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Abstract. The coupling of shear and fast Alfvén waves in the vicinity of a magnetic
X-point is studied for the case in which a weak longitudinal guide field Bz0 is
present, with variations in the longitudinal direction and plasma pressure effects
neglected. It is shown that an analytical solution for the shear wave in the limit
of ideal magnetohydrodynamics (MHD) and Bz0 = 0 exhibits phase mixing and
equilibration of the field and kinetic energy at a rate that increases with the
spatial extent of the initial disturbance. Equations describing perturbatively the
pumping of fast waves by shear waves in the presence of finite Bz0 are derived and
solved numerically, taking into account resistivity and electron inertial effects. It is
shown that shear wave energy is most rapidly and efficiently converted to plasma
kinetic energy when the collisionless skin depth exceeds the resistive scale length.
The conversion of incompressible MHD modes to compressible modes at X-points
provides a possible mechanism for solar coronal heating, and mode conversion
processes of this type are also likely to occur in tokamak plasmas with X-points.

1. Introduction
Magnetic X-points occur frequently in both natural and laboratory plasmas, and
are of considerable theoretical interest, since they provide a simple paradigm for
the study of a wide range of plasma phenomena, such as magnetohydrodynamic
(MHD) mode conversion (Bulanov et al. 1992), magnetic reconnection (Craig and
Watson 1992; McClements et al. 2004) and particle acceleration (Bulanov 1980;
Bruhwiler and Zweibel 1992; Petkaki and MacKinnon 1997; Mori et al. 1998;
Browning and Vekstein 2001; Hamilton et al. 2003, 2005). In the solar context,
it has been proposed that X-points could play an important role in both coronal
heating (Hassam and Lambert 1996) and flare energy release (Craig andMcClymont
1991). In laboratory tokamak experiments, X-points in the poloidal component of
the magnetic field can occur both inside the plasma due to magnetic reconnection
(see, e.g., Donné et al. 2005) and, in the case of divertor operation, at the plasma
edge. In the latter case it is very likely that there is a causal link between the
presence of X-points and the achievement of enhanced (‘H-mode’) confinement,
but a full physical understanding of the impact of X-points on tokamak plasma
stability and confinement has yet to be achieved.
Previous authors have demonstrated that even the simplest type of current-free

plasma X-point configuration, with no longitudinal guide field, has a rich physical
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structure (see, e.g., Bulanov and Syrovatskii 1980). This is particularly so when non-
MHD effects are take into account (McClements and Thyagaraja 2004). However,
the presence of a longitudinal fieldBz0 cannot be neglected in the tokamak case, and
Bulanov et al. (1992) have argued that taking Bz0 to be exactly equal to zero is a
rather restrictive assumption. Neglecting electrical resistivity and plasma pressure
effects, these authors studied analytically the coupling of shear Alfvén waves and
fast Alfvén waves at an X-point with zero equilibrium current but finite Bz0. When
Bz0 = 0 the two modes are decoupled, provided that there are no variations in the
longitudinal direction (Bulanov and Syrovatskii 1980). The present paper is also
concerned with the coupling of shear and fast Alfvén waves at an X-point with
Bz0�0. Our approach differs from that of Bulanov et al. (1992) in that we include
resistive and non-MHD effects, and we impose boundary conditions that ensure
zero Poynting flux out of the system. This enables us to focus on the issue of how
rapidly the energy in a shear wave is dissipated or transformed into other forms of
energy at an X-point with Bz0�0.
Following the derivation in Sec. 2 of a particular shear Alfvén wave solution of

the linearized ideal MHD equations for an X-point with Bz0 = 0, we present in
Sec. 3 a perturbative analysis of the coupling of shear waves and fast waves at an
X-point with finiteBz0. Possible implications of our results for solar and laboratory
plasmas are discussed in Sec. 4.

