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Fluid transport by individual microswimmers
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We discuss the path of a tracer particle as a microswimmer moves past on an infinite,
straight trajectory. If the tracer is sufficiently far from the path of the swimmer it
moves in a closed loop. As the initial distance between the tracer and the path
of the swimmer ρ decreases, the tracer is displaced a small distance backwards
(relative to the direction of the swimmer velocity). For much smaller tracer–swimmer
separations, however, the tracer displacement becomes positive and diverges as ρ→ 0.
To quantify this behaviour we calculate the Darwin drift, the total volume swept out
by a material sheet of tracers, initially perpendicular to the swimmer path, during the
swimmer motion. We find that the drift can be written as the sum of a universal
term which depends on the quadrupolar flow field of the swimmer, together with
a non-universal contribution given by the sum of the volumes of the swimmer and
its wake. The formula is compared to exact results for the squirmer model and to
numerical calculations for a more realistic model swimmer.

Key words: biological fluid dynamics, low-Reynolds-number flows, mixing

1. Introduction
Microswimmers, by virtue of their size, typically have Reynolds numbers �1.

Hence they are well described by the Stokes equations. These are time independent
and therefore, as first recognized by Purcell (1977), any swimming stroke that leads
to motion at Re = 0 must be non-invariant under time reversal. Swimming strategies
evolved by microorganisms to overcome this restriction include waving flagella and
rotating helical filaments.

Bacteria, algae and other micro-organisms usually live in complex fluids, sharing
their environment with myriad inert particles such as colloids and biofilaments. As
they swim, the flow fields they produce stir the surrounding fluid, leading to the
enhanced tracer diffusion observed in swimmer suspensions (Wu & Libchaber 2000;
Leptos et al. 2009; Sokolov et al. 2009; Kurtuldu et al. 2011; Miño et al. 2011), and
predicted by simulations and using theoretical arguments (Underhill, Hernandez-Ortiz
& Graham 2008; Rushkin, Kantsler & Goldstein 2010; Ishikawa, Locsei & Pedley
2010; Lin, Thiffeault & Childress 2011; Zaid, Dunkel & Yeomans 2011). Bacterial
stirring is thought to be an important factor in controlling and enhancing nutrient
uptake. Moreover, but still controversially, it has been suggested that stirring by small
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6 D. O. Pushkin, H. Shum and J. M. Yeomans

Swimmer
path

z

0

FIGURE 1. (Colour online) Typical motion of a sheet of tracer particles as a swimmer moves
in an infinite straight trajectory from left to right, along ρ = 0 perpendicular to the sheet. The
initial position of the tracer sheet is shown as a dotted line, and the envelope of the final
tracer positions as the thick curves. Examples of the loop-like trajectories of the tracers are
indicated as lighter lines. The starting and ending points of the tracer paths are marked by
open circles and asterisks respectively and arrows indicate the direction of motion along the
paths. For ρ > ρC the net tracer displacement is negative and decays as ρ−3 as ρ→∞ for
dipolar swimmers. For ρ < ρC it is positive and diverges as ρ→ 0. However, the Darwin drift,
the integrated volume swept out by the sheet, given by (3.9), is finite. This figure is obtained
from the numerics presented in § 4.2, and is drawn to scale.

swimmers may cause a significant contribution to local mixing in the ocean (Visser
2007; Katija & Dabiri 2009).

However, experimental trajectories of tracers in a suspension of swimmers often
look loop-like (Leptos et al. 2009), with the net displacement between the initial
and final locations considerably shorter than the characteristic trajectory size, figure 1.
Indeed, it has been shown that tracers advected by a passing swimmer follow closed
trajectories when the swimmer, modelled as a viscous dipole or quadrupole, travels
along a straight, infinite path (Dunkel et al. 2010). This loop-like nature of the
tracer paths was found, on the average, to survive the smearing effect of Brownian
fluctuations.

Clearly, closedness of tracer trajectories severely limits the effectiveness of stirring,
yet microswimmers enhance tracer diffusion. An explanation is called for, and this is
an aim of this paper. We first, in § 2, examine the tracer trajectories, identifying the
properties of the flow field and the necessary assumptions and conditions that lead to
loops. In particular we find that the trajectories are not closed for tracers near to the
swimmer. Such particles are entrained by the swimmer, following it over a distance
that diverges for a head-on collision. Loops are also destroyed by finite swimmer
paths, and by the flow field appropriate to swimming in two dimensions.

In the remainder of the paper we focus on investigating entrainment in detail. To
do this we calculate the Darwin drift, the volume of fluid moved by a swimmer as it
travels along an infinite straight path (Darwin 1953; Benjamin 1986; Eames, Belcher &
Hunt 1994). We find that although this quantity is infinite for a colloid pulled through
a viscous fluid (Eames, Gobby & Dalziel 2003), it is finite for a swimmer. Moreover it
can be written as the sum of a universal term, which depends only on the quadrupole
flow produced by the swimmer, and a non-universal contribution equal to the volume
of fluid in the swimmer wake.
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Fluid transport by individual microswimmers 7

The analytic development leading to this result is described in § 3 where we
consider the displacement of a material sheet of tracers lying perpendicular to the
swimmer path. In § 3.1 we calculate the far-field tracer displacement showing that
it scales as ρ−3 for a dipolar swimmer, where ρ is the initial distance between
the tracer and the swimmer path. We then, in § 3.2, obtain an expression for the
Darwin drift produced by a passing swimmer. Section 4 compares the theoretical
results to calculations for two model swimmers: in § 4.1 we present analytical results
for the squirmer model. Section 4.2 is devoted to a numerical calculation of the
drift for a model bacterium which resembles Rhodobacter sphaeroides. Algebraic and
numerical details appear in Appendices. Finally our results are summarized, and other
mechanisms for tracer diffusion discussed, in § 5.

2. Geometrical constraints to mixing by a single swimmer
Consider a single swimmer moving steadily in a quiescent fluid at a speed V along

the direction k. Let R(t) be the time-dependent position of the swimmer and u(r, k)
the velocity induced at the position r relative to the swimmer. As the passive tracer
moves with the local fluid velocity, its position rT satisfies

drT

dt
= u(rT − R(t), k). (2.1)

A self-propelled, neutrally buoyant swimmer must be force-free. This physical
requirement imposes a strong restriction on its velocity field. In particular, the
Stokeslet term of the multipolar expansion must vanish and the velocity far from
the swimmer is generally dominated by the force dipole flow:

uD (r, k)=−κ (k ·∇)US (r, k) , (2.2)

where US is the Stokeslet, the gradient operator ∇ acts on the first argument of US,
and κ is the dipole strength. The sign of κ distinguishes the far field of pushers
(such as Escherichia coli), κ > 0, from that of the pullers (such as Chlamydomonas
reinhardtii), κ < 0. The Stokeslet can be expressed via the Oseen tensor J:

US (r, k)= k · J, J = E

r
+ rr

r3
. (2.3)

Here r = ‖r‖ and E is the identity matrix. Hence, the dipolar flow field u decays at
large distances as r−2. (Thus defined κ incorporates the prefactor 1/8πη, where η is
the kinematic fluid viscosity.)

