
TLP 16 (5–6): 817–833, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000260

817

Online learning of event definitions

NIKOS KATZOURIS1,3, ALEXANDER ARTIKIS2,3 and GEORGIOS

PALIOURAS3

1Department of Informatics & Telecommunications, National Kapodistrian University of Athens,

Athens, Greece
2Department of Maritime Studies, University of Piraeus, Piraeus, Greece

3Institute of Informatics & Telecommunications, National Center for Scientific Research “Demokritos”,

Athens, Greece

(e-mail: {nkatz,a.artikis,paliourg}@iit.demokritos.gr)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

Systems for symbolic event recognition infer occurrences of events in time using a set of event

definitions in the form of first-order rules. The Event Calculus is a temporal logic that has been

used as a basis in event recognition applications, providing among others, direct connections

to machine learning, via Inductive Logic Programming (ILP). We present an ILP system for

online learning of Event Calculus theories. To allow for a single-pass learning strategy, we

use the Hoeffding bound for evaluating clauses on a subset of the input stream. We employ

a decoupling scheme of the Event Calculus axioms during the learning process, that allows

to learn each clause in isolation. Moreover, we use abductive-inductive logic programming

techniques to handle unobserved target predicates. We evaluate our approach on an activity

recognition application and compare it to a number of batch learning techniques. We obtain

results of comparable predicative accuracy with significant speed-ups in training time. We also

outperform hand-crafted rules and match the performance of a sound incremental learner

that can only operate on noise-free datasets.

KEYWORDS: Inductive Logic Programming, Event Calculus, Online Learning

1 Introduction

Event recognition systems (Etzion and Niblett 2010) process sequences of simple

events, such as sensor data, and recognize complex events of interest, i.e. events

that satisfy some pattern. Logic-based event recognition typically uses a knowledge

base of first-order rules to represent complex event patterns and a reasoning engine

to detect such patterns in the incoming data. Dialects of the Event Calculus (EC)

(Kowalski and Sergot 1986) have been used as a language for specifying definitions

of complex events (Artikis et al. 2015). An advantage of this approach is that is

offers direct connections to machine learning, via Inductive Logic Programming

(ILP) (De Raedt 2008), alleviating the task of manual authoring of event definitions.

Event recognition applications deal with noisy data streams. Methods that extract

insights from such streams need to operate within tight memory and time constraints,

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

818 N. Katzouris, A. Artikis and G. Paliouras

building a decision model by a single pass over the training data (Gama and Gaber

2007; Gama 2010). Such a framework is under-explored in ILP, where all data is

typically in place when learning begins. Alternatively, some ILP systems are capable

of theory revision (Esposito et al. 2000). Still, such systems need multiple scans of

the data to optimize their theories.

We present OLED (Online Learning of Event Definitions), an ILP system that

learns EC theories in a single pass over a data stream. OLED uses the Hoeffding

bound (Hoeffding 1963), a statistical tool that allows to build decision models using

only a small subset of the data, by relating the size of this subset to a user-defined

confidence level on the error margin of not making a (globally) optimal decision

(Dhurandhar and Dobra 2012; Domingos and Hulten 2000; Gama et al. 2011).

OLED learns a clause in a top-down fashion, by gradually adding literals to its

body. Instead of evaluating each candidate specialization on the entire input, it

accumulates training data from the stream, until the Hoeffding bound allows to

select the best specialization. The instances used to make this decision are not stored

or reprocessed, but discarded as soon as OLED extracts from them the necessary

statistics for clause evaluation.

In the learning problem we address in this work, target clauses are not unrelated,

but depend on each other via the axioms of the EC, making it difficult to use common

ILP practices that learn clauses in isolation. To handle this issue we use a decoupling

scheme of the axioms of the EC during learning, thereby allowing to assess the quality

of each clause separately, using a scoring function. Additionally, learning programs

in the EC involves non-Observational Predicate Learning (non-OPL) (Muggleton

1995), a setting where instances of the target predicates are not directly observable

in the data. To handle non-OPL we use abduction (Denecker and Kakas 2002), a

framework that may be used for reasoning with incomplete information. We evaluate

our approach on an activity recognition application and compare it to a number

of batch learning techniques. We obtain results of comparable predicative accuracy

with significant speed-ups in training time. We also outperform hand-crafted rules

and match the performance of a sound incremental learner that can only operate

on noise-free datasets.

The rest of this paper is structured as follows: In Section 2 we discuss related

work, while in Section 3 we present some necessary background on the EC, ILP and

the Hoeffding bound. In Section 4 we present OLED and in Section 5 we show the

results of the empirical analysis. Finally, in Section 6 we discuss some directions for

future research and conclude.

2 Related work

The Hoeffding bound has been used for propositional machine learning tasks on

data streams, such as learning decision trees (Domingos and Hulten 2000) and

decision rules (Gama et al. 2011), and clustering (Domingos and Hulten 2001).

However, its usage for learning relational models is limited. One reason is that it

requires independence of observations, which cannot always be ensured in relational

domains, due to dependencies in the data (Jensen 1999; Jensen and Neville 2002;

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 819

Hulten et al. 2003; Dhurandhar and Dobra 2012). An ILP approach that uses the

Hoeffding bound for relational learning is HTILDE (Lopes and Zaverucha 2009), an

extension of the TILDE system for learning first-order decision trees (Blockeel and

De Raedt 1998). These are decision trees where each internal node consists of a

conjunction of literals and each leaf is a propositional predicate representing a

class. TILDE constructs trees by testing conjunctions of literals at each node, using

an ILP refinement operator to generate the conjunctions and information gain as

the guiding heuristic. HTILDE extends TILDE by using the Hoeffding bound to perform

these internal tests on a subset of the training data. To ensure independence of

observations, HTILDE learns from interpretations (Blockeel et al. 1999), a setting, used

also by OLED, where each training instance is assumed a disconnected part of the

dataset.