2. Shear wave at X-point with zero longitudinal field
As indicated previously, shear and fast waves propagating in the vicinity of a
current-free X-point are decoupled if there are no variations in the longitudinal
direction and zero magnetic field in that direction; moreover, in the ideal limit the
equations describing both types of mode can be readily solved analytically (Bulanov
and Syrovatskii 1980; Bulanov et al. 1992; McLaughlin and Hood 2004). Here
we evaluate one particular solution for the shear wave, focusing on the temporal
behaviour of the field energy and kinetic energy. This solution will be invoked in
the next section as a drive for the fast wave in the presence of a weak longitudinal
field.
We consider perturbations of the following equilibrium magnetic field configur-

ation:

BE =
B0

r0
(yx̂+ xŷ), (1)

where B0 is the field at radial distance r0 from the null, with x̂ and ŷ denoting
unit vectors in the x and y directions. The system is assumed to be invariant in the
z-direction. In the limit of zero plasma pressure and in the absence of equilibrium
flows, the linearized ideal MHD induction and momentum equations can be written
as

∂B
∂t

= ∇ × (v× BE), (2)

∂v
∂t

=
1

µ0ρ0
(∇ × B) × BE. (3)

Here, B and v are the perturbations to the magnetic field and fluid velocity, ρ0 is
the equilibrium density (assumed to be uniform) and µ0 is free space permeability.
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Normalizing the space coordinates x and y to r0, time t to the Alfvén time
r0(µ0ρ0)1/2/B0, Bz to B0 and vz to the Alfvén speed at r = r0, we find that the
z-components of (2) and (3) reduce to

∂Bz

∂t
=

(
x

∂

∂y
+ y

∂

∂x

)
vz , (4)

∂vz

∂t
=

(
x

∂

∂y
+ y

∂

∂x

)
Bz . (5)

The x and y components of the induction and momentum equations have the trivial
solution Bx = By = vx = vy = 0. In this case, with the assumption of invariance
in the z-direction, it follows from the continuity equation that the perturbations
described by (4) and (5) are incompressible, i.e. they are shear Alfvén waves. It is
evident from these equations that Bz satisfies

∂2Bz

∂t2
=

(
x

∂

∂y
+ y

∂

∂x

)2

Bz . (6)

This can be reduced to the one-dimensional wave equation

∂2Bz

∂t2
=

∂2Bz

∂u2
, (7)

using the coordinate transformation

x = ϕ1/2 cosh u, y = ϕ1/2 sinhu. (8)

We consider the following solution of (7):

Bz =
25∑

n=1

exp(−0.01n2) exp
[

−
(

ϕ − 0.2
∆ϕ

)2]
sin[k(u − u−)] cos kt, (9)

where ∆ϕ is a constant,

k =
nπ

u+ − u−
(10)

and

u± =
1
2

ln
∣∣∣∣ 1
ϕ

±
√

1
ϕ2

− 1
∣∣∣∣. (11)

This solution has the property that Bz = 0 on the boundary r = (x2 + y2)1/2 =
1. Such a condition implies zero Poynting flux through the boundary, and thus
conservation of total wave energy (field energy plus kinetic energy) within the
domain r � 1.
Putting BE = ∇ × (ψEẑ), it is evident from (1) that (in dimensionless units)

ψE = 1
2 (y2 − x2). (12)

From (8), it is then apparent that ϕ = −2ψE, i.e. ϕ is constant on a flux surface of
the unperturbed field; the variable u is a function of distance in the (x, y) plane along
an unperturbed flux surface. The particular solution represented by (9) was chosen
in order to distinguish clearly the behaviour of the shear wave from that of the fast
wave in the X-point configuration. The ϕ-dependant exponential factor, with ∆ϕ
set equal to a value much less than unity, ensures that the initial disturbance is
strongly confined in ϕ space to the neighbourhood of one particular unperturbed
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flux surface. Since the solution represents a shear wave, there is no propagation
of the pulse across the unperturbed field, and so the solution remains strongly
localized in ϕ space for all time. By making the exponential factor peak at ϕ = 0.2,
we ensure that the solution never approaches the vicinity of the X-point null at
r = 0. In contrast, fast wave solutions of (2) and (3) can propagate to the null. Due
to the spatial dependence of the local Alfvén speed, this leads to profile steepening
and consequently resistive dissipation of wave energy (Craig and Watson 1992).
Figure 1 shows the shear wave solution given by (9) at three times, for∆ϕ = 0.05.

