
Spatial Sound Synthesis in Computer-Aided
Composition*

MARLON SCHUMACHER** and JEAN BRESSON y

**IDMIL – DCS – CIRMMT, Schulich School of Music of McGill University, 555 Sherbrooke St West, Montreal, QC, Canada
E-mail: marlon.schumacher@music.mcgill.ca
yIRCAM – CNRS UMR STMS, 1, place I. Stravinsky, 75002 Paris, France
E-mail: jean.bresson@ircam.fr

In this article we describe our ongoing research and

development efforts towards integrating the control of

sound spatialisation in computer-aided composition. Most

commonly, the process of sound spatialisation is separated

from the world of symbolic computation. We propose a model

in which spatial sound rendering is regarded as a subset

of sound synthesis, and spatial parameters are treated as

abstract musical materials within a global compositional

framework. The library OMPrisma is presented, which

implements a generic system for the control of spatial

sound synthesis in the computer-aided composition

environment OpenMusic.

1. INTRODUCTION

The digital revolution of the music and media tech-
nologies since the early 1990s has stimulated an
immense growth in the field of sound spatialisation
technologies. With many of today’s computer music
tools it is possible to render spatial sound scenes for
many channels of audio and large numbers of sound
sources. Many research centres and performance
venues have installed large-scale multichannel systems,
offering promising new possibilities for sound spatiali-
sation applications, which require corresponding efforts
in the fields of authoring and musical control.
From a compositional point of view, we speak of

‘sound spatialisation’ as soon as the positions of sound
sources, the ambience of a room, or any other spatial
or acoustic element is taken into account as a musical
parameter of a work. While space has probably always
played an important role in music composition, the
formalisation of space as a structural parameter is a
rather recent phenomenon (Harley 1994). Stockhausen
(1989) stated that spatial configurations are as mean-
ingful as intervals in melody or harmony, and that
the consideration of spatial parameters is an integral
part of the compositional process. Indeed, even prior
to the advent of sound spatialisation technologies as

commonly understood today, avant-garde composers
in the 1950s had already begun to integrate space as
a musical dimension into their pioneering electro-
acoustic works, taking advantage of the emerging
technologies at hand, such as microphones, analogue
mixing desks and loudspeakers (e.g. Karlheinz Stock-
hausen in Kontakte or Gesang der Jünglinge, Pierre
Schaeffer in Symphonie pour un homme seul, or Edgar
Varèse with Poème électronique).

Now that digital signal processing and musical
acoustics are mature and well-established research
fields, spatial sound scenes can be realised with a variety
of rendering techniques, software tools and hardware
setups. The literature reveals a broad spectrum of
approaches and implementations for spatial sound
rendering: perceptually informed amplitude panning
techniques such as Vector Base Amplitude Panning
(VBAP) (Pulkki 1997) or Distance Based Amplitude
Panning (DBAP) (Lossius 2007), holophonic techni-
ques aiming at the physical reconstruction of a sound
field, such as Wave Field Synthesis (WFS) (Berkhout,
de Vries and Vogel 1993) or Higher-Order Ambi-
sonics (Daniel 2001), binaural/transaural techniques,
and finally hybrid techniques, such as Space Unit
Generator (SUG, Moore 1983) or Virtual Micro-
phone Control (ViMiC, Braasch 2005).1

Each approach, however, relies on specific assump-
tions about the nature of sound sources, listener and
environment, and as a consequence might not be
equally well-suited for different musical applications.
Considering that electroacoustic works are often per-
formed in multiple venues with different acoustic
properties and loudspeaker arrangements, scalability
and adaptability of spatialisation systems are also of
major importance. To accommodate different scenar-
ios, contexts and configurations, these systems should
allow users to conceive spatialisation processes from a
more abstract level. While much recent research focuses
on strategies for real-time control (see for instance

*This work was developed in collaboration with the IRCAM
Music Representation team and the Input Devices and Music
Interaction Lab of the Schulich School of Music of McGill Uni-
versity (IDMIL), funded by an Inter-Centre Research Exchange
Grant from the Centre for Interdisciplinary Research in Music,
Media and Technology (CIRMMT).

1The SpatBASE project proposes an interesting and fairly docu-
mented reference of existing spatial sound rendering concepts and
implementations. See http://redmine.spatdif.org/wiki/spatdif/Spat
BASE.

Organised Sound 15(3): 271–289 & Cambridge University Press, 2010. doi:10.1017/S1355771810000300

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

Marshall, Malloch and Wanderley 2007) or the devel-
opment of interchange formats (Peters, Ferguson and
McAdams 2007; Kendall, Peters and Geier 2008), there
have been few attempts to integrate the control of
spatialisation into compositional environments. In fact,
sound spatialisation is often treated as a post-production
technique which is unconnected to the processes dealt
with in computer-aided composition, and therefore
remains isolated in the corresponding compositional
models and applications.

In this paper we present recent works aimed at inte-
grating spatialisation in the computer-aided composi-
tion environment OpenMusic (Agon 1998; Assayag,
Rueda, Laurson, Agon and Delerue 1999). After a brief
discussion of related works (Section 2), we introduce a
generic framework for sound synthesis and spatialisa-
tion, embedded in this environment (Section 3). The
OMPrisma library is described as a structured system
where spatialisation processes can be carried out and
controlled in a flexible way, in relation to the symbolic
compositional models and integrated with sound
synthesis processes (Section 4). We present a powerful
extension to the sound synthesis and spatialisation
frameworks, allowing these two processes to be merged
into hybrid structures implementing the concept of
spatial sound synthesis (Section 5), and conclude with a
number of example applications (Section 6).

2. RELATED WORKS

Among the most popular tools used for the com-
positional control of spatial sound scenes are those
commonly referred to as ‘digital audio workstations’
(DAWs). These environments are typically based on the
metaphor of a multitrack tape-recorder and allow for
automation and non-linear (mostly manual) editing of
control parameters separated into a number of tracks.
The user, however, has only limited access to the con-
trol data, and as the number of sound sources and
parameters increases it becomes cumbersome to moni-
tor and manage the complexity of the spatial sound
scene. Moreover, it is difficult to link the concrete
representations (soundfiles, automation data) to
more abstract compositional concepts, as this type of
interface doesn’t represent logical relationships.2

Real-time audio processing environments, such as
Max/MSP (Puckette 1991), PureData (Puckette 1996)
or SuperCollider (McCartney 2002) provide frame-
works in which control interfaces and rendering
algorithms for sound spatialisation can be developed
and integrated with more general sound synthesis
and/or interactive processes (see for instance Schacher
and Kocher 2006). The IRCAM Spatialisateur (Jot and
Warusfel 1995) provides graphical user interfaces in

MaxMSP (SpatViewer/SpatOper) which allow the con-
trol of numerous low-level parameters via a reduced
number of perceptual descriptors such as ‘liveness’,
‘presence’, and the like. Zirkonium (Ramakrishnan,
Goßmann and Brümmer 2006) and Beastmulch (Wilson
2008) are examples of large-scale spatialisation systems
based on the model of ‘live diffusion’ which allow for
the grouping together of sound sources together and for
these groups to be controlled individually.

Several research projects focus specifically on
higher-level control, abstracting the spatial sound
scene description from the rendering techniques (see
for example Geier, Ahrens and Spors 2008). The
Holo-Edit interface in the Holophon project (Cabaud
and Pottier 2002) is an application allowing the high-
level control of spatial parameters (trajectories).
Conceived as an authoring tool for sound spatiali-
sation, Holo-Edit provides complementary interfaces
for viewing or editing of spatial parameters, including
a top-view editor, a set of timeline controls and 3D
visualisation. In addition, it provides a set of tools
for automatic generation and modification of spatial
trajectories (Pottier 1998), which is a significant step
towards compositional control. Earlier projects, such
as MoveInSpace (Todoroff, Traube and Ledent
1997), also provided advanced features, such as a
trajectory generator, room and loudspeaker settings,
and correlation of the spatialisation parameters to
sound morphological features (some characteristics
which will be found in different parts of our work),
implemented as an independent control layer on the
Ircam Musical Workstation (Lindemann, Starkier and
Dechelle 1990). A different approach for the authoring
of spatial sound scenes is taken in the MidiSpace
(Pachet and Delerue 1998) and MusicSpace (Pachet
and Delerue 2000; Delerue 2004) systems, which pro-
vide graphical interfaces allowing the design of spatial
sound scenes including MIDI instruments and audio
sources. Most notably, these applications include
powerful constraint setting and propagation systems
allowing the definition of spatial relations between the
different sound sources in the scene.