Like TILDE, HTILDE learns clauses with a propositional predicate in the head

(representing a class). However, the head of a complex event definition is typically

a first-order predicate, containing variables that appear in the body of the clause

and express relations between entities. Therefore, HTILDE is not general enough for

the problem we address in this work. Additionally, HTILDE requires a fully annotated

dataset, while in the setting we assume here, annotation for target predicates is

missing.

Learning programs in the EC is a challenging task that most ILP learners

cannot fully undertake (Ray 2009; Katzouris et al. 2015), mainly due to the non-

monotonicity of negation as failure (NaF) that the EC uses. XHAIL (Ray 2009)

and TAL/ASPAL/RASPAL (Athakravi et al. 2013) are systems that can handle the

task, by combining ILP with the non-monotonic semantics of abductive logic

programming. These approaches ensure soundness of the outcome, which in the

presence of NaF requires learning whole theories by jointly optimizing their clauses.

This implies an intractable search space, even with relatively small amounts of

data. As a result, the aforementioned approaches do not scale to event recognition

applications with temporal data streams. In contrast, OLED learns clauses separately

using only fragments of the data in an online setting, trading soundness for

efficiency.

ILED (Katzouris et al. 2015) is a recently proposed scalable extension of the

XHAIL system that is able to learn EC theories. It is an incremental learner that

revises past hypotheses to fit new observations, and a full-memory system, meaning

that revisions should account for a growing historical memory of accumulated

data. Using a compressive memory structure to encode the positive examples

that each clause entails in the historical memory, ILED requires at most one

pass over the past data to revise a hypothesis. One difference from OLED is that

the latter learns in an online fashion, thus it does not re-process past exam-

ples. Also, ILED is designed to learn sound theories and a key assumption for

its scalable strategy is that the training data is noise-free. Other incremental

ILP systems, such as INTHELEX (Esposito et al. 2000) and FORTE (Richards

and Mooney 1995), cannot be applied to the task we address in this work,

since they cannot handle negation (FORTE) and non-observable target predicates

(INTHELEX, FORTE).

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

820 N. Katzouris, A. Artikis and G. Paliouras

Table 1. The basic predicates and domain-independent axioms of the EC dialect.

Predicate Predicate Meaning Axioms

happensAt(E,T) Event E occurs at time T holdsAt(F, T + 1)←
initiatedAt(F, T) At time T a period of time for initiatedAt(F, T). (1)

which fluent F holds is initiated

terminatedAt(F, T) At time T a period of time for holdsAt(F, T + 1)←
which fluent F holds is terminated holdsAt(F, T), (2)

holdsAt(F, T) Fluent F holds at time T not terminatedAt(F, T).

3 Background and Running Example

We assume a logic programming setting, where predicates, terms, atoms, literals,

clauses and programs (theories) are defined as in (Gebser et al. 2012) and not

denotes NaF. Following Prolog’s convention, predicates and ground terms in logical

formulae start with a lower case letter, while variable terms start with a capital

letter.

The Event Calculus (EC) (Kowalski and Sergot 1986) is a temporal logic for

reasoning about events and their effects. Its ontology comprises time points,

represented by integers; fluents, i.e. properties which have certain values in time;

and events, i.e. occurrences in time that may affect fluents and alter their value. The

axioms of the EC incorporate the common sense law of inertia, according to which

fluents persist over time, unless they are affected by an event. We use a simplified

version of the EC that has been shown to suffice for event recognition (Artikis

et al. 2015). The basic predicates and its domain-independent axioms are presented

in Table 1. Axiom (1) states that a fluent F holds at time T if it has been initiated

at the previous time point, while Axiom (2) states that F continues to hold unless it

is terminated.

Definitions of initiatedAt/2 and terminatedAt/2 predicates are provided by a set

of domain-specific axioms. To illustrate our learning approach we use the task of

activity recognition, as defined in the CAVIAR project1. The CAVIAR dataset

consists of videos of a public space, where actors perform some activities. These

videos have been manually annotated by the CAVIAR team to provide the ground

truth for two types of activity. The first type, corresponding to simple events, consists

of knowledge about a person’s activities at a certain video frame/time point (e.g.

walking, standing still and so on). The second type, corresponding to complex events,

consists of activities that involve more than one person, for instance two people

moving together, meeting each other, fighting and so on. The aim is to recognize

complex events by means of combinations of simple events and some additional

domain knowledge, such as a person’s position and direction.

Table 2(a) presents an example of CAVIAR data, consisting of a narrative of

simple events in terms of happensAt/2, expressing the short-term activities of people,

and context properties in terms of holdsAt/2, denoting the coordinates and direction

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 821

Table 2. (a) Example data from activity recognition. For instance, at time point 1 person id1

is walking, her (x, y) coordinates are (201, 454) and her direction is 270◦. The annotation for

the same time point states that persons id1 and id2 are not moving together, in contrast to the

annotation for time point 2. (b) An example of two domain-specific axioms in the EC. The first

clause dictates that moving of two persons X and Y is initiated at time T if both X and Y

are walking at time T , their euclidean distance is less than 25 and their difference in direction

is less than 45◦. The second clause dictates that moving of X and Y is terminated at time T

if one of them is standing still at time T (exhibits an inactive behavior) and their euclidean

distance at T is greater that 30.

