has been foundiccording to network models of the mental lexicon, seman-
to be even more impaired in thought-disordered patientsic information is represented as nodes in a neural network
(Manschreck et al., 1988). For the purpose of the model ir{Collins & Loftus, 1975). These nodes become activated for
this work we emphasize the associations between the wora short period of time when used for speech production or
stimuli. Nonassociated word stimuli take longer to recog-understanding (Collins & Loftus, 1975; Collins & Quillian,
nize and correlate, with more errors in the lexical decision1970). Based on this description, thought is sometimes con-
task. ceptualized asequences of memory retrievdSollins &

Table 1. External(E;) and internall;) inputs for the entire cognitive task simulations

Cognitive function Cognitive task External inp(E; ) Internal input(l;)
Organized speech Goal-directed associations 1,2,3-—*1,4,7 None
Priming Lexical decision task 1,2—*1,7 None
Working memory Obiject alternation task 1,2,7,8-*1,2,7,8 1,2—*1,7
Abstraction and categorization Sorting task 3,4,7-*1,6,8-*1,5, 9-* 1,2, 3~
3,4,8-*1,2,7-*1,4,8 None

*Change of input.
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Loftus, 1975), or activation ofemantic conceptéNeely, = model that becomes overloaded due to synaptic deletion,
1991), which once activated in@herent sequencguide  causing spurious memories to emerge. He suggested that
speech formation (Desse, 1987; Maher et al., 1983). Thishis model could explain mechanisms underlying some
description is in line with Quillian’s (Collins & Loftus, 1975) schizophrenic symptoms such as hallucinations and delu-
basic theory of theemantic network modéh his semantic  sions. Cohen and Servan-Schreiber (1992, 1993; Servan-
system, concepts are represented@desandconnections  Schreiber et al., 1996) presented connectionist feed-forward
of a network structureConceptswhich are represented by back-propagation networks that are able to simulate normal
the nodes in the semantic network, can be represented tand schizophrenic performance in several attention and
attractors or memorief a neural network NN) model. language-related tasks. Horn and Ruppin (Hermann et al.,
Typically a simulation of a “pathology” in a neural net- 1993) investigated the effect of synaptic compensation on
work model involves altering the threshold function (i.e., the dynamic behavior of the ANN. Spontaneous, stimulus-
the bias or the gain; Figure 1) or the connection values ofndependent retrieval of stored patterns that occur due to
synaptic strength (Cohen & Servan-Schreiber, 1993; Herzompensation are used as a framework to simulate the un-
et al., 1991; Hinton & Shallice, 1991; Hoffman, 1992; derlying mechanisms of loosening of associations.
Rumelhart & McClelland, 1986; Servan-Schreiber et al., A dynamic threshold neural netwo(l®TNN) has been
1996). However, within the simulation all parameters areapplied to a variety of findings in semantic activation and
maintained constant. Pathology is simulated by disturmemory effects (Horn & Usher, 1989, 1990). Hermann and
bances in the regular memory activation process or, in othezoworkers (Hermann et al., 1993) have used the DTNN to
words, by disturbances in the process of convergence to thr@mulate serial concept activation. By applying dynamic
relevant attractor (Hoffman, 1992). The model can activatehreshold activity (Horn & Usher, 1989, 1990), transient se-
amemory (i.e., normality) or fail to activate a memory (i.e., rial memory retrievals are accomplished by the DTNN. Such
pathology); thus within the pathological state there is onlymodels have been recently proposed in the neural network
one limited type of failure, the inability to converge and ac- literature on the basis of synaptic delays (Abbott et al., 1997;
tivate the memory. However as mentioned above, in psyWickliffe & Warren, 1997), neural adaptation (Bliss &
chiatric clinical experience a multitude of abnormal cognitive Gardner-Medwin, 1973; Stone et al., 1998), or slow inhibi-
patterns exist. For example, memories can be activated cotion (Abbott et al., 1997; McNaughton, 1982). Varying the
rectly but not in the “right” order. Pathology of memory ac- noise level at the unit level in the DTNN model, Hermann
tivations (e.g., concepts in speech or response decisions) cah al. (1993) demonstrate the well-documented semantic
be disturbed in a variety of forms, from mild irregularities priming phenomena (Manschreck et al., 1988; Neely, 1977).
to total confusion (e.g., from tangentiality and derailmentThey have also used tisameDTNN to simulate some neuro-
to loosening of associations and word salad (Andreasergnatomical and neuropsychological findings in Alzheimer’s
1997; Andreasen & Olsen, 1982)). A memory can be acti-disease (AD). Random synaptic deletion of the DTNN units
vated correctly, but then activated repeatedly again and agaiesulted in a reduction of transitions between memory re-
in the wrong settings, thus becoming a disturbance or aftrievals. It was suggested that synaptic deletion simulates
abnormality (i.e., perseveration (Andreasen & Olsen, 1982))neuronal loss in AD, and reduction of transitions between
Hoffman (1987, 1992; Hoffman & Dobscha, 1989) pre- memory retrievals simulates the decrease of semantic mem-
sented a Hopfield-likeattractor neural networklANN) ory in neuropsychological tests of such patients.