Most control systems, however, focus on a specific
model of sound spatialisation (such as surround-
mixing, sound-diffusion, etc.). Although we noted the
algorithmic possibilities (in Holo-Edit or MoveInSpace)
and tools for constraint-setting and propagation
(MusicSpace), these features require integration with
higher-level programmable environments in order to
enable more abstract representations and accommodate
different compositional applications. Assayag (1998)
stated that efficient compositional environments should
be conceptually close to specialised programming
environments: in such compositional contexts, high-
level, symbolic tools and processes allow abstracting
control data and processes to a set of manageable and
musically meaningful representations, while remaining

2An overview of DAWs in terms of surround functionalities is
given in http://acousmodules.free.fr/hosts.htm.

272 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

open enough to be used in different contexts by different
composers.
OpenSpace (Delerue and Agon 1999) was an original

attempt at integrating the MusicSpace control system
in the computer-aided composition environment Open-
Music. Visual programs allowed defining a spatial setup
for MusicSpace sound sources and incrementally adding
constraints, while the maquette interface was used to
control the unfolding of this process in time. Another
project carried out in OpenMusic is OMSpat (Nouno
and Agon 2002), a library for the control of the
Spatialisateur. In OMSpat an array of sound sources,
trajectories and room parameters could be created from
algorithmically (or manually) defined curves and para-
meters. This array was then formatted as a parameter
file for a specific Spatialisateur control application that
could reproduce the spatial sound scene using two, four
or eight speakers, or via binaural rendering. Although
the number of simultaneous sound sources and the
temporal resolution of the control data were limited, as
well as the number of simultaneous sound sources and
the temporal resolution of the control-data, the ability
to script trajectories and spatial parameters allowed
the user to establish structural relationships between
spatialisation and other symbolic data and processes
defined in the computer-aided composition environ-
ment. This project has recently been generalised and
extended, introducing new 3D-trajectory objects and
tools for formatting output for external environments
(Bresson, Agon and Schumacher 2010). Some simila-
rities can also be found in the works we present in this
paper, which inherit much of the control paradigms and
structures from the same type of objects (matrices: see
Section 3).
As discussed below, we approach the control of

sound spatialisation by considering spatial attributes
as additional parameters in a sound synthesis frame-
work, whether they relate to micro-level sound
synthesis components (such as partials or grains) or to
pre-existing sound sources. This approach, embedded
in a high-level control environment, allows us to
extend the common model of sound source spatiali-
sation to the more general concept of spatial sound
synthesis, and to generalise some of the techniques for
time-domain or frequency-domain spatial distribu-
tions (presented for instance in Topper, Burtner and
Serafin 2002; Kim-Boyle 2008), within a symbolic and
programmable compositional context.

3. A GENERIC FRAMEWORK FOR THE

CONTROL OF SOUND SPATIALISATION

3.1. The computer-aided composition environment:

OpenMusic

OpenMusic (OM) is a visual programming language
for music composition based on Common Lisp/CLOS

(Gabriel, White and Bobrow 1991). This environment
allows the graphical design of programs by patching
together functional components, and provides high-level
musical interfaces such as scores and other graphical
editors. It has been used to develop numerous musical
works, constituting a powerful and efficient framework
for the creation of complex musical structures related
to various compositional approaches (Agon, Assayag
and Bresson 2006; Bresson, Agon and Assayag 2008).
Additional development in OpenMusic has involved the
integration of sound processing, analysis and synthesis
tools, and led to a renewed conception of sound repre-
sentations in the framework of computer-aided compo-
sitional models (Bresson and Agon 2007).

Integrating the control of sound spatialisation into
the conceptual framework of a computer-aided com-
position environment introduces new possibilities:
spatialisation parameters, as any other musical data,
can be devised and determined using algorithms and
programming interfaces, hence in close relation with
associated processes. OpenMusic provides a number of
geometrical objects such as breakpoint- and 3D-curves
(BPC/3DC) representing abstract spatial configura-
tions defined as sequences of points. Temporal infor-
mation can be explicitly specified (which turns curves
into trajectories), or kept implicit and interpreted
according to a given context. These objects can be
generated and transformed by algorithmic processes
in the programming environment or visualised and
edited manually using graphical editors. Figure 1
shows an example for the algorithmic generation of
3D-curves by visual programs.

3.2. Sound synthesis and spatialisation:

OMChroma/OMPrisma

OMChroma (Agon, Stroppa and Assayag 2000) is a
compositional framework for the control of sound
synthesis in OpenMusic, based on Marco Stroppa’s
Chroma system (Stroppa 2000). This framework
provides a set of classes (in terms of object-oriented
programming) referring to underlying sound synthesis
processes. Each class is associated with a digital signal
processing (DSP) patch, currently in the form of a
Csound instrument (Boulanger 2000). The parameters
of these instruments (called p-fields in Csound) are
detected and matched to corresponding slots of the
class, which can be instantiated in OpenMusic’s visual
programs. Accordingly, the graphical representation
of an OMChroma class (called a box) has a number of
inlets corresponding to the underlying sound synthesis
parameters in the Csound instrument. OMChroma
includes a large library of classes, ranging from basic
(e.g. additive, granular, FM) to more complex sound
synthesis algorithms. This library is user-extensible,
and new classes can easily be defined from existing
Csound instruments.

Spatial Sound Synthesis in Computer-Aided Composition 273

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

OMChroma classes are matrix structures, instan-
tiated with a given number of ‘components’ (represented
as columns). Each row corresponds to a slot of the class
(i.e. to the related synthesis parameter in the Csound
instrument). A matrix can include arbitrary numbers
of components, describing vectors of parameter-values
for the underlying synthesis instrument, which can be
controlled via high-level and symbolic means and sub-
jected to compositional processes. When the matrix is
‘synthesised’ (i.e. rendered into an audio file) a Csound
score is generated from the 2D data structure: each
component in the matrix (a column with a value for
each synthesis parameter) corresponds to an event in the
score (see Stroppa 2000 for a detailed discussion).

OMPrisma is a library providing a set of matrix
classes corresponding to spatial sound rendering
instruments (see Section 4). The OMPrisma classes
extend the OMChroma matrix, and therefore benefit
from the same expressive power and data structures
used in the control of sound synthesis processes. The
computed matrix contents depend on the type of the
supplied data and on the number of components: a
single value, for instance, means that all components
have the same value for a given parameter; lists of
values are taken literally or repeated cyclically until
the number of elements matches the number of
components; breakpoint-functions are sampled over
the number of components; and mathematical/
functional expressions (defined as Lisp functions or

visual programs) are evaluated individually for each
component. Once instantiated, the contents of a
matrix can be visualised and edited manually as a 2D
array using a graphical editor.

Figure 2 shows a basic sound spatialisation process
carried out in OMPrisma. A set of monaural sound-
files is spatialised and rendered into a multichannel
file for quadrophonic reproduction using the class
pan.quad.discrete from the OMPrisma class-library.

The body of the instrument in the orchestra file
of figure 2 (from instr1 to endin) is copied from the
pan.quad.discrete class. The synthesize function formats
the values of the components in the matrix into Csound
score statements (i.e. turning the columns into rows).
Most values here are numbers (except the file names
used for p4, which are derived from the soundfiles
in the OM patch). When continuously changing values
are required, for example for describing transitions or
envelopes, breakpoint-function objects can be used,
which are internally converted into Csound tables.