There is some broadening of the pulse along the unperturbed magnetic field, but it
remains confined to one quadrant of the X-point and, as noted previously, there is
no propagation across the unperturbed field.
With Bz given by (9), it follows immediately from (5) that

vz =
25∑

n=1

exp(−0.01n2) exp
[

−
(

ϕ − 0.2
∆ϕ

)2]
cos[k(u − u−)] sin kt. (13)

In our dimensionless units, the total shear wave energy per unit length in the
z-direction is given by

εs =
∫∫

( 1
2B2

z + 1
2v2

z ) dx dy, (14)

where the domain of integration is the interior of the circle r = 1. It can be shown
from (9) and (13) that ε is a conserved quantity, in accordance with the use of
an ideal MHD model and the vanishing of Poynting flux at the system boundary.
The temporal variation of the field (εsf ) and kinetic (εsk) energy components, plotted
in Fig. 2 for two different values of ∆ϕ, is somewhat reminiscent of that found
for the fast wave in the ideal limit by McClements et al. (2004): in both cases
the energy components approach equipartition after a transient oscillatory phase,
with oscillations occurring on the Alfvén timescale. Comparing the upper and lower
frames of Fig. 2, we observe that the time taken to reach equipartition is reduced if
the width of the initial field perturbation is increased. The damping of oscillations
apparent in Fig. 2 is a consequence of phase mixing, noted previously by Hassam
and Lambert (1996) to be a characteristic feature of shear waves in X-point field
configurations.

3. Wave coupling at X-point with longitudinal field
3.1. Ideal limit

We now introduce a small steady longitudinal component to the equilibrium field
configuration, Bz0 = B0/λ where λ � 1. In dimensionless units, the full equilibrium
field is then

BE = yx̂+ xŷ+
1
λ
ẑ. (15)

Putting

B = B(0) +
1
λ
B(1) + · · · , (16)

v = v(0) +
1
λ
v(1) + · · · , (17)
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Bz

x y

t = 0

t = 2.5

t = 5

Figure 1. Shear wave Bz solution for ∆ϕ = 0.05 at t = 0 (top), 2.5 (middle) and 5 (bottom)
Alfvén times. The units of Bz are arbitrary; x and y are normalized to the system size r0.

the ideal MHD induction and momentum equations become
[
∂B(0)

∂t
+

1
λ

∂B(1)

∂t
+ · · ·

]
= ∇ ×

[(
v(0) +

1
λ
v(1) + · · ·

)
×

(
yx̂+ xŷ+

1
λ
ẑ
)]

, (18)
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t

∆ϕ = 0.05

∆ϕ = 0.1

εsf,k
εs

εsf,k
εs

Figure 2. Normalized field energy εsf (solid) and kinetic energy εsk (dashed) versus time for
the shear wave solution, with ∆ϕ equal to 0.05 (top) and 0.1 (bottom).

[
∂v(0)

∂t
+

1
λ

∂v(1)

∂t
+ · · ·

]
=

[
∇ ×

(
B(0) +

1
λ
B(1) + · · ·

)]
×

(
yx̂+ xŷ+

1
λ
ẑ
)

. (19)

Equating terms independent of λ, and taking the z-components, we obtain (4)
and (5). Thus, to leading order the solution obtained previously for the shear wave,
(9) and (13), can still be used. We consider the case in which these equations give
the complete zeroth-order solution, i.e. we take B

(0)
x = B

(0)
y = v

(0)
x = v

(0)
y = 0.