Alteration of threshold gain function Alteration of threshold gain function
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Fig. 1. The input—output threshold of each neuron is modeled by a sigmoid functionXAridicates the input value

and axisY the “firing” probability of the unit. Zero stands for “no firing” and 1 stands for maximal firing rate. Thresh-

old manipulations include alterations of gain (left graph) or alterations of bias (right graph) that is used in the present
work.
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Our interest in sequences of memory retrievals, or coher- This value represents the composite input from the exter-
ent activations of semantic concepts, iseamantic network nal world to the model, where the parametés the relative
mode]| leads us to continue and study theeshold dynam- weight of the external inputs arndlis a set of indexes of the
ics of the DTNN. This paper presents a new representatiomemory patterns in the composite external input.
of a semantic network model. The random memory patterns In addition, we choose to add another compaoisiternal
of the DTNN are clustered into classes of near (Hammingnput to the network:
distance) patterns, and asymmetric connections are as-
signed between the units of the DTNN, which represent li(t) =6 >, mk, (5)
memory patterns of the same class. Each memory pattern kev
can represent a concrete concept or a node in the seman%

work. whil hcl f iated i M ered is the relative weight of the combined internal in-
ne WOI,’, » WhIIE €ach class of assoclaled concepts of negl i« 5,4y s 4 set of indexes of the memory patterns in the
nodes” in the semantic network can represent an abstra

concent. Abstract concents are represented in the netwo Emposite internal input. One can regard this value as rep-
pL. ADS pts pres : W senting the short-time working memory of the model,

by activation of a linear combination of a connected 9rOUBy hich is created by fast learning or adaptation of the model

of me_mory-patte_rns that reprgsent the concrete C(_)ncepts th‘%t new situations. At this stage we did not try to model the
constitute it. Using thislynamic threshold semantic neural dynamic behavior of the internal input, which will require
network(DTSNN) model, we attempt to simulate the four further investigation '

cognitive functions described above. Thethreshold dynamigs given by Horn and Usher (1989,
1990):

METHODS
6;(t+1) =6;(t)/c+bS(t+1). (6)

The DTSNN Model According to this equation, while a neuron is active, its

The network is constructed frol neurons, characterized dynamic threshold () increases asymptotically (i.e., inte-
by two-valued variable§, € {—1,1} corresponding to non- gration of the neuron activity) to the value

active and active states. Each neuron is subject to a dy-

namic threshold variablé, (Horn & Usher, 1989, 1990). Omax = cb/(c—1) ()

Neurons are connected through synaptic strength valuegnd deactivates the corresponding neuron. The parameters
called \_Ne|ghtsV\/ij (the con_nect|on petw_een neurprand b andc (c > 1) represent the rate of increase and decay of
neuronj). The postsynaptic potentia, is th_e W.e'ghte(_j the dynamic threshold respectively. The dynamic threshold
sum of j[he states of the neurons from which it rece'Vesprovides the motion of the network in the memory-concept
connections: space; neurons that are active for a relatively large time are
N deactivated, and the network’s state evolves into a new
1 — 5 pattern.
(0 ,21 Wi § (0. @ The network learns its memory patterns by Hebbian rule
with asymmetric connection between associated patterns
The dynamic equation for the output of the units is given(Herz et al., 1991). Assignment of asymmetric connections
by: between successive memory patterns causes the next con-
vergence to occur into the next memory pattern in a se-
S(t+1) =Fr[h(t) —6(t) + E(t) + I; ()], (2) quence of associative memories. The weight between the
i-th and thg-th neuron is:

where the neuron stat&;, is a threshold dependent sto-

. . 12 1
chastic function: W==mm+a=3 3 mm (8)
N k=1 N 1=1 k,qeG|
k#q

_2:x\-1

+1 with probability<1+ e T ) _ _
S 3) whereP is the number of memory patterrisis the number

