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We seek the best stroke sequences of a finite-size swimming predator chasing a non-motile
point or finite-size prey at low Reynolds number. We use optimal control to seek the
globally optimal solutions for the former and reinforcement learning (RL) for general
situations. The predator is represented by a squirmer model that can translate forward
and laterally, rotate and generate a stresslet flow. We identify the predator’s best squirming
sequences to achieve the time-optimal (TO) and efficiency-optimal (EO) predation. For a
point prey, the TO squirmer executing translational motions favours a two-fold L-shaped
trajectory that enables it to exploit the disturbance flow for accelerated predation; using a
stresslet mode expedites significantly the EO predation, allowing the predator to catch
the prey faster yet with lower energy consumption and higher predatory efficiency;
the predator can harness its stresslet disturbance flow to suck the prey towards itself;
compared to a translating predator, its compeer combining translation and rotation is less
time-efficient, and the latter occasionally achieves the TO predation via retreating in order
to advance. We also adopt RL to reproduce the globally optimal predatory strategy of
chasing a point prey, qualitatively capturing the crucial two-fold attribute of a TO path.
Using a numerically emulated RL environment, we explore the dependence of the optimal
predatory path on the size of prey. Our results might provide useful information that help
in the design of synthetic microswimmers such as in vivo medical microrobots capable of
capturing and approaching objects in viscous flows.
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1. Introduction

Approaching or chasing a moving target via optimal control has been a common task
in natural and human settings, when e.g. animals like lions and sharks forage for prey,
phagocytes chase and kill bacteria, predatory bacteria feed on other bacteria (Dashiff et al.
2011; Pérez et al. 2016), missiles intercept invading aircraft, and shooters aim for running
targets. The optimal foraging of natural creatures may remain elusive; however, similar
chasing applications in defence and robotic systems have become mature thanks to the
optimal control theory.

Among these scenarios, the controlled agent and the target that it approaches are in a
dry environment such as air or in a liquid-filled wet environment. In the air, the agent
and target, unless closely gapped or in a specific configuration (e.g. a missile in the
wake of a high-speed aircraft), may not affect the motion of each other effectively by
disturbing the air flow; that is, they can sense weakly the additional aerodynamic force
induced by the motion of the other. In a liquid environment, the interaction between
the agent and target is no longer weak because the viscosity of liquid is larger than
that of air by three orders. Hence a moving agent in liquid such as water can disturb
its surrounding flow that exerts a considerable hydrodynamic force on its target nearby.
This feature results in hydrodynamic interactions between the agent and target, which
can influence significantly the chasing dynamics and the associated optimal chasing
strategies. The effects of hydrodynamic interactions become especially pronounced and
more long-ranged when the agent approaches/chases its targets in a low-Reynolds-number
flow. This scenario occurs commonly for microorganisms or millimetre-scaled organisms
swimming to approach motile particulate objects (e.g. bacteria or phytoplankton cells)
and non-motile counterparts such as organic debris (Kiørboe et al. 2009). Both type
of swimmer and size of target span a wide range (Jabbarzadeh & Fu 2018): a typical
planktonic grazer is much larger than its prey (Hansen, Bjornsen & Hansen 1994;
Kiørboe 2016); an organism swims towards a similarly sized member of the same
species during bacterial conjugation (Clark & Adelberg 1962) or mating of copepods
(Strickler 1998); the target can also be much larger than the approacher, exemplified by
a spermatozoon swimming towards the egg or marine microbes targeting biological debris
for nutrients uptake and habitation (Kiørboe 2003). Besides such natural events, similar
situations might arise in the applications of future medical microrobots, which need to
approach targets such as bacteria and human cells of varying sizes (Nelson, Kaliakatsos
& Abbott 2010; Ceylan et al. 2019). In these low-Reynolds-number flow configurations
featuring important, long-ranged hydrodynamic interactions, prior explored predator–prey
dynamics of territory/aerial animals or high-Reynolds-number aquatic animals together
with the optimal chasing/approaching strategies would not apply. These tiny swimmers
have evolved a variety of unique strategies suited for the viscous environment. For instance,
zooplankton achieve feeding by means of ambushing (Kiørboe et al. 2009), generating
currents (Fenchel 1980), cruising (Kiørboe et al. 2009) and colonizing marine snow
aggregates.

A decent understanding of the predator–prey dynamics in viscous low-Reynolds-number
flows would benefit analysing the predatory and evasive behaviours of microorganisms,
and exploring their evolutionary advantages. Also, designing the optimal predatory and
evasive strategies will be potentially useful in manipulating future medical microrobots to
capture bacteria or escape from hostile immune cells. Apart from a substantial amount of
studies on a related topic – nutrients uptake and feeding of swimming microorganisms
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Optimal predating at low Reynolds number

(Magar, Goto & Pedley 2003; Langlois et al. 2009; Michelin & Lauga 2011; Tam &
Hosoi 2011; Lambert et al. 2013; Kiørboe et al. 2014; Dölger et al. 2017; Andersen
& Kiørboe 2020) – work has addressed the interaction between a swimming predator
and an individual particle or prey nearby. Without considering swimming-induced
hydrodynamic effects, Sengupta, Kruppa & Löwen (2011) proposed and investigated
a discrete chemotactic predator–prey model that describes a chasing predator and an
escaping prey, which sense the diffused chemicals released from each other. Pushkin,
Shum & Yeomans (2013) studied theoretically and numerically the advection of a tracer
and a material sheet of tracers when a microswimmer moves along an infinite straight
path. Mathijssen, Jeanneret & Polin (2018) combined experiments, theory and simulations
to perform a deep analysis of hydrodynamic entrainment of a particle by a swimming
microorganism. Using a bispherical coordinate system, Jabbarzadeh & Fu (2018) studied
analytically the scenario of a forced spherical particle approaching another; they also
investigate numerically the head-on approach of a self-propelling swimmer to another
passive particle. Słomka et al. (2020) conducted a modelling study on the ballistic
encounter between elongated model bacteria and a much larger marine snow particle
that is sedimenting. Very recently, Borra et al. (2022) have studied a pair of point
predator and prey considering their hydrodynamic interactions; they used a multi-agent
reinforcement learning scheme to explore efficient, physically explainable predatory
and evasive strategies. Besides these works, Visser & Kiørboe (2006) has discussed
the influence of ballistic or diffusive mobility patterns of planktonic organisms on the
encounter rates between them and their prey, mates or predators.