(a) (b)

Narrative for time 1: Narrative for time 2: Two Domain-specific axioms:

happensAt(walking(id1), 1) happensAt(walking(id1), 2) initiatedAt(moving(X,Y), T)←
happensAt(walking(id2), 1) happensAt(walking(id2), 2) happensAt(walking(X),T),

holdsAt(coords(id1 , 201 , 454), 1) holdsAt(coords(id1 , 201 , 454), 2) happensAt(walking(Y),T),

holdsAt(coords(id2 , 230 , 440), 1) holdsAt(coords(id2 , 227 , 440), 2) distanceLessThan(X ,Y , 25 ,T),

holdsAt(direction(id1 , 270), 1) holdsAt(direction(id1 , 275), 2) directionLessThan(X ,Y , 45 ,T).

holdsAt(direction(id2 , 270), 1) holdsAt(direction(id2 , 278), 2)

Annotation for time 1: Annotation for time 2: terminatedAt(moving(X,Y), T)←
not holdsAt(moving(id1, id2), 1) holdsAt(moving(id1, id2), 2) happensAt(inactive(X),T),

distanceMoreThan(X ,Y , 30 ,T).

of the people. Table 2(a) also shows the annotation of complex events (long-term

activities) for each time-point in the narrative. The annotation about complex events

is obtained via the closed world assumption (we state both positive and negated

annotation atoms in Table 2 to avoid confusion). An example of two domain-specific

axioms in the EC is presented in Table 2(b).

Our goal is to learn a set of domain-specific axioms specifying complex events.

Inductive Logic Programming (ILP) (De Raedt 2008) provides techniques for

learning logical theories from examples. In the Learning from Interpretations (LfI)

(Blockeel et al. 1999) setting that we use in this work, each training example is an

interpretation, i.e. a set of true ground atoms, as in Table 2(a). Given a set of training

interpretations I and some background theory B, which in our case consists of the

domain-independent axioms of the EC, the goal in LfI is to find a theory H , such

that for each interpretation I ∈ I, B ∪ H covers I , i.e. I is a model of B ∪ H .

Although different semantics are possible, in this work a “model” is an answer set

(Gebser et al. 2012).

To allow for an online learning setting, we use the Hoeffding bound (Hoeffding

1963), a statistical tool that may be used as a probabilistic estimator of the

generalization error of a model (true expected error on the entire input), given

its empirical error (observed error on a training subset) (Dhurandhar and Dobra

2012). Given a random variable X with range in [0, 1] and an observed mean X of

its values after n independent observations, the Hoeffding Bound states that, with

probability 1− δ, the true mean X̂ of the variable lies in an interval (X − ε, X + ε),

where ε =

√
ln(1/δ)

2n
. In other words, the true average can be approximated by the

observed one with probability 1− δ, given an error margin ε that decreases with the

number of observations n.

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

822 N. Katzouris, A. Artikis and G. Paliouras

4 Online Learning of Event Definitions

ILP learners typically employ a separate-and-conquer strategy: clauses that cover

subsets of the examples are constructed one by one recursively, until all examples

are covered. Each clause is constructed in a top-down fashion, starting from an

overly general clause and gradually specializing it by adding literals to its body.

The process is guided by a heuristic function G that assesses the quality of each

specialization on the entire training set. At each step, the literal (or set of literals)

with the optimal G-score is selected and the process continues until certain criteria

are met. To adapt this strategy to an online setting, we use the Hoeffding bound

to evaluate candidate specializations on a subset of the training interpretations,

instead of evaluating them on the entire input. To do so, we use an argument

adapted from (Domingos and Hulten 2000). Let r be a clause and G a clause

evaluation function with range in [0, 1]. The evaluation function that we use in this

work will be discussed shortly. Assume also that after n training instances, r1 is r’s

specialization with the highest observed mean G-score G and r2 is the second best

one, i.e. ΔG = G(r1)−G(r2) > 0. Then by the Hoeffding bound we have that for the

true mean of the scores’ difference ΔĜ it holds ΔĜ > ΔG− ε, with probability 1− δ,

where ε =

√
ln(1/δ)

2n
. Hence, if ΔG > ε then ΔĜ > 0, implying that r1 is indeed the

best specialization to select at this point, with probability 1− δ. In order to decide

which specialization to select, it thus suffices to accumulate observations from the

input stream until ΔG > ε. Since ε decreases with the number of observations, given

a desired δ, the number of observations n needed to reach a decision may be traded

for a tolerable generalization error ε of not selecting the optimal specialization at

a certain choice point. The observations need not be stored or reprocessed. We

process each observation once to extract the necessary statistics for the computation

of the G-score of each candidate specialization. This gives rise to a single-pass clause

construction strategy.

In LfI each interpretation is independent form others (Blockeel et al. 1999).

This guarantees the independence of observations that is necessary for using the

Hoeffding bound. In our setting, an interpretation consists of ground atoms I known

true at two consecutive time points T and T+1, as in Table 2(a). In our EC dialect,

the initiation/termination of complex events depends only on the simple events and

contextual information of the previous time-point, therefore each interpretation is

an independent training instance.

4.1 Evaluating Clauses

We relax the LfI requirement that a hypothesis H covers every training interpretation

to account for noise, and thus seek for a theory with a good fit in the training data.

