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Abstract

Coupled-mode theory is applied to obtain an analytic form of scattering parameters for a class
of transmission line metamaterials with antisymmetric split-rings. The same structure is mod-
eled with equivalent circuit, which includes electric and magnetic coupling with the line and
inter-resonator coupling. Modified even/odd analysis is used to obtain scattering parameters
from the equivalent circuit. These two methods are shown to be equivalent in a narrow band,
and their constants related. The obtained results are compared with full-wave simulations and
measurements, and it is shown that both methods give accurate approximation in one octave
frequency band. The derived analytic expressions are suitable for study of resonant phenom-
ena, with potential practical applications for filters, phase shifters, delay lines, and sensors.

Introduction

Since the metamaterials were introduced [1], they served as an inspiration for novel ideas in
different fields, not always strictly related to the original concept. Notably, transmission
lines (TLs) loaded with sub-wavelength resonators, also known as metamaterial TLs
(MMTLs) or composite right-/left-handed (CRLH) TLs, have been extensively studied in
the context of applications in microwave engineering [2, 3]. Loading elements can be either
lumped, or in the form of electrically small resonators, such as the split-ring resonators
(SRRs). The latter has been used for development of various microwave circuits, such as min-
iaturized filters [4], displacement sensors [5], phase shifters [6], for common mode suppres-
sion in differential lines [7], improved antennas [8], etc. It should be noted that the position
and orientation of the gap in SRR with respect to the TL has a great impact on overall char-
acteristics of the loaded TL [9, 10], which can be used for design of reconfigurable devices and
antennas.

Although electromagnetic problems involving MMTLs are usually solvable numerically, it
is still desirable to have some simplified model, which can facilitate optimization tasks, as well
as provide insight into underlying physics of more complex phenomena. To this end, equiva-
lent electric circuits, composed of lumped elements, are typically used. A considerable amount
of work was done on this topic, and it was shown how equivalent circuits can be used to model
microstrip and CPW lines coupled with SRRs and complementary SRRs, with or without vias
[11, 12]. Arbitrary position of SRR gaps with respect to TL can lead to cross-polarization
effect, and it can be included as mixed coupling [10, 13]. It was shown that the bandwidth
of the equivalent circuit validity can be greatly increased, without increasing the number of
unknowns, by using two Π-cells, instead of one, to model the TL [13].

Many interesting phenomena in metamaterials are manifested by characteristic spectral line
shapes of scattering parameters. These include Fano resonance and classical analogue of
electromagnetically-induced transparency (EIT) which is characterized by narrow transmis-
sion peak within a wider stopband and strong dispersion accompanied by high group delay
values [14–16]. For the study of such systems, it is highly desirable to have approximate ana-
lytic forms of scattering parameters in the vicinity of resonances. While in principle derivable
from the equivalent circuit, this may be a difficult task, in part because the approximation can
introduce unphysical resonances. As an alternative, coupled-mode theory (CMT) can be used
[17, 18]. In this paper, both CMT and equivalent-circuit analysis will be applied to derive ana-
lytic form of scattering parameters for a class of MMTL unit cells with antisymmetric SRRs.
Both approaches will be compared and their equivalence will be investigated.

Microstrip TL loaded with SRRs with various gap positions, are shown in Figs 1 and 2. In
general, two SRRs will have some coupling between them, so two resonances may be expected
due to mode splitting. The geometries in Fig. 1 have mirror symmetry with respect to the pla-
ne which is perpendicular to the substrate along the middle of the TL. Due to this symmetry,
one of the resonances cannot be excited, which is why they will exhibit single resonance in
their transmission spectrum [13]. On the other hand, geometries in Fig. 2, which are
named antisymmetric, do not possess a mirror symmetry plane, instead they are symmetric
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for the 180° rotation around the central point. Antisymmetry can
be exploited in filter design to introduce additional transmission
zeros [19]. Unlike structures with mirror symmetry, they have
two resonances in transmission spectrum, which can be tuned
independently. This adds additional degree of freedom to engin-
eer dispersion in antisymmetric structures, which is of great
importance for many practical applications, like high-order filters,
phase shifters and delay lines. Proper coupling between the two
resonant modes can lead to classical analogue of EIT, with
extremely narrow resonant peaks, which is suitable for sensing
applications [20].