—1 with probability(l n e%‘) ' of categories@, is a set of indexes of the memory patterns

in thel-th category (i.e.5, contains the indexes of the mem-

) ory patterns of thé-th category), and the parameteis the
whereT represents the “slope” of threshold (i.e., the “tem-«strangth” of the asymmetric connections.

perature” of the model; Figure 1).
The originalexternalinput to the networl&i(t) consists
of a linear combination of subset of memory patterns:

Fr(x) =

Simulation of Cognitive Tasks
by the DTSNN

E() =€ mk. () The NN memory patterns represent the predetermined se-
KEU mantic concrete concepts acquired by learning; each mem-
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ory pattern represents a node of the semantic networkure of information coming from the environment, in this
Semantic activation is simulated by memory retrieval,case a mixture of concepts embedded in words or sen-
namely convergence into one of the memory patterns ofences, while the internal inputs can represent an internal
DTSNN. By adding asymmetric connections between theule, which is acquired by the short-term memory system.
units of the DTSNN, we simulate connections, or associaThe model can organize an external input information into
tions, between near concepts or nodes in the semantic netequences of ordered input-dependent memory retrievals
work. Abstract concepts are then represented in the netwonksing the internal input as a guiding rule for its behavior.
by a linear combination of aonnected groupf memory  We assume that choosing the input patterns for the retrieval
patterns; these are the concrete concepts that constitute eamhmemories from the same category may simulate the ac-
abstract concept. tivation of associated semantic concepts, whereas the re-

All the cognitive tasks that were chosen to be simulatedrieval of memories from different categories may simulate
by the model are performed by the same neural networkhe activation of nonassociated semantic concepts.
model; only the input modalities vary between the different Semantic priming is simulated with associated input pat-
simulations. In the current realization, the network is con-terns (small Hamming distance and asymmetric connec-
structed from 600 neurons, and learns (Equation 8) nine rartions), which represent neighboring nodes in the semantic
dom memory patterns, each representing a concrete concepetwork or concepts from the same category (e.g=,red
The nine random memory patterns afesteredinto three and2 = yellow, both colors; Figure 1). Nonpriming is
clusters with three patterns, each according to their Hamsimulated by presenting input patterns from different cat-
ming distance. We label the first clus®y, and its memory egories (large Hamming distance and no asymmetric con-
patterns 1, 2, and 3; the second cluskgr and its memory nections), which represent far nodes in the semantic network
patterns 4, 5, and 6; and the third clus&y, and its mem- (1 =red, 7 = circle). Priming phenomena are measured by
ory patterns 7, 8, and 9. The three memory patterns of eacthe average time between consecutive convergences into the
cluster are associated by asymmetric connections (Equaelevant pairs of memories, which is achieved for each in-
tion 8). The subsets are chosen to represent three differeput representation. Frequent convergence into pairs of
categories or abstract concepts (Figure 2). A correlation valupatterns from the same category, in contrast to fewer con-
of .7 between the network state and one of the memory patrergences into pairs from different categories, may simu-
terns is chosen to define the memory retrieval state (all memlate the priming effect.
ory patterns are partially activated continuously). For the simulation of the object alternation task the ex-

Theexternal input$E; ) are constructed from a linear com- ternal input is set to a linear combination of memorles
bination of theU set of memory patterns (Equation 4; (red), 2 (yellow), 7 (circle), and8 (squarg. This external
Table 1), and thenternal inputs(l; ) are constructed from a input represents the stimulus of this task, which is com-
linear combination of th& set of memory patterns (Equa- posed of circles and squares alternately colored in red and
tion 5; Table 1). One can view the external input as a mix-yellow. The internal inputs ark(red) and2 (yellow), which
represent the rule aflor alteration for the first half of the
simulation, andL (yellow) and7 (squarg, which represent
the rule ofcolor-shape alterationfor the second part of
the simulation.