To this end, we define true positive, false positive and false negative atoms as follows:

Definition 1 (TP, FP, FN atoms)

Let B consist of the domain-independent EC axioms, r be a clause and I an

interpretation. We denote by narrative(I) and annotation(I) the narrative and the

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 823

annotation part of I respectively (see also Table 2(a)). We denote by Mr
I an answer

set of B ∪ narrative(I) ∪ r . Given an annotation atom α we say that:

• α is a true positive (TP) atom w.r.t. clause r iff α ∈ annotation(I) ∩M r
I .

• α is a false positive (FP) atom w.r.t. clause r iff α ∈Mr
I but α /∈ annotation(I).

• α is a false negative (FN) atom w.r.t. clause r , iff α ∈ annotation(I) but

α /∈Mr
I . �

We seek a theory H that maximizes the TP atoms, while minimizing the FP and

FN atoms, collectively for all its clauses. To do so, we maintain a count per clause

for each such atom. For an initiatedAt clause, its TP (resp. FP) count is increased

each time it correctly (resp. incorrectly) initiates a complex event (according to the

annotation). For a terminatedAt clause, its TP count is increased each time it correctly

allows a complex event to persist, by not terminating it. Its FN count is increased

when it incorrectly terminates a complex event.

When learning structure in Horn (negation-free) logic with ILP, a theory H is

augmented with new clauses to increase its total TP count, while existing clauses in

H are specialized to decrease the FP count. This strategy is not directly applicable to

the problem at hand. When learning programs in the EC, the addition of new clauses

may be necessary to eliminate FPs, while clause specialization may be necessary to

increase TPs, as we explain below. Given a theory H and interpretation I , assume

that B ∪H does not cover I . Then one of the following holds:

1. The FN case. There is at least one FN atom α. This may be due to one of the

following:

(a) No initiatedAt clause in H “fires”, failing to initiate the complex event that

corresponds to α, when it should. In this case, generating a new initiatedAt

clause, eliminates the FN atom, turning it into a TP.

(b) One or more terminatedAt clauses in H are over-general, terminating the

complex event that corresponds to α when they should not. Specializing the

over-general clauses, eliminates the FN atom, turning it into a TP.

2. The FP case. There is at least one FP atom α. This may be due to one of the

following:

(a) No terminatedAt clause in H “fires”, failing to terminate the complex event

that corresponds to α when it should, so α erroneously persists by inertia.

Generating a new terminatedAt clause eliminates the FP.

(b) One or more initiatedAt clauses are over-general, re-initiating a corresponding

complex event when they should not. Specializing the over-general clauses

eliminates the FP.

Given the different possible behaviours of initiation and termination clauses in the

process of optimizing a theory H , we next define the clause evaluation function.

Definition 2 (Clause evaluation function)

Let us denote by TPr ,FPr and FNr respectively, the accumulated TP, FP and FN

counts of clause r over the input stream. The clause evaluation function G for a

clause r is a function with range in [0, 1] defined as follows:

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

824 N. Katzouris, A. Artikis and G. Paliouras

Table 3. Action dispatching scheme for OLED’s initiatedAt (Linit) and terminatedAt (Lterm)

parallel processes. The justification refers to the different cases analysed in Section 4.1

Process Cause of Failure Action Justification

Linit FP Clause expansion Case 2(b)

Linit FN Theory expansion Case 1(a)

Lterm FP Theory expansion Case 2(a)

Lterm FN Clause expansion Case 1(b)

G(r) =

⎧⎨
⎩

TPr

TPr+FPr
if r is an initiatedAt clause

TPr

TPr+FNr
if r is a terminatedAt clause

�

Both initiatedAt and terminatedAt clauses affect the total TP count of a theory H ,

therefore TP counts per clause are taken into account for the evaluation of both

types of clauses. Additionally, specializing existing clauses further improves the

quality of H by eliminating FPs in the initiatedAt case (case 2(b) above) and FNs in

favor of TPs in the terminatedAt case (case 1(b)). Therefore, FPs (resp. FNs) should

also be taken into account when evaluating initiatedAt (resp. terminatedAt) clauses.

On the other hand, the total FP (resp. FN) count of a theory H is not affected

by its existing terminatedAt (resp. initiatedAt) clauses, but instead requires new clauses

to be generated (cases 2(a) and 1(a) respectively). Therefore, FPs and FNs are

irrelevant for the evaluation of existing terminatedAt and initiatedAt clauses respectively.

Combining these observations we derive the scoring function of Definition 2, that

uses precision and recall for initiatedAt and terminatedAt clauses respectively.

4.2 The OLED system

In this section we discuss the main functionality of OLED, presented in Algorithm

1, in detail. Learning begins with an empty hypothesis H . On the arrival of new

interpretations, OLED either expands H , by generating a new clause, or tries to expand

(specialize) an existing clause. Clauses of low quality are pruned, after they have

been evaluated on a sufficient number of examples. Each incoming interpretation is

processed once, to extract the necessary statistics for clause evaluation in the form

of TP, FP and FN counts, and is subsequently discarded.

To distinguish between the different cases presented in Section 4.1, initiation

and termination clauses are learnt separately in parallel, by two processes Linit and

Lterm respectively (each one of these processes runs separately Algorithm 1). The

input stream is forwarded to each of these processes simultaneously. Thanks to this

decoupling, when either process fails to account for a training interpretation, it is

able to infer the causes of failure in terms of FP and FN atoms. In particular

Linit detects FP/FN -failures based on cases 2(b)/1(a) respectively and Lterm detects

FP/FN -failures based on cases 2(a)/1(b). According to the cause of failure, the

process dispatches control either to the theory expansion, or the clause expansion

subroutines. The choice among these actions is made by the boolean function

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 825

Algorithm 1 OnlineLearning(I, B, G, δ, d,Nmin , Smin)

Input: I: A stream of training interpretations; B: Background knowledge; G: Clause

evaluation function; δ : Confidence for the Hoeffding test; d : Specialization depth; Smin :

Clause G-score quality threshold.