Note that expression (2.2) is considerably more restrictive than the general definition
of the force dipole (also commonly referred to as the stresslet and Stokeslet doublet)
(Chwang & Wu 1975). The strength of the general force dipole is a symmetric second-
order tensor and it may have six independent components. However, it is physically
reasonable to expect that the lines of action of the resultant thrust and drag forces
coincide and are aligned with the direction of swimming k. These conditions reduce
the number of independent components from six to one. In particular, the dipole
moment in the direction perpendicular to the swimming direction is zero. Also, a zero
net force on the fluid guarantees that the value of κ is independent of the choice
for the swimmer centre. (A more detailed discussion of this fact in the context of
swimmers was given by Underhill & Graham 2011.)

The validity of representation (2.2) and its limitations due to finite swimmer size
effects and density excess of the organisms over the surrounding fluid were analysed
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8 D. O. Pushkin, H. Shum and J. M. Yeomans

in recent experiments for C. reinhardtii in Guasto, Johnson & Gollub (2010) and
Drescher et al. (2010) and for E. coli in Drescher et al. (2011).

Under the same set of assumptions the quadrupolar terms of the multipole expansion
for an axisymmetric swimmer can be written

uQ (r, k)=− 1
2

(
Q‖(k ·∇)2 + Q⊥∇2

⊥
)
US (r, k) , (2.4)

where Q‖ and Q⊥ are the force quadrupole strengths along and perpendicular to the
swimming direction respectively and ∇2

⊥ is the Laplace operator in the plane normal
to the swimming direction. (It should be noted that while the zero dipole strength in
the perpendicular direction guarantees that Q⊥ is independent of the choice for the
swimmer centre Underhill & Graham 2011, the value of Q‖ does depend upon it. This,
however, poses no difficulty as our results will turn out to be independent of Q‖.) The
quadrupolar terms corresponding to the azimuthal rotation of fluid elements about the
axis, also known as rotlet dipoles, have not been included in (2.4) as they do not
contribute to axisymmetric transport (along the swimming direction).

In the particular case of Q‖ = Q⊥ = Q,

uQ (r, k)=− 1
2 Q∇2US (r, k)≡ Q (k ·∇)∇

(
1
r

)
. (2.5)

A spherical body or a spherical droplet passively towed in viscous fluid has the
quadrupole term of the same form (Pozrikidis 1992). Remarkably, the flow field of
a spherical particle moving in inviscid fluid also has the same form. Indeed, the
expression to the right of the identity sign in (2.5) is but a potential dipole (Pozrikidis
1992).

It is essential for our further argument that the quadrupole term (2.4), similarly to
the dipole term (2.2), can be expressed as a derivative along the swimming direction.
Indeed,

uQ (r, k)= (k ·∇)UQ (r, k) , (2.6)

UQ (r, k)= Q⊥∇
(

1
r

)
+ Q⊥ − Q‖

2
(k ·∇)US (r, k) . (2.7)

Hence a general flow field produced by a swimmer takes the form

u (r, k)= (k ·∇)U0 (r, k)+ O(r−4). (2.8)

In the latter expression the dipolar and quadrupolar contributions combine to give

U0 =−κUS + UQ. (2.9)

We are now in a position to see that closedness of tracer trajectories is a universal
feature rooted in expression (2.8). Consider the velocity U0(rT − R(t)) at the tracer
location. Its Lagrangian derivative is

dU0

dt
=− (V ·∇)U0 +

(
drT

dt
·∇
)
U0, V = Vk. (2.10)

When the tracer velocity is negligible in comparison to the swimmer velocity,
‖drT/dt‖� V , the Lagrangian derivative coincides with the Eulerian derivative:

dU0

dt
≈−V (k ·∇)U0. (2.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.208


Fluid transport by individual microswimmers 9

Closed loops condition Examples of violation Mixing mechanism
Induced tracer
displacement � swimmer
displacement

Tracers close to swimmer Fluid entrainment

u(r)= (k ·∇)U0(r) Non-neutrally buoyant
swimmers and colloidal

particles

Important for non-neutrally
buoyant swimmers

Short-range interactions:
‖U0(r)‖→ 0 as r→∞

Two-dimensional dipole Enhanced mixing in films

Swimmers arrive from and
leave to infinity

Run-and-tumble of
C. reinhardtii

Random re-orientations (Lin
et al. 2011)

Advection by a single
swimmer

Entrainment by multiple
swimmers

Important for higher
concentrations of swimmers

TABLE 1. Necessary conditions for closed tracer loops and corresponding mixing
mechanisms.

Combining this expression with (2.1) and (2.8), results in:

drT

dt
≈− 1

V

dU0

dt
. (2.12)

Therefore, the overall displacement of the tracer as the swimmer travels along the
infinite path equals:

1rT =
∫ +∞
−∞

drT

dt
dt =− 1

V
(U0(+∞)− U0(−∞))= 0, (2.13)

i.e. the tracer trajectory is closed.
Besides translating, some swimmers, such as bacteria, often rotate around their

bodies. But since typically the rotation axis coincides with the swimming direction,
the induced azimuthal flow causes mixing only in the azimuthal direction. Our interest
here is in the cylindrically symmetrical transport and hence we have disregarded the
azimuthal component of the flow.

The assumptions inherent in proving that the tracer loops are closed can be
summarized as follows.

(i) The (induced) tracer velocity is much smaller than the swimmer velocity.
(ii) The velocity field induced by the swimmer can be expressed in the form (2.8).

(iii) The field U0 decays at infinity: U0(r)→ 0 as r→∞.
(iv) Swimmers move in straights paths, arriving from and leaving to infinity.
(v) Advection is by a single swimmer.

The effectiveness of biomixing (Leptos et al. 2009; Kurtuldu et al. 2011) indicates
that one or more of these assumptions is often violated in natural settings. The
character of such violations may serve as the basis for systematic analysis of different
mechanisms of biomixing, and we list examples in table 1. In the remainder of
this paper we provide a detailed analysis of situations where the first assumption is
violated, and the tracer velocity is no longer small compared to that of the swimmer.
This occurs for tracer particles that happen to lie in the vicinity of a swimmer
path. Their motion can be understood as entrainment of the neighbouring fluid by a
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10 D. O. Pushkin, H. Shum and J. M. Yeomans

swimmer. Fuller comments on possible ways in which the other assumptions break
down are given in the Discussion, § 5.

3. Fluid entrainment by swimmers
The fluid flow near a swimmer is determined by the swimmer shape and gait.

Consequently, important physical quantities, such as the dissipated energy or the
ability to stir the surrounding fluid may strongly depend upon the particular swimmer
features. However, some aspects of the hydrodynamics, for example the dipolar far
flow field, are universal, i.e. generic across a wide range of swimmers. When
considering the effect of entrainment on particle transport we shall, in particular,
identify the universal aspects of the tracer motion.