In this work, we explore the optimal strategies of a finite-size swimming predator
chasing a non-motile prey represented by a tracer point or a finite-size sphere. The motion
of the tracer is driven purely by the propulsion-induced disturbance flow of the predator,
whereas for the spherical prey, we consider the two-way hydrodynamic coupling between
the predator and prey based on numerical simulations. To seek the most time-saving
or energy-efficient pursuing strategies of the predator, we adopt a numerical optimal
control approach for a point prey and reinforcement learning (RL) for general cases. The
RL-based optimal solutions agree qualitatively with and capture the essential features of
the globally optimal solutions identified by the former. We will demonstrate the emergence
of non-intuitive optimal solutions in the seemingly simple configurations. We will also
interpret physical mechanisms of the optimal strategies and discuss their implication on
developing synthetic microrobots designed for capturing moving objects.

2. Problem set-up, assumptions and methods

2.1. Problem set-up
We consider a microscale predator that swims to approach a prey in low-Reynolds-number
flows (see figure 1a). A spherical squirmer of radius A is adopted to model the predator,
which attains propulsion and rotation based on its surface actuation described by a slip
velocity ūs(θ

′, φ′), where θ ′ ∈ [0, π] and φ′ ∈ [0, 2π] are the polar and azimuthal angles
with respect to the squirmer’s swimming orientation es; here, es coincides with ez′ of the
reference coordinates system ex′y′z′ translating and rotating with the squirmer. The prey is
modelled by a passively moving point tracer or a finite-size spherical particle of radius A.
The ratio χ = A/A is defined to indicate the size of prey compared to that of predator,
which is zero for a point prey. From here on, ¯ is used to denote dimensional variables. It is
worth noting that the squirmer model was proposed by Lighthill (1952) and Blake (1971)
for ciliary propulsion of microorganisms such as Paramecium and Volvox. This model
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Figure 1. (a) A squirming predator chases a point prey on the y = 0 plane (finite-size spherical prey will be
investigated in § 4.2). Here, ex′y′z′ denotes the local coordinate system translating and rotating with the squirmer,
while exyz is the global counterpart. (b) The predator captures the prey at time t = T , when the latter is within
a cut-off distance ε � 1 away from the surface of the former. The coordinates of the squirmer centre and
prey are rs and rp, respectively; r = rp − rs = r(sin θ ex + cos θ ez) indicates their relative displacement. The
orientation es of the squirmer deviates from ez by an angle α. The travelling distances of the predator and prey
are denoted by L and L̃, respectively. The insets show the disturbance velocity fields in the y = 0 plane (in the
lab frame) generated by a squirmer using the BF = 1, BL = 1 and BS = 1 modes. The variables here are all
dimensionless.

has been used successfully to study microscale propulsion in the context of rheological
complexity (Datt et al. 2015; Lintuvuori, Würger & Stratford 2017; Li, Lauga & Ardekani
2021), stratified fluids (More & Ardekani 2020), viscosity gradients (Datt & Elfring 2019),
effects of boundaries (Spagnolie & Lauga 2012; Ishimoto & Gaffney 2013; Zhu, Lauga &
Brandt 2013), suspension of active particles (Ishikawa, Brumley & Pedley 2021), and so
on.

Now we describe our predator–prey problem. At time t̄ = 0, the orientation es of the
squirming predator is in the ez direction; the predator’s centre located at r̄s, and the prey’s
centre at position r̄p, are in the ȳ = 0 plane. To simplify the setting, we assume a symmetric
surface actuation velocity ūs about the plane, resulting in zero ȳ component of the predator’
swimming velocity and of its disturbance velocity in this plane. The latter implies that the
prey will remain in the plane, as shown in figure 1(b); the angle α between the squirmer’s
orientation es and the ez axis indicates that es = sin α ex + cos α ez. Also, we assume that
the predator detects the instantaneous position of the prey, following the previous works
on intelligently controlled swimmers (Gazzola et al. 2016; Mirzakhanloo, Esmaeilzadeh &
Alam 2020). This assumption is made here to minimize the complexity of the problem, but
we should note that most natural predators or prey do not ‘see’ the nearby motile organisms
but detect their presence based on the hydrodynamic (Jakobsen 2001; Visser 2001) or
chemical (Svensen & Kiørboe 2000) cues. The predator is actuated by four squirming
modes, B̄F(t̄), B̄L(t̄), B̄R(t̄) and B̄S(t̄); the first two modes allow it to translate forward
and laterally, respectively, with respect to its orientation es, corresponding to the ez′ and
ex′ directions; B̄R enables its rotation about the ey axis; B̄S introduces a stresslet flow.
We bound the strength of the surface actuations as B̄i ∈ [−B̄max

i , B̄max
i ], i = F, L, R, S.

These modes will be described in their dimensionless form below.
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Optimal predating at low Reynolds number

We choose A and 4B̄max
F /A3 as the characteristic length and velocity, respectively. To

ease the calculation, we define the dimensionless displacement r = rp − rs between the
predator and prey, which remains on the y = 0 plane and can be described by its magnitude
r = |r| and the angle θ between r and ez as r = r(sin θ ex + cos θ ez). The dimensionless
slip velocity us(θ

′, φ′) on the surface of the squirmer in its own reference frame ex′y′z′
reads (Pak & Lauga 2014)

us = −
(

3 sin θ ′

2
BF + 3 cos θ ′ cos φ′

2
BL + 3 cos φ′

4
BR + 9 sin 2θ ′

8
BS

)
eθ ′

+
(

3 sin φ′

2
BL + 3 cos θ ′ sin φ′

4
BR

)
eφ′ . (2.1)

We will seek the best time sequences of the predator’s surface actuations
[B̄F, B̄L, B̄R, B̄S](t̄) leading to the optimal predation. A standard optimum goal is to
minimize the predating time T̄ . We call such an optimization the time-optimal (TO)
optimization. In addition to the capture time, we are also concerned about and will
optimize the predatory energy efficiency η defined as

η = 6πμA(d̄0/T̄) × d̄0

Ē
, (2.2)

where μ is the dynamic viscosity of the fluid, d̄0 = |r̄(t̄ = 0)| − A − A denotes the initial
surface-to-surface distance between prey and squirmer, and T̄ and Ē represent the time
and energy used by the predator to capture the prey, respectively. The numerator of (2.2)
indicates the energy consumption for dragging a dead predator over a distance d̄0 to reach
the prey within the capture time T̄ . Using 4πμB̄max

F /3A as the characteristic energy scale,
we write

η = 6d2
0

TE
, (2.3)

where E = ∫ T
0 P(t) dt, and P denotes the dimensionless power consumption of

the squirmer. Accordingly, maximizing the energy efficiency η is termed the
efficiency-optimal (EO) optimization problem.