1: H := ∅
2: for each I ∈ I do

3: Update TPr ,FPr ,FNr and Nr counts from I , for each r ∈ H and each r′ ∈ ρd(r),

where Nr denotes the number of examples on which r has been evaluated so far.
4: if ExpandTheory(B,H, I) then

5: H ← H ∪ StartNewClause(B, I)
6: else

7: for each clause r ∈ H do

8: r ← ExpandClause(r, G, δ)

9: H ← Prune(H, Smin)

10: return H

11: function StartNewClause(B, I):

12: Generate a bottom clause ⊥ from I and B

13: r := head(⊥)←
14: ⊥r := ⊥
15: Nr = FPr = TPr = FNr := 0

16: return r

17: function ExpandClause(r, G, δ):

18: Compute ε =
√

ln(1/δ)

2Nr
and let G denote the mean value of a clause’s G-score

19: Let r1 be the best specialization of r, r2 the second best and ΔG = G(r1)− G(r2)

20: Let τ equal the mean value of ε observed so far

21: if G(r1) > G(r) and [ΔG > ε or τ < ε]:

22: ⊥r1 := ⊥r

23: return r1
24: else return r

25: function prune(H, Smin):

26: Remove from H each clause r for which Smin − G(r) > ε, where ε is the current

Hoeffding bound

27: return H

ExpandTheory in line 4 of Algorithm 1. Action selection is based on the analysis of

Section 4.1 and summarised in Table 3. Below we present an example for illustration

purposes.

Example Initially, processes Linit and Lterm start with two empty hypotheses,

Hinit and Hterm. Assume that the annotation in one of the incoming interpretations

dictates that the moving complex event holds at time 10, while it does not hold

at time 9. Since no clause in Hinit yet exists to initiate moving at time 9, Linit

detects the moving instance at time 10 as an FN and proceeds to theory expansion

(second case in Table 3), generating an initiation clause for moving. Lterm is not

concerned with initiation conditions, so it will take no actions in this case. Then, a

new interpretation arrives, where the annotation dictates that moving holds at time

20, but does not hold at time 21. In this case, since no clause yet exists in Hterm to

terminate moving at time 20, Lterm will detect an FP instance at time 21. It will then

proceed to theory expansion (third case in Table 3), generating a new termination

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

826 N. Katzouris, A. Artikis and G. Paliouras

condition for moving. At the same time, assume that the initiation clause in Hinit

is over-general and erroneously re-initiates moving at time 20, generating an FP

instance for the Linit process at time 21. In response to that, Linit will proceed to

clause expansion (first case in Table 3), penalizing the over-general initiation clause

by increasing its FP count, thus contributing towards its potential replacement by

one of its specializations. �
In the remainder of this section, we go into the details of theory and clause

expansion, as well as some other aspects of OLED’s functionality.

Theory Expansion. The theory expansion process is handled by the

StartNewClause function in Algorithm 1. A new clause is generated in a data-driven

fashion, by constructing a bottom clause ⊥ from a training interpretation (Muggleton

1995). Theory expansion consists of the addition of the clause r = head(⊥) ← to

theory H . From that point on, r is gradually specialized by the addition of literals

from ⊥ to its body. We denote by ⊥r the bottom clause associated to clause r.

In a typical ILP setting, a bottom clause is constructed by selecting a target

predicate instance e as a “seed”, placing it in the head of a newly generated

clause ⊥ with an empty body. A set of atoms that follow deductively from e and the

background knowledge are placed in the body of ⊥. Constants in ⊥ are replaced with

variables, where appropriate, as indicated by a particular language bias, typically

mode declarations (Muggleton 1995). To find a clause with a good fit in the data, a

refinement operator ρ is used to generate candidate clauses that θ-subsume ⊥.

The aforementioned approach cannot be applied directly to the problem we

address here, which falls in the non-Observational Predicate Learning (OPL) class

of problems (Muggleton 1995). In non-OPL, instances of target predicates, that are

normally used as seeds for the construction of ⊥, are not directly observable in the

training data. In our case, target predicates are initiatedAt/2 and terminatedAt/2, while

the annotation in the training interpretations consists of complex event instances in

terms of the holdsAt/2 predicate (see Table 2). A workaround is to use abduction to

obtain the missing target predicate instances and then construct bottom clauses from

them. This approach is followed by the XHAIL system (Ray 2009) and we also adopt

it here. Like XHAIL, OLED also uses mode declarations for specifying the language

bias.

OLED may output the hypothesis constructed so far at any time during the learning

process. We allow a “warm-up” period, in the form of a minimum number of training

instances Nmin on which a clause r must be evaluated before it can be included in

an output hypothesis.

Clause Expansion. We use the Hoeffding bound to select among competing

specializations of a clause r. These specializations are generated by adding one

or more literals from ⊥r to the body of r. An input parameter d for specialization

depth serves as an upper bound to the number of literals that may be added at

each time. We use ρd(r) to denote the set of specializations for clause r. Formally,

ρd(r) = {head(r) ← body(r) ∧ D | D ⊂ body(⊥r) and |D| � d}. E.g. ρ1(r) consists of

all “one-step” specializations of r (i.e. those that result by the addition of a single

literal from ⊥r), while ρ2(r) consists of ρ1(r) plus all “two-step” specializations, and

so on.