Note that not all parameters (p-fields in the Csound
orchestra) are explicitly specified in the OM patch. The
matrix boxes allow the user to selectively display or hide
the different slot inlets of a class, whereby unspecified
(i.e. hidden) slots are set to default values. In figure 2,
only the slots onsets, soundfile, xpos and ypos, corre-
sponding to p2, p4, p8 and p9, respectively, are specified
to control the spatialisation process. The default value
for the slot gain-envelope, for example, is 500 (a Csound

List of 3DCs

3DC-lib

3DC-lib Editor

Figure 1. Generation of 3D-curves via visual programs in OM. The 3DC-lib box is a set of 3DC objects. The data can be

visualised and edited in graphical editors.

274 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

table identifier), which is set for p6 as no value
is specified in the OM patch. Similarly, the three
‘panning function tables’ (visible at the top of the
score file in figure 2) are defined inside the class
pan.quad.discrete, and function as presets, which can
be referred to via numerical indices in the csound
score. this way irrelevant or redundant information is
hidden from the user, making for a more ergonomic
and context-sensitive interface.
As in the case of sound synthesis processes, the

dynamic instantiation of multiple Csound instruments
(corresponding to the components of a matrix) yields
a virtually unlimited polyphony for the spatial sound
rendering process. In this perspective, a matrix can be
regarded as a generic data structure for the description
of spatial sound scenes with arbitrary numbers of
sound sources, possibly controlled independently,
using common rules, control data or algorithms.
It is also possible to devise a spatialisation process

using multiple matrices (i.e. synthesising a list of matrices
instead of a single one). If the matrices correspond to
different classes, the respective instruments are gathered
in a single orchestra file and identified by instrument
number (instr1, instr2, y). Each matrix can also be
assigned a global onset-time, allowing it to be considered
as a temporal ‘event’ in a larger-scale time structure.

4. OMPRISMA

OMPrisma is implemented as an extensible framework
comprising a library of classes for spatial sound ren-
dering (Section 4.1), a library of tools and functions for
generation and manipulation of spatialisation para-
meters (Section 4.2), and an external standalone appli-
cation (titled Multiplayer) for decoding and diffusion of
the rendered multichannel audio formats (Section 4.3).

Several studies have documented a great variety
of compositional approaches for sound spatialisation
(see for example Harley 1994), and it is unlikely that a
specific spatial sound rendering technique will satisfy
every artist’s needs. A more sensible solution is to
provide an abstraction layer which separates the
spatial sound scene description from its rendering,
and leave it to the user which spatial sound rendering
technique is most suitable for a given purpose.

The OMPrisma class-library provides a palette of
spatial sound rendering instruments, implementing
different spatial sound rendering techniques. Currently
available are classes for stereo, quadrophonic and
5.0 (ITU) panning, Vector Base Amplitude Panning
(VBAP), Reverberated VBAP (RVBAP), Distance-
based Amplitude Panning (DBAP), Higher-Order
Ambisonics, and a mixed-order Ambisonics system

Ochestra file

Score file

list of soundfiles

xpos/ypos

p2 = onsets
p3 = durations
p4 = soundfile

[...]

p8 = xpos
p9 = ypos

rendered multi-channel soundfile

onsets

BPC

num. of
components

PAN.QUAD.DISCRETE

Figure 2. Sound source spatialisation with OMPrisma. Left: the patch in OpenMusic. Right: the generated Csound

orchestra and score files.

Spatial Sound Synthesis in Computer-Aided Composition 275

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

with optional simulation of room-acoustics. Table 1
gives an overview of implemented spatial sound
rendering concepts and respective classes.

Dynamically changing values, such as envelopes or
trajectories (i.e. ‘spatial glissandi’) can be described both
in terms of successions of discrete, ‘granular’ positions or
as a single continuous movement (consider for example
the notion of a glissando on a piano vs. a string instru-
ment). In (Harley 1998) the author discusses the differ-
ence between ‘discrete’ or ‘stepwise proceeding’ spatial
movements (dating back to the Venetian school of
polychorality in the late renaissance), and ‘continuous’
motion (introduced in instrumental and electronic music
of the post-war avant-garde). We adopted this notion in
that every OMPrisma class is available in a dedicated
version for discrete and continuous control, respectively.

The separation of the spatial sound scene descrip-
tion from its rendering and reproduction offers many
advantages (see Peters, Lossius, Schacher, Baltazar,
Bascou and Place 2009). For example, it allows the user
to rapidly exchange a given spatial sound rendering
engine with another one without affecting the other
components. It further facilitates modifications or exten-
sions at the renderer level (i.e. Csound instruments),
since the DSP implementation can be modified inde-
pendently as long as it provides the same interface to the
environment. Moreover, the use of an external real-time
application for decoding and diffusion (the Multiplayer)
will provide the flexibility of adapting the reproduction
of a spatial sound scene to a given environment. Figure 3
shows an example of 3 OMPrisma classes rendering the
same spatial sound scene using different techniques.

4.1. Spatial sound rendering

OMPrisma employs the Csound language as a spatial
sound rendering engine, which allows for sample-
synchronous control of all parameters, high-resolution
processing and unlimited polyphony. Note that the
same matrix control structures may as well be used

and formatted for another synthesis engine, or written
into external interchange format files (see e.g. Stroppa
2000; Bresson et al. 2010). In order to easily maintain,
modify and extend the collection of spatial sound
rendering instruments, they have been implemented
following a modular design. Common functionality
is encapsulated into modules (code-snippets) and
re-used across the different instruments, such as the
soundfile-player, or source pre-processing modules.
In the following section we will discuss some of the
implementation-specific details.

4.1.1. Dynamic instrument configuration

Many spatialisation algorithms are capable of driving
various loudspeaker configurations and numbers of
output channels. The OMChroma system allows for
the writing of global statements into Csound orchestra
files before the instrument definition, which permits
dynamic changes to the output configuration without
the need to modify the original instrument’s body.3

Accordingly, a single OMPrisma class (implementing a
specific spatial sound rendering technique) can be used
for various loudspeaker setups and output channels.

4.1.2. Source pre-processing

For classes implementing intensity-based panning tech-
niques we have developed source pre-processing modules
for the rendering of perceptual cues to support the
impression of distance and motion of a sound source.
The effect of air absorption is simulated with a second-
order Butterworth lowpass filter with variable cut-off
frequency. An attenuation-module accounts for the
decrease of a sound source’s amplitude as a function of
distance. Doppler shifts are simulated with a moving
write-head delay line with high quality interpolation.

Table 1. Spatial sound rendering concepts and respective classes in OMPrisma

Amplitude Panning VBAP RVBAP DBAP Ambisonics SPAT

Pan.stereo.discrete Vbap.2D.

discrete

Rvbap.2D.

discrete

Dbap.2D.

discrete

Ambi.2D.

discrete

Spat.2D.

discrete

Pan.stereo.continuous Vbap.2D.

continuous

Rvbap.2D.

continuous

Dbap.2D.

continuous

Ambi.2D.

continuous

Spat.2D.

continuous

Pan.quad.discrete Vbap.3D.

discrete

Rvbap.3D.

discrete

Dbap.2D.

discrete

Ambi.3D.

discrete

Spat.3D.

discrete

Pan.quad.continuous Vbap.3D.

continuos

Rvbap.3D.

continuous

Dbap.3D.

continuous

Ambi.3D.

continuous

Spat.3D.

continuous

Pan.5.0.discrete Ambi.UHJ.

discrete

Pan.5.0.continuous Ambi.UHJ.

continuous

3This is accomplished via dynamic definition of user-defined-
opcodes (Lazzarini 2005).

276 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

Rather than hard-wiring the equations for rendering
of perceptual cues into the spatialisation engines
directly, we implemented a table-lookup system for
greater efficiency and flexibility. Lookup tables can be
generated using pre-defined (see Section 4.2.2) or
user-defined functions, and manually edited using
OpenMusic’s graphical breakpoint-function editors.
These tables can then be connected to the corre-
sponding slot of a class to be applied to a specific
sound source (see figure 4), or provided as global
tables for the whole spatial sound rendering process.