This paper is organized as follows: in the section “Coupled-
mode theory” we lay out the CMT for the case of the TL coupled
with two resonators, and then apply the antisymmetry of the sys-
tem and derive scattering parameters; in the section “Equivalent
circuit approach” we propose the equivalent circuit for the struc-
ture, and show how even/odd analysis can be used to simplify the
analysis, and again derive scattering parameters in a form which is
comparable to the CMT. Finally, in the section “Results and com-
parison” we compare the approximation of S-parameters obtained
by both methods with the results of full-wave simulations and
measurements.

Analysis

Coupled-mode theory

The CMT is based on a representation of a coupled system using
the modes of an uncoupled system, which can be rigorously
derived by using the orthogonal mode expansion or variational
principle [17]. When the coupling is relatively weak and individ-
ual modes are clearly distinguishable, as is the case in systems
under consideration, only a few modes need to be taken into
account to obtain good approximation, and the results are easily
understood intuitively. Historically, the CMT was first applied in
microwave engineering for the analysis of tubes, oscillators and
waveguides back in 1950s. However later it became more asso-
ciated with optical resonators in photonics [17, 18].

The independent variable in CMT can be either the spatial
coordinate or time; depending on which we speak about mode
coupling in space or time [21]. The spatial type of CMT has
been used for the analysis of periodic structures, e.g. the micro-
strip line with periodic perturbations in the ground plane or con-
ductor strip, also known as photonic band-gap (PBG) structures
[22]. Temporal CMT has been used to analyze classical analogue

of EIT [23]. However, to the authors’ best knowledge, this is the
first time it has been applied to microwave MMTLs.

General schematic representation of the TL coupled with two
resonators, corresponding to the geometries shown in Figs 1 and 2
is given in Fig. 3 (at this point no specific symmetry of this system
is assumed, and resonant frequencies and couplings with the line
can be different). In CMT, the resonators are first considered to be
not coupled to the TL (but can be coupled between themselves).
To describe the excitation the of resonators, so-called positive fre-
quency amplitudes, α1,2, are used. Theirmagnitude equals the square
root of the power stored in amode, and the argument corresponds to
the phase of oscillations [21]. The relationship betweenαi coefficients
and voltage and current of the resonator is analogous to the relation-
ship between incident and reflected power waves, a, b, used for def-
inition of S-parameters, and voltage and current on the TL.
Because of this, CMT description relates more directly with
S-parameters than the equivalent circuit, as it will be shown later.

In the following, the matrix approach from Ref. [24] will be
used (with slightly adjusted notation to conform to microwave
engineering conventions), so the reader is referred there for rigor-
ous proofs of the used relations. Assuming no ohmic losses, time
dependence of the resonant modes will be described with two
coupled differential equations:

∂

∂t
a1

a2

[ ]
= jV

a1

a2

[ ]
, V = v1 k

k∗ v2

[ ]
, (1)

where ω1,2 are resonant frequencies, κ is the mutual coupling
coefficient, and * superscript indicates complex conjugate.

The TL is described by incident and reflected waves (as per
usual definition of S-parameters), which are related by non-
resonant ‘direct’ scattering matrix S(0) (corresponding to the iso-
lated TL):

b1
b2

[ ]
= S(0) a1

a2

[ ]
. (2)

When coupling between the resonators and TL is introduced, two
effects occur:(1) incident waves can excite the resonant modes; (2)
power from resonant modes leaks in the TL. In other words, the
TL appears both as a drive and as a decay channel for the resona-
tors. Mathematically, the coupling is treated as a first-order per-
turbation, which is included in equations (1) and (2) by linear
terms, proportional to the coefficients of the matrix D = [dij],
where indices in the subscript represent row and column of
matrix element (see Fig. 3):

∂

∂t
a1

a2

[ ]
= ( jV− G) a1

a2

[ ]
+DT a1

a2

[ ]
, (3)

b1
b2

[ ]
= S(0) a1

a2

[ ]
+D

a1

a2

[ ]
, (4)

where G = (1/2)D†D is the matrix of damping terms due to
power leakage from the resonators into the TL [17, 18, 21]. In
the preceding expressions, T superscript indicates matrix trans-
pose, and dagger (†) stands for Hermitian transpose.