2.2. Optimal control for a point prey
We adopt a numerical optimal control approach when the prey is modelled by a point
tracer, as described here. The point prey is advected passively by the flow, hence the
translational and rotational velocities of the predator and the translational velocity of the
prey in dimensionless form can be derived as

drs

dt
= (BL cos α − BF sin α) ex + (−BF cos α − BL sin α) ez, (2.4a)

dα

dt
= 3

4
BR, (2.4b)

drp

dt
=

(
1
r3 [−BF cos(θ − α) + BL sin(θ − α)] + 9

8
BS

r2 − 1
r4

[
3 cos2(θ − α) − 1

])
er

+
(

1
2r3 [−BL cos(θ − α) − BF sin(θ − α)] − 9

8
BS

1
r4 sin 2(θ − α)

)
eθ . (2.4c)
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Also, the dimensionless power consumption of the squirmer reads

P = 12
(

B2
F + B2

L

)
+ 27

2 B2
S. (2.5)

Since d0 = |r(t = 0)| − 1 − χ = |r(t = 0)| − 1 (realizing that χ = A/A = 0 for a
point prey) does not change over time, maximizing the predating efficiency η

is equivalent to minimizing the product of time T and energy E. The optimal
control problem for a point prey becomes: given an initial relative displacement
r(t = 0) = r0 = r0(sin θ0 ex + cos θ0 ez) with |r0| > 1 between the predator and the prey,
the squirming predator will capture the prey at time t = T when |r(t = T)| − 1 ≤ ε; that
is, the point prey is within a small cut-off distance ε � 1 from the predator’s surface.
The small parameter ε is introduced here for theoretical convenience: when the prey
moves very close to the squirmer’s surface, |r| → 1, the relative velocity between them
will approach zero because our squirmer adopts only the tangential but no radial surface
actuation; hence the prey will never exactly touch the squirmer’s surface mathematically.
In real situations, when they are sufficiently close, other physical ingredients would come
into play; for example, diffusion via Brownian motion would allow them to touch each
other (Jabbarzadeh & Fu 2018). In this work, we will use a fixed value ε = 4 × 10−3 unless
otherwise specified. We have checked that varying ε in the range [10−3, 10−1] would not
alter the optimal chasing paths qualitatively, though the capture time will increase with
decreasing ε as anticipated. Without losing generality, initially the predator is oriented
in the ez direction, i.e. α = 0 when t = 0. This predatory process corresponds to the
evolution of r described by r and θ . Using dr/dt = drp/dt − drs/dt and (2.4), we obtain
the dynamical system characterizing the predatory process:

dr
dt

= (−1 + r3) cos(α − θ) BF + (−1 + r3) sin(α − θ) BL

r3

+9(−1 + r2) (1 + 3 cos [2(α − θ)]) BS

16r4 , (2.6a)

dθ

dt
= sin(α − θ)

[
2r(1 + 2r3) BF + 9 cos(α − θ) BS

] − cos(α − θ) (2r + 4r4) BL

4r5 .

(2.6b)

We will seek the optimal sequences of the bounded actuation modes [BF, BL, BR, BS](t)
to minimize the capture time t = T or to maximize the predating efficiency η with these
modes subject to

BF ∈ [−1, 1], (2.7a)

Bi ∈ [−Bmax
i , Bmax

i ], i = L, R, S. (2.7b)

Unless otherwise specified, Bmax
L = Bmax

R = Bmax
S = 1. This optimal control problem

is solved numerically by an open source library ‘FALCON.m’ (Rieck et al. 1999)
implemented in MATLAB. The state variables are discretized in time by the trapezoidal
collocation method. The nonlinear optimization problem is solved by the built-in open
source library IPOPT (Wächter & Biegler 2006).

2.3. Reinforcement learning for a point or finite-size prey
Besides considering a passively moving point prey, we will also model the prey as
a finite-size spherical particle of a dimensionless radius χ = A/A that would interact
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Optimal predating at low Reynolds number

hydrodynamically with the squirmer. The velocities of predator and prey cannot be
derived analytically in the closed form as in (2.4), and thus will be solved numerically.
Accordingly, it is inconvenient to use the numerical optimal control approach as for the
point prey, and we will instead adopt a deep RL scheme to identify the optimal predatory
strategy. Naturally, the RL scheme can also be applied for the point prey model, as we will
demonstrate in § 4.

We will extend an extensively validated solver using the boundary integral method
(BIM) to emulate the hydrodynamic scenario of a swimming squirmer approaching
a spherical prey. Different variants of the solver have been developed to study the
microlocomotion inside a tube (Zhu et al. 2013) or a droplet (Reigh et al. 2017), dynamics
of a particle-encapsulated droplet in shear flow (Zhu & Gallaire 2017), and a sedimenting
sphere near a corrugated wall (Kurzthaler et al. 2020). A brief description of the BIM
implementation in its dimensionless form is provided below.

In the spirit of the BIM, we express the dimensionless velocity u(x) at position x
everywhere in the domain as

u(x) = − 1
8π

∫
Ss+Sp

q(x′) · G(x, x′) dS(x′), (2.8)

where q is the the density of the so-called single-layer potential on the surface
of the squirmer Ss and that of the prey Sp. Here, G(x, x′) = I/|x − x′| +
(x − x′)(x − x′)/|x − x′|3 is the free-space Green’s function, which is also known as the
Stokeslet. Both the squirmer and finite-size prey are spherical, which can be discretized
by zero-order quadrilateral elements. For either of the two, the hydrodynamic force and
torque exerted on it are zero. This condition is used to determine their translational and
rotational velocities.

Having introduced the BIM implementation, we now describe the RL algorithm.
Compared to the optimal control theory that requires the predator–prey dynamics (2.6), RL
does not rely on prior knowledge of the dynamics but allows the squirmer as the predating
agent to learn the dynamics, and adapt and optimize its chasing strategy (or policy in
the language of RL) via interacting continuously with the environment. It is worth noting
that RL algorithms have been used recently in similar swimming-involved scenarios, e.g.
to optimize the swimming gaits or navigation routes of microswimmers at low Reynolds
number (Colabrese et al. 2017; Schneider & Stark 2019; Mirzakhanloo et al. 2020; Tsang
et al. 2020; Muiños-Landin et al. 2021; Nasiri & Liebchen 2022; Qiu et al. 2022) and
in turbulent flows (Alageshan et al. 2020; Qiu et al. 2020), or macroscopic swimmers
such as fish in viscous flows (Gazzola et al. 2016; Verma, Novati & Koumoutsakos 2018)
or in the potential flow (Jiao et al. 2021). In particular, recent pioneering experiments
(Muiños-Landin et al. 2021) have demonstrated using RL for real-time navigation of
micron-sized thermophoretic particles, opening a new horizon for developing swimming
microrobots endowed with artificial intelligence.