Equating terms proportional to 1/λ in (18) and (19), we then obtain

∂B(1)

∂t
= ∇ × [v(1) × (yx̂+ xŷ)], (20)
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∂v(1)

∂t
− (∇ × B(1)) × (yx̂+ xŷ) = −∂B

(0)
z

∂x
x̂− ∂B

(0)
z

∂y
ŷ. (21)

We first note that the z components of (20) and (21) are identical to the homogen-
eous pair of equations (4) and (5), with trivial solution B

(1)
z = v

(1)
z = 0. Writing

B(1) = ∇ × (ψẑ) (22)

and
w = xv(1)

x − yv(1)
y , (23)

we find that the x and y components of the momentum equation (21) can be
combined to give

∂w

∂t
− r2∇2ψ = −x

∂B
(0)
z

∂x
+ y

∂B
(0)
z

∂y
, (24)

and that the induction equation (20) reduces to

∂ψ

∂t
= w. (25)

Equations (24) and (25) describe the temporal evolution of a fast wave driven
perturbatively by a shear wave in the presence of a small longitudinal magnetic
field. Craig and McClymont (1991) noted that in the framework of resistive MHD
only azimuthally symmetric fast wave perturbations to a two-dimensional X-point
are associated with topological reconnection, i.e. dissipation of field energy. Partly
with this observation in mind, we now focus our attention on the azimuthally
symmetric component of the fast wave field. Writing

ψ =
∞∑

m=−∞
ψm eimθ , (26)

w =
∞∑

m=−∞
wm eimθ , (27)

where θ is the azimuthal angle in the (x, y) plane, we infer from (24) and (25) that
the azimuthally symmetric components of w and ψ satisfy the equations

∂w0

∂t
− r

∂

∂r

(
r
∂ψ0

∂r

)
=

∫ 2π

0

[
− x

∂B
(0)
z

∂x
+ y

∂B
(0)
z

∂y

]
dθ

2π
, (28)

∂ψ0

∂t
= w0. (29)

Except for the presence of the shear wave drive term, (28) and (29) represent the
ideal MHD limit of a pair of equations studied by two of the present authors in
an earlier paper (McClements et al. 2004): we have adapted the finite difference
numerical scheme used in that paper for the purpose of solving (28) and (29).
As stated previously, we take B(0)

z to be given by (9); the integral on the right-
hand side of (28) must then be computed for each time step numerically. We adopt
the same boundary conditions for the fast wave as those invoked in our earlier
paper, namely ∂ψ0/∂r = 0 at both r = 0 and r = 1. The fast wave field must
equal zero at the inner boundary to ensure regularity and consistency with the
linear approximation (McClements et al. 2004): as in the case of the shear wave, by
forcing the magnetic field to be zero on the outer boundary we ensure that there
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r

t = 1

t = 2

t = 3

∂ψ0––––
∂r

Figure 3. Radial profile of the azimuthally symmetric component of the fast wave magnetic
field ∂ψ0/∂r at t = 1 (top), t = 2 (middle) and t = 3 (bottom) Alfvén times in the ideal
limit. The radius r is normalized to the system size r0 and the units of the fast wave field
are arbitrary.

is zero Poynting flux out of the system. For all of the scenarios considered in the
remainder of this paper, computations were performed using various space and time
steps to ensure convergence of numerical results.
We consider the case of an initial state in which only a shear wave is present,

with field and velocity profiles given by (9) and (13), ∆ϕ being set equal to 0.05.
For this scenario, Fig. 3 shows the m = 0 component of the fast wave field ∂ψ0/∂r
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t

λ2εff,k––––––εs

Figure 4. Time variation in the ideal limit of the azimuthally symmetric components of the
fast wave magnetic field energy (solid curve), kinetic energy (dashed curve) and total energy
(dashed-dotted curve). The energy components are normalized to εs/λ2, where εs is the total
energy in the shear wave.

at three different times. It is apparent that energy is being channelled via the fast
wave into the null at r = 0 on an Alfvénic timescale. It is also striking that sharp
gradients rapidly appear in the field profile: this is due to the spatial dependence
of the local Alfvén speed, noted previously. The rapidity of this profile steepening
suggests that resistive and non-ideal effects are likely to become important after
only a few Alfvén times at most.
The azimuthally symmetric components of the fast wave field energy εff and

kinetic energy εfk per unit length in the z-direction are given by

εff =
1

2λ2

∫∫ (
∂ψ0

∂r

)2

dx dy. (30)