In order to analyse permanent displacement of fluid by a moving body it is
convenient to envision an initially flat material sheet (i.e. a plane of tracer particles) of
infinite extension, and a swimmer approaching it normally, see figure 1. As the body
moves, the sheet is deformed. Studies of the asymptotic shape of the material sheet
and the fluid transfer fall under the rubric of the Darwin drift. The cases of towed
bodies in inviscid (Darwin 1953; Benjamin 1986; Eames et al. 1994) and viscous
flows (Eames et al. 2003) have been analysed in detail. Here we consider the Darwin
drift for force-free swimmers, far from, and then closer to, the swimmer trajectory.

3.1. Far-field entrainment
The velocity field far from a swimmer is dominated by the dipolar and quadrupolar
terms which, from (2.2) and (2.4), are

u (r, k)=
(
−κ∂z − Q‖

2
∂2

z −
Q⊥
2
∇2
⊥

)
US (r, k)+ O(r−4). (3.1)

Here we use Cartesian coordinates with the z-axis directed along the swimming
direction and hence (k · ∇) = ∂z. The multipole expansion ensures that the asymptotic
shape of the material sheet is naturally universal at large distances from the swimmer
path. Let ρ be the distance from this path to a tracer in the material sheet and ∆

the resulting tracer displacement along the swimming direction, as the swimmer travels
from and to infinity. Straightforward asymptotic calculations (see appendix A) result in

∆=−C1
κ2

V2

1
ρ3
+ C2

κQ⊥
V2

1
ρ4
+ O(ρ−5) for κ 6= 0. (3.2)

Here C1 and C2 are constants. Detailed calculations show that C1 = π/16. A typical
shape of the deformed sheet is shown in figure 1. As C1 > 0, far from the swimmer
the sheet is displaced oppositely to the swimming direction both for pushers and
pullers. Pushers and pullers are distinguished by the sign of the second term in (3.2).
Notably, the displacement ∆ turns out to be independent of the parallel quadrupole
strength Q‖.

The calculation we have just described is valid in the region of small negative total
tracer displacement. A quantitative comparison to numerical results will be given in
§ 4.2.

3.2. Near-field entrainment
Unlike the case of far distances, at close separations from the swimmer the shape of
the deformed material sheet strongly depends on the swimmer size, shape, and stroke.
It will, however, always remain integrable, and the volume of fluid entrained by the
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Fluid transport by individual microswimmers 11

Swimmer
Wake 0

A
V

Li–Lf

FIGURE 2. (Colour online) Geometry and parameters used in the calculation of the Darwin
drift in appendix B.

swimmer finite. We shall show, surprisingly, that the total volume of fluid displaced by
the swimmer vD can be decomposed into a universal and a swimmer-dependent part
having a lucid physical meaning. Before deriving this result, we pause to note that in
his seminal paper Darwin (1953) put forward a remarkable proposal that for a body
moving steadily in an inviscid fluid, vD equals the added mass of the body. He derived
this result for a sphere and a cylinder of circular shape, finding in accordance with
his hypothesis vD = CDvs, where vs is the sphere/cylinder volume/cross-sectional area,
CD = 1/2 for a sphere and CD = 1 for a cylinder. Later his arguments were refined
(Eames et al. 1994, and references therein) and a notion of the partial Darwin drift
was introduced to account for the case of a body starting a finite distance from the
sheet before crossing it and moving to infinity. More recently, a spherical viscous drop
towed through a fluid of different viscosity was considered (Eames et al. 2003). It was
found that in this case vD is divergent with a pre-factor proportional to the viscosity of
the surrounding fluid. A viscosity-enhanced mechanism of ocean biomixing (Katija &
Dabiri 2009) was proposed based on this result.

We follow the ideas of Darwin in our derivation of vD for force-free swimmers. We
set the z-axis along the swimming direction and introduce the cylindrically symmetric
streamfunction in the system of reference co-moving with the swimmer ψ(ρ, z). For a
swimmer with the velocity field (3.1) we obtain (see appendix B):

ψ = 2πρ2

[
V

2
+ κz

r3
−
(

Q‖
1− 3cos2θ

2
+ Q⊥

1+ 3cos2θ

2

)
1
r3

]
+ O(r−2), (3.3)

where r2 = ρ2 + z2 and cos θ = z/r.
Next, we consider a flow region around the swimmer which has a finite lateral

extension −Lf 6 z 6 Li and is enclosed in a streamtube of a finite initial radius
ρ0: {ρ, z : ψ(ρ, z) 6 ψ0,−Lf 6 z 6 Li, ψi = ψ(ρ0,Li)}. The total entrained volume is
obtained from the volume entrained by the flow within this region by letting ρ0→∞.
By a simple geometrical argument (see appendix B and figure 2), the latter equals

vD = A(ρ0)− v∗. (3.4)

Here v∗ is the volume of the flow region enclosed by a stagnation streamline
around the swimmer (in the co-moving reference frame). This expression demonstrates
the strength of the current approach: finding the drift is reduced to analysing the
asymptotics of A(ρ0); detailed calculations of the shape of the displaced material sheet
close to the swimmer (that essentially depend on near-field details) are circumvented.
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12 D. O. Pushkin, H. Shum and J. M. Yeomans

Naturally, A(ρ0) depends only on the far field of the swimmer velocity:

A= 2πκ
V
ρ0 sin θ

∣∣∣∣f
i

+ π(Q‖ + Q⊥)
V

cos θ

∣∣∣∣f
i

+ π(Q⊥ − Q‖)
V

cos3θ

∣∣∣∣f
i

+ O(ρ−1
0 ). (3.5)

At this point, however, (3.5) is not well-defined, as the first term on the right-hand
side may diverge as ρ0→∞. But it will remain finite, in fact equal to zero, if the
swimmer path is symmetric with respect to the initial plane of the material sheet,
θf = π− θi. Hence, under this condition, the dipole flow component does not contribute
to the permanent volume transfer across the sheet and, when the swimmer travels an
infinite distance,

A= 2π(Q‖ + Q⊥)
V

+ 2π(Q⊥ − Q‖)
V

= 4πQ⊥
V

. (3.6)

The final expression for the Darwin drift reads

vD = 4πQ⊥
V
− v∗. (3.7)

Similarly to the tracer displacement ∆, the Darwin drift of a swimmer turns out to be
independent of the parallel quadrupole strength Q‖. To appreciate the result (3.7), the
distinction between the volume v∗ and the swimmer volume vs should be emphasized:

v∗ = vs + vwake, (3.8)

where vwake is the volume of the swimmer wake, defined in the swimmer’s reference
frame as the region of fluid enclosed by a stagnation streamline.

Equation (3.7) provides a decomposition of vD into a universal and a swimmer-
dependent part. For an arbitrary force-free swimmer the near-field details affect the
entrained volume by virtue of v∗ only. In the next section we illustrate the utility of
expression (3.7) for two model swimmers: the squirmer model and a numerical model
of the bacterial cell.

