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The usual asymptotic expansion for the solutions of an elliptic linear problem with
oscillatory periodic coefficients is known to not be accurate near the boundary. In
order to obtain a better approximation it is necessary to add to this expansion a
boundary-layer term. This term has been obtained by other authors in the case of a
plane boundary, such that its normal is proportional to some period. We consider the
case where the normal is arbitrary.

1. Introduction

Let us deal with the asymptotic behaviour when ε → 0 of the solutions of

− div A

(
x

ε

)
∇uε = f in Ω,

uε = 0 on ∂Ω,

⎫⎬
⎭ (1.1)

where Ω is a bounded open set of R
N , N � 2, A is a matrix-valued function,

uniformly elliptic, bounded and periodic, of period the unit cube Y in R
N and f is

a given function in Ω. This homogenization problem arises for example in the study
of the electric behaviour of a periodic medium with small period. The study of the
asymptotic behaviour of the solution of (1.1) has been considered by several authors
(see, for example, [1–3, 9–15]). Usually, we search for an asymptotic expansion of
uε of the form

uε(x) ∼ u0(x) + εu1

(
x,

x

ε

)
+ ε2u2

(
x,

x

ε

)
+ · · · , (1.2)

where u1, u2, . . . are periodic of period Y in the second variable. Substituting this
expression for uε in (1.1), introducing Γ 1, . . . , ΓN by

− div A(∇Γ i + ei) = 0 in R
N ,

Γ i is periodic of period Y

}
(1.3)

(they are defined up to a constant) with e1, . . . , eN the usual basis of R
N , and

defining AH ∈ MN (the homogenized matrix) by

AHei =
∫

Y

A(∇Γ i + ei) dy, (1.4)
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we find that u0 is the solution of

− div AH∇u0 = f in Ω,

u0 = 0 on ∂Ω

}
(1.5)

and (up to a function which depends only on x) u1 is given by

u1(x, y) =
N∑

i=1

∂u0

∂xi
(x)Γ i(y). (1.6)

It is well known (see, for example, [1–3,9–15]) that the solution uε of (1.1) converges
weakly to u0 in H1

0 (Ω), and assuming that u1 is sufficiently smooth, uε − u0 −
εu1(x, x/ε) converges strongly to zero in H1(Ω). This justifies (1.2), but we remark
that in general ∇u0, and thus u1(x, x/ε), does not vanish on ∂Ω. Thus, since uε = 0
on ∂Ω, we deduce that (1.2) cannot give a good description of the behaviour of uε

near the boundary. Deriving (1.2), we formally obtain

∇uε(x) ∼ ∇xu0(x) + ∇yu1

(
x,

x

ε

)
+ ε

(
∇xu1

(
x,

x

ε

)
+ ∇yu2

(
x,

x

ε

))
+ · · · .

So, we hope to have the estimate∥∥∥∥uε − u0 − u1

(
x,

x

ε

)∥∥∥∥
H1(Ω)

� Cε. (1.7)

Assuming sufficient smoothness, estimate (1.7) holds if ∇u0 and then the u1 vanish
on ∂Ω. When ∇u0 does not vanish on the boundary, we still have [11]∥∥∥∥uε − u0 − u1

(
x,

x

ε

)∥∥∥∥
H1(Ω′)

� CΩ′ε, (1.8)

for every open set Ω′ with Ω̄′ ⊂ Ω, where CΩ′ depends on Ω′. However, in the
whole set Ω, we only have (see, for example, [3, 12])∥∥∥∥uε − u0 − u1

(
x,

x

ε

)∥∥∥∥
H1(Ω)

� C
√

ε. (1.9)

In order to obtain a better approximation of uε such that u0 + εu1(x, x/ε), it
is necessary to add a boundary-layer term. To the best of our knowledge, this has
been carried out only for a plane boundary with unit normal ν proportional to an
element of Z

N (see, for example, [3, 12, 13]). The goal of the present paper is to
study the case where ν is arbitrary. Our results will be applied in [5] to study the
case for a curved boundary. The organization of the paper and the main results
contained in it, are as follows.