By taking into account the rotational symmetry of the struc-
tures in Fig. 2, i.e. by requiring that the system is unchanged
upon 180° rotation, we can deduce the form of the D, S, and Ω

Fig. 2. Antisymmetric configuration of two SRRs coupled with microstrip line.

Fig. 1. Symmetric configuration of two SRRs coupled with microstrip line.
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matrices:

S(0) = S(0)11 S(0)21

S(0)21 S(0)11

]
, D = d1 d2

d2 d1

]
, V = v0 −k

−k v0

[ ]
,

[[
(5)

where k [ R in this case. Under steady-state excitation and after
substituting (3) and (5) into (4), the resulting transmission
through the system is straightforwardly obtained:

S21 = S(0)21 + (d1 + d2)2
2j(v− v0 − k) + |d1 + d2|2

− (d1 − d2)2
2j(v− v0 + k) + |d1 − d2|2

,

(6)

and reflection:

S11 = S(0)11 + (d1 + d2)2
2j(v− v0 − k) + |d1 + d2|2

+ (d1 − d2)2
2j(v− v0 + k) + |d1 − d2|2

. (7)

In the expressions (6) and (7), the first fraction corresponds to the
even mode and second to the odd mode, while resonant frequen-
cies are v+ = v0 + k and Q-factors:

Q+ = v+/g+, g+ = |d1 + d2|2 (8)

where (+) sign corresponds to the even mode, and (−) to the odd
mode.

Additionally, it can be shown that the following relation holds:

S(0)D∗ = −D, (9)

which enables determining the phase of elements of matrix D [24].
To determine the values of constants in the preceding expressions

for particular geometry, several approaches can be used, such as
curve-fitting to the results of measurements or simulations, or deriv-
ation from the parameters of the equivalent circuit, as it will be
shown later. However, it should be stressed that CMT is an independ-
ent method, and the constants can also be directly obtained from
field patterns of resonant modes, as it was demonstrated in [17].

Equivalent circuit approach

The proposed equivalent circuit for the antisymmetric configura-
tions (Fig. 2) is shown in Fig. 4. In addition to the most com-
monly used model, where only magnetic coupling is present
[11, 13], here both the electric and magnetic coupling with the
line and mutual coupling between SRRs is included. The pro-
posed circuit model is electrically symmetric, hence it is desirable
to analyze it with even/odd-mode excitation. However, there is no
mirror symmetry, so the even- and odd-mode admittances cannot
be obtained in a standard way, by placing the electric and mag-
netic wall in the symmetry plane. Instead, it will be shown how
rotational symmetry of the structure can be exploited to obtain
the even/odd-mode admittance.

We start by observing that all circuit responses are bilinear
functions of input parameters, e.g.

IS1 = LIS1 (V1,V2) = −LIS1 (−V1,−V2). (10)

Due to the antisymmetry, the following has to hold (for the ref-
erence directions given in Fig. 4):

IS2 = LIS2 (V1,V2) = LIS1 (V2,V1). (11)

Using (10) and (11), the relations for circuit responses under even
and odd excitation can be derived, and they are summarized in
Table 1. Based on that, we can obtain a simplified circuits for
the even and odd excitation, which are shown in Fig. 5. We can
now calculate the even- and odd-mode admittance, ye,o, normal-
ized on Y0 =

�����
C/L

√

ye = yPe + j
2

v

vLC

2g2e
1− v2/v2

e
,

yPe = j
2

v

vLC
1− 2k2e
( )

,

yo = yPo + j
2

v

vLC

2g2o
1− v2/v2

o
,

yPo = j
2

v

vLC
1− 2k2e
( )− 2j

vLC

v
,

(12)

Fig. 3. TL coupled with two resonant modes.

Fig. 4. Equivalent circuit of the asymmetrically coupled split-ring resonators in Fig. 2.
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where

ge = ke,

go = 2vLC

������
LSCS

√
km − ke,

ve = 1/
�����������������
LSCS(1− km12)

√
,

vo = 1/
������������������������
LSCS(1+ km12 − 2k2m)

√
,

vLC = 1/
����
LC

√
,

(13)

and ke, electric coupling coefficient, is defined as:

ke = Cm/
�����
CCS

√
. (14)