In this work, we adopt the open-source deep RL framework ‘Tensorforce’ (Kuhnle,
Schaarschmidt & Fricke 2017) and use a policy-based RL scheme – proximal policy
optimization (PPO) (Schulman et al. 2017) – to train the agent. The general idea behind the
policy-based RL methods consists in parametrizing the policy function πΘ by an artificial
neural network (ANN) with a set of weights Θ . The agent equipped with the parametrized
policy identifies certain characteristic information, the state s of the environment, as the
input to the ANN, and then selects an action a according to the ANN’s output. For
the predator–prey system considered here, the state that the predator can observe is the
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position of the prey relative to itself (r and θ ), and the actions of the agent are the bounded
squirming modes Bi. The selected action advances the environment from the current to the
next state, and its effectiveness is quantified by an instantaneous reward R. An appropriate
reward function will favour the actions allowing the predator to approach the prey.

To achieve the TO predation, we choose the reward function

R = −r + Γ, where Γ =
⎧⎨
⎩

−1000, r > 4,

200/(t − βT), r ≤ (1 + ε),

0, otherwise,
(2.9)

where t is equivalent effectively to the capture time T , and βT is the lower-bound estimation
of T . Here, −r promotes the predator to take only the necessary actions to approach the
prey because any unnecessary ones will decrease the accumulated reward. The term Γ

contributes in two ways: first, it penalizes the agent for wandering far from the prey (r > 4)
by activating a substantial negative reward; second, it stimulates the predator to expedite
the capture by offering a positive reward ∝ 1/(t − βT) upon a successful capture. Note
that we choose βT ≈ d0 as the initial surface-to-surface distance between predator and
prey. For the EO setting, the reward function is

R = −r − α̂P + Γ, where Γ =
⎧⎨
⎩

−1000, r > 4,

20 000/ [t E(t) − βE] , r ≤ (1 + ε),

0, otherwise,
(2.10)

where α̂ is a positive weight introduced to reduce the instantaneous power consumption
P, and α̂ = 0.1 is chosen here. Also, βE is a lower-bound estimation of ET , chosen as half
the value for a squirmer with BF = 1 travelling a distance of d0.

Having defined the reward function, we describe the training process. The objective of
RL here is to equip the agent with the optimal policy maximizing the expected cumulative
reward. After the agent executes the current (kth) policy πΘk , we collect a set of trajectories
{νi} (a trajectory is a sequence of states and actions, ν = {s0, a0, . . . , sn, an, . . .}) to
determine the new ((k + 1)th) policy πΘk+1 via

Θk+1 = arg max
Θ

E
s,a∼πΘk

[Lclip(s, a, Θk, Θ)]. (2.11)

Here, Lclip is the so-called clipped surrogate advantage (Achiam 2018) that measures the
performance of a general policy πΘ relative to the current one πΘk :

Lclip[s, a, Θk, Θ] = min
{

p(Θ)ÂπΘk (s, a), clip
[
p(Θ), 1 − ε̂, 1 + ε̂

]
ÂπΘk (s, a)

}
. (2.12)

Here, E denotes the mathematical expectation, and p(Θ) = πΘ(a | s)/πΘk(a | s) is the
probability ratio, where its numerator and denominator represent the probabilities of taking
action a in state s at the πΘ and πΘk policies, respectively; ÂπΘk (s, a) is the advantage
function, describing the advantage of choosing a specific action a in state s over that of a
random choice according to the current policy πΘk . The function clip[] indicates that p(Θ)

is bounded in the range [1 − ε̂, 1 + ε̂] via necessary clipping; here, the hyperparameter ε̂

indicates how much the new policy is allowed to deviate from the current one, and is fixed
as ε̂ = 0.2 in this work.

3. Results: optimal control for a point prey (χ = 0)

We start to investigate a point prey with χ = 0. In all cases, initially the squirming predator
is aligned with the ez axis, i.e. α(t = 0) = 0; the initial distance between predator and prey
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Ũto
z
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Figure 2. Time-optimal (TO) and efficiency-optimal (EO) predating strategies using combined forward and
lateral squirming modes of magnitudes BF and BL, respectively. (a) Trajectories of the predator (blue) and point
prey (red), where the latter is initially ahead of the former (θ0 = 0◦); circles and stars denote their initial and
ending positions. The bottom images show how the two modes evolve in time. The left- and right-hand images
depict the TO and EO strategies, respectively. (b) The prey’s velocity Ũz and accumulative travelling distance
L̃z in ez; τ indicates when the TO predator takes the sharp turn. The inset illustrates its disturbance flow field in
the y = 0 plane right before t = τ . (c) Capture time T and predating efficiency η of the TO and EO predators
versus the initial bearing θ0 of the prey with respect to the predator. (d) Similar to (c), but for the predator’s
consumed energy E and travelling distance L. (e) The TO and EO predating behaviours when θ0 = 30◦ and
45◦.

is |r0| = 3, and d0 = |r0| − 1 = 2. We vary the initial bearing of the prey with respect to
the predator, namely, the angle θ − α at t = 0 between the predator–prey displacement
vector r and the squirmer’s orientation es (see figure 1). This initial angle recovers to θ0
by realizing α(t = 0) = 0. Here, θ0 = 0◦, 90◦ and 180◦ correspond to when the prey is in
front, on the right side and in the rear of the predator, respectively.