εfk =
1

2λ2

∫∫ (
w0

r

)2

dx dy. (31)

Figure 4 shows εff (solid curve), εfk (dashed curve) and the sum of these (dashed-
dotted curve) as functions of time in the ideal limit. The energy components are
normalized to εs/λ2, where εs is the total energy in the shear wave (in our per-
turbative approach, the latter quantity is assumed to be constant). The fast wave
energy rises rapidly over time, as one would expect, but the rate of increase is not
constant. Moreover, there are local minima in the field energy plot, coinciding with
local maxima in the kinetic energy, and occurring at intervals of about one Alfvén
time. These maxima and minima appear to reflect the oscillations between field and
kinetic energy that occur in the shear wave solution prior to equipartition (Fig. 2).
The normalized fast wave energy approaches unity after only about three Alfvén
times. Although the use of a perturbative approach does not allow us to choose
λ to be of order unity, the results in Fig. 4 suggest nevertheless that a significant
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fraction of the shear wave energy would be converted to fast wave energy on an
Alfvénic timescale at an X-point with Bz0 ∼ B0.

3.2. Resistive effects

We now consider the effects of adding a resistive diffusion term to (29):

∂ψ0

∂t
= w0 +

1
Sr

∂

∂r

(
r
∂ψ0

∂r

)
, (32)

where S ≡ µ0r0cA0/η, cA0 being the Alfvén speed corresponding to the field B0

and η the resistivity (McClements et al. 2004). It is important to note that the
Lundquist number S is proportional to an equilibrium magnetic field that vanishes
as r0 → 0, and therefore S itself need not be a very large number in order to be
realistic. Strictly speaking, the use of resistive MHD to model the fast wave and
ideal MHD to model the shear wave is inconsistent, since both types of wave can
undergo profile steepening and hence dissipation in a non-uniform plasma. However,
because the shear wave does not propagate into the X-point null, it is not subject
to the very rapid (Alfvén timescale) steepening associated with the fast wave.
We have solved numerically (28) and (32) for S = 102–106, using the shear wave

drive term invoked in the ideal case (with ∆ϕ again being set equal to 0.05), and
from these solutions we have computed the temporal evolution of the azimuthally
symmetric fast wave energy components: the results are shown in Fig. 5. As in
the ideal limit, the variation of fast wave energy components with time is non-
monotonic, reflecting the transient variations of field and kinetic energy in the
shear wave driver. At any given time the energy in the azimuthally symmetric
component of the fast wave is progressively reduced as the resistivity is increased,
with the field energy and kinetic energy decaying at essentially the same rate,
as in the non-driven scenario considered in our previous paper (McClements et al.
2004). Figure 5 indicates that most of the energy channelled into the azimuthally
symmetric component of the fast wave in the ideal limit is dissipated after a few
Alfvén times when the resistivity is high. The shear Alfvén wave is thus effectively
heating the plasma, due to the presence of a steady longitudinal magnetic field
component.

3.3. Electron inertial effects

McClements et al. (2004) showed that the temporal behaviour of a fast wave in
X-point geometry can be strongly modified by the presence of the electron inertial
(∂j/∂t) term in Ohm’s law:

E+ v× B = ηj+
me

ne2

∂j
∂t

. (33)

Here, n is particle density, me is electron mass and e is the electron charge.
Neglecting other non-MHD terms in the generalised Ohm’s law, the induction
equation then becomes

∂

∂t

[
ψ0 − δ2

e

r

∂

∂r

(
r
∂ψ0

∂r

)]
= w0 +

1
Sr

∂

∂r

(
r
∂ψ0

∂r

)
, (34)

where δe = c/(ωper0) is the collisionless skin depth normalized to the system
size, c being the speed of light and ωpe the electron plasma frequency. We have
solved (28) and (34) for the same initial conditions as before and S = 104, with δe
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t