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 827

A clause r is expanded, i.e. replaced by its best-scoring specialization from ρd(r),

when a sufficient number of interpretations have been seen, such that ΔG > ε,

where ΔG is the observed difference between the mean G-scores of r’s best and

second best specializations. To ensure that no clause r is replaced by a specialization

of lower quality, r itself is also considered as a potential candidate along with its

specializations from ρd(r). This ensures that expanding a clause to its best-scoring

specialization is better, with probability 1− δ, than not expanding it at all.

Online learners are typically subject to order effects, i.e. they are sensitive

to the order in which the examples are presented. Using the Hoeffding bound

allows OLED to mitigate such effects, since clause expansion is postponed until

sufficient evidence for the quality of the candidate specializations is provided by the

data.

Tie-breaking. When the scores of two or more specializations are very similar, a

large number of training instances may be required to decide between them. This

could be wasteful, since any one of the specializations may be chosen. In such cases,

as in (Domingos and Hulten 2000), we break ties as follows: Instead of waiting until

ΔG > ε, as required by the Hoeffding bound-based heuristic, we expand r to its

best-scoring specialization if ΔG < ε < τ, where τ is a tie-breaking threshold (recall

that ε decreases with the number of training examples, thus it may fall below τ). We

follow (Yang and Fong 2011) and use an adaptive tie-breaking threshold, set to the

mean value of ε that has been observed so far in the training process (see line 20,

Algorithm 1). In the case of a tie between r itself and its best-scoring specialization,

we follow a conservative approach and do not expand r.

Clause pruning. OLED supports removal of clauses whose score is smaller than a

quality threshold Smin . To decide when a clause may be removed we also use the

Hoeffding bound. If Smin−G(r) > ε, then with probability 1−δ, the true mean of r’s

G-score is lower than the quality threshold Smin and therefore r should be removed.

5 Experimental Evaluation

We evaluate OLED’s performance on CAVIAR (see Section 3), a benchmark dataset

for activity recognition. CAVIAR contains a total of 282067 training interpretations

with a mean size of 25 atoms each. The size of the search space (clause subsumption

lattice) is determined by the size of bottom clauses, which in these experiments

consisted on average of 15 literals each. All experiments were conducted on a Linux

machine with a 3.6GHz processor (4 cores and 8 threads) and 16GiB of RAM. The

code and data are available online2.

5.1 Comparison with Manually Constructed Rules and Batch Learning

The purpose of this experiment was to assess whether OLED is able to efficiently

learn theories of comparable quality to hand-crafted rules and state-of-the-art batch

2 https://github.com/nkatzz/OLED

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

828 N. Katzouris, A. Artikis and G. Paliouras

Table 4. Experimental results from the CAVIAR dataset

Method Precision Recall F1-score Theory size Time (sec)

(a) Moving ECcrisp 0.909 0.634 0.751 28 –

ECMM 0.844 0.941 0.890 28 1692

XHAIL 0.779 0.914 0.841 14 7836

OLED 0.709 0.948 0.812 34 12

Meeting ECcrisp 0.687 0.855 0.762 23 –

ECMM 0.919 0.813 0.863 23 1133

XHAIL 0.804 0.927 0.861 15 7248

OLED 0.943 0.750 0.836 29 23

(b) Moving ECcrisp 0.721 0.639 0.677 28 –

OLED 0.653 0.834 0.732 42 124

ECcrisp 0.644 0.855 0.735 23 –

Meeting OLED 0.678 0.953 0.792 30 107

(c) Moving ILED 0.947 0.981 0.963 55 34

OLED 0.963 0.934 0.948 31 35

Meeting ILED 0.930 0.976 0.952 65 30

OLED 0.975 0.933 0.953 53 42

learning approaches. We compare OLED to the following: (i) ECcrisp, a hand-crafted

set of clauses for the CAVIAR dataset, described in (Artikis et al. 2010); (ii) ECMM

(Skarlatidis et al. 2015), a probabilistic version of ECcrisp with weights learnt by

the Max-Margin weight learning method for Markov Logic Networks (MLNs) of

(Huynh and Mooney 2009); (iii) XHAIL (Ray 2009), a hybrid abductive-inductive

learner capable of learning programs in the EC. ECMM was selected because it was

shown to achieve good results on CAVIAR (Skarlatidis et al. 2015). XHAIL was

selected as one of the few ILP systems that is able to learn theories in the EC. OLED

and XHAIL were implemented using the Clingo3 answer set solver as the core reasoning

component, while the ECMM approach used in this experiment was implemented in

the LoMRF framework4 for MLNs.

To evaluate ECMM, (Skarlatidis et al. 2015) used a fragment of the CAVIAR

dataset, which is also the one we use in this experiment. The target complex events

in this dataset are related to two persons meeting each other or moving together and

the training data consists of the parts of CAVIAR that involve these complex events.

The fragment dataset contains a total of 25738 training interpretations. There are

6272 interpretations in which moving occurs and 3722 in which meeting occurs.

OLED’s results were achieved using significance δ = 10−5, a clause pruning threshold

Smin of 0.7 for meeting and 0.5 for moving and specialization depth parameter

d = 2 for meeting and d = 1 for moving. The results reported with this parameter

configuration are the best among several other parameter settings that we tried for

3 http://potassco.sourceforge.net/
4 https://github.com/anskarl/LoMRF

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 829

Smin and d. The training time for each run of OLED was the maximum training time

of the two parallel processes Linit and Lterm.