For modeling a sorting task by the DTSNN, we assume
that each feature on the cards (form, color, and number) can
be represented by a memory pattern; for exantple;red-
squaresare represented as memory patter® and8 (1=
red color, 6 = number twg8 = square formFigure 1). Next,
we assume that an abstract concept, tkéor can be rep-
resented as a linear combination of all the concrete con-
cepts that it stands for, such as all the coldrs=(red, 2 =
yellow, 3 = greer). Performing a sorting test is simulated
by the DTSNN by presenting an external input (Equa-
tion 4) composed of memory patterns that specify the card
to sort (e.g., memory patterds-6—8for red-two-squarey
together with an internal input (Equation 5) comprised of
the set of memory patterns that represent the abstract con-

Fig. 2. Concepts and abstract concept are represented in the mod%?pt’ Er rule, to follow f(e.g., memory patte@sZ—?(;for col-
by memory patterns that are clustered into categories. Memoriegr)' These two sets of memory patterns (il¢.andV) are

1,2, and 3 represent colored, yellow, andgreen Memories 4,5, matched by the system, and since one memory pattern will
and 6 represent numbets2, and3. Memories 7, 8, and 9 repre- @lways appear twice (in this case memory pattent will

sent shapesircle, square andtriangle. These representations are have a higher probability of being activated. In the presen-
used for the simulation of the various mental tasks. tation we will not deal with the very relevant problem of
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how does the system acquire (or does not acquire) a new Dynamic Threshold Parameters Space
abstract concept. At this stage, we prefer to avoid this prob- ; ' " "
lem by assuming that the participant acquires a new ab-

stract concept as soon as he gets a positive answer fromthe 5| o High Threshold

tester. By this we acknowledge the fact that the model can-

not simulate errors that are caused by interference in ab- ]
stract concept acquisition. 04r /,-/ 1

External and internal inputs (i.€; andl;) for each task

T
. . ; e - Fast Threshold Dynarmics
simulation are presented in Table 1. To summarize, input-b g3} ~ !

~

dependent sequences of memory retrievals, or coherent ac- e

tivations of semantic concepts, are chosen for the simulation pd

of normal thought processes that guide coherent goal- 02y ,f"’/

directed speech. The activation of different associated pairs #’Optimal Sequencing © Low Thrpshold

of semantic concepts is used for the simulation of priming 0.1} /
phenomena. Finally, linear combinations of a connected
group of memory patterns are suggested to simulate catego- 0 . ,
rization or abstract concepts, which are relevant for decision- 1 12 14 . 16 18 2

making in a sorting task. The model’s performance for all

the different tasks is checked with the same set of dynami€ig. 3. The dynamic threshold parameters space. Each point in

/'/Slow Threshold Dynamics

threshold parameters. this space represents a different combination of dynamic thresh-
old values, which result in different behavior of the system. The
Challenging the Network Performance for plotted line correspond toandc values resultant in constefy, ., =

Simulating Interferences in Cognitive Tasks 0-9 (Equation 7).
The dynamic threshold parametdysc, and,,,,, which
locally control the activity level of each unit, have a global
organizing capacity essential for the network’s computa-
tional abilities as a whole system. We chose to study the
effect of changes in these relevant dynamic threshold pa-
rameters on the performance of each of the four cognitiv®. The point of high and fast threshold dynamics.
tasks that are simulated by the DTSNN. The other paramé_ The point of low and slow threshold.
eters of the network were set at constant value® &f0.4

(the threshold gain; Equation 3 and Figure 1, lefty; 0.25 4. The point of fast, but optimal, levels of threshold.
(the relative weight of the external inputs; Equation®y;
0.25 (the relative weight of the internal inputs; Equation 4)
andA = 0.1 (the strength of the asymmetric connections;
Equation 8). It is important to emphasize that, although these
latest parameters are relevant to the network dynamics,
prefer in this research to concentrate on the dynamic thres
old parameters. The dynamic threshold paramesjgaseof

The point of optimal threshold variables is the combina-
tion of threshold parameters where the model simulates
well-organized sequences of spread activation.

5. The point of slow, but optimal, levels of threshold.

The last four points describe dynamic threshold combi-
ations that generate various irregularities that make part of
N entire range of disturbances in the model.