For the special case of Q‖ = Q⊥ = Q, expression (3.7) reduces to

vD = 4πQ

V
− v∗. (3.9)

This formula is, in fact, identical to the one derived by Taylor (1928) in the context
of inviscid flows. But the underlying physical reasons are, of course, different. In
the inviscid case the potential dipole (coinciding with the viscous force quadrupole
Chwang & Wu 1975) is the only dominant fluid velocity component present that
may contribute to A. In the (highly) viscous case, however, the Stokeslet and stresslet
components do not contribute because of the force-free nature of the swimmer motion
and the symmetry conditions on the swimmer trajectory respectively. We recently
found that expression (3.9) was also stated in the context of swimmers in Leshansky
& Pismen (2010) but the questions of universality and the role of the wake were not
discussed.

Perhaps, it is worth emphasizing that expression (3.7) is exact. As becomes evident
from the derivation, the higher-order multipolar terms do not contribute to expression
(3.7) (in the limit ρ0→∞). This fact is important, as it was demonstrated by Drescher
et al. (2010) that the fields of biological swimmers, such as C. reinhartdii, have
rather complex structures and the higher-order terms of the multipolar expansion make
significant contributions to the flow field up to comparatively large separations from
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Fluid transport by individual microswimmers 13

swimmers. Note, however, that the symmetry condition for the swimmer trajectory
means that the limit of the infinite trajectory length L→∞ is taken before the limit
ρ0→∞. As pointed out by Benjamin (1986) and elucidated by Eames et al. (1994),
the concept of Darwin drift in inviscid flows hinges on the same ordering of the limits.

We have assumed so far that microswimmers move in a roughly steady fashion
and produce stationary flows. But some microswimmers, such as C. rheinhardtii,
produce oscillatory flows by beating their flagella asymmetrically during the power
and recovery strokes. Nevertheless, as far as the total volume of the displaced fluid
is concerned, the conclusions obtained in this section should remain valid if we
understand the physical quantities such as the fluid velocity, the streamfunction and the
multipole strengths in the beat-cycle-averaged sense.

4. Two model swimmers
4.1. Entrainment by a spherical squirmer

The spherical squirmer model has been the theorist’s workhorse for studying
swimming at low Reynolds numbers for more than half a century (Lighthill 1952;
Blake 1971; Ishikawa, Simmonds & Pedley 2006). It assumes a spherical swimmer of
radius a with a prescribed tangential velocity uθ on the swimmer’s surface in the co-
moving reference frame (θ is the polar angle measured from the swimming direction).
The induced flow can be found analytically as a superposition of spherical harmonics.
In the simplest non-trivial case when just the first two harmonics are non-zero:

uθ = B1 sin θ + B2 sin θ cos θ,

where B1 and B2 are constants. For a neutrally buoyant, force-free swimmer B1 sets the
swimming speed V = (2/3)B1, and B2 sets the swimmer dipole strength. The squirmer
streamfunction is written

ψ = πρ2V

[
1+ 3β̂

2
z

r

((a

r

)2 −
(a

r

)4
)
−
(a

r

)3
]
, (4.1)

where β̂ = B1/B2. Comparison of the latter expression with (3.3) shows that the
squirmer dipole strength κ = (3β̂/4)Va2 and the quadrupole strength Q⊥ = Q‖ = Q =
Va3/2. Clearly, squirmers having β̂ > 0 are pushers while those having β̂ < 0 are
pullers. For strong enough dipole strength, |β̂| > 1, squirmers develop a bubble-like
wake. The dependence of the squirmer wake volume on β̂, vwake/vs = f (β̂), can be
calculated analytically, see appendix C.

Having substituted the above calculations in expression (3.9), we readily obtain:

vD = vs(1/2− f (β̂)). (4.2)

The squirmer drift is plotted on figure 3. Thus, for sufficiently weak dipole strength
|β̂| < 1 the drift volume for the squirmer equals half of its volume. Interestingly,
the same result holds true for a sphere moving in inviscid fluid and thence the
first term in the brackets can be recognized as the added mass coefficient for
a sphere CD = 1/2 (Darwin 1953). Generally, however, the drift volume for the
squirmer strongly depends on its dipole strength. For |β̂| > 1, vD decreases and
becomes negative for |β̂| > 2.4. These analytical results are in full agreement with
our independent numerical calculations of the Darwin drift for the squirmer.
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FIGURE 3. (Colour online) Squirmer drift as a function of β̂ = (4κ)/(3Va2) where κ is the
dipole strength, V the velocity and a the radius of the squirmer. The wake volume is measured
in units of the squirmer volume.
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FIGURE 4. Geometrical model of Rhodobacter sphaeroides, after Shum et al. (2010).

4.2. A model for Rhodobacter sphaeroides
We now examine numerically the paths of passive tracer particles in the flow caused
by a more realistic model swimmer, designed to represent the bacterium, Rhodobacter
sphaeroides (Shum, Gaffney & Smith 2010). The geometrical model consists of a
prolate spheroidal cell body and helically shaped flagellum of finite thickness, as
depicted in figure 4. Each of these components is rigid and the flagellum rotates about
its axis, which coincides with the major axis of the cell body.

Employing the boundary element method described in Shum et al. (2010), we
numerically determine the flow field and swimming velocity of the swimmer which
satisfies the Stokes equations, no-slip boundary conditions on the surface of the cell
body and flagellum, and the constraints that zero net force and torque act on the
swimmer.

We begin with simulations of a bacterial swimmer with a cell body of length/width
aspect ratio L‖/L⊥ = 2 and a flagellum of helical pitch λ = 2 and length L = 10.
The non-dimensional length scales and time scales used throughout this section
correspond respectively to 1 µm and 0.1 s for typical bacteria. Using the average
flow field, we compute the trajectories of tracer particles initially arranged along the
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FIGURE 5. (Colour online) (a) Deformation of an initially uniform rectangular grid of
tracer particles as a bacterial swimmer approaches from infinitely far away. (b) Deformation
(averaged over angles) of the material sheet. Plots of z-component of the net displacements
as functions of initial radial position on logarithmic axes. Dotted and dashed lines are guides
indicating the slopes of power-law scaling.

line segment z = 0, 0.1 6 ρ 6 30. The swimmer starts at z = −1000 and we run the
simulations until it reaches z= 1000. The results are extrapolated in both directions to
give the tracer displacements for an infinite swimmer path (see appendix D for details).
We find that we can neglect the net radial displacement, which is orders of magnitude
smaller than typical displacements in the z-direction.

Paths of tracer particles for different initial values of ρ are shown in figure 1. The
disturbance of the fluid can also be visualized as in figure 5(a), which illustrates the
deformation of an initially uniform rectangular grid of tracer particles as a bacterial
swimmer approaches from infinitely far away.