In § 2, we introduce some notation and we recall some results about almost-
periodic functions which will be used in this paper. In § 3 we obtain some estimates
related to the behaviour of the sequence u0 + εu1(x, x/ε). Then, we show that
obtaining a boundary-layer term which describes the behaviour of uε near ∂Ω is
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Two-scale convergence boundary behaviour 35

equivalent to studying the asymptotic behaviour of the solution bε of

− div A

(
x

ε

)
∇bε = 0 in Ω,

bε = u1

(
x,

x

ε

)
on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.10)

In § 4, we study the asymptotic behaviour of the solutions of (1.10) near a plane
boundary Λ = {aν+z : z ∈ ω} ⊂ ∂Ω, where a ∈ R and ν is the inner unit normal to
Ω on Λ. For this purpose, we obtain the two-scale limit b̌(z, s, ζ) (see [1,6,8,15–18])
of the sequence b̌ε(z, s), obtained from bε by the change of variables

x = z + (a + εs)ν, z ∈ ω, s ∈
(

0,
δ

ε

)
.

This is given in theorem 4.5, assuming that Ω ∈ C1,1, A ∈ L∞
� (Y ; MN ) and f ∈

LN+τ (Ω), τ > 0. When ν is proportional to an element of Z
N , b̌(z, s, ζ) is periodic

in ζ ∈ {ν}⊥. Then, assuming u0 ∈ W 2,∞(Ω) and defining b̌ε (it works better than
b̌) by (4.15), we can use the sequence

b̌ε

(
Px,

|x − Px − aν|
ε

,
Px

ε

)

with P the orthogonal projection from R
N onto {ν}⊥ to obtain an approximation

of order ε of uε in H1 of a neighbourhood of Λ (see [3, 12, 13] for related results).
When ζ is not proportional to an element of Z

N , b̌ (and b̌ε) is only almost periodic
in ζ in the Besicovitch sense. Thus, it is not a true function but a class of functions,
and so, the sequence

b̌ε

(
Px,

|x − Px − aν|
ε

,
Px

ε

)

is meaningless. Thus, although for composite materials it is usual to deal with a
discontinuous matrix-valued function A, the only assumption A ∈ L∞

� (Y ; MN )
does not appear to be sufficient to obtain a good approximation of uε when ν is
not proportional to an element of Z

N . We remark that b̌ is obtained rigorously and
so this difficulty is inherent to the problem.

In § 5, assuming Ω ∈ C1,1 and A ∈ L∞
� (Y ; MN ) are uniformly elliptic and

∂yν A ∈ L∞
� (Y ; MN ), u0 ∈ W 2;∞(Ω), we study the decay to infinity and some

smoothness properties for b̌ε. As a consequence, we get an approximation of order
ε
√

| log uε| of uε in H1 of a neighbourhood of Λ.

2. General notation

We take N ∈ N, N � 2. We define {e1, . . . , eN} as the usual basis of R
N . The space

of matrices of dimension N × N is denoted by MN .
We denote by Y the unit cube in R

N . We will use the index � to mean Y -periodic,
for example, Lp

� (Y ), with 1 � p � +∞, denotes the space of functions of Lp
loc(R

N ),
which are Y -periodic.
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The orthogonal set in R
N of a set S ⊂ R

N is denoted by S⊥. For a function
u = u(x), defined in an open set of R

N and ν ∈ R
N , we denote by ∂xν u the

derivative of u in the direction ν.
We will denote by C a generic positive constant which can change from one line

to another and does not depend on the parameter ε which appears in (1.1).
Given a subspace V of R

N and an additive group G ⊂ V , we define G∗ by

G∗ = {g = (j1, . . . , jN ) ∈ G \ {0} : ji0 > 0 with i0 = min{i : ji �= 0}}.

We denote by CAP (G) the space of almost-periodic functions in the Bohr sense
relating to G. It is defined as the space of uniformly continuous functions u : V → R

such that, for every ε > 0, there exist g1, . . . , gn ∈ G∗, α0, α1, . . . , αn, β1, . . . , βn ∈ R

with ∥∥∥∥u − α0 −
n∑

i=1

(αi cos(giζ) + βi sin(giζ))
∥∥∥∥

L∞(V )
< ε.

We denote by CAP∞(G) the space of functions of CAP (G) with partial derivatives
of arbitrary order in CAP (G).

For u ∈ L1
loc(V ), we define M(u) by

M(u) = lim sup
R→∞

1
|{|ζ| < R}|

∫
{|ζ|<R}

u dx, (2.1)

where the measure |{|ζ| < R}| and the integral are taken in the sense of V .
The space of the almost-periodic functions in the Besicovitch sense relating to

G, B(G), is defined as the space of functions u : V → R such that, for every
ε > 0, there exists an almost-periodic function v in the sense of Bohr which satisfies
M(|u − v|2) < ε. We recall that, for every u in B(G), the supremum limit in (2.1)
is in fact a limit, and it is finite.