4.1.3. Room effects

Room acoustics and reverberation are important
perceptual cues for the localisation of a sound source,
and provide information on a surrounding environ-
ment’s size, shape and material (Blauert 1983). The
description of room effects is conceptually different
from the description of sound sources and therefore
requires alternative control strategies. Depending
on the underlying model and implementation of
a reverberation algorithm the control interfaces can
vary to a great extent (for example perceptual vs.
physical models) and often require the setting of
many individual parameters, which might clutter up
the interface when specified as individual slots of
a class. Thus, in OMPrisma room parameters are

defined in tables, as a compact data structure (pro-
vided to a single slot of a class), which can be edited
graphically or algorithmically directly in OM, and
imported/exported as files to disk. Currently, two
spatial sound rendering classes in OMPrisma include
reverberation: RVBAP and SPAT. The reverberation
algorithm in RVBAP is implemented as a feedback
delay network based on digital waveguides, while SPAT
implements a shoebox room-model based on recursive
rendering of discrete reflections. Note that due to
Csound’s dynamic instantiation paradigm the full range
of parameters of the spatial sound rendering engine is
available for each individual sound source. As with any
other matrix slot, room parameters can be set globally
for the whole rendering process or controlled indivi-
dually for each component.

4.1.4. Within the loudspeaker array

The placement of virtual sound sources within the
surrounding loudspeaker array is a feature often desired
by composers, which is difficult or even impossible to
realise with many spatial sound rendering techniques. A
number of works have addressed this issue (Menzies
2002; Daniel 2003); however, these solutions are mostly
idiosyncratic to a given spatial sound rendering concept
and can be difficult to control for a non-expert user
and without adequate technical equipment. In order

PAN.5.0.DISCRETE VBAP.2D.DISCRETE AMBI.2D.DISCRETE

onsets

source soundfiles

num. of
components

xpos/ypos

<= onsets

<= xpos

<= soundfiles

<= ypos

Figure 3. The same spatial sound scene realised with different spatial sound rendering techniques: 5.0 (ITU) panning, VBAP

and higher-order Ambisonics.

Spatial Sound Synthesis in Computer-Aided Composition 277

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

to have a consistent approach for different spatial
rendering classes we implemented the simple and
popular technique of decreasing the directionality of
a sound source as it enters the speaker array towards
the listener, approaching complete monophony (i.e.
all speakers contributing equally) at its centre. For
classes implementing VBAP, for example, this is
accomplished through implicit control of the ‘spread’
parameter (Pulkki 1999); in the case of Ambisonics,
via controlled decrease of gain coefficients for higher-
order components (as described in Schacher and
Kocher 2006). This behaviour is optional and can be
tweaked or bypassed if wished.

4.2. Control strategies

OMPrisma is designed to provide a higher-level
abstraction layer for spatial sound scene description
which is independent of the underlying rendering
implementation. Accordingly, all classes share a
structured interface which complies with current spe-
cifications of the Spatial Sound Description Inter-
change Format (SpatDIF, Peters et al. 2007). Control
parameters (i.e. class slots) are organised into con-
ceptual groups (or namespaces), such as soundfile-
player parameters, position data, renderer-specific
parameters (such as the ‘spread’ parameter for VBAP),
source pre-processing settings and reverberation para-
meters. An overview of OMPrisma classes with
respective slots is given in the Appendix. Figure 4
shows an example of a complete spatialisation process
including conversion of a 3DC-lib into individual tra-
jectories for position control, symbolic setting of room
parameters and rendering of perceptual distance cues.
Global settings for the rendering process are provided
directly to the synthesize method, independently of the
spatial sound scene description.

4.2.1. Trajectories

Trajectories for position-control of sound sources can
be defined via geometric objects, such as breakpoint-
functions (BPFs), 2D breakpoint-curves (BPCs), and
3D-curves (3DCs, see figure 1). The function gen-
trajectory unfolds these geometric objects in time and
returns the corresponding control data (envelopes for
each Cartesian dimension) using two complementary
strategies: in ‘constant speed’ mode, the sound source
will travel along the trajectory with constant speed,
while in ‘constant time’ mode it will respect a con-
stant time interval between successive points in the
trajectory. As an additional feature, the gen-trajectory
function allows the generation of B-Spline curves; that
is, polynomial interpolations between the object’s initial
control points. This way, a trajectory can for example
be specified manually with a few breakpoints, and its
curvature controlled using this function. Obviously,

trajectories can be set and modified via pre-defined
or user-defined algorithms. Alternatively, a new object
3D-trajectory was implemented, which allows the
assignment of time-tags to spatial points in the trajec-
tory, either explicitly or automatically (deduced from
surrounding points).
After the spatio-temporal morphology of a trajec-

tory has been defined, its absolute playback speed can
be controlled via frequency envelopes (individually for
each Cartesian dimension). If no frequency envelopes
are specified, the speed of a trajectory is implicitly
scaled to fit the duration of its corresponding synthesis
event (e.g. the duration of the soundfile). The use
of frequency envelopes allows for dynamic control of
the speed-of-travel of a sound source (including stop-
ping or reversing the travel direction), creating spatial
patterns (e.g. spirolaterals and lissajous figures), or
working with audio-rate oscillations and frequency
modulations at the border between sound synthesis
and spatialisation. As with any matrix parameter,
trajectories can be set globally or specified indepen-
dently for each component (i.e. sound source).

4.2.2. Function library

OMPrisma features a ‘compositional toolbox’ of
functions and utilities for generation and manipula-
tion of spatialisation data. The function library
includes tools for processing of 2D or 3D breakpoint-
curves, such as interpolations in Cartesian or spherical
coordinates, geometric transformations (e.g. rotations,
scaling, mirroring), and stochastically driven manipu-
lations such as perturbations and clusterings. For
rendering of perceptual distance-cues a set of pre-
defined functions are provided which implement
commonly used equations to control the simulation
of attenuation, air-absorption and Doppler shifts
as functions of distance. Yet another category are
renderer-specific functions, used for example to set
reverberation/room parameters. The spat-room func-
tion shown in figure 4, for example, allows the setting
of physical properties of a shoebox room-model in a
symbolic way by connecting functions describing
characteristics of individual walls (spat-wall) to a
global room-model (spat-room). Finally, various
utilities are provided, for example for configuration
of loudspeaker setups, or to perform conversions
between coordinate systems. Since these tools are
embedded in a programming environment, they can
be easily adapted, extended and related to the extensive
set of libraries and features of OpenMusic.

4.2.3. Algorithmic sound scene manipulation

A particularly powerful concept inherited from the
OMChroma synthesis system is the user-fun. This
function, written directly in LISP or defined graphically

278 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

in an OpenMusic patch, can access and modify the
contents of a matrix and defines programs in order
to manipulate, possibly generate or remove elements
before starting the rendering process. User-funs can
take additional arguments (provided as inlets to the
matrix), which allows the user to introduce new control-
parameters in the spatialisation process. This paradigm
constitutes a powerful tool for selective and global

manipulations of the matrix data, such as groupings,
rotations/translations of sound source positions, or
arbitrary rule-based transformations of entire spatial
sound scenes. One possible application is the modelling
of composite sound sources emitting sound over an
extended space by breaking the original sound source
up into a set of independent point sources. Figure 5
shows a graphically defined user-fun implementing the

SPAT.3D.CONTINUOUS

functions,
lookup-tables,
presets for distance cues

source soundfiles

3DC-lib

atten-fun =>

air-fun =>

num. of
components

renderer settings

trajectories

symbolic setting of
room parametersroom-params =>

doppler-fun =>

zpos-env =>

ypos-env =>

xpos-env =>

soundfiles =>

3rd order Bformat file

Figure 4. Example for a sound spatialisation process using the OMPrisma class spat.3D.continuous. The gen-trajectory

function converts a 3DC-lib object containing 3-dimensional trajectories into envelopes for x, y, z. Functions, pre-defined

lookup-tables and presets are used to control the rendering of perceptual distance-cues. Room-characteristics are specified

via the function spat-room. The function ambi-setup is used to set global parameters for the rendering process.