Double logarithmic plots of the net tracer displacements for an infinite swimmer
path as functions of the initial tracer radial distance ρ are presented in figure 5(b).
For tracers that start far from the swimmer the net displacement is negative and scales
as ρ−3 in agreement with (3.2). For those that start near to the swimmer the net
displacement is positive, and diverges as ρ−1 as ρ→ 0. This is because a fluid particle
ahead and precisely on the axis of the swimmer approaches the stagnation point at the
leading pole of the cell body and is pushed indefinitely by the swimmer.

We calculate the Darwin drift vD by a direct integration of the volume swept out by
the material sheet for an infinite swimmer path, obtaining vD =−6.29 in units of cubic
swimmer body radii. Details of the numerical integration are given in appendix D.
Thus, the overall amount of fluid for this model swimmer is displaced opposite to its
swimming direction.

To make contact with expression (3.7), we first note that the swimmer had no
discernible wake. Hence v∗ = vs = 4π/3 ≈ 4.19. Q⊥ can be obtained by numerical
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Shape Q⊥/V vD vD
(from (3.7)) (from simulations)

Base −0.15 −6.10 −6.11
L‖/L⊥ = 0.5 −0.68 −12.74 −12.78
L‖/L⊥ = 3.5 −0.08 −5.24 −5.33
L= 5 −0.17 −6.36 −6.30
L= 15 −0.14 −5.98 −6.03
λ= 0.5 −0.20 −6.76 −6.78
λ= 3.5 −0.04 −4.71 −4.68
λ= 8,L= 20 0.58 3.04 3.07

TABLE 2. Comparison of Darwin drift for different geometries of the R. sphaeroides model
swimmer. Unless listed in the first column, parameter values used are: L‖/L⊥ = 2, λ =
2,L= 10, a= λ/2π.

integration of a moment of the force on the swimmer over the swimmer surface,

Q⊥ =−1
2

∫
S

fzρ
2 dS (4.3)

giving Q⊥/V = −0.15. Putting these numbers into (3.9), gives vD = −6.10, in very
good agreement with the value obtained by direct numerical integration.

These calculations were repeated using the flow fields generated by swimmers with
a range of shapes, but keeping the volume of the swimmer body constant. In particular,
we started with the base parameter values, (L‖/L⊥ = 2, λ= 2,L= 10), and varied each
parameter in turn using the values:

L‖/L⊥ = 0.5, 3.5, λ= 0.5, 3.5, L= 5, 15. (4.4)

None of the swimmers had a wake and hence v∗ = 4.19 as before. The value of Q⊥/V
for each of the geometries is listed in table 2. The table then compares the values of
vD calculated by using Q⊥/V in (3.7) to that obtained by direct numerical integration
of the volume of fluid displaced, showing pleasing agreement. The results indicate
that for plausible swimmer shapes, the drift is of the order of the swimmer volume.

It can be seen from (3.7) and (4.3) that the drift depends on the radial distributions
of the propulsive forces on the flagellum and drag forces on the swimmer. Swimmer
shape is therefore critical in determining the Darwin drift of a swimmer. Equation
(4.3) indicates that the magnitude of Q⊥ should, in general, increase with the width
of the swimmer (when other parameters are kept constant). Table 2 corroborates this
expectation. Note that for a flagellum that has a helical radius much wider than the
body the drift becomes positive. The relation between bacterial shape, entrainment and
swimming efficiency deserves further investigation as it may be a relevant factor in
biological evolution.

5. Discussion
The aim of our paper is to describe the entrainment of tracer particles by

microswimmers. This is a step towards a full understanding of the ways in which
bacteria can stir their environment, its likely importance in enhanced nutrient uptake
and its possible relevance to oceanic mixing. Our results hold in the limit of zero
Reynolds number, which is appropriate at the length scales of bacteria, and rely
heavily on the observation that bacteria are force-free so that their far field is, to
leading order, dipolar.
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Fluid transport by individual microswimmers 17

The trajectories of tracer particles far from a swimmer that moves in a straight line
along an infinite path form closed loops. This observation is at odds with experiments
and simulations showing enhanced tracer diffusion in bacterial suspensions. Therefore
we first present a full derivation of the tracer displacement which allows us to list
the conditions necessary for closed-loop tracer trajectories. We find that the loops are
closed only if the tracer velocity can be neglected compared to the swimmer velocity.
As the initial distance between the tracer and the path of the swimmer ρ decreases this
condition is violated to an increasing degree, and a far-field expansion shows that the
net tracer displacement is negative and increases as ρ−3 for a dipolar swimmer, and as
ρ−5 for a quadrupolar swimmer.

Numerical results for a model swimmer show that as ρ decreases further the net
tracer displacement changes sign. For tracers very close to the swimmer it becomes
large and positive and diverges as ρ→ 0. This is expected as it reflects the behaviour
of a tracer ahead and precisely on the axis of the swimmer that approaches the
stagnation point at the leading pole of the cell body and is pushed indefinitely by the
swimmer. However the total volume of fluid transferred by the passing swimmer, a
quantity known as the Darwin drift, remains finite. We calculate the Darwin drift and
show that it can be written simply as a difference of two terms, see (3.9). The first of
these is, perhaps surprisingly, universal, as it depends only on the quadrupole moment
and velocity of the swimmer. The second term has a pleasing physical interpretation,
being equal to the sum of the volumes of the swimmer and of its wake. We show that
the formula holds for squirmers, where the Darwin drift can be calculated analytically,
and agrees with numerical results for a model swimmer resembling R. sphaeroides.

Following Thiffeault & Childress (2010) the effective diffusivity due to the
entrainment mechanism can be estimated in the spirit of the kinetic theory. For a
three-dimensional suspension of uncorrelated swimmers that move with a constant
velocity V along straight infinitely long trajectories, each entraining the volume ventr ,

Dentr = 1
6 Vλnventr . (5.1)

Here λ is the entrainment length and n is the concentration of swimmers. Introducing
Centr = ventr/vs, and assuming that the entrainment length is generally of the order of
the swimmer size, λ≈ a, results in the scaling law

Dentr = 1
6 CentrVaφ, (5.2)

where φ is the volume fraction of the swimmers. If the Darwin drift vD is used
as a measure of ventr , expression (3.7) gives an exact way of calculating Centr and,
hence, Dentr . On the other hand, it may be argued that ventr is dominated by the
region close to the swimmer where the fluid particle displacement is positive (i.e.
along the swimming direction). Then the volume v0 defined in appendix D should
be chosen as a measure of ventr . Another possibility that has been suggested is to
take ventr as the volume of a swimmer’s wake (Lin et al. 2011). In any case a
rough estimate of the effective diffusivity can be made by assuming that the entrained
volume is of the order of the swimmer volume vs, i.e. Centr ≈ 1. Using a = 5 µm and
V = 100 µm s−1 for the radius and typical speed of C. reinhardtii in the experiments
of Leptos et al. (2009) results in Dentr/φ ≈ 83 µm2 s−1 in good agreement with the
experimental value 81.3 µm2 s−1. (We should like to caution that due to the rough
nature of the estimate and neglect of other possible stirring mechanisms this agreement
should not be regarded more than an order-of-magnitude agreement.)