In the space B(G) we define

‖u‖2
B(G) = M(|u|2) for all u ∈ B(G).

However, ‖ · ‖B(G) is not a norm but a semi-norm. Note, for example, that every
u ∈ L2(V ) satisfies ‖u‖B(G) = 0. In order to have a Hilbert space it is necessary to
consider a quotient space. Thus, the elements of B(G) are not functions in V but
rather are a class of functions. Two functions in the same class can differ in every
point of V .

The space CAP (G) is dense in B(G). Moreover, as elements of B(G), the functions
of CAP (G) have a unique representative which is uniformly continuous in V .

The space B(G) can be identified with the space (which we also denote by B(G)){
α0 +

∑
g∈G∗

(αg cos(gζ) + βg sin(gζ)) : |α0|2 +
∑
g∈G∗

(|αg|2 + |βg|2) < +∞
}

, (2.2)

endowed with the norm∥∥∥∥α0 +
∑
g∈G∗

(αg cos(gζ) + βg sin(gζ))
∥∥∥∥

2

B(G)
= |α0|2 + 1

2

∑
g∈G∗\{0}

(|αg|2 + |βg|2).
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Using this representation of the elements of B(G), we can also define the gradient
of a function of B(G) by

∇
(

α0 +
∑
g∈G∗

(αg cos(gζ) + βg sin(gζ))
)

=
∑
g∈G∗

g(−αg sin(gζ) + βg cos(gζ)) (2.3)

(see also [6, 7, 16,17]).

3. Global error estimates

As stated in § 1, we will study the asymptotic behaviour near the boundary of
the solutions of (1.1), where Ω is a bounded open set of R

N , A ∈ L∞
� (Y,MN ) is

uniformly elliptic, and f is an element of H−1(Ω) (stronger smoothness properties
for Ω, A and f will be needed later). We start this section by recalling some well-
known results relating to the homogenization of (1.1).

For 1 � i � N , we define Γ i as the solutions of (1.3) or, more rigourously, as the
solutions of the variational problem (the mean value of Γ i is taken as zero in order
to have uniqueness) ∫

Y

Γ i dy = 0, Γ i ∈ H1
� (Y ),∫

Y

A(y)(∇Γ i + ei)∇v dy = 0, ∀v ∈ H1
� (Y ).

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

The homogenized matrix AH ∈ MN of A is defined by (1.4). We have the following
theorem (see [1–3,9, 10,12–15]).

Theorem 3.1. For A ∈ L∞
� (Y,MN ) uniformly elliptic, and f ∈ H−1(Ω), the

solution uε of (1.1) converges weakly in H1
0 (Ω) to the unique solution u0 of

− div AH∇u0 = f in Ω,

u0 = 0 on ∂Ω.

}
(3.2)

Moreover, if u1 : Ω × R
N → R given by

u1(x, y) =
N∑

i=1

∂u0

∂xi
(x)Γ i(y) for a.e. (x, y) ∈ Ω × Y, (3.3)

is sufficiently smooth, we have

uε − u0 − εu1

(
x,

x

ε

)
→ 0 in H1(Ω). (3.4)

Let us now improve assertion (3.4) by obtaining some estimates for the difference
uε − u0 − εu1(x, x/ε). This will be a consequence of the following theorem, which
we prove later, showing that u0 + εu1(x, x/ε) satisfies an equation similar to that
satisfied by uε.
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Theorem 3.2. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and Ω ∈ C1,1,

f ∈ LN (Ω). Then, for u1 defined by (3.3), the application x ∈ Ω → u1(x, x/ε)
belongs to H1(Ω), and there exists C > 0, independent of ε, such that∥∥∥∥u1

(
·, ·

ε

)∥∥∥∥
L2(Ω)

� C,

∥∥∥∥u1

(
·, ·

ε

)∥∥∥∥
H1(Ω)

� C

ε
. (3.5)

Moreover, the function u0 + εu1(x, x/ε) satisfies

− div A

(
x

ε

)
∇

(
u0 + εu1

(
x,

x

ε

))
= f + εgε in Ω, (3.6)

in the sense of the distributions, where gε is bounded in H−1(Ω).