Results were obtained using 10-fold cross validation and are presented in

Table 4(a) in the form of precision, recall and f1-score. These statistics were micro-

averaged over the instances of recognized complex events from each fold of the

10-fold cross validation process. Table 4(a) also presents average training time per

fold for all approaches except ECcrisp (where no training is involved), average theory

sizes (total number of literals) for OLED and XHAIL, as well as the fixed theory size of

ECcrisp and ECMM.

ECMM achieves the best f1-score for both complex events, followed closely by

XHAIL. OLED achieves a comparable predictive accuracy (particularly for meeting),

while it outscores the hand-crafted rules. Moreover, OLED achieves speed-ups of

several orders of magnitude as compared to ECMM and XHAIL, due to its single-pass

strategy. The superior accuracy of ECMM and XHAIL is due to them being batch

learners, optimizing their respective outcomes over the entire training set. This also

explains the increased training times for both. Regarding theory size, XHAIL learns

significantly more compressed hypotheses than OLED. The reason is that XHAIL learns

whole theories, while OLED learns each clause separately to gain in efficiency.

5.2 Activity Recognition on the Entire CAVIAR Dataset

We also present experimental results from running OLED on the entire CAVIAR

dataset. The target complex events are meeting and moving as previously. The

number of positive interpretations for both complex events is also the same as

before, since the data fragment used in the previous experiment contains the parts

of CAVIAR where these complex events occur. In contrast, the number of negative

training instances is much larger in this experiment.

Due to the high training times of XHAIL and ECMM, we do not present results

with these approaches, and compare OLED only to the set of manually developed

clauses ECcrisp. The experimental setting was as follows: We used 10-fold cross

validation over the fragment used in the previous experiment, but in each fold, the

training and test sets were augmented by a number of negative training sequences. In

particular, in each fold, 90% of the negative training sequences from the remaining

part of CAVIAR (i.e. the part not contained in the data fragment of the previous

experiment) was added to the training set of the fold, while the remaining 10%

was added to the test set. The parameter configuration for OLED was the same as in

the previous experiment, with the exception of the specialization depth for meeting,

which was set to d = 1. The limited size of the training sets in the experiment

of Section 5.1 prevented OLED from sufficiently expanding its clauses when d = 1,

resulting in over-general theories. Setting d = 2, thus trying 2-step specializations as

well, made it possible to obtain the results reported in Table 4(a). In contrast, this

was not necessary in this experiment, where due to the significantly larger training

set size, OLED was able to find good clauses by trying 1-step specializations only.

Table 4(b) shows the results. Both approaches’ performance is decreased, as

compared to the previous experiment, due to the increased number of false positives,

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

830 N. Katzouris, A. Artikis and G. Paliouras

caused by the large number of additional negative instances. OLED still outscores the

hand-crafted knowledge base.

5.3 Comparison with an Incremental Learner

We compared OLED to ILED (Katzouris et al. 2015), an incremental learner that is able

to learn theories in the EC. Recall that ILED cannot learn from noisy data (see also

Section 2), therefore, it cannot be used in CAVIAR, which exhibits various types of

noise – see (Artikis et al. 2010) for details. In order to compare the two systems,

we thus generated a noise-free version of CAVIAR with artificial annotation for

the moving and meeting complex events. To produce the annotation, we used the

hand-crafted knowledge base ECcrisp for inference over the CAVIAR narrative. We

used 10-fold cross validation to assess the performance of the compared systems. For

each fold, the training (resp. test) set consisted of the 90% (resp. 10%) of positive

and negative interpretations for each complex event. OLED’s parameter setting was

as reported in Section 5.2.

The results are presented in Table 4(c). The predictive accuracy for both systems

is comparable, with ILED’s being slightly better. This was expected, since ILED re-scans

the historical memory of past data to revise its theories. Training times are also

comparable, with OLED’s being slightly higher, as compared to ILED’s. ILED is able

to avoid certain computations by inferring that they are redundant, based on the

assumption that the data is noise-free. Regarding theory size, OLED learns significantly

shorter hypotheses that ILED. OLED prunes a number of its learnt clauses, in an effort

to avoid fitting potential noise in the data and also follows a conservative clause

expansion strategy. In contrast, ILED tries to account for every positive example (and

exclude every negative one), since it is designed for learning sound hypotheses.

5.4 Scalability

In this experiment we assess OLED’s scalability. When learning from the entire

CAVIAR dataset (Section 5.2) the average processing time per training interpretation

was 6.7 milliseconds (ms), while the frame rate in CAVIAR, i.e. the rate in which

video frames containing new data arrive is 40 ms. As a “stress-test”, we evaluated

OLED’s performance in more demanding learning tasks. We generated 4 different

datasets, each of which consisted of a number of copies of CAVIAR. The new

datasets differ from the original one in the constants referring to the tracked entities

in simple and complex events. We generated datasets consisting of 2, 5, 8 and 10

copies, each of which contained 20, 50, 80 and 100 different entities respectively. Like

in the previous experiments, each interpretation includes narrative and annotation

atoms from two time points. In this experiment however, the number of atoms in

each interpretation grows proportionally to the number of copies of the dataset.

We performed learning with OLED on the original and the enlarged datasets and

measured the average processing time per training interpretation. Figure 1 presents

the results. For instance, interpretations in the 10 copies of CAVIAR are handled

in approximately 2.5 sec in a standard desktop computer. The growth in average

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 831

Fig. 1. OLED’s mean processing time and mean ground program size per training

interpretation, for varying interpretation sizes.

processing time is due to the increased number of annotation atoms in the datasets,

as well as the additional domain constants, that result in an exponential increase

in the size of the ground program produced during the clause evaluation process

(see the dashed line in Figure 1). OLED’s performance may be improved by some

optimizations, such as taking advantage of domain knowledge about relational

dependencies in the data. For instance, in CAVIAR complex events involve two

different entities, therefore learning may be split across different processing cores

that learn from independent parts of the data. Such optimizations are part of our

current work.