A second mechanism which leads to non-closed tracer trajectories, and hence tracer
diffusion, is finite swimmer run lengths. Mixing enhancement due to random re-
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orientation of straight runs was first suggested by Lin et al. (2011). Many motile
bacteria, such as Escherichia coli (Berg 2004) and Chlamydomonas reinhardtii (Polin
et al. 2009) have an in-built mechanism of flagellar desynchronization that leads to a
run-and-tumble manner of propulsion. It has been hypothesized (Stocker & Durham
2009) that this feature has evolved as a stealthy strategy to avoid predators. The
enhancement of biomixing may serve as an alternative evolutionary hypothesis.

Simultaneous entrainment of a tracer by several swimmers will also lead to non-
closed tracer trajectories. As a bacterial suspension becomes more concentrated, such
multi-organism effects will become more frequent and could give a significant increase
in stirring. At still higher concentrations inter-organism interactions lead to the build-
up of long-range interactions and coherent flows, dramatically changing the passive
transport even further (Dombrowski et al. 2004). This, however, occurs for much
higher swimmer concentrations (when the distance between swimmers is of the order
of the swimmer size).

Moreover, in this article we have neglected Brownian motion. On average Brownian
fluctuations do not destroy the loop-like topology of the tracer paths and a first
approximation may be to add the Brownian contribution to the tracer diffusion.
However this remains to be verified.

To summarize, we have given an account of the effect of entrainment on the
paths of tracers moving near a low-Reynolds-number swimmer. This is one of the
mechanisms, several of which are identified here, which may lead to enhanced tracer
diffusivity in swimmer suspensions. We hope that our results are a step towards
determining the relative importance of various stirring mechanisms in different regimes
of swimmer concentration and for diverse swimmer strokes and trajectories.
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Appendix A. The scaling law ∆∼ ρ−3

In this appendix we derive the scaling law for the passive tracer displacement as
a single swimmer travels in a straight infinite path. We will assume the origin at
the initial tracer location rT |i = 0 and direct the z-axis along the swimmer’s path, see
figure 1.

When the particle displacement is much smaller than the swimmer displacement,
|rT | � |R|, the right-hand side of the equation for the tracer motion (2.1) can be
expanded as:

drT

dt
= u(R(t))− (rT ·∇)u(R(t))+ O((|rT |/|R|)2). (A 1)

We solve this equation using the perturbation theory. For the zeroth-order term r(0)T :

dr(0)T

dt
= u(R(t)). (A 2)

If the z-axis is directed along the swimmer’s path, (3.1) can be written as:

u(R)= ∂z

[
−κUS (R, k)+ Q⊥∇

( 1
R

)
+ Q⊥ − Q‖

2
∂zUS (R, k)

]
+ O(R−4), (A 3)
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where R = |R| and ∂z = (k ·∇). Taking into account that d/dt = V∂z we can integrate
(A 2) along the swimmer location z and obtain:

r(0)T (z)=
[
− κ

V
US(R(z), k)+ Q⊥

V
∇ 1

R
+ Q⊥ − Q‖

2V
∂zUS(R(z), k)

]
R(z)

+ O(R(z)−3). (A 4)

In determining the integration constant in the above expression we used the initial
conditions zi = −∞ and r(0)T | i = 0. It can be immediately seen that as the swimmer
goes to infinity z→+∞, |r(0)T | ∼ R(z)−1 → 0, i.e. the tracer trajectory is a closed
loop, in agreement with the general result formulated in § 2. Therefore the tracer
displacement will be dominated by the first-order perturbation 1r(1)T .

The equation for r(1)T reads:

dr(1)T

dt
=−(r(0)T ·∇)u(R(t)). (A 5)

Substituting in the expressions for u and r(0)T obtained above and keeping the terms up
to O(R−5), we obtain:

dr(1)T

dt
=−κ

2

V
(US ·∇) ∂zUS + κQ⊥

V

[
(US ·∇) ∂z∇ 1

R
+
(
∇ 1

R
·∇
)
∂zUS

]
+ κ(Q⊥ − Q‖)

2V
∂z [(US ·∇) ∂zUS]+ O(R−6). (A 6)

This equation can be integrated along dz = V dt. The term with the prefactor
proportional to (Q⊥ − Q‖) is a derivative along the path and will, therefore, vanish
upon integration from −∞ to +∞. It is easy to see that the result has to be of the
form:

1r(1)T =−C1
κ2

V2

1
ρ3
+ C2

κQ⊥
V2

1
ρ4
+ O(ρ−5), (A 7)

where ρ is the distance between the swimmer’s path and the initial position of the
tracer, and C1, C2 are (vector) constants. It turns out that the displacement in the
direction normal to the swimming direction is negligible when the swimmer’s path
is infinite. Therefore we will focus on the tracer displacement along the swimming
direction ∆= (k ·1rT):

∆=−C1
κ2

V2

1
ρ3
+ C2

κQ

V2

1
ρ4
+ O(ρ−5). (A 8)

Here C1 and C2 are scalars. Let us calculate the numerical value of C1. According to
(A 6) and (A 8),

C1 =
∫ +∞
−∞

dzρ3 (US ·∇) ∂z (k ·US) . (A 9)

Detailed calculations show that C1 = π/16 ≈ 0.2. We note in conclusion that when
κ = 0, the dominant contribution to ∆ scales as ρ−5.
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Appendix B. The Darwin drift
B.1. Streamfunction

For a cylindrically symmetric flow the streamfunction ψ(ρ, z), defined as

ψ(ρ, z)=
∫
−dρ2πρvz + dz2πρvρ, (B 1)

has a clear physical meaning: it equals the volume flux of incompressible fluid
crossing a surface of revolution obtained by rotating about the z-axis a two-
dimensional curve in the coordinates (ρ, z). Without loss of generality we will assume
that one of the curve ends lies on the z-axis and ψ(ρ = 0, z) = 0. Incompressibility
of the flow guarantees that ψ is a function of the coordinates (ρ, z) independent
of the particular curve choice. According to our definitions, for a uniform flow
uρ = 0, uz =−V and the streamfunction

1
2π
ψ0(ρ, z)= 1

2
Vρ2. (B 2)

In order to find the asymptotic shape of the streamfunction for a force-free swimmer,
we note that in the frame co-moving with the swimmer with the speed V , vz =−V+uz.
Then, according to (B 1),

∂ψ

∂ρ
=−2πρvz = 2πρ(V − uz). (B 3)

Therefore,

ψ

2π
= 1

2
Vρ2 −

∫ ′
dρρuz, (B 4)

where the prime denotes that the integral is taken along z = const. According to (3.1),
the flow generated by the swimmer is

uz =−
(
κ∂z + Q‖

2
∂2

z +
Q⊥
2
∇2
⊥

)
USz + O(r−4), (B 5)