The simulations results are presented in Figures 4 to 7,
each corresponding to a task according to Table 1 (i.e., the

b, ¢, andé,,, .. are presented in Figure 3. The model perfor- " S L :
mances were tested for a wide range of dynamic threshola'mmatlon in Figure 4 corresponds to thinking, the simula-
tion in Figure 5 corresponds to priming, the simulation in

parameter values. Optimal performances ofallfourtasksiml—:. 6 ds 1o obiect alt i d the simul
ulations (semantic sequencing, priming, working memory, Igure © corresponds fo object afternation, and he simu'a-

and sorting task) occur when the threshold dynamic paramt-Ion in Figure 7 corresponds to the sorting task). Each graph

eters are around the valuesto: 0.1,c = 1.125, and, .= within each figure is a different simulation run under a dif-

0.9. Any significant alteration of these values causes somreeren.t combination of thr'es.hold parameters '(Taple 2).
major breakdown or disturbances in the performance of the Axis X for each graph |_nd|ca_1tetsn_e where time is mea-
model, thus causing specific sets of typical disturbances iﬁured as th_e ”“”?ber Qf lterations n the model, that IS, the
each of the four simulations. After testing the model’s ac_number of tlme_s N which all the umfcs are updated. AXis
tivity for a large number of points in the threshold param-for each graph indicates the correlation between the state of

eter space, the five points in Table 2 have been chosen [[éwed?%dgl at tlhe glvgnbtmzﬁ and :he n::emory patlterns em-
demonstrate the model’s normal and disturbed activity. edde |n.(or earned by) the system. For example, acurve
marked with the numbe2 that reaches the level of 1 indi-

SIMULATION RESULTS cates high correlation between the state .of.the' network and
memory pattern numbé&. In other words, it indicates that

The five points of interest (Table 2) are described as fivethe network converged to memory numt2and has acti-

different combinations of threshold dynamics: vated the information represented by this network pattern
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Table 2. Threshold dynamic parameteis, ¢, andé,,,,,) that were used for the
simulation of the disturbances in the different cognitive tasks

Threshold dynamic variables b c 0 max

a) The point of optimal threshold A 1.125 0.9

b) The point of high and fast threshold dynamics .15 1.02 7.65
¢) The point of slow and low levels of threshold .15 15 0.45
d) The point of fast but optimal levels of threshold .22 1.324 0.9
e) The point of slow but optimal levels of threshold .0089 1.01 0.9

(see introduction above). Although numbers can be the san@imulation of Normal Cognitive
for different simulations (e.qg., thinking, priming, and sort- Performances on the Tasks
ing), in each simulation they mean different information.
For example, in thinking the memories are concepts and ideaBhe point of optimal sequence activity in the model simu-
in the stream of speech, while in the sorting task they ardates the normal performance on the four different tasks (Fig-
decisions and responses to the card stimuli. ures 4a, 5a, 6a, and 7a). An ordered sequence of activation
In all simulations the input is changed in the middle of of memoriesl, 2, and3 for the first half of the iterations,
the simulation (vertical line in the figures). In the first three and1, 4, and7 for the second half (Figure 4a) is considered
simulations (Figures 4, 5, and 6, of thinking, priming, andto simulate linear, goal-oriented (i.e., input-dependent) think-
object alteration) inputs in the second half of the simula-ing. Notice that in the first half of the simulation, memories
tions originate from patterns that are clustered in differenfrom the same category are activated (il.2, and3 are
categories (see Figure 2 and Table 1). In the last simulationolor categories in Figure 3), while in the other half of the
(the sorting task in Figure 7), the vertical line indicates whensimulation memories from separate categories are activated.
the rule of deciding according to color is stopped. For each The activation of memory patterdsand?2 simulates the
simulation the input is presented at the top and the graphwo word-stimuli for the lexical decision task (Figure 5a).
indicates the convergences over time. If there is a rule or ®rdered output sequences of memolfiesnd?2 simulate the
guiding principle it is presented in each figure under thenormal priming for the lexical decision task (Figure 5a). Ac-
input specifications. tivation of memories that are part of different clusters, that

Goal-directed Goal—directed
Thinking 123 Thinking 147
Fig. 4. Each graph, b, ¢, d, andeis a different

simulation run under a different combination of

threshold parameters presented in the previous Fig-

a o 500t N [3 3 4 Ny e 4| ure 3. AxisX indicatestime, where time is mea-
* ggg I A ) N N ] \/ ] sured as the number of iterations in the model, i.e.,

20 40 60 80 1()0 120 the number of times in which all the units are up-
' ' ' dated. AxisY indicates the correlation between the
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3 400: 7 | patterns—see also Table 2. The input is changed
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Fig. 5. (a) Simulation of normal priming (Memory Activation “1” simulates the prime and the Memory Activation “2”
simulates the target concept). (b) Simulation of errors of lexical decisions. (c) Simulation of perseverative responses.
(d,e) Simulation of fast and slow performances, respectively.