6 Conclusions and Further Work

We presented OLED, an ILP system for online learning of complex event definitions

in the Event Calculus. OLED is an any-time system that learns by a single-pass

over a stream, using the Hoeffding bound to evaluate candidate clauses on a

subset of the input. Results of the empirical evaluation indicate that OLED achieves

speed-ups of several orders of magnitude, as compared to batch learners, with a

comparable predictive accuracy. It also outscores hand-crafted rules and matches

the performance of a sound incremental learner that can only operate on noise-free

datasets. We intend to improve OLED in several aspects, including scalability and

development of adaptive techniques for automated configuration of its parameters.

We also plan to experiment with dialects of the EC that allow long-term temporal

relations between entities and combine OLED with weight learning techniques towards

online statistical relational learning.

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

832 N. Katzouris, A. Artikis and G. Paliouras

Acknowledgements

This work was partly funded by the EU Project REVEAL (FP7 610928).

References

Artikis, A., Sergot, M. and Paliouras, G. 2015. An event calculus for event recognition.

Knowledge and Data Engineering, IEEE Transactions on 27, 4, 895–908.

Artikis, A., Skarlatidis, A. and Paliouras, G. 2010. Behaviour recognition from video

content: a logic programming approach. International Journal on Artificial Intelligence

Tools 19, 02, 193–209.

Athakravi, D., Corapi, D., Broda, K. and Russo, A. 2013. Learning through hypothesis

refinement using answer set programming. In Inductive Logic Programming, Springer, 31–46.

Blockeel, H. and De Raedt, L. 1998. Top-down induction of first-order logical decision

trees. Artificial intelligence 101, 1, 285–297.

Blockeel, H., De Raedt, L., Jacobs, N. and Demoen, B. 1999. Scaling up inductive logic

programming by learning from interpretations. Data Mining and Knowledge Discovery 3, 1,

59–93.

De Raedt, L. 2008. Logical and Relational Learning. Springer Science & Business Media.

Denecker, M. and Kakas, A. 2002. Abduction in logic programming. In Computational

Logic: Logic Programming and Beyond. Springer, 402–436.

Dhurandhar, A. and Dobra, A. 2012. Distribution-free bounds for relational classification.

Knowledge and information systems 31, 1, 55–78.

Domingos, P. and Hulten, G. 2000. Mining high-speed data streams. In Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 71–80.

Domingos, P. and Hulten, G. 2001. A general method for scaling up machine learning

algorithms and its application to clustering. In ICML, Vol. 1. 106–113.

Esposito, F., Semeraro, G., Fanizzi, N. and Ferilli, S. 2000. Multistrategy theory revision:

Induction and abduction in inthelex. Machine Learning 38, 1-2, 133–156.

Etzion, O. and Niblett, P. 2010. Event Processing in Action. Manning Publications Co.

Gama, J. 2010. Knowledge Discovery from Data Streams. CRC Press.

Gama, J. and Gaber, M. M. 2007. Learning from Data Streams. Springer.

Gama, J., Kosina, P., et al. 2011. Learning decision rules from data streams. In IJCAI

Proceedings-International Joint Conference on Artificial Intelligence, Vol. 22. Citeseer,

1255.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer set solving in

practice. Synthesis Lectures on Artificial Intelligence and Machine Learning 6, 3, 1–238.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. Journal

of the American statistical association 58, 301, 13–30.

Hulten, G., Domingos, P. and Abe, Y. 2003. Mining massive relational databases. In

Proceedings of the IJCAI-2003 Workshop on Learning Statistical Models from Relational

Data. 53–60.

Huynh, T. N. and Mooney, R. J. 2009. Max-margin weight learning for markov logic

networks. In Machine Learning and Knowledge Discovery in Databases. Springer, 564–579.

Jensen, D. 1999. Statistical challenges to inductive inference in linked data. In AISTATS.

Jensen, D. and Neville, J. 2002. Autocorrelation and linkage cause bias in evaluation of

relational learners. In Inductive Logic Programming, Springer, 101–116.

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

Online learning of event definitions 833

Katzouris, N., Artikis, A. and Paliouras, G. 2015. Incremental learning of event definitions

with inductive logic programming. Machine Learning 100, 2-3, 555–585.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. New Generation

Computing 4, 1, 67–95.

Lopes, C. and Zaverucha, G. 2009. Htilde: scaling up relational decision trees for very

large databases. In Proceedings of the 2009 ACM symposium on Applied Computing. ACM,

1475–1479.

Muggleton, S. 1995. Inverse entailment and Progol. New generation computing 13, 3-4,

245–286.

Ray, O. 2009. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3,

329–340.

Richards, B. L. and Mooney, R. J. 1995. Automated refinement of first-order horn-clause

domain theories. Machine Learning 19, 2, 95–131.

Skarlatidis, A., Paliouras, G., Artikis, A. and Vouros, G. A. 2015. Probabilistic event

calculus for event recognition. ACM Transactions on Computational Logic (TOCL) 16, 2,

11.

Yang, H. and Fong, S. 2011. Moderated vfdt in stream mining using adaptive tie threshold

and incremental pruning. In Data Warehousing and Knowledge Discovery, Springer, 471–483.

https://doi.org/10.1017/S1471068416000260 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000260