USz =
(

1
r
+ z2

r3

)
, (B 6)

where r is the distance from the swimmer. Then is it straightforward to calculate that

∂zUSz = r−2
(
(z/r)− 3(z/r)3

)
, (B 7)

∂2
z USz = r−3

(
1− 12(z/r)2 + 15(z/r)4

)
, (B 8)

∇2
⊥USz = r−3

(
1+ 6(z/r)2 − 15(z/r)4

)
. (B 9)

We obtain upon integration and a few straightforward transformations

−
∫ ′

dρρuz = κ ρ
2z

r3
− ρ

2

r3

(
Q‖

1− 3cos2θ

2
+ Q⊥

1+ 3cos2θ

2

)
+O(r−2)+ C(z). (B 10)

Here C(z) is an arbitrary function at this point. In order to determine it we recall that

∂ψ

∂z
= 2πρvρ = 2πρuρ . (B 11)
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It can be verified that this expression holds if C′(z) = O(z−4) for large z. Therefore
C(z) = C1 + O(z−3). As far from the swimmer its influence on the flow must be
negligible, we conclude that C1 = 0 and arrive at the final expression:

ψ

2π
= ρ2

[
V

2
+ κz

r3
−
(

Q‖
1− 3cos2θ

2
+ Q⊥

1+ 3cos2θ

2

)
1
r3

]
+ O(r−2). (B 12)

B.2. Drift

Following the original argument of Darwin (1953), we consider a circular material
sheet of radius ρ0 placed in front of the swimmer at the initial distance Li, figure 2.
In the co-moving reference frame the incoming flow is uniform and has the speed V .
If the swimmer did not perturb the flow, the material sheet would travel with the flow
and after a time 1t assume the position z= Lf = Li − V1t. The fluid volume enclosed
within the region swept by the material sheet equals the total fluid volume through
the boundary of this region during 1t, i.e. it equals ψ0(ρ0,Li)1t, where ψ0 is the
unperturbed flow streamfunction.

When the incoming flow is perturbed by the swimmer, the total amount of fluid
swept by the material sheet equals ψ(ρ0,Li)1t. It can be seen from figure 2 that

ψ1t + vD + v∗ − A= ψ01t (B 13)

where vD is the total volume of ambient fluid entrained by the swimmer, v∗ is the fluid
volume enclosed by a stagnation streamline around the swimmer, and A is the ‘excess’
volume equal to

A(ρ0)=
∫ Li

Lf

dzπ(ρ2(z)− ρ2
0), (B 14)

where ρ(z) is the streamtube width. In the limit of large ρ0 and Li, ψ → ψ0 and we
obtain

vD = A(ρ0)− v∗. (B 15)

Let us find the asymptotic shape of A(ρ0). We re-write the streamfunction (3.3) as:

ψ

πV
= ρ2

(
1+ B(θ)

a2

ρ2
− Γ (θ) a3

ρ3

)
+ O((a/ρ)−2), (B 16)

where B(θ) = βsin2θ cos θ , Γ (θ) = sin3θ
(
γ‖(1− 3cos2θ)/2+ γ⊥(1+ 3cos2θ)/2

)
, β =

2κ/(Va2), γ‖ = 2Q‖/(Va3) and γ⊥ = 2Q⊥/(Va3). Far from the body ψ → ψ0 = πVρ2,
therefore on the streamline starting at ρ = ρ0, z=∞,

ψ(ρ, z)

πV
= ρ2

0 . (B 17)

Substituting (B 17) in (B 16) and denoting x= a/ρ0, y= ρ/ρ0, results in

y2(1+ Bx2y−2 − Γ x3y−3 + O(ρ−4
0 ))= 1, ρ0→∞. (B 18)

After resolving this expression with respect to y we obtain

y= 1− 1
2 Bx2 + 1

2Γ x3 + O(x4), x→ 0.
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We are now ready to calculate the integral in (B 14) in the limit of large ρ0:

A= πρ3
0

∫ f

i
d (y cot θ) (y2 − 1)

= πρ3
0

∫ f

i
d
[(

1− 1
2 Bx2 + 1

2Γ x3 + O(x4)
)

cot θ
] (−Bx2 + Γ x3 + O(x4)

)
= πρ3

0

∫ f

i
d (cot θ)

(−Bx2 + Γ x3 + O(x4)
)

= πρ3
0

∫ f

i
dθ
[
β cos θx2 − sin θ

(
γ‖

1− 3cos2θ

2
+ γ⊥ 1+ 3cos2θ

2

)
x3 + O(x4)

]
=
[
πβa2ρ0 sin θ + πγ‖ + γ⊥

2
a3 cos θ + πγ⊥ − γ‖

2
a3cos3θ

]f

i

+ O(ρ−1
0 )

= 2πκ
V
ρ0 sin θ

∣∣∣∣f
i

+ π(Q‖ + Q⊥)
V

cos θ

∣∣∣∣f
i

+ π(Q⊥ − Q‖)
V

cos3θ

∣∣∣∣f
i

+ O(ρ−1
0 ). (B 19)

Appendix C. A squirmer wake
We derive the expression for f (β). For a squirmer

ψ

πV
= ρ2

[
1+ 3β̂

2

((a

r

)2 −
(a

r

)4
)

cos θ −
(a

r

)3
]
. (C 1)

On the stagnation streamline ψ = 0. This occurs when

r = a, (C 2)

i.e. on the squirmer surface, or on the surface

− cos θ = r1(r2
1 + r1 + 1)

(3β̂/2)(r1 + 1)
, r1 = r/a. (C 3)

This surface intersects the swimmer body at an angle

cos θ∗ =−1/β̂. (C 4)

Thus, the wake exists only if |β̂|> 1. Let us calculate its volume:

vwake =
∫

wake
dr dθ2πr2 sin θ = 4

3
πa3f (β̂), (C 5)

f (β̂)= 3
2

∫ r∗(β̂)

1
dr1 r2

1(1+ cos θ(r1)), (C 6)

where θ(r1) satisfies (C 3) and r∗(β̂) satisfies

r∗(r2
∗ + r∗ + 1)− (3β̂/2)(r∗ + 1)= 0. (C 7)

The integral in (C 6) can be taken analytically:

f = r3
∗ − 1

2
+ β̂−1

[
31
30
+ log

(
r∗ + 1

2

)
− r∗ + r2

∗
2
− r3

∗
3
− r5

∗
5

]
. (C 8)
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Appendix D. R. sphaeroides simulation details
Calculating the flow field

As we deal only with the case of a swimmer with an axisymmetric body in unbounded
fluid, we need only compute the velocities once using the boundary-element method.
The velocities are constant in the reference frame of the flagellum and hence we can
calculate the mean direction and speed of propagation (Keller & Rubinow 1976). We
choose the mean swimming direction to be along the z-axis and scale the spatial
and temporal variables so that the volume of the cell body is 4π/3 cubic units, the
volumetric radius is 1, and the mean swimming speed is 1.