3.1. A predator combining forward and lateral motions
We first consider a predator swimming forward and laterally, respectively, via the BF and
BL squirming modes. This combination is denoted ‘F + L’. Without combining them, the
predator with either of them alone can swim only vertically (in ez) or horizontally (in ex)
and thus cannot reach the prey located in an arbitrary bearing θ0. Figure 2(a) compares
the predator and prey trajectories of the TO and EO cases. The EO predator swims
directly towards the prey by attaining the maximum forward movement (BF = −1) and
zero lateral movement (BL = 0), which follows an intuitive predatory strategy by taking
the straight thus shortest path. In contrast, the TO predator chooses an L-shaped route
oriented first in the north-western direction then followed by a sharp 90◦ turn towards
the north-eastern direction. Correspondingly, BF = −1 producing the maximum forward
motion holds during the whole course, while BL jumps sharply from −1 to 1 at the turning
time t = τ . We now discuss the mechanism behind this peculiar strategy. Initially, the
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predator lags behind the prey by a distance 3 in ez. Both the TO and EO predators adopt
BF = −1 to maintain the same maximum movement in that direction; the difference in
the capture time T then depends on the prey’s velocity Ũz in ez. Figure 2(b) compares Ũz

of the two prey and their accumulative travelling distances L̃z along the ez direction. An
important observation is that the EO prey’s Ũz remains positive, indicating its consistent
motion away from the predator, whereas the TO prey’s velocity Ũz becomes negative
when t < τ , implying its motion towards the predator. The inset of figure 2(b) depicts
the instantaneous flow field around the squirmer right before t = τ , reflecting the negative
velocity Ũz experienced by the prey (red dot). To sum up, the EO predator swimming
straight towards the prey generates a flow field that always repels the prey away from it;
while the TO predator adjusts its position (with respect to the prey) and surface actuation
for best exploiting its disturbance flow field to attract the prey, leading to the initially
left-upward movement. In addition to the θ = 0◦ orientation, similar trajectories of the
TO and EO predators are found for an arbitrary orientation θ0 /= 45◦ of the prey, as shown
in figure 2(e).

We then examine how the initial orientation θ0 ∈ [0, 90]◦ of the prey with respect to the
predator affects the predating dynamics; the results for θ0 ∈ [90, 180]◦ are not shown, by
realizing the fore–aft symmetry. We depict the capture time T and efficiency η of the TO
and EO strategies in figure 2(c), and the predator’s energy consumption E and travelling
distance L in figure 2(d). All the quantities exhibit a mirror symmetry about θ0 = 45◦
when the prey is right in the north-eastern direction. In this particular configuration, the
TO and EO predators adopt the same strategy – swimming straight towards the prey, as
shown by figure 2(e). This symmetry can be anticipated because the forward BF or lateral
BL mode alone allows the predator to approach the prey at θ0 = 0◦ or 90◦, respectively.
For the two modes sharing the same magnitude Bmax

F = Bmax
L = 1, the predatory scenario

for the 90 − θ0 orientation can be obtained by interchanging the time sequences of BF and
BL for the θ0 counterpart. In addition, we see that the EO predators achieve an optimal
efficiency of ηeo ≈ 0.15 independent of θ0, which almost doubles that of the TO predator
when θ0 = 0◦ and 90◦. In contrast, the TO predator captures the prey slightly faster than
the EO counterpart, reducing the capture time at most by around 0.2, which occurs when
the prey is ahead of or beside the predator. Both the TO and EO predators catch their prey
fastest that are initially in the north-eastern direction (θ0 = 45◦), and take more time when
they deviate from that orientation. Also, compared to the EO predator, the TO predator
consumes more energy.

3.2. The stresslet squirming mode facilitates predation
Having observed how the predator exploits its squirming-induced disturbance flow to
catch the prey faster, we then examine the influence of the stresslet mode BS known to
vary the disturbance flow without affecting the swimming speed of an isolated squirmer
(Blake 1971). According to our definition (with a sign difference compared to classical
definitions), BS < 0 corresponds to a puller microswimmer, e.g. the biflagellated algae
Chlamydomonas; BS > 0 indicates a pusher counterpart exemplified by most flagellated
microorganisms. The puller attracts the fluid from its front and rear towards itself,
while the pusher drives the flow oppositely. Compared to the baseline ‘F + L’ predator
using only the BF and BL modes, we show in figure 3 that introducing the stresslet
mode BS can enhance significantly the all-round predatory performance under the EO
policy. Figure 3(a) shows that the ‘F + L + S’ (with BF, BL and BS modes) predator
captures the prey faster than the ‘F + L’ (with BF and BL modes) competitor for all
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eo in ez, with and without the BS mode. The inset indicates the flow field when the Ũz
eo

reaches the minimum.

the bearings of the prey θ0, except for when θ0 = 45◦. Moreover, incorporating the
stresslet enhances considerably the predatory efficiency ηeo of the EO predators, with a
maximum relative enhancement approaching 70 % when θ0 = 0◦, as well as decreasing its
energy consumption Eeo and travelling distance Leo for all the prey’s initial bearings (see
figure 3b).

In particular, we examine in figure 3(c) the straight trajectories of EO predators with and
without the stresslet mode, together with those of their respective prey. We observe that the
prey has moved from the stresslet-equipped predator by a negligible distance compared to
that chased by the stresslet-free one. The former predator with a negative BS mode (shown
in the left bottom image of figure 3c) behaves as a puller swimmer, which sucks the prey
ahead towards it significantly. The associated sucking disturbance flow generated by the
predator is depicted in the inset of figure 3(d). This mechanism of stresslet-accelerated
predatory process is also confirmed by the evident backward motion – negative Ũz

eo and
L̃z

eo – of the prey shown in figure 3(d). In retrospect, it was found analogously that
biflagellated organisms can enhance their feeding performance by adopting a puller-style
locomotory gait (Dölger et al. 2017). As expected, when the prey is initially on the right
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Figure 4. Varying the maximum magnitude Bmax
S of the stresslet mode for the TO predator that swims using

the ‘F + L + S’ combination of squirming modes. (a) Capture time Tto versus Bmax
S for two initial orientations,

θ0 = 0◦ and θ0 = 60◦, of the prey with respect to the predator. (b) Energy consumption Eto and travelling
distance Lto versus Bmax

S . (c) Similar to (a), but for the predating efficiency ηto. (d) Trajectories of the predator
and prey for Bmax

S = 0.1, 0.75 and 2 marked in (c).

side of the predator (θ0 = 90◦), the latter would activate a positive BS mode; accordingly,
the prey is attracted laterally towards to a pusher-style swimmer, which is not shown here.

Intuitively, we infer that a puller predator can exploit such a stresslet disturbance flow to
accelerate capturing the prey. Hence the TO predator would naively turn on the full gear of
BS mode for the fastest capture. This intuition is confirmed by figure 4(a), showing that Tto
decreases monotonically with increasing Bmax

S when θ0 = 0◦ and 60◦. On the other hand,
the growing stresslet will produce higher power consumption of the predation due to the
stronger viscous dissipation of the fluid. Figure 4(b) depicts that the energy consumption
Eto decreases weakly with Bmax

S when Bmax
S < 1, but increases sharply with Bmax

S > 1. The
slightly negative relation between Eto and Bmax

S < 1 is due to: first, in this regime, the
major power consumption is not from the stresslet flow but from the forward and lateral
motions of squirmer; second, the decreasing time Tto in this regime with Bmax

S tends to
lower the total energy. When Bmax

S keeps growing from around 1, the stresslet-induced
power becomes increasingly dominant, because the swimming power scales with these
modes quadratically, while the forward (BF) and lateral (BL) modes are bounded to 1.