Spatial Sound Synthesis in Computer-Aided Composition 279

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

concept of Sound Surface Panning (as described in
Ramakrishnan et al. 2006): for each sound source in
the matrix a two-dimensional shape is specified,
which is synthesised as a mesh of evenly distributed
point sources. This process is controlled using the
same data as in figure 4 (i.e. soundfiles, trajectories)
and rendered into a multichannel soundfile using
VBAP. Note that, thanks to the common control-
interface for OMPrisma classes, the same user-fun
and global processing can be applied to any other
spatial sound rendering class. Similarly, we have
employed the user-fun to implement W-panning
(described in Schumacher and Bresson 2010).

4.3. Decoding and diffusion: the Multiplayer

For any spatial sound composition tool it is of great
importance that the user be able to listen to the results
immediately. A tight auditory feedback loop between
composition and reproduction facilitates efficient
workflow and allows tweaking and fine-tuning the
spatialisation processes via perceptual evaluations.
Another important aspect is the ability to adjust the
reproduction in real-time in order to adapt to a given
environment, such as a specific studio setup or concert
venue. This might include tasks such as the routing
of logical output channels to physical devices, the

adjustment of gains or time-delays for specific channels,
or in the case of encoded formats setting and tweaking
decoder parameters in real-time.

The Multiplayer is a standalone application for
decoding and diffusion of interleaved multichannel
soundfiles in different formats. It is implemented as a
set of modules complying with the Jamoma frame-
work for Max/MSP (Place and Lossius 2006). It is
intended to facilitate the work on spatial sound
compositions in changing environments and for dif-
ferent loudspeaker setups, without requiring any
expert-knowledge from the user. Figure 6 shows a
screenshot of the Multiplayer application.

4.3.1. Integration

The Multiplayer seamlessly integrates into the work-
flow with OMPrisma via bidirectional communication
using Open Sound Control (OSC) (Wright 2005). Once
the communication has been established, the Multi-
player can safely be sent to the background and entirely
controlled from OM (using the same transport controls
as OM’s internal players). Optionally, the Multiplayer
can be synchronised with rendering settings in
OMPrisma, in the sense that it will automatically
update its configuration accordingly; in other words,
no switching between applications is required.

cubic
loudspeaker
setup

user fun

source foundfiles

'sound surfaces'

trajectories

write a comment
into the score

compute a mesh
of point-sources

re-inject the
sound-surface
into the matrix

soundfile =>
xpos-env =>
ypos-env =>
zpos-env =>

width =>
height =>

resolution =>

get each
sound source
from the matrix

num. of
components

VBAP.3D.CONTINUOUS

(a)
(b)

Figure 5. Implementation of Sound Surface Panning via a user-fun applied to an OMPrisma matrix. a) Sound surfaces are

graphically defined via BPC objects and provided as additional parameters (width/height/resolution) to the matrix. The

patch labelled ‘SSP-userfun’ (b) is set as user-fun for the matrix, and therefore evaluated for each component in order to

replace the sound sources with ‘sound surfaces’.

280 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

4.3.2. Adaptability

Other important aspects for a decoding or diffusion
application are compatibility with different formats and
adaptability to different reproduction environments.
The Multiplayer dynamically re-builds its internal dsp-
structure via scripting (i.e. adds or removes channels) to
match a given reproduction situation. Modules are
provided for sound field manipulations (rotations and
mirroring along the principal axes), Ambisonics decod-
ing, numerical and graphical interfaces for configuration
of loudspeaker setups, and binaural rendering. Sound
pressure and time-differences in non-equidistant loud-
speaker setups can be either automatically compensated
(via loudspeaker positions) or manually balanced.

4.3.3. Auralisation

Composers are often required to elaborate musical
works using loudspeaker configurations which are dif-
ferent from the intended reproduction setup in the
performance venue. To address this issue, the Multi-
player provides a binaural rendering module for virtual
loudspeaker binauralisation; that is, simulating a cer-
tain loudspeaker setup by treating the loudspeakers as
virtual sound sources. Another benefit of this feature is
the possibility of auditioning spatial sound scenes for
various loudspeaker configurations (e.g. experimenting
with irregular setups) and from different listening
positions. It also allows the work with OMPrisma in the
complete absence of loudspeakers. Moreover, it can
be employed for rendering of binaural mixdowns. Note
that all parameters are accessible via OSC, allowing the
use of head-tracking devices for interactive control of
the binaural rendering.

5. FROM SOUND SOURCE SPATIALISATION

TO SPATIAL SOUND SYNTHESIS

The process of sound spatialisation can be carried out
on multiple time-scales (Roads 2001). While tradi-
tional diffusion practices are usually limited to spatial
movements that can be performed in real-time, there
is no such restriction using digital signal processing
techniques. Much as the development of analogue
studio techniques (and, later, the digital synthesiser)
made it possible to manipulate sound below the level
of individual sound objects in the domain of sound
synthesis, spatialisation processes can be applied to
the microstructure of a sound in order to synthesise
sounds with complex spatial morphologies.

5.1. Spatial sound synthesis

Within the presented framework we consider the term
spatial sound synthesis most appropriate to denote the
extension of sound synthesis algorithms into the spa-
tial domain, i.e. as a general term to express spatiali-
sation processes at the micro-level of sound. Several
systems have been described which allow for spatial
sound synthesis applications: Torchia and Lippe
(2004) presented a system for real-time control of
spectral-diffusion effects which allows the user to filter
a sound into its spectral components and spatialise
them individually. Scatter (McLeran, Roads, Sturm
and Shynk 2008) is another original system for gran-
ular synthesis, which allows spatial positioning of
individual grains using dictionary-based methods. The
Spatial Swarm Granulator (Wilson 2008) allows the
control of spatial positions of individual grains based

Figure 6. The Multiplayer standalone application decoding a third-order Bformat soundfile. On the right-hand side is a 3D

visualisation of a hemispherical loudspeaker setup.

Spatial Sound Synthesis in Computer-Aided Composition 281

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

on Reynold’s Boids algorithm (Reynolds 1987). Kim-
Boyle (2008) gives an overview of frequency-domain
spatial distributions, mostly controlled via particle and
agent systems. Interestingly, the author stresses the
need for ‘an interface with the power to control and
transform coordinates for hundreds of particles which
at the same time does not overwhelm the user with
massive banks of control data’. In their presentation of
Spatio-Operational Spectral Synthesis (which is con-
ceptually close to our notion of spatial sound synth-
esis), Topper et al. (2002) describe the process as
‘taking an existing synthesis algorithm and breaking it
apart into logical components’ and then ‘[assembling]
the components by applying spatialisation algorithms’.

The OMChroma system, which builds upon an initial
implicit decomposition of the sound synthesis process
into ‘components’ (see Section 3.2), lends itself parti-
cularly well to this idea of spatial sound synthesis. The
separation into logical components is given in the initial

design of the OMChroma classes and generalised by the
use and control of matrix structures. The same para-
digm is adopted for the individual spatialisation of each
synthesis component.

5.2. Implementation with OMChroma/OMPrisma

Generalised spatial sound synthesis processes can be
achieved in OMChroma/OMPrisma by designing
Csound instruments to perform both sound synthesis
and spatial sound rendering. However, given the
number of possible combinations of existing synthesis
classes (in OMChroma) and spatialisation classes (in
OMPrisma), the explicit implementation of indivi-
dual spatial sound synthesis instruments would lead
to an excessive amount of classes. A more sensible
solution is to combine sound synthesis instruments
with spatial renderers dynamically, in order to create
compound instruments capable of spatial sound

add-I.orc

freq
xpos

ypos

PAN.QUAD.DISCRETEADD-I

OMChroma class
ADD-I

OMPrisma class
PAN.QUAD.DISCRETE

Merged instrument (add-I >>pan.quad.discrete.orc)

pan.quad.discrete.orc

e-dels

num. of
components

Figure 7. Spatial sound synthesis: merging synthesis and spatialisation classes in OMChroma. At the bottom right is the

merged Csound instrument generated automatically from the class add–1 (add–1.orc, top left) and the class pan.quad.discrete

from figure 2 (pan.quad.discrete.orc, top right).