λ2εff––––εs

λ2εfk––––εs

Figure 5. Temporal evolution of the azimuthally symmetric component of the fast wave field
energy (top) and kinetic energy (bottom) for S = 106 (solid curves), 105 (long dashed curves),
104 (dotted-dashed curves), 103 (short dashed curves) and 102 (dotted curves). Electron
inertial effects are neglected.

ranging from 10−3 to 10−1. The temporal evolution of the azimuthally symmetric
energy components are shown in Fig. 6. In this case the kinetic energy includes a
contribution εfke from the electrons given by (McClements et al. 2004)

εfke =
1

2λ2

∫∫
δ2
e (∇2ψ0)2dx dy. (35)

The results for δe = 10−3 are essentially identical to those obtained previously in
the MHD limit (the dotted-dashed curves in Fig. 5), and a factor of ten increase in
δe to 10−2 has very little effect. In both of these cases the electrons make only a
small contribution to the wave kinetic energy.
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t

λ2εff––––εs

λ2εfk––––εs

Figure 6. Temporal evolution of the azimuthally symmetric component of the fast wave field
energy (top) and kinetic energy (bottom) for δe = 10−3 (solid curves), δe = 10−2 (dotted
curves) and δe = 10−1 (dashed curves). The Lundquist number is S = 104.

The temporal behaviour of the energy components changes dramatically when
the skin depth is increased to 10−1: after about three Alfvén times the energy
is predominantly kinetic, and the field energy fluctuations are not in phase with
those observed at lower δe. The electron kinetic energy is then comparable to the
ion kinetic energy. In absolute terms, the fraction of shear wave energy channelled
into electron and ion flows after a few Alfvén times is several times higher than that
found in the MHD case, whereas the energy in the fast wave field in this period is
comparable to or less than the MHD value. Indeed, for S = 104, δe = 0.1 the fast
wave kinetic energy at t = 5 is even greater than the total (kinetic plus field) fast
wave energy found at this time in the ideal limit (Fig. 4). Another distinguishing
feature of the δe = 0.1, S = 104 case is that the steepest profile gradients, and the
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greatest contributions to the field and kinetic energy components, occur far from
the X-point null at r = 0. In the calculations with lower δe, the profiles are similar
to those found in the ideal limit, with the strongest gradients occurring close to
r = 0 (Fig. 3).
This behaviour can be understood in terms of results obtained byMcClements and

Thyagaraja (2004) and McClements et al. (2004). The dimensionless parameter 2Sδ2
e

can be identified as the collision time normalized to the Alfvén time, or equivalently
as the square of the ratio of the collisionless skin depth to the resistive length scale.
In the collision-dominated (MHD) regime, when Sδ2

e < 1, it can be shown that
a two-dimensional (Bz0 = 0) current-free X-point is characterized by a discrete
spectrum of fast wave eigenmodes (Craig and McClymont 1991; McClements and
Thyagaraja 2004). In the weakly collisional regime defined by Sδ2

e � 1 this discrete
spectrum ceases to exist: instead there is a continuum of modes with an intrinsic
damping rate equal to the normalized collision frequency, 1/2Sδ2

e , which determines
the overall dissipation rate. However, since the field energy of an undriven fast wave
decays on a much shorter (Alfvén) timescale, due to continuum damping, the energy
after a few Alfvén times is almost entirely kinetic in this regime. Thus, when the
collisionless skin depth (δe) exceeds the resistive length scale (S−1/2), the energy in
a shear wave approaching an X-point with finite Bz0 is rapidly transformed into
plasma kinetic energy: in a warm plasma fluid model, one would expect heating to
occur in addition to fluid acceleration. The differences in the evolution of field and
velocity profiles in the regimes of strong and weak collisionality can be attributed
to the fact that for Sδ2

e > 1 every point in the solution domain is associated with
a singular eigenmode, whereas in the MHD limit only the point r = 0 is singular
(McClements and Thyagaraja 2004).