1=color red 2=color blue 4= circle shape 7=square shape
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Fig. 6. (a) Simulation of “normal” object alternation task. (b) Simulation of errors of the object alternation task.
(c) Simulation of perseverative responses. (d,e) Simulation of fast and slow performances, respectively.
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Fig. 7. The inputs are concrete stimuli of different colors and shapes. The card stimulus is simulated by a sum of input
patterns from the different concrete concepts (e.g., the first card at the top of Figure tameigreen circlevill be a

sum of memories3, 4, and 7). Activation of a color concept simulates a correct response to the sorting task (i.e.,
choosing according to color). The color principle (represented fir8tdayd then byl) is activated when different input

sets (cards) are presented. The color concept is stopped at a point marked by the vertical line. (a) Simulation of normal
responses (color memories) are activated when the color principle is held in working memory and other different color
concepts when the color principle is stopped. (b) Simulation of total failure on the task. (¢) Tendency to repeat concepts
1 and 2 simulates the tendency to perseverate activating color concepts even though the internal input of the color
principle was stopped. (d,e) Simulation of errors combined with different velocities.

is, memoriesl and 7 in (last 60 iterations of Figure 5a), tween memoryl and memory7, represented by and7 in
may simulate indirect priming, that is, when the prime isthe internal input (Figure 6a); note that in this case the al-
related to the target via an additional associated concept (séeration rate is slower.
introduction above). Note that in the latest case, where pat- For the first part of the sorting task simulation (Figure 7
terns are from different categories, the activation delay isup to the vertical line), the internal input is set to a linear
longer than in the first case, where patterns are from theombination of memorieg, 2, and3, the first iterations,
same categories. which represent theolor conceptwhile different external