Remark 3.3. If, in addition to the hypotheses of lemma 3.2, we assume that ∇u0
vanishes on the boundary of Ω, then, from (3.3), we obtain that u1(x, x/ε) is in
H1

0 (Ω), and so, taking uε − u0 − εu1(x, x/ε) as a test function in the difference
of (1.1) and (3.6), we deduce the existence of C > 0 such that∥∥∥∥uε − u0 − εu1

(
x,

x

ε

)∥∥∥∥
H1

0 (Ω)
� Cε. (3.7)

When ∇u0 does not vanish on ∂Ω, all we can prove is estimate (3.8), below. This
estimate was obtained in [3] (see also [12]). It can also be deduced from (3.6),
taking into account the fact that if u0 ∈ W 1,∞(Ω) (for it is sufficient to assume
f ∈ LN+τ (Ω), τ > 0), then, for φ ∈ C∞([0, +∞)) with φ(0) = 0, φ(s) = 1 for
s > 1, we have∥∥∥∥εφ

(
d(x, ∂Ω)

ε

)
u1

(
x,

x

ε

)
− εu1

(
x,

x

ε

)∥∥∥∥
H1(Ω)

� C
√

ε

and

u0(x) + εφ

(
d(x, ∂Ω)

ε

)
u1

(
x,

x

ε

)
= 0 on ∂Ω.

Theorem 3.4. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic and that Ω ∈

C1,1, f ∈ LN+τ (Ω), τ > 0. Then, taking uε as the solution of (1.1) and defining
u0, u1 by (3.2) and (3.3), we get∥∥∥∥uε − u0 − εu1

(
x,

x

ε

)∥∥∥∥
H1(Ω)

� C
√

ε. (3.8)

In order to obtain an approximation of uε better than u0 + εu1(x, x/ε) we need
to search for a boundary-layer term. In this sense, we have the following result.

Corollary 3.5. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, Ω ∈ C1,1,

f ∈ LN+τ (Ω), τ > 0, and define uε, u0 and u1 by (1.1), (3.2) and (3.3), respec-
tively. We introduce bε as the solution of

− div A

(
x

ε

)
∇bε = 0 in Ω,

bε = u1

(
x,

x

ε

)
on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.9)
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Then, we have ∥∥∥∥uε −
(

u0 + ε

(
u1

(
x,

x

ε

)
− bε

))∥∥∥∥
H1

0 (Ω)
� Cε (3.10)

and
‖bε‖H1(Ω) � C√

ε
. (3.11)

Proof. From (3.6) and (3.9), u0 + ε(u1(x, x/ε) − bε) satisfies

− div A

(
x

ε

)
∇

(
u0 + ε

(
u1

(
x,

x

ε

)
− bε

))
= f + εgε in Ω,

u0 + ε

(
u1

(
x,

x

ε

)
− bε

)
= 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

with gε bounded in H−1(Ω). Taking uε − (u0 + ε(u1(x, x/ε) − bε)) as a test func-
tion in the difference of (1.1) and (3.12), we deduce (3.10). From (3.8), we then
obtain (3.11).

Remark 3.6. In the hypotheses of corollary 3.5, bε is bounded in L∞(Ω) by the
maximum principle. Then, taking bεϕ

2, with ϕ ∈ C∞
c (Ω), as a test function in (3.9),

we may deduce that bεϕ is bounded in H1(Ω), i.e. bε is bounded in H1
loc(Ω).

From (3.10), we then get∥∥∥∥uε − u0 − εu1

(
x,

x

ε

)∥∥∥∥
H1(Ω′)

� CΩ′ε,

for every open set Ω′ with Ω̄′ ⊂ Ω, where CΩ′ depends on Ω′. A better result has
been obtained in [11], where it is assumed only that f ∈ L2(Ω′). In this case, it is
necessary to replace u1 by a regularization of it.

Proof of theorem 3.2. Since Ω ∈ C1,1 and f ∈ LN (Ω), the solution u0 of (3.2) is in
W 2,N (Ω). Moreover, since − divy A(y)ei, 1 � i � N , belongs to W−1,∞(RN ), we
deduce (see lemma A.1) that the solutions Γ i of (3.1) are in C0,α

� (Y ), for every
α ∈ [0, 1). In particular, they are in L∞

� (Y ). By Meyer’s regularity theorem, we
also know that there exists p > 2 such that Γ i belongs to W 1,p

� (Y ). From these
smoothness properties of u0 and Γ i, and using (3.3), we deduce (3.5).