282 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

synthesis. In terms of signal-flow this idea can be
described as an automatic detection and redirection
of the output of the synthesiser to the input of the
spatial sound renderer (that is, replacing the former
input sound source). This is a non-trivial task, how-
ever, which is carried out in two steps:

1. A new Csound instrument is created by merging the
original synthesis and spatial rendering instruments.
In the synthesis instrument, the variable bound
to the signal output must be identified, while, on
the spatial rendering side, the original input and
its internal dependencies must be detected and
replaced by the synthesis output. Variable declara-
tions, bindings and redundancies must be handled
between both instrument-parsing processes. Useless
parameters must be omitted (e.g. the ‘soundfile-
player’ part in the spatialisation instruments), and
the Csound p-fields order and indexing must be
adapted accordingly.

2. The merged Csound instrument code is then used to
create a new hybrid class starting from the two inital
ones (synthesis and spatial rendering). Fortunately,
Common Lisp and CLOS provide powerful tools
for meta-object programming and dynamic class
definition (Gabriel et al. 1991). After inspecting
the different slots and properties of the respective
classes, a new one is defined by keeping the common
fields (e.g. e-dels, durs) and combining the specific
ones of the different instruments. The instantiation
of the resulting class is done using the corresponding
slot values in the two initial objects.

From a user’s perspective this merging-process is
accomplished by simply connecting two objects (any
synthesis class from OMChroma and any spatial
rendering class from OMPrisma) to the function chroma-
prisma, which internally creates the new merged-
orchestra class and outputs an initialised instance.
This resulting instance can eventually be plugged into

get slots of chord-seq
(midicents, onsets,

durations, velocities)

cluster-size

perturbation

calculate mean pitch
of chord

scale into proper
ranges for azimuth/
distance

convert polar to
cartesian coordinates

cluster notes around
center pos. of chord

get virtual fundamental of chord
and convert to pitch-class

AMBI.3D.DISCRETEPLUCK-1

Figure 8. Symbolic control of a spatial sound synthesis process in OpenMusic. The visual program on the right hand side

(3d-polar-virtfun) converts the symbolic musical materials to synthesis and spatialisation parameters. The spatial positions of

the synthesised score materials are shown in the 3DC-lib at the bottom left.

Spatial Sound Synthesis in Computer-Aided Composition 283

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

the synthesize function in order to perform the spatial
sound synthesis. This process is illustrated in figure 7,
in which an additive synthesis class is merged with a
quadrophonic spatial sound rendering class.

This system therefore constitutes a powerful
synthesis framework, enabling high-level control over
the full range of sound synthesis and spatialisation
parameters for each individual component – partials,
grains, or any other primitive components of a given
synthesis algorithm.

6. EXAMPLE APPLICATIONS

One of the main interests of the OMPrisma framework
is its integration into a general compositional envir-
onment (OpenMusic). This embedding leads to novel
possibilities for integrating symbolic, sound and spa-
tialisation data into compositional frameworks and
offers a degree of control difficult to achieve using
conventional tools. In this section we show a number
of examples of how spatial parameters can be related

to other musical dimensions within a compositional
framework.

In figure 8, symbolic musical material (a score in
commonmusic notation) is used as input data to control
both sound synthesis and spatialisation parameters. The
spatial positions for the synthesised sound components
(plucked-string synthesis) are derived via arithmetic
operations from the chords/notes contained in the score:
for every chord the ‘virtual fundamental’ is calculated;
that is, the highest fundamental frequency for which the
notes of the chord could be thought of as harmonic
partials. This fundamental frequency is first converted
into a pitch-class value and then rescaled and interpreted
as azimuth angle (i.e. a position on a horizontal circle).
Similarly, the mean-pitch of the same chord is used
to calculate an elevation angle. With these two polar
coordinates a position for each chord on the surface of a
unit-sphere is determined. The positions of the indivi-
dual notes of each chord are specified via controlled
perturbations of its centre position. The resulting ‘spatial
clusters’ (each corresponding to a chord) are visualised
in the 3DC-lib at the bottom left of the figure.

RVBAP.3D.DISCRETE

fundamental
frequency

transient
markers

xpos =>

ypos =>

zpos =>

rev-level =>

rev-feedback =>

spectral
centroid

(a)

(b)

(c)

Figure 9. Interfacing sound spatialisation and analysis tools in OpenMusic. Control data is derived from sound analyses

(transient detection, fundamental-frequency estimation and partial-tracking) of the original soundfile (a). A visual program

(mapping) specifies mapping-functions to determine spatial positions and reverberation characteristics (b). The 3DC

visualises the spatial distribution of the sound segments; indices denote their order of succession (c).

284 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

Figure 9 shows a somewhat complementary
approach: the use of concrete, external data to control
the spatialisation of an existing soundfile.4 In this
example, the spatialisation parameters of a percussion
(tabla) solo are controlled exclusively via data which is
extracted from the soundfile itself using OpenMusic’s
sound analysis tools (Bresson 2006). First, the source
soundfile is analysed for transients in order to segment
the percussion solo into individual tabla strokes. A
fundamental-frequency estimation and partial-tracking
is performed, from which profiles for pitch and spectral
centroid are generated (a). For every soundfile, its fun-
damental frequency and spectral centroid value is
looked up and mapped to azimuth and elevation angle
for spatialisation control. Since we are working in a
differed-time paradigm, the duration of each segment
can be used as control data to determine its distance
from the centre position, and to set reverberation
parameters (b). Consequently, every tabla stroke in
the original soundfile will be assigned an individual
spatial position and reverberation characteristics,
determined by its pitch, spectral centroid and duration.

A large variety of spatial sound synthesis applica-
tions can be realised by freely combining sound synth-
esis and spatialisation instruments. Granular synthesis,
for instance, is a popular model for time-domain spatial
sound synthesis (see for example McLeran et al. 2008;
Wilson 2008). Typically, each sound grain is assigned an
individual position in space, often controlled stochasti-
cally (rather than literally) in order to reduce the large
number of parameters to a few manageable variables.

Another interesting model is ‘spatial additive synth-
esis’: in spatial additive synthesis a complex sound is
synthesised from elementary sinusoidal components
which are spatialised individually. Figure 10 shows an
example for continuous control of spatial additive
synthesis in which hundreds of partials are synthesised,
each with its individual set of dynamically changing
sound synthesis and spatialisation parameters. It is also
a nice illustration of how a complex spatial sound
synthesis process – requiring large amounts of control
data – can be managed via a small number of con-
ceptually meaningful, high-level abstractions.

7. CONCLUSION

We have presented a system for the symbolic control
of sound source spatialisation and spatial sound

e-dels =>

(a) (c)

(b)

dur =>

amp =>

amp-env =>

freq-dev =>

<= xpos-env

<= ypos-env

<= zpos-env

<= xpos-freqenv

<= ypos-freqenv

<= zpos-freqenc

OMChroma class:
ADD-A1

OMPrisma class:
AMBI.3D.CONTINUOUS

e-dels

dur

amp

amp-
env

freq =>

Figure 10. Spatial additive synthesis using the classes add–1 and ambi.2D.continuous: (a) a harmonic spectrum is generated

(visualised as a chord) and additional partials (micro-clusters) added around each harmonic; (b) a set of envelopes (BPF-lib)

is used to control both sound synthesis and spatialisation parameters; (c) two manually defined (i.e. hand-drawn) trajectories

are interpolated over the number of partials. Each partial is assigned an individual trajectory, displayed in the 3DC-lib on

the right-hand side.

4This technique could be considered an auto-adaptive digital audio
effect, as the control data is derived from sound features using
specific mapping functions (Verfaille, Zolzer and Arfib 2006).