4. Summary and discussion
We have investigated the coupling of shear and fast Alfvén waves in the vicinity
of a magnetic X-point with a weak longitudinal guide field, neglecting variations
in the longitudinal direction and plasma pressure effects. Specifically, we have
computed the rate at which the energy of a shear Alfvén wave is channelled into the
azimuthally symmetric component of a fast wave, and the rates at which the field
energy and kinetic energy of the latter wave are dissipated or converted into other
forms of energy when resistive and electron inertial effects are taken into account.
We have shown that shear wave energy is most rapidly and efficiently converted to
plasma kinetic energy when the collisionless skin depth exceeds the resistive scale
length, i.e. in the weakly collisional regime.
The perturbative analysis of Sec. 3 is valid for r > 1/λ (Bulanov et al. 1992).

As noted previously, in the weakly collisional regime (Sδ2
e > 1) the strongest

field and velocity gradients, and the greatest contributions to the field and kinetic
energy, occur far from r = 0. Results obtained in this limit are likely to be more
robust, in terms of their applicability to configurations with specific finite values of
λ, than those of the MHD regime, in which the strongest gradients are found close
to the null, i.e. in the region of the solution domain where the perturbation analysis
is most likely to break down. McClements et al. (2004) noted that the restriction on
the validity of the linear approximation also becomes less severe as Sδ2

e is increased,
for similar reasons.
We now discuss possible applications of this work. Mode coupling atX-points with

finite Bz0 could be significant for solar coronal heating since, although shear Alfvén
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waves have been detected directly in the solar wind (Balogh et al. 1995), and provide
an effective means of transporting energy from the photosphere to the upper layers
of the solar atmosphere, the mechanism whereby this energy could most effectively
be deposited in the coronal plasma remains unclear. In one widely studied scenario,
shear Alfvén wave dissipation arises from phase mixing associated with profile
steepening in the presence of a density gradient perpendicular to the magnetic field
(e.g. Botha et al. 2000). Alternatively, dissipation could be a secondary process,
resulting from mode conversion. Magnetic X-points with Bz0�0, which are likely
to be present in the corona, provide a mechanism for the conversion of shear waves
into fast waves, and the subsequent dissipation or conversion of fast wave energy
via steepening of the wave profile (McClements et al. 2004). It is unclear which of
the collisionality regimes defined in Sec. 3 is more likely to apply to the corona.
Since magnetic fields cannot be measured directly in the corona, it is also uncertain
what values of λmight be appropriate for this environment. In any case, our results
suggest that a significant fraction of the energy of a shear Alfvén wave encountering
an X-point with finite Bz0 would be converted to heat or flow energy on an Alfvén
timescale. A similar process, on a larger scale, could in principle lead to the explosive
release of magnetic field energy known as a solar flare: McClements et al. (2004)
showed that damping of non-potential magnetic field energy at a two-dimensional
X-point provides a possible framework for understanding the most rapid (sub-
second) fluctuations yet observed in flare hard X-ray emission.
Any comments on the possible relevance of this work for tokamaks are necessarily

tentative, since in these devices the magnetic field is predominantly toroidal, i.e.
Bz0 > B0: the opposite ordering was assumed in the above analysis. Moreover, we
have neglected a wide range of effects (finite plasma pressure, toroidal field line
bending, equilibrium currents and flows, finite Larmor radius and variations in
the longitudinal direction) that are known to be important under tokamak condi-
tions. One can make a number of qualitative remarks, nevertheless. For any finite
longitudinal field there is linear mode conversion from the incompressible shear
wave to the compressible fast wave (Bulanov et al. 1992). We suggest that a mode
conversion process of this type could play a role in the triggering of edge-localized
modes (ELMs), short periodic bursts of particle and heat flux that commonly occur
during H-mode in divertor tokamaks. Myra et al. (1997) found that the X-points
of divertor tokamak plasmas have a significant effect on the stability of ballooning
modes, which are believed to be associated with ELMs. The tendency of an X-point
to convert shear waves to fast waves, and the dissipation of the latter due to resistive
or non-MHD effects, suggest a mechanism whereby the energy in ballooning modes
could be converted to the particle and heat fluxes associated with ELMs.
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