In the object alteration task the presented stimuliyele  input sets (cards) are presented. For the second part of the
low or red circleandred or yellow squarewhich repre-  simulation, thecolor concepts stopped and additional cards
sented external inputk 2, 7, and8 (Figure 6). The colors are presented at the external input (after the vertical line,
and shapes change randomly, that is, the circle may be blugigure 7). Simulation of nhormal responses activatet®r
in one iteration and red in the next iteration. In the first partmemoriesvhen the color principle is activated, while other
of the simulated object alteration task, the rule is to alter-different memories are activated when the color principle is
nate between yellow and blue colors and ignore the shapestopped (Figure 7a). It is important to reemphasize that the
that is, alternate between memdryand memory2, repre-  acquisitionof the abstract concept is not simulated; rather it
sented byl and?2 in the internal input (Figure 6a). In the is artificially set upby the internal input (Equation 5). As
second part of the simulated object alteration task, the rulsuch, the model is limited to simulation of the actual main-
is to alternate betweenred andsquare that is, alternate be- tenance of the principle once it has been acquired.
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Simulation of Pathological Cognitive Simulatione, the fifth simulation for all tasks (Fig-
Performances on the Tasks ures 4e, 5e, 6e, and 7e), is performed when the dynamic
threshold parameters are set to the values described in Row 5
As mentioned above, beyond the point of optimal sequencef Table 2 (i.e., the point of slow but optimal levels of thresh-
activity, the model simulates cognitive disturbances for theold). Strikingly the activity in the model is very slow; how-
four different tasks. Panels c, d, andein Figures 4, 5, 6, ever, the convergences tend to be input dependent in most
and 7 present typical “abnormal” results, each correspondeases.
ing to a simulation with a different dynamic threshold com-
b|nat.|on acpordlng to Table 2. We chqose to cluster togethebISCUSSION
the simulation results of all the cognitive tasks for each point
of dynamic threshold parameters in order to emphasize th®ne of the more perplexing phenomena in the study of men-
similar “abnormalities” that occur in all the tasks. tal disorders (i.e., psychiatric signs and symptoms) is the
Simulationb, the second simulation for all tasks (Fig- difficulty in relating to the rich and variant spectrum of
ures 4b, 5b, 6b, and 7b), is achieved when the dynamiphenomena (Wilson, 1993; Tucker, 1998). Symptoms and
threshold parameters are set to the values in Row 2 of Table 2pgnitive disturbances appear mixed and in different com-
namely, the point of high and fast threshold dynamics. Herévinations. This makes it difficult to create sets of distinct
the number of convergences is significantly reduced (i.e.homogeneous disturbances, and even more, to relate these
increased spaces of no convergence between activationslisturbances to any biological marker or hypothesized source
and when a convergence of the network occurs, it is not alfor the symptoms (Van-Praag, 1997). The model in this work
ways input dependent (i.e., a convergence to a memory that useful only to the extent that it shows that a hypothetical
is not included in the input). This is most evident in the sim-origin of a mental disorder (in this case, the altered param-
ulation of thinking (Figure 4b) where, in the first half of the eters of threshold dynamics) can be manifested by a large
simulations, there are very few partial activations, while inset of varying expressions, that probably lie in a spectrum
the second half of the same simulation, activations are natange and not as distinct sets of disturbances.
according to the inputs (i.e., memoB8yis activated even Many recent studies (see, e.g., Cohen & Servan-Schreiber,
though only memorie§, 4, or 7 are presented). The same 1992, 1993; Hermann et al., 1993; Hinton, 1981, 1986; Hin-
trend of reduced activations and errors also characterizeen & Shallice, 1991; Hoffman, 1987, 1992; Hoffman &
simulations of other tasks. Dobscha, 1989; Hoffman et al., 1994; Rumelhart & Mc-
Simulationc, the third simulation for all tasks (Fig- Clelland, 1986) suggest that memory activation into mental
ures 4c, 5c¢, 6¢, and 7c¢), is achieved when the dynamic thresistates that govern thought and speech might be simulated
old parameters are set to the values in Row 3 of Table 2yy the activity of an attractor NN model. In this study
that is, the point of slow and low levels of threshold. Here,we employ a dynamic threshold semantic neural network
again, there are very few convergences at all, and when th@TSNN) as a framework for simulation and performance
network converges, it tends to be stuck in that state for thanalysis of a large variety of cognitive tasks in different con-
entire simulation; for example, in Figure 5¢, memory num-ditions. By clustering the random memory patterns of the
berlis continuously correlated with the state of the systemnetwork into classes of neighboring patterns and assigning
When input is changed, the network responds with an atasymmetric connections between the units of the network
tempt to activate another memory, but this is indicated bythat represent memory patterns of the same class, we have
occasional activation of another memory or by fluctuationcreated a representation of a semantic network model. Each
in correlations only. In the simulation of the sorting task memory pattern can represent a concrete concept or a node
activation of color memories tends to persist even after thén the semantic network, whereas each class of associated
sorting rule is stopped. concrete concepts can represent an abstract concept. The
Simulationd, the fourth simulation for all tasks (Fig- model can be further refined by using the degree of mem-
ures 4d, 5d, 6d, and 7d), is performed when the dynamibership of each concept in its associated class or classes to
threshold parameters are set to the values in Row 4 ddet the strength of its asymmetric connections to other con-
Table 2, that is, the point of fast but optimal levels of thresh-cepts in its class. By adding an internal input to the network
old. Here the simulations are dominated by significantlywe naturally represent a short-term working memory. The
more activations or, in other words, faster activity. Further-dynamics processes of acquiring this working memory
more, the activation of memories are mostly input depenshould be further investigated. One possible way is that any
dent, for example, in the simulations of the sorting tasknew meaningful stimulus (one that causes the system to con-
and the object alternation tasks. In the sorting task thergerge), will be kept for a short time as part of the internal
still persists a tendency to activate color concepts even wheimput, and that the linear combination of these short-term
the rule to choose based on colors stops. Errorseén  memories would form an internal rule that may govern the
quencemay occur for this threshold combination, it is ev- system behavior.