Next, we show in figure 4(c) that the predating efficiency ηto depends non-monotonically
on Bmax

S , attaining the maximum when Bmax
S is approximately 0.7–0.8. This non-monotonic

dependence can be explained by the variation of Tto and Eto according to Bmax
S . We then

examine in figure 4(d) three characteristic chasing scenarios for the θ0 = 0◦ situation. In
the case Bmax

S = 0.1, the predator first approaches the prey straight forward. Then it takes
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a two-fold zigzag path as a reminiscent of the TO predatory strategy in the absence of
BS mode shown in figure 2(a). The initial straight chasing reflects the predator’s tendency
to utilize the BS-induced flow for sucking the prey. Increasing Bmax

S to 0.75 results in the
optimal efficiency ηto ≈ 0.23 that exceeds double the efficiency of the Bmax

S = 0.1 and 5
predators. The suction flow of this Bmax

S level is strong enough to overcome the forward
flow generated by the BF mode. Hence initially the prey moves backward towards the
predator, and then it moves forward as their distance is decreased. When Bmax

S grows to 2,
the stresslet-induced suction completely dominates the forward flow, hence enabling the
prey to move continuously backward until being captured.

3.3. Incorporating rotation or using only translations?
In the above scenarios, the predator with a zero rotational mode BR = 0 does not rotate,
hence its orientation remains in the ez direction. To capture a prey at an arbitrary
orientation, the predator must activate both the forward and lateral translational modes.
However, if allowed to rotate freely by adopting a non-zero BR mode, the predator needs
only one translational mode. We then ask how such a combined rotational and translational
mode compares with the combination of pure translational modes in the performance of
TO predation. We show in figure 5(a) the minimal capture time Tto, and in figure 5(b)
the corresponding predatory efficiency ηto of the predator using three combinations of
squirming modes: (1) forward plus rotational, ‘F + R’; (2) forward plus lateral, ‘F + L’;
and (3) forward plus lateral plus rotational, ‘F + L + R’. The minimal capture time Tto of
these three combinations diminishes in order regardless of the prey’s orientation θ0 with
respect to the predator. Also, the ‘F + L + R’ combination outperforms the other two in
efficiency for most of the range of θ0. Moreover, for the ‘F + R’ combination, Tto (resp.
ηto) increases (resp. decreases) with θ0 monotonically. This trend is in stark contrast to the
symmetric (about θ0 = 45◦) profiles of Tto(θ0) and ηto(θ0) for the ‘F + L’ and ‘F + L + R’
combinations.

We then analyse the detailed chasing dynamics for a better understanding. We first
illustrate in figures 5(c–e) how the ‘F + R’ predator chases its prey oriented at θ0 = 0◦, 45◦
and 90◦. Intuitively, to reach an arbitrarily oriented prey, the predator using one rather than
two translational modes has to rotate to align its swimming direction exactly towards the
prey. For a special case when the prey with θ0 = 0◦ is initially ahead of the predator, no
rotational motion is required for the predator, as shown in figure 5(c). When θ0 = 45◦,
the predator adopts a rotational mode BR = 1 in full gear during t ∈ [0, τ1], and then
switches it off to swim straight towards the prey during t > τ1. It is revealed that for a
non-zero θ0, the capture time comprises two parts: the first for rotational orientation and
the second for straight swimming. The first part for orientation clearly increases with the
initial angular difference θ0, which explains the monotonically increasing capture time
Tto with θ0. A less intuitive scenario occurs for θ0 = 90◦, when the prey is initially
on the predator’s right side: first, the predator moves backward and rotates rightward
simultaneously during t < τ1, with both modes in full gear; then it stops the backward
translation, while maintaining the full right rudder until t = τ2, when it exactly faces
the prey; finally, the predator swims straight forward to the prey. The initial backward
movement of predator seems awkward, which tends to retard predating by lengthening the
predator–prey distance at first glance. In fact, this seemingly awkward strategy embodies
the wisdom of retreating in order to advance. Moving backward actually reduces the
angle θ − α (i.e. θ0 at t = 0 shown in figure 1b) between the predator–prey displacement
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Figure 5. Effects of the rotational mode BR of the squirmer on its TO predatory performance. (a) Capture time
Tto, and(b) predating efficiency ηto, are plotted versus the initial orientation θ0 of the prey with respect to the
predator. Three combinations of squirming modes, ‘F + R’, ‘F + L’ and ‘F + L + R’, are adopted. Chasing
dynamics of the ‘F + R’ mode are illustrated for (c) θ0 = 0◦, (d) θ0 = 45◦, and (e) θ0 = 90◦; those of the
‘F + L + R’ case are shown for ( f ) θ0 = 0◦,and (g) θ0 = 90◦. The insets plot the time evolutions of the modes.

and the predator’s orientation, thus decreasing the time needed for orientation to achieve
effectively a net time saving.

As discussed above, replacing the lateral mode by the rotational mode, i.e. shifting
from the ‘F + L’ to ‘F + R’ combination, results in asymmetric distributions of Tto(θ0)
and ηto(θ0) about θ0 = 45◦. As reflected by the distinctive chasing dynamics for θ0 = 0◦,
θ0 = 45◦ and 90◦, this asymmetry is caused by the predator’s necessity for a rotational
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orientation to face the prey. Hence we postulate that the ‘F + L + R’ squirming predator
might exhibit similar asymmetric profiles of Tto(θ0) and ηto(θ0) owing to the rotational
mode at play. In reality, this postulation is disproved by the symmetric profiles shown
in figures 5(a,b), which can be elucidated by scrutinizing how the ‘F + L + R’ predator
chases its prey initially at θ0 = 0◦ and 90◦ as depicted by figures 5( f ) and 5(g),
respectively. The set of trajectories of the predator and prey for θ0 = 0◦ matches that for
θ0 = 90◦ in shape, and applying a 90◦ rotational transformation allows them to overlap
each other. In contrast to the ‘F + R’ predator rotating to exactly face the prey when
θ − α = 0◦, this ‘F + L + R’ predator also orients itself but instead to face the prey
sitting in its north-west (θ − α = −45◦) or north-east (θ − α = 45◦) direction before
swimming straight towards the prey. This particular magnitude of 45◦ enables the predator

to exploit its maximum translational speed,
√

(Bmax
F )2 + (Bmax

L )2 = √
2, to reach the prey

in the post-rotation period t > τ2. This maximum translational speed exploited by the
‘F + L + R’ predator leads to its faster predation compared to the ‘F + R’ and ‘F + L’
counterparts, as shown in figure 5(a). Indeed, the latter two can translate at a maximum
velocity of 1 rather than

√
2. We comment that the difference between the initial bearing

θ0 = 0◦ and 90◦ explains the clockwise and counter-clockwise rotations of the predator,
resulting in θ − α = −45◦ and 45◦, respectively. This reasoning also justifies the 90◦
rotational mapping between the two sets of trajectories associated with the two bearings.