Spatial Sound Synthesis in Computer-Aided Composition 285

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

synthesis in compositional contexts. This system has
been implemented as an extension of OMChroma in
the OpenMusic computer-aided composition envir-
onment. Embedded in this framework, spatial sound
scenes can be generated and manipulated via high-
level structures and algorithms, which allows for
explicit control of arbitrary numbers of control para-
meters, difficult to achieve via manual editing or other
conventional approaches (e.g. real-time, track-based).

The visual programming and composition envir-
onment provides an extensive set of tools for the
generation, manipulation and control of spatial
parameters and processes. More importantly, the
integration of spatialisation tools into environments
for computer-aided composition allows spatialisa-
tion to be treated as a structural parameter, and
enables complex relationships with other musical
dimensions and in relation to a global compositional
framework. Interesting relationships can for instance
be created using external data derived from sound
analyses or any other musical/extra-musical source or
process.

OMPrisma separates the different stages of sound
spatialisation into several layers as proposed in Peters
et al. (2009), with authoring in OM programs, descrip-
tion in matrices, interpretation via the synthesize func-
tion, rendering via Csound orchestras, and, finally, the
decoding and communication with physical devices
using the external Multiplayer application.

Thanks to an original class-merging system between
OMChroma (for sound synthesis) and OMPrisma (for
spatial sound rendering), the concept of spatial sound
synthesis is implemented in a generic way, allowing
arbitrary combinations of sound synthesis and spatial
sound rendering techniques. The control of sound
spatialisation is tightly integrated in the compositional
framework and benefits from the same flexibility and
expressive power as sound synthesis and general com-
positional processes.

Future work is planned in several directions: The
existing class-library could be extended with other
spatial sound rendering concepts, such as SUG. More
processor-demanding approaches such as ViMiC or
WFS would be particularly promising candidates
(facilitated by the offline-rendering paradigm). It would
also be interesting to use the system in the context of
directivity synthesis (Warusfel and Misdariis 2001), for
instance to synthesise artificial sounds with intricate
directivity patterns. More complex processing chains
could be envisaged in this framework, including for
instance spectral diffusion or other spatial audio effects.
On the ‘control’ level, different OpenMusic tools such
as the maquette, for temporal modelling (see Agon
1998), or the cr-model for abstract sound representa-
tions based on time–frequency structures (see Bresson,
Stroppa and Agon 2007) form interesting contexts in
which spatial sound control could be integrated.

So far OMPrisma has been used for the composition
of a number of works, most notably Cognitive Con-
sonance by C. Trapani, performed at the Ircam Agora
Festival, Paris 2010. OMPrisma is distributed with the
OpenMusic package through the IRCAM forum and
is also available as an open source OM-library. More
information and sound examples are available at
www.music.mcgill.ca/,marlon/OMPrisma.

REFERENCES

Agon, C. 1998. OpenMusic: un langage de programmation

visuelle pour la composition musicale. PhD thesis, Uni-

versité Pierre et Marie Curie, Paris 6, France.

Agon, C., Stroppa, M. and Assayag, G. 2000. High Level

Musical Control of Sound Synthesis in OpenMusic.

Proceedings of the International Computer Music Con-

ference, Berlin, Germany.

Agon, C., Assayag, G. and Bresson, J. (eds.) 2006. The OM

Composer’s Book 1. Paris: Editons Delatour/IRCAM.

Assayag, G. 1998. Computer Assisted Composition Today.

First Symposium on Music and Computers. Corfu,

Greece.

Assayag, G., Rueda, C., Laurson, M., Agon, C. and

Delerue, O. 1999. Computer Assisted Composition at

IRCAM: From PatchWork to OpenMusic. Computer

Music Journal 23(3): 59–72.

Berkhout, A.J., de Vries, D. and Vogel, P. 1993. Acoustic

Control by Wave Field Synthesis. Journal of the

Acoustical Society of America 93: 2,764–778.

Blauert, J. 1983. Spatial Hearing. Cambridge, MA: The

MIT Press.

Boulanger, R. (ed.) 2000. The Csound Book. Perspectives in

Software Synthesis, Sound Design, Signal Processing and

Programming. Cambridge, MA: The MIT Press.

Braasch, J. 2005. A Loudspeaker-Based 3D Sound Projec-

tion using Virtual Microphone Control (ViMiC). 118th

Convention of the Audio Engineering Society. Barcelona,

Spain.

Bresson, J. 2006. Sound Processing in OpenMusic. Pro-

ceedings of the International Conference on Digital Audio

Effects (DAFx–06). Montreal, QC, Canada.

Bresson, J. and Agon, C. 2007. Musical Representation of

Sound in Computer-Aided Composition: A Visual

Programming Framework. Journal of New Music

Research 36(4): 251–66.

Bresson, J., Stroppa, M. and Agon, C. 2007. Genera-

tion and Representation of Data and Events for the

Control of Sound Synthesis. Proceedings of the Sound

and Music Computing Conference (SMC’07), Lefkada,

Greece.

Bresson, J., Agon, C. and Assayag, G. (eds.) 2008. The OM

Composer’s Book 2. Paris: Editons Delatour/IRCAM.

Bresson, J., Agon, C. and Schumacher, M. 2010. Repré-

sentation des données de contrôle pour la spatialisation

dans OpenMusic. Actes des Journées d’Informatique

Musicale, Rennes, France.

Cabaud, B. and Pottier, L. 2002. Le contrôle de la spatia-

lisation multi-sources: Nouvelles fonctionnalités dans

Holophon version 2.2. Actes des Journées d’Informatique

Musicale, Marseille, France.

286 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

Daniel, J. 2001. Représentation de champs acoustiques,

applications à la transmission et à la reproduction de

scènes sonores complexes dans un contexte multimedia.

PhD thesis, Université Pierre et Marie Curie, Paris 6,

France.

Daniel, J. 2003. Spatial Sound Encoding Including Near

Field Effect: Introducing Distance Coding Filters and a

Viable New Ambisonic Format. 23rd International

Conference: Signal Processing in Audio Recording and

Reproduction, Denmark.

Delerue, O. 2004. Spatialisation du son et programmation

par contraintes: Le système MusicSpace. PhD thesis,

Université Pierre et Marie Curie, Paris 6, France.

Delerue, O. and Agon, C. 1999. OpenMusic1Music

Space5OpenSpace. Actes des Journées d’Informatique

Musicale, Issy-les-Moulineaux, France.

Gabriel, R.P., White, J.L. and Bobrow, D.G. 1991. CLOS:

Integrating object-oriented and functional program-

ming. Communications of the ACM 34(9): 29–38.

Geier, M., Ahrens, J. and Spors, S. 2008. The SoundScape

Renderer: A Unified Spatial Audio Reproduction

Framework for Arbitrary Rendering Methods. AES

124th Convention. Amsterdam, The Netherlands.

Harley, M.A. 1994. Space and Spatialization in Con-

temporary Music: History and Analysis, Ideas and

Implementations. PhD dissertation, McGill University,

Montreal, Canada.

Harley, M.A. 1998. Spatiality of Sound and Stream Seg-

regation in Twentieth Century Instrumental Music.

Organised Sound 3(2): 147–66.

Jot, J.-M. and Warusfel, O. 1995. A Real-Time Spatial

Sound Processor for Music and Virtual Reality Appli-

cations. Proceedings of International Computer Music

Conference. Banff, Canada.

Kendall, G.S., Peters, N. and Geier, M. 2008. Towards an

Interchange Format for Spatial Audio Scenes. Proceed-

ings of the International Computer Music Conference.

Belfast, Ireland.

Kim-Boyle, D. 2008. Spectral Spatialization: An Overview.

Proceedings of the International Computer Music Con-

ference. Belfast, Ireland.

Lazzarini, V. 2005. Extensions to the Csound Language:

From User-Defined to Plugin Opcodes and Beyond.

Proceedings of the 3rd Linux Audio Developer’s Con-

ference. Karlsruhe, Germany.

Lindemann, E., Starkier, M. and Dechelle, F. 1990. The

IRCAM Musical Workstation: Hardware Overview and

Signal Processing Features. Proceedings of the Interna-

tional Computer Music Conference. Glasgow, UK.