In (12), we separated the non-resonant parts of the admittances
under the terms yPe,o. They represent the even/odd-mode admit-
tance of the Π-cell in Fig 4, i.e. of the TL only1. This notation
will allow us to compare the results from the coupled mode theory
with an equivalent circuit approach much easier, as it will become

clear later on. The transmission coefficient, S21, is [25]:

S21 = 1
2
(S11,e − S11,o) = 1

2
1− ye
1+ ye

− 1− yo
1+ yo

( )
. (15)

The non-resonant part of the transmission can be calculated using
the term yPe,o (12):

SP21 =
1
2

SP11e − SP11o
( )

, SP11e,o =
1− yPe,o
1+ yPe,o

, (16)

which is equivalent to the “direct” scattering matrix S(0) from the
section “Coupled-mode theory”. By substituting (12), (13), and
(16), after straight forward but tedious calculations, the final
expression for the transmission is obtained:

S21 = SP21 −
SP11,eg′e

j(v2 −42
e ) + g′e +

SP11,og′o
j(v2 −42

o) + g′o , (17)

where

g′e,o = Re
1

1+ yPe,o

{ }
v

vLC
v2
e,og

2
e,o, (18)

4e,o = ve,o − Im
1

1+ yPe,o

{ }
v

vLC
v2
e,og

2
e,o. (19)

The form of (17) was deliberately chosen to stress the equivalence
with the result of the coupled mode approach [cf. (6)]. However,
the important difference is that, instead of the constant values in
(6), we have the functions of frequency in (17), defined by (18)
and (19). Nevertheless, they are slowly changing with frequency
compared to the resonant terms, and therefore the two
approaches are equivalent in a narrow frequency band around
the resonances. In Table 2, it is shown how the circuit parameters
can be used to calculate the coupled-mode constants, by fixing ω
at the desired frequency of interest.

Frequency dependence of modes’ effective resonant frequen-
cies 4e,o and coupling strengths γe,0′ in (17)–(19) can be
explained as follows. In the equivalent circuit model, Π-cell
used to represent the TL also acts as a resonator, albeit with a
much higher frequency than the SRR modes. Nevertheless, coup-
ling with the line causes frequency-dependent perturbation
apparent in (18) and (19). In order to obtain analytic form of
transmission or reflection which is simple enough to be intuitively
understood, such as (17), one usually wants to neglect such per-
turbations. However, this may be very difficult task when starting
from Kirchhoff’s laws for equivalent circuit, because it is not
apparent what can and cannot be neglected. In contrast to that,
CMT can produce expressions like (6) directly, because it inher-
ently separates transmission medium and resonators, except for
the first-order coupling. Therefore, it represents a natural frame
for analyzing scattering in systems of coupled resonators.

Table 1. Equivalent circuit responses under the even and odd excitation

Even Odd

V1 = V2 V1 = −V2

IS1 = IS2 IS1 = −IS2

VS1 = VS2 VS1 = −VS2

IL = 0 IL arbitrary.

Fig. 5. Equivalent circuits for (a) even; (b) odd-mode excitation (where Lk = km12LS is
the mutual inductance between the rings).

1It should be noted, however, that yPe,o are slightly perturbed compared to the isolated
TL, due to the presence of SRRs.
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Results and comparison

Validation of equivalence between two methods

In order to validate the presented approaches and compare
results, the 3D EM simulation of the structures in Fig. 2 was per-
formed, and they were also fabricated and measured. Relevant
dimensions are given in Fig. 6, and dielectric substrate Rogers
RO3010, with 1r = 10.2, is used.

Parameters of the equivalent circuit are determined first. To
obtain L, C, and LS, microstrip line and two nearest SRR arms
are modeled as a section of the multi-conductor TL (see Fig. 8).
LINPAR software [26] is employed for the numerical evaluation
of the quasi-static line parameters. LINPAR provides the per unit
length (p.u.l.) inductance and capacitance matrices from which
the required parameters L, C, and LS are obtained, by multiplying
with appropriate lengths [13]. Remaining parameters are deter-
mined by curve fitting to the results of full-wave simulations.

Nelder-Mead simplex method [27] was used for fitting, with
error function integrating the absolute difference (L1 norm)
between simulated data and parametrized model, over spectrum
from 4 to 8 GHz:

Err =
∫ fmax

fmin

∑2
i=1

∑2
j=1

Smodel
ij − Ssimij

∣∣∣ ∣∣∣df . (20)

The same procedure was applied in all other instances of curve
fitting in this paper.