4. Results: RL for a point prey and a finite-size prey

4.1. RL-based optimization in the case of a point prey
To substantiate our study, we adopt an RL scheme to seek the optimal predatory strategies
for a predator limited to the ‘F + L’ squirming modes. Before studying a finite-size
prey (χ > 0), we first address the scenario of a point prey (χ = 0), where the optimal
solutions based on the optimal control approach (see figure 2) can be regarded as the
globally optimal solutions for benchmarking. As shown in figure 6, both the minimal
capture time Tto and maximum efficiency ηeo obtained by RL agree well with their
counterparts by optimal control. Also as expected, a close inspection of figure 6 shows
that RL performs slightly worse than the optimal control, which implies further that the
latter has indeed provided the globally optimal solutions. Comparing further in figure 7
the learned trajectories of the TO predator and its prey to their counterparts based on
optimal control, we observe that the RL-trained TO predator learns to execute a two-fold
zigzag path identified by the optimal control approach. In particular, when θ0 = 0◦, the
trajectories obtained from the two approaches almost collapse on each other; the sharp
turn in the trajectory and the associated steep jump in the lateral model (action) BL
are captured quantitatively by RL, as shown in figures 7(a,d). However, as the initial
bearing θ0 increases to 15◦ and 30◦, the RL solutions can reproduce the two-fold path
only qualitatively, but fail to capture its sharp turn or the sudden jump of the swimming
action (see figures 7(b,c,e, f ). In fact, the degrading performance of RL at a larger bearing
angle θ0 < 45◦ can be rationalized. For a two-fold path identified by optimal control, we
define its two-foldedness τ/T as the time τ when the predator turns sharply scaled by the
capture time. The foldedness decreases monotonically with θ0 ∈ [0, 45]◦, becoming zero
at θ0 = 45◦ corresponding to a straight chasing path (see the inset of figure 6b). This trend
implies that time saving gained by executing a two-fold path diminishes with increasing θ0;
or, in other words, the extra time required by executing the straight path as a sub-optimal
solution instead of the globally optimal version decreases with growing θ0 < 45◦.
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Figure 6. Using RL to obtain the minimal capture time Tto and maximum efficiency ηeo of an ‘F + L’
predator chasing a point prey. The results are compared against those based on the optimal control approach.

Hence at a sufficiently large θ0 featuring a negligible difference in the capture time
between the sub-optimal and globally optimal strategies, it becomes challenging for the
RL algorithm to pinpoint exactly the globally optimal one.

Returning to figure 7, strictly speaking, we will not regard our RL-trained strategies
as globally optimal when θ0 = 15◦ and 30◦. On the other hand, they indeed capture the
essential features – two-fold path – of the globally optimal solutions. This promising
observation thus motivates us to employ RL to optimize the predating strategy of a
squirmer chasing a finite-size prey when the globally optimal solutions are not available,
as we will present in § 4.2. We add two comments before proceeding. First, despite the RL
solutions deviating from the globally optimal ones at increasing θ0 < 45◦, when θ0 = 45◦,
featuring a globally optimal straight path depicted in figure 2(e), RL can again reproduce
exactly this solution. Also, in perfect agreement with the optimal control approach, RL can
identify the straight paths reaching the optimal efficiency regardless of the initial bearing
of the prey. These optimal straight paths are not shown here. Second, we have realized the
crucial role of Γ (in (2.9)) that represents a positive reward upon the capture time. Without
this reward, the RL approach results in straight chasing trajectories regardless of the initial
orientation θ0 of the prey, evidently being trapped in locally optima.

4.2. RL-based optimization in the case of a finite-size prey (χ > 0)
Here, we use RL to optimize the predatory strategies of an ‘F + L’ squirmer for capturing
a finite-size spherical prey of dimensionless radius χ > 0. For the BIM-based RL
environment, we use a cut-off distance ε = 5 × 10−2 larger than the previous value
4 × 10−3 due to the degrading accuracy of BIM as involving two sufficiently close
surfaces. The finite-size effect of the prey does not change the typical two-foldedness of
the TO chasing path, as exemplified by a χ = 0.25 prey initially at θ = 0◦ and 30◦ (see
figures 8(a) and 8(b), respectively). By examining further in figure 8(c) the χ -dependent
TO predatory trajectory for θ0 = 15◦, we observe its decreasing two-foldedness in the
case of a larger prey. For a sufficiently large prey of χ = 6, the TO path becomes
straight eventually. We here provide a phenomenological understanding of this change.
As discussed in § 3.1, the two-fold path executed by the TO ‘F + L’ predator enables
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Figure 7. Trajectories of the TO predators (blue) and their point prey (red) with initial bearing (a) θ = 0◦,
(b) θ = 15◦, and (c) θ = 30◦, based on optimal control (curves) and RL (symbols). The time evolutions of
the lateral mode (action) BL of the predators are shown in (d), (e) and ( f ), respectively. The forward mode
BF � −1 as in figure 2(a) for both methods, and is thus not shown here. The inset of (b) shows τ/T versus θ0
of the optimal control solutions.

exploiting its propulsion-induced disturbance flow to adjust the advection of the prey.
The effect, however, diminishes for a larger prey being more difficult to advect due to
its increased hydrodynamic resistance coefficient. This trend will be responsible for the
decreasing two-foldedness of the TO predatory path with increasing χ . Furthermore, we
depict in figure 8(d) the dependence of the minimal capture time Tto on the prey size χ .
Despite the unchanged symmetric profile of Tto(θ0) regardless of the varying χ , the
capture time Tto declines monotonically with the prey size. This negative relation can be
rationalized by realizing that the disturbance flow of the ‘F + L’ squirmer, overall, expels
the prey away from it, as evidenced by the prey’s path (see figures 7 and 8a,b). Therefore,
a larger expelled prey travels a shorter distance, reducing the capture time. We also note
that the wide range of chosen χ has been motivated by the various realistic scenarios
introduced in § 1.