Lossius, T. 2007. Sound Space Body: Reflections on Artistic

Practice. PhD thesis, Bergen National Academy of

the Arts.

Marshall, M.T., Malloch, J. and Wanderley, M.M. 2007.

Gesture Control of Sound Spatialization for Live

Musical Performance. Gesture-Based Human-Computer

Interaction and Simulation: 7th International Gesture

Workshop, Lisbon, Portugal.

McCartney, J. 2002. Rethinking the Computer Music

Language: SuperCollider. Computer Music Journal

26(4): 61–8.

McLeran, A., Roads, C., Sturm, B.L. and Shynk, J.J. 2008.

Granular Sound Spatialisation using Dictionary-Based

Methods. Proceedings of the Sound and Music Computing

Conference, Berlin, Germany.

Menzies, D. 2002. W-panning and O-format, Tools for

Object Spatialisation. AES 22nd International Con-

ference of Virtual, Synthetic and Entertainment Audio.

Espoo, Finland.

Moore, F.R. 1983. A General Model for Spatial Processing

of Sounds. Computer Music Journal 7(6): 6–15.

Nouno, G. and Agon, C. 2002. Contrôle de la spatialisation

comme parametre musical. Actes des Journées d’Infor-

matique Musicale. Marseille, France.

Pachet, F. and Delerue, O. 1998. MidiSpace: A Temporal

Constraint-based Music Spatializer. ACM Multimedia

Conference. Bristol, UK.

Pachet, F. and Delerue, O. 2000. On-the-fly Multi

Track Mixing. AES 109th Convention. Los Angeles,

USA.

Peters, N., Ferguson, S. and McAdams, S. 2007. Towards

a Spatial Sound Description Interchange Format

(SpatDIF). Canadian Acoustics 35(3): 64–5.

Peters, N., Lossius, T., Schacher, J., Baltazar, P., Bascou, C.

and Place, T. 2009. A Stratified Approach for Sound

Spatialization. Proceedings of the Sound and Music

Computing Conference. Porto, Portugal.

Place, T. and Lossius, T. 2006. Jamoma: A Modular

Standard for Structuring Patches in Max. Proceedings

of the International Computer Music Conference. New

Orleans, USA.

Pottier, L. 1998. Dynamical Spatialisation of Sound.

HOLOPHON: A Graphical and Algorithmical Editor

for S1. Proceedings of the International Conference on

Digital Audio Effects (DAFx-98). Barcelona, Spain.

Puckette, M. 1991. Combining Event and Signal in the

MAX Graphical Programming Environment. Computer

Music Journal 15(3): 68–77.

Puckette, M. 1996. PureData: Another Integrated Com-

puter Music Environment. Proceedings of the 2nd

Intercollege Computer Music Concerts. Tachikawa,

Japan.

Pulkki, V. 1997. Virtual Sound Source Positioning Using

Vector Base Amplitude Panning. Journal of the Audio

Engineering Society 45(6): 456–66.

Pulkki, V. 1999. Uniform Spreading of Amplitude Panned

Virtual Sources. Proceedings of the 1999 IEEE Work-

shop Proceedings on Applications of Signal Processing to

Audio and Acoustics. New Paltz, USA.

Ramakrishnan, C., Goßmann, J. and Brümmer, L.

2006. The ZKM Klagdom. Proceedings of the Con-

ference on New Interfaces for Musical Expression. Paris,

France.

Reynolds, C.W. 1987. Flocks, Herds and Schools: A

Distributed Behavioral Model. SIGGRAPH Computer.

Graphics 21(4): 25–34.

Roads, C. 2001. Microsound. Cambridge, MA: The MIT

Press.

Schacher, J.C. and Kocher, P. 2006. Ambisonics Spatiali-

sation Tools for Max/MSP. Proceedings of the Interna-

tional Computer Music Conference. New Orleans, USA.

Schumacher, M. and Bresson, J. 2010. Compositional

Control of Periphonic Sound Spatialization. Proceedings

of the International Symposium on Ambisonics and

Spherical Acoustics. Paris, France.

Spatial Sound Synthesis in Computer-Aided Composition 287

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

Stockhausen, K. 1989. Stockhausen on Music: Lectures

and Interviews. Compiled by Robin Maconie. London:

Marion Boyars.

Stroppa, M. 2000. Paradigms for the High Level Musical

Control of Digital Signal Processing. Proceedings of the

International Conference on Digital Audio Effects

(DAFx-00). Verona, Italy.

Todoroff, T., Traube, C. and Ledent, J.-M. 1997. NeXT-

STEP Graphical Interfaces to Control Sound Processing

and Spatialization Instruments. Proceedings of the

International Computer Music Conference. Thessaloniki,

Greece.

Topper, D., Burtner, M. and Serafin, S. 2002. Spatio-

Operational Spectral (S.O.S.) Synthesis. Proceedings of

the International Conference on Digital Audio Effects

(DAFx-02). Hamburg, Germany.

Torchia, R.H. and Lippe, C. 2004. Techniques for Multi-

Channel Real-Time Spatial Distribution using Frequency-

Domain Processing. Proceedings of the Conference on New

Interfaces for Musical Expression. Hamamatsu, Shizuoka,

Japan.

Verfaille, V., Zolzer, U. and Arfib, D. 2006. Adaptive

Digital Audio Effects (A-DAFx): A New Class of Sound

Transformations. IEEE Transactions on Audio Speech,

and Language Processing 14(5): 1,817–31.

Warusfel, O. and Misdariis, O. 2001. Directivity Synthesis

with a 3D Array of Loudspeakers, Application for Stage

Performance. Proceedings of the International Con-

ference on Digital Audio Effects (DAFx-01). Limerick,

Ireland.

Wilson, S. 2008. Spatial Swarm Granulation. Proceedings

of the International Computer Music Conference. Belfast,

Ireland.

Wright, M. 2005. Open Sound Control: An Enabling

Technology for Musical Networking. Organised Sound

10(3): 193–200.

288 Marlon Schumacher and Jean Bresson

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

APPENDIX

Table 2. OMPrisma classes and respective slots (p-fields) for discrete control

PAN.

STEREO

PAN.

QUAD

PAN.

5.0

DPAN.

STEREO

DPAN.

QUAD

DPAN.

5.0 VBAP RVBAP DBAP

AMBI-

SONICS SPAT

Soundfile | | | | | | | | | | |
Gain | | | | | | | | | | |
Gain-env | | | | | | | | | | |
Startpos | | | | | | | | | | |
Xpos | | | | | | | | | | |
Ypos | | | | | | | | | | |
Zpos | | | | |
Pan-fun | | | | | |
Spread | |
Blur |
Order | |
Atten-fun | | | | | | | |
Air-fun | | | | | | | |
Rev-level |
Rev-spread |
Rev-feedback |
Rev-params |
Spk-params |
Room-params |
Center-radius | | | |

Table 3. OMPrisma classes and respective slots (p-fields) for continuous control

PAN.

STEREO

PAN.

QUAD

PAN.

5.0

DPAN.

STEREO

DPAN.

QUAD

DPAN.

5.0 VBAP RVBAP DBAP

AMBI-

SONICS SPAT

Soundfile | | | | | | | | | | |
Gain | | | | | | | | | | |
Gain-env | | | | | | | | | | |
Startpos | | | | | | | | | | |
Xpos-env | | | | | | | | | | |
Ypos-env | | | | | | | | | | |
Zpos-env | | | | |
Xpos-freqenv | | | | | | | | | | |
Ypos-freqenv | | | | | | | | | | |
Zpos-freqenv | | | | |
Pan-fun | | | | | |
Spread-env | |
Spread-freqenv | |
Blur-env |
Blur-freqenv |
Order-env | |
Order-freqenv | |
Atten-fun | | | | | | | |
Air-fun | | | | | | | |
Doppler-fun | | | | | | | |
Rev-level |
Rev-spread |
Rev-feedback |
Rev-params |
Spk-params |
Room-params |
Center-radius | | | |

Spatial Sound Synthesis in Computer-Aided Composition 289

https://doi.org/10.1017/S1355771810000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771810000300