ident in the thinking simulation where onl§ and 3 The simulations show that by varying the dynamic pa-
memories are reactivated in the first half of the simulationrameters of the threshold large and rich sets of disturbances
(Figure 4d). can be obtained in the activity of the model. Slower and
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faster activity, errors, and persistent convergences are sont@nces. This choice came out of the realization that the
of these disturbances. The disturbances can be viewed #sreshold dynamics have a crucial effect on the organiza-
lying on a continuum. For example, it has been demonitional activity of the model (regarding ordered conver-
strated that gradual changes in threshold velocity rates cogences and patterns of memory activations; Horn & Usher,
respond to gradual changes in convergence frequency (i.€1989, 1990). Interestingly, the importance of threshold dy-
faster or slower memory activations). Errors typically oc- namics can be found in recent neuroscience literature (Fuster,
cur when the threshold combination is not optimal; how-1997; Globus, 1992; King, 1991; Roland, 1993; Rumelhart
ever, errors are not related to convergence velocity, and the McClelland, 1986). Indirectly, threshold may relate also
can occur in slow or in fast memory activations. Errors canto another aspect of brain research, that of connectivity. In-
be in theorder of memory activation or in thgypeof mem-  creased thresholds cut off inputs from outputs in the units
ory activation. When a memory is activated, even though iof the model by deactivating each unit. Although this is not
does not correspond to any of the input patterns, it is themn accurate description of a disconnection syndrome (Friston,
defined asion-input-dependemhemory activation. Persis- 1996), with some imagination one may view “input—output
tence of activity can be the case where the model activatedisconnection” as a kind of disconnection. The emphasis on
the same memory continuously, but it can also be the caste role of threshold activity in mental disorders has been
when the previous memory is activated over and over againotably described by Cohen and Servan-Schreiber (1992)
even though the input has already been changed. and other work by Cohen (Cohen & Servan-Schreiber, 1993).
These mixtures of different disturbances appear to variThe disconnection theory developed by Friston and associ-
ous extents in the simulations of abnormal conditions. Thetes (1996, 1998; Friston & Frith, 1995; Friston et al., 1994;
are rough simulations of clinical descriptions from patientsFrith, 1992) for mental disturbances, especially in schizo-
that suffer from a variety of mental disorders. It is empha-phrenia is a leading approach to understanding this mental
sized that these are merely metaphorical resemblances adisorder. Fast and high threshold dynamics in the model dis-
that quantification and correlations to the specific task dataonnect the input from the output in the model, and this re-
are required for a more specific simulation of the tasks. Metsults in errors and jumps (Figures 4b, 5b, 6b, and 7b), which
aphorically, alterations in the velocity of memory activa- can simulate thought disorders in schizophrenia.
tions may simulate alterations in the velocity of ideation or The model simulation results may offer an objective clas-
speech: for example, the symptoms relatefligit of ideas  sification system of various thought disorders by their typ-
or pressure of speecfAndreasen, 1997; Ariety & Gold- ical errors. There are still many points in the threshold space
stein, 1959). Errors involving order of memory activationsthat show interesting disturbances. The model may help to
and of non-input-dependent memory activations may simdesign cognitive tests for more careful classification and di-
ulate thought disorders such as loosening of associations amagnosis of the various thought disorders. One may think of
delusions. Loosening of association can be the case whesmme continuousrajectories in the dynamic-threshold
the goal-directed sequences are disrupted by memories agarameters spacéFigure 3) that can be relevant for de-
tivated not according to the relevant sequence. When a menseribing thecourse of some mental diseasgsch as schizo-
ory is activated regardless of input (i.e., non-input-memoryphrenia. Loosening of associations is more typical of the
activation) it may simulate an idea or thought that does noticute psychotic phases of the disease, while poverty of
have any roots in the events of the real world: for examplethought content more frequently characterizes the postpsy-
the idea of being persecuted even though nothing is reallghotic, residual stages of the disease. Schizophrenia pro-
happening to suggest threat. Persistence of the same megresses from one psychotic phase to another, and accordingly
ory or reactivation of previous memories even though newa progressive degradation of mental ability with poverty of
ones are presented may simulate poverty of thought and pethought content occurs. The relation between the distur-
severations (Andreasen & Olsen, 1982). When the differenbances in the model and the threshold parameters may
tasks are considered, the failures have been attributed tokmoaden our insight into what such parameters, or their de-
variety of reasons, among them the tendency to perseverat&atives, might be in biological systems.
and respond to previous stimuli (Andreasen, 1983). In summary, even though the model is highly theoretical
As emphasized above, quantification and correlations oand metaphoric, if threshold dynamics in the model can help
simulation results to the specific task data is required for ais to gain certain insights into the relation between thresh-
more authentic simulation of the tasks. However, even ablds or connectivity and clinical symptoms in real brains of
the metaphorical phase of this work, the model is useful fopatients, then the model can be useful as a theoretical tool
predicting a spectrum of varying patterns of disorders rathefor further research.
than sets of homogeneous error types. In other words the
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