5. Conclusion

In this work, we study, in the creeping flow regime, a swimming predator modelled by
a spherical squirmer chasing a non-motile point or finite-size spherical prey advected by
the disturbance flow generated by the former. Using optimal control for a point prey and
RL for general situations, we optimize the predatory strategies of the squirmer that can
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Figure 8. Trajectories of the RL-trained TO ‘F + L’ predator and its finite-size spherical prey of radius χ =
0.25 initially located at (a) θ = 0◦ and (b) θ = 30◦; the lateral BL and forward BF modes of the squirmer are
depicted in the bottom images. The circles (resp. stars) denote the initial (resp. final) positions of the predator
and prey. (c) Dependence of the TO trajectory on the prey size χ ∈ [0, 6] when θ0 = 15◦. (d) Minimal capture
time Tto versus initial bearing θ0 and size χ of the prey; χ = 0 corresponds to a point prey studied via both
optimal control and RL, whereas the results for a finite-size prey (χ > 0) are obtained by RL. For all cases here,
the cut-off distance is ε = 5 × 10−2, and the initial surface-to-surface distance between predator and prey is
|d0| = 2 as in § 3.

translate forward (‘F’) and laterally (‘L’), generating a stresslet (‘S’) flow or rotating (‘R’)
in the fluid. We have identified the best time sequences of the squirming modes to achieve
time-optimal (TO) or efficiency-optimal (EO) predating, in order to minimize the capture
time or to maximize the predatory efficiency, respectively.

We first focus on a point prey. The EO ‘F + L’ predator swims straight towards the prey
regardless of its initial bearing with respect to the predator. In contrast, the TO predator
follows an L-shaped route, hence travelling a longer distance than the EO predator. This
chasing strategy can be understood by examining how the disturbance flow of the predator
advects the prey: the EO predator generates a flow that persistently expels the prey away
from it; the TO counterpart has been optimized to adapt its orientation with respect to the
prey, such that its disturbance flow can be harnessed to advect the latter towards itself to
some extent. This peculiar route may not be revealed easily intuitively. Also, we show that
incorporating an additional stresslet mode of magnitude Bmax

S = 1 allows the ‘F + L + S’
EO predator to outperform considerably the ‘F + L’ counterpart in every aspect of the
predatory performance; generally, the former captures the prey faster, consumes less
energy, travels a shorter distance, and gains a higher predatory efficiency (see figure 3).
We recall that for an isolated squirmer, introducing the stresslet mode does not change
its speed, but does increase the energy expenditure and decrease its efficiency (Blake
1971). For predation, the counterintuitive energy-saving and efficiency enhancement result
from the predator’s largely reduced capture time and travelling distance. This reduction is
most pronounced when the prey is initially ahead of the predator, achieved by utilizing
the stresslet flow to suck the prey towards itself. A similar scenario was revealed by Tam
& Hosoi (2011) for a biflagellated swimmer that exploits its strokes-induced currents to
achieve optimal nutrients uptake. Then we have examined how the maximum magnitude
Bmax

S of the stresslet mode influences the performance of an ‘F + L + S’ TO predator.
Increasing the magnitude reduces the predator’s capture time and travelling distance as
expected; however, it increases significantly the consumed energy. The competition results
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in the non-monotonic variation of the predatory efficiency versus Bmax
S ; accordingly, the

TO predator attains the highest predatory efficiency at an optimal value Bmax
S ≈ 0.7–0.8.

In addition, we have also investigated the potential role of rotational motion in the
TO predation. Compared to a translating ‘F + L’ predator, the ‘F + R’ counterpart
combining the forward translation and rotation spends more time catching the prey,
while the ‘F + L + R’ squirmer using two translational motions and rotation seizes the
prey faster than the former two compeers. Unlike the ‘F + L’ TO predator following an
L-shaped path, the ‘F + R’ compeer first rotates to face the prey exactly and then swims
straight to it (see figure 5d). Thus the total capture time comprises two parts – one used for
rotational reorientation, and the other for straight chasing. For a prey initially exactly on the
right side requiring a considerable rotation, the TO predator has been optimized to adopt
a non-intuitive strategy of retreating in order to advance: it first swims backwards, leaving
rather than approaching the prey in appearance; this trick reduces effectively the angular
difference between its orientation and the prey’s bearing, and thus the corresponding time
for rotation, leading to a net time saving. We comment that the activated rotational motion
of the predator would fail to represent the actual situation due to the unphysical zero power
consumption of this motion. Future improvement in modelling is needed to account for the
reorientation of the predator.

Besides optimal control, we have used RL to seek the optimal strategies of an ‘F + L’
squirmer chasing a point prey or a spherical one of radius χ > 0. For the latter, a BIM
solver is developed to emulate the RL environment. For a point prey, we have observed that
our RL-based solutions reproduce perfectly the globally optimal EO strategies (featuring
straight chasing paths) derived by optimal control, while for the TO counterpart, the former
qualitatively (even quantitatively in some cases) agree with the globally optimal ones. In
particular, RL can capture the non-intuitive two-foldedness of the TO path. Applying RL to
a spherical prey of radius χ > 0, we have identified that the two-foldedness of the TO path
decreases with increasing χ , and the TO path eventually becomes straight at a sufficiently
large χ . We have also shown that the minimal capture time decreases monotonically with
χ because a larger prey is more difficult to be advected by the predator.

It is worth noting that despite the substantial amount of work applying RL to optimize
the locomotory gaits or path planning of different swimmers, to the best of our knowledge,
no individual work implies that the RL-trained swimming strategy represents or resembles
the globally optimal one. It is indeed well-known that RL is easily trapped to local
optima (Liepins & Vose 1991; Lehman & Stanley 2011; Sutton & Barto 2018). The only
exception might be the very recent work Nasiri & Liebchen (2022), having used RL to
find asymptotically optimal navigating strategies of a point swimmer, which replicate
closely the globally optimal solutions identified previously by Daddi-Moussa-Ider, Löwen
& Liebchen (2021). Together with Daddi-Moussa-Ider et al. (2021) and Nasiri & Liebchen
(2022), our work indicates that RL-based optimization of swimming gaits or paths can
be trapped to locally-optimal solutions as anticipated, but it can also identify the global
optima by using a proper RL implementation.

We finally discuss the squirmer as the model predator. The model is adopted here for
its mathematical simplicity and important features such as time-dependent strokes and the
resulting disturbance flows, as well as its finite-size effect. This model does not capture
the critical merits of certain predatory microflagellates in planktonic environments. The
marine microflagellates are mostly sessile predators rather than free swimmers as studied
here, and they intercept the prey or nutrient particles by using their flagella, filters or
slender tentacles (Fenchel 1986) instead of chasing directly the prey or particles.
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