With typical geometrical parameters for the bacterial shape, we find that as
the flagellum turns, the direction of the major axis of the cell precesses with a
negligible amplitude about the direction of mean swimming. We therefore make the
approximation that the swimmer is orientated in the z-direction at all times. We find
that the period of the turning flagellum is relatively short; more than 10 complete turns
are required for the swimmer to advance by one body length. We therefore consider
the motion averaged over a period of revolution.

We tabulate the flow velocity on a grid of ∼35 000 points. The grid spans the ranges
−1000 6 z 6 1000 and 0 6 ρ 6 150, and a higher density of points is used near the
swimmer to more accurately capture the variations in velocity. Between grid points,
we use a cubic spline interpolation to approximate the average flow field.

To characterize the effect of a bacterial swimmer on the surrounding medium, we
track a number of points in the fluid that move with the local average flow field, using
the MATLAB ODE solver, ode113 to integrate (2.1) in time.

Extrapolation to an infinite swimmer path
We begin simulations at time t = −1000, which means the swimmer is at position
z = −1000 and the trajectory of each tracer particle is computed until the swimmer
passes the particle and reaches the distance z = 1000. To extrapolate the net tracer
displacements to an infinite swimmer path we note that, for a dipolar far-field flow, the
tracer positions will follow the limiting behaviour

z(t)∼
{

z(−∞)+ Cz
−∞/t, t→−∞,

z(∞)+ Cz
∞/t, t→∞. (D 1)

A nonlinear least-squares algorithm is then used to estimate the limiting positions
z(−∞) and z(∞), and hence the net displacement along the z-direction, ∆ =
z(∞)− z(−∞), for an infinite swimmer path from the finite computed trajectories.

Calculating the entrained volume
Net tracer displacements are obtained numerically for initial radial tracer positions
0.1< ρ < 30. The curve is extrapolated to all values of ρ using the ansatz

∆(ρ)=
{

C0/ρ, 0< ρ < 0.1,
C∞/ρ3, 30< ρ <∞ (D 2)

(see figure 5b). The curve of net tracer displacements ∆ can be divided into a negative
region and a positive region, with the transition at the point ρ = ρ0, say. Obtaining
ρ0 by interpolation of the numerical data, we calculate the volumes of the bodies
of revolution in the two regions of positive and negative net tracer displacements by
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evaluating the formulae

v0 =
∫ ρ0

0
2πρ∆(ρ) dρ, v∞ =

∫ ∞
ρ0

2πρ∆(ρ) dρ, (D 3)

using quadrature within the range 0.1 < ρ < 30 and analytical integration of (D 2)
for the contributions outside this range. The numerical results show that typically, a
volume of fluid about twice that of the swimmer is pulled forward with the swimmer
across any given interface perpendicular to the swimming direction. At the same time,
fluid further away from the path of the swimmer is pushed backwards. The net flux is
the Darwin drift, given for different swimmer shapes in table 2.

R E F E R E N C E S

BENJAMIN, T. B. 1986 Note on added mass and drift. J. Fluid Mech. 169, 251–256.
BERG, H. C. 2004 E. Coli in Motion. Springer.
BLAKE, J. R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46,

199–208.
CHWANG, A. T. & WU, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2.

Singularity method for Stokes flows. J. Fluid Mech. 67, 787–815.
DARWIN, C. 1953 Note on hydrodynamics. Math. Proc. Camb. Phil. Soc. 49 (2), 342–354.
DOMBROWSKI, C., CISNEROS, L., CHATKAEW, S., GOLDSTEIN, R. E. & KESSLER, J. O. 2004

Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9),
98103.

DRESCHER, K., DUNKEL, J., CISNEROS, L. H., GANGULY, S. & GOLDSTEIN, R. E. 2011 Fluid
dynamics and noise in bacterial cell–cell and cell-surface scattering. Proc. Natl Acad. Sci.

DRESCHER, K., GOLDSTEIN, R. E., MICHEL, N., POLIN, M. & TUVAL, I. 2010 Direct
measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105,
168101.

DUNKEL, J., PUTZ, V. B., ZAID, I. M. & YEOMANS, J. M. 2010 Swimmer-tracer scattering at low
Reynolds number. Soft Matt. 6, 4268–4276.

EAMES, I., BELCHER, S. E. & HUNT, J. C. R. 1994 Drift, partial drift and Darwin’s proposition.
J. Fluid Mech. 275, 201–223.

EAMES, I., GOBBY, D. & DALZIEL, S. B. 2003 Fluid displacement by Stokes flow past a spherical
droplet. J. Fluid Mech. 485, 67–85.

GUASTO, J. S., JOHNSON, K. A. & GOLLUB, J. P. 2010 Oscillatory flows induced by
microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102.

ISHIKAWA, T., LOCSEI, J. T. & PEDLEY, T. J. 2010 Fluid particle diffusion in a semidilute
suspension of model micro-organisms. Phys. Rev. E 82, 021408.

ISHIKAWA, T., SIMMONDS, M. P. & PEDLEY, T. J. 2006 Hydrodynamic interaction of two
swimming model micro-organisms. J. Fluid Mech. 568, 119–160.

KATIJA, K. & DABIRI, J. O. 2009 A viscosity-enhanced mechanism for biogenic ocean mixing.
Nature 460, 624–626.

KELLER, J. B. & RUBINOW, S. I. 1976 Swimming of flagellated microorganisms. Biophys. J. 2,
151–170.

KURTULDU, H., GUASTO, J. S., JOHNSON, K. A. & GOLLUB, J. P. 2011 Enhancement of
biomixing by swimming algal cells in two-dimensional films. Proc. Natl Acad. Sci. 108,
10391–10395.

LEPTOS, K. C., GUASTO, J. S., GOLLUB, J. P., PESCI, A. I. & GOLDSTEIN, R. E.
2009 Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic
microorganisms. Phys. Rev. Lett. 103, 198103.

LESHANSKY, A. M. & PISMEN, L. M. 2010 Do small swimmers mix the ocean? Phys. Rev. E 82,
025301.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.208


Fluid transport by individual microswimmers 25

LIGHTHILL, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through
liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5, 109–118.

LIN, Z., THIFFEAULT, J.-L. & CHILDRESS, S. 2011 Stirring by squirmers. J. Fluid Mech. 669,
167–177.
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suspensions of algae and bacteria. J. R. Soc. Interface 8 (62), 1314–1331.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

20
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.208

	Fluid transport by individual microswimmers
	Introduction
	Geometrical constraints to mixing by a single swimmer
	Fluid entrainment by swimmers
	Far-field entrainment
	Near-field entrainment

	Two model swimmers
	Entrainment by a spherical squirmer
	A model for Rhodobacter sphaeroides

	Discussion
	Acknowledgements
	Appendix A. The scaling law Δ sim ρ- 3 
	Appendix B. The Darwin drift
	Streamfunction
	Drift

	Appendix C. A squirmer wake
	Appendix D. R. sphaeroides simulation details
	References