The coupled-mode constants were obtained using expressions
in the right-hand-side of Table 2, which were evaluated for a
frequency between resonances. It remains to determine non-
resonant direct scattering matrix S (0), which can be done in
several ways. For example, matrix elements could be taken as
constants and determined by fitting, or matrix could be obtained
from simulation of isolated TL section. Here, S (0) is calculated
from the circuit consisting of the Π-cell only (Fig. 7a), with the
same values of L and C as in equivalent circuit. This allows for
the best possible comparison between the two models.

The results for two structures in Fig. 2 are shown in Figs 9 and 10,
and obtained parameters are summarized in Table 3. It can be
observed that the equivalent circuit approach and coupled-mode the-
ory agree almost perfectly around the resonances, while there are dis-
crepancies in the broader band, in accordance with the conclusions
from the section “Equivalent circuit approach”. Second, both meth-
ods show good agreement with EM simulations in both magnitude
and phase in case of transmission (S21 parameter) in the whole band-
width; on the other hand, in case of reflection (S11 parameter), there
is good agreement only in a narrow band around the resonances.

Fig. 7. Equivalent circuit of the TL section only, with (a) one and (b) two Π-cells.

Fig. 8. Determination of circuit parameters based on quasi-static p.u.l. parameters.
Coupled line sections are hatched.

Fig. 6. Relevant dimensions: h = 1.27mm, Lr = 3 mm, Lm = 0.25 mm, Lg = 0.5 mm,
Wr = 0.2 mm, Wl = 1.2 mm, and s = 0.1 mm.

Table 2. Equivalence between the coupled-mode theory constants and
equivalent circuit parameters

CMT Equivalent circuit

v+ ve − Im 1
1+yPe

{ }
vv2

e
vLC (v+ve ) g

2
e

v−
vo − Im 1

1+yPo

{ }
vv2

o
vLC (v+vo )g2o

g+ Re 1
1+yPe

{ }
2vv2

e
vLC (v+ve)g2e

g− Re 1
1+yPo

{ }
2vv2

o
vLC (v+vo)g2o
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Improved results

As the results from the previous section were judged as not com-
pletely satisfactory, an effort was made to improve upon them. To
this end, equivalent circuit with two Π-cells was used (Fig. 11),
since it is expected to give good approximation in a broader band-
width, compared to simpler circuit in Fig. 4 [13]. It should be
noted that both circuits have the same number of unknown para-
meters, however the topology in Fig. 11 much better reflects the
distributed nature of TL. Circuit parameters are determined in
the same way as before (L, C, and LS from the coupled-line sec-
tion, and the rest by curve-fitting).

In the case of CMT, for the calculation of non-resonant para-
meters S (0) TL model with two Π- cells is used (Fig. 7b), to better
match the improved equivalent circuit. Then, to obtain the best pos-
sible matching, curve fitting procedure is applied for all parameters
in the CMT model (L, C of Fig. 7 and ω±, γ±). This will generally
result in slightly different values of L and C for CMT and equivalent
circuit model, which may seem strange at first glance; however, it
should be kept in mind that non-resonant part of the equivalent cir-
cuit is actually perturbed due to the presence of resonators, as it is
noted in the section “Equivalent circuit approach”. It is expected
that this effect will be more significant in the case of the improved
circuit with two Π-cells, because the coupling between SRRs and TL
is more distributed. Therefore, independent tuning of L and C is
needed in order to account for this perturbation in the CMT model.

New results for all models in Fig. 2 are shown in Fig. 12, and
parameters, obtained by the above procedure, are summarized in
Table 4. This time, very good agreement has been obtained, not
just for S21 but also for S11, in the whole bandwidth of one octave.
Overall, CMT and equivalent circuit model produce equally
good results, the only exception being slight mismatch in the
first S11 minimum on Fig. 12a. Considering the measurements
in Fig. 12, it can be seen that the resonances are wider and shifted
to lower frequencies. This is attributed to the presence of losses,
which are left out from the EM simulations and analytical studies.

Table 3. Results obtained for the models in Fig. 2.

Fig. 2a 2b Fig. 2a 2b

Equivalent circuit Coupled-mode theory

L [nH] 1.48 1.47 L [nH] 1.48 1.47

C [pF] 0.8 0.84 C [pF] 0.8 0.84

LS [nH] 7.97 7.92 v+ [GHz] 5.65 6.24

CS [pF] 0.105 0.09 v− [GHz] 5.54 6.13

km 0.199 0.35 g+[108 rad
s ] 3.52 2.21

ke 0.148 0.109 g−[108 rad
s ] 3.79 26.5

km12 0.042 0.08

Fig. 10. Magnitude and phase of S-parameters for the model in Fig. 2b
Fig. 9. Magnitude and phase of S-parameters for the model in Fig. 2a
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Fig. 12. Comparison of magnitudes of S-parameters, obtained by simulation, measurement, equivalent circuit and coupled-mode theory, for the model in Fig. 2a
(a), Fig. 2b (b), Fig. 2c (c), and Fig. 2d (d).

Fig. 11. Equivalent circuit of the antisymmetric structures with two Π-cells.

Table 4. Improved results obtained for the models in Fig. 2.

Fig. 2a 2b 2c 2d

Equivalent circuit

L [nH] 1.48 1.47 1.47 1.47

C [pF] 0.8 0.84 0.84 0.84

LS [nH] 7.97 7.91 7.91 7.91

CS [pF] 0.105 0.09 0.109 0.10

km 0.2 0.29 0.276 0.30

ke 0.15 0.11 0.267 0.24

km12 0.042 0.07 0.086 0.10

Coupled-mode theory

v+ [GHz] 5.67 6.23 5.81 6.06

v− [GHz] 5.52 6.02 5.54 5.76

g+[108 rad
s ] 4.25 2.01 10.8 9.46

g−[108 rad
s ] 3.44 13.8 3.21 5.18

L [nH] 1.46 1.23 1.44 1.39

C [pF] 0.762 0.822 0.734 0.749
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It can also be noted that in some cases, such as in Fig. 12b, only a
single resonance is visible in the transmission, because the fre-
quency splitting is too small compared to the resonant widths.

By examining the values in Table 4, we can observe that total
coupling strength (which may be estimated as g+ + g−) increases
as the SRR gap is moved away from the TL. This can be explained
by the current distribution of the SRR, which has the biggest
intensity in the arm opposite to the gap. It can also be seen
that the fitted values of TL characteristic impedance used in
CMT model (Fig. 7b), defined as ZC = �����

L/C
√

, also varies (last
two rows of Table 4). This effect can be explained by the perturb-
ation due to coupling, and it also explains disagreement in the
preceding section, since there this perturbation is not accounted
for. Consistently, variation in ZC is largest for the case of strongest
coupling (Fig. 2b). Finally, it can also be seen that the coupling
causes resonances to shift to higher frequencies.

Conclusion

MMTLs with antisymmetric SRRs possess 180◦ rotational sym-
metry around central point and can be analyzed in terms of
even and odd excitation. Unlike structures with mirror symmetry,
they generally exhibit two resonances in the transmission spec-
trum that can be tuned independently, making them interesting
for various practical applications.

Temporal coupled-mode theory has been applied to analyze the
proposed structures. It has been shown how it can easily produce
approximate analytic forms of scattering parameters, which makes
it a valuable tool for consideration of systems of coupled resonators.

Additionally, equivalent circuit for modeling antisymmetric
SRRs coupled with TL is proposed, which includes both the elec-
tric and magnetic coupling with the TL and inter-ring coupling. It
is shown how the even/odd mode analysis could be used to exploit
rotational symmetry of the circuit, allowing simplified calculation
of scattering parameters. Both approaches yield the same results
in the vicinity of the resonances, while their broadband behavior
is generally different. Relations linking parameters in both models
are also derived.

Comparison with the S-parameters of the simulated and mea-
sured structures was made. First results corroborated correlation
between two models, since CMT constants were calculated from
equivalent circuit parameters and good agreement between
them was obtained. However, while there was good agreement
with EM simulations in transmission spectra, discrepancies in
reflection were more pronounced. Therefore, the improved results
are presented; obtained using equivalent circuit with two Π-cells
and by curve-fitting procedure in the case of CMT. In this case,
excellent agreement has been obtained for all tested models,
both in transmission and reflection, in a bandwidth of one octave.
A further study plan is to include the effect of losses in the models
and treat SRRs with arbitrarily positioned gaps.
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