To prove (3.6), we consider v ∈ H1
0 (Ω), which, by taking its extension by zero, we

assume to be defined in the whole space R
N . Since Ω is C1,1 and u0 is in W 2,N (Ω),

we also know that there exists an extension of u0, still denoted by u0, in W 2,N (RN ).
Using the definitions (1.4) and (3.3) of AH and u1, respectively, we have∫

Ω

A

(
x

ε

)
∇

(
u0 + ε∇

[
u1

(
x,

x

ε

)])
∇v dx

=
∫

Ω

AH∇u0∇v dx +
N∑

i=1

∫
Ω

hi

(
x

ε

)
∇v

∂u0

∂xi
dx

+ ε

N∑
i=1

∫
Ω

A

(
x

ε

)
∇

(
∂u0

∂xi

)
∇vΓ i

(
x

ε

)
dx, (3.13)
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with

hi(y) = A(y)(∇Γ i(y) + ei) −
∫

Y

A(ρ)(∇Γ i(ρ) + ei) dρ

= A(y)(∇Γ i(y) + ei) −
∫

Y

A(y + ρ)(∇Γ i(y + ρ) + ei) dρ for a.e. y ∈ R
N .

Since u0 is in W 2,N (Ω) (it would be sufficient for u0 to be in H2(Ω)) and Γ i in
L∞

� (Y ), 1 � i � N , the third term on the right-hand side of (3.13) satisfies∣∣∣∣ε
N∑

i=1

∫
Ω

A

(
x

ε

)
∇

(
∂u0

∂xi

)
∇vΓ i

(
x

ε

)
dx

∣∣∣∣ � Cε‖v‖H1
0 (Ω), (3.14)

By (3.2), the first term on the right-hand side of (3.13) satisfies∫
Ω

AH∇u0∇v dx =
∫

Ω

fv dx. (3.15)

In order to estimate the second term on the right-hand side of (3.13), we use the
fact that hi has mean value zero in Y . Thus, for 1 � i � N , we have∫

Ω

hi

(
x

ε

)
∇v

∂u0

∂xi
dx

=
∫

RN

hi

(
x

ε

)(
∇v

∂u0

∂xi
− 1

εN

∫
εY

∇v(x + ρ)
∂u0

∂xi
(x + ρ) dρ

)
dx

=
∫

RN

hi

(
x

ε

)
∇v

(
∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

)
dx

+
∫

RN

hi

(
x

ε

)
1

εN

∫
εY

∂u0

∂xi
(x + ρ)(∇v(x) − ∇v(x + ρ)) dρ dx.

(3.16)

For the first term on the right-hand side of this equality we use∣∣∣∣
∫

RN

hi

(
x

ε

)
∇v

(
∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

)
dx

∣∣∣∣
�

∑
k∈ZN

∫
εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣|∇v|
∣∣∣∣∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

∣∣∣∣ dx.

Now, using the fact that hi is in Lp
� (Y ) for some p > 2, the periodicity of hi, and

the inequality (which can easily be proved by using a translation and a dilatation
that transforms εk + εY in Y )∫

εk+εY

∫
εY

|w(x) − w(x + ρ)|q dρ dx

� Cq,rε
2N−((N−r)q)/r

( ∫
εk+2εY

|∇w|r dx

)q/r

, ∀k ∈ N,

∀r ∈ [1, +∞), ∀q ∈
[
1,

Nr

N − r

)
, ∀w ∈ W 1,r(εk + 2εY ), (3.17)
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applied to q = 2p/(p − 2), r = N , w = ∂u0/∂xi, we get∫
εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣|∇v|
∣∣∣∣∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

∣∣∣∣ dx

�
( ∫

εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣
p

dx

)1/p( ∫
εk+εY

|∇v|2 dx

)1/2

×
(

1
εN

∫
εk+εY

∫
εY

∣∣∣∣∂u0

∂xi
(x) − ∂u0

∂xi
(x + ρ)

∣∣∣∣
2p/(p−2)

dρ dx

)(p−2)/2p

� CεN/2
( ∫

Y

|hi|p dy

)1/p( ∫
εk+εY

|∇v|2 dx

)1/2( ∫
εk+2εY

|D2u0|N dx

)1/N

.

So, from Hölder’s inequality and ∇v = 0 a.e. in R
N \ Ω, we have∑

k∈ZN

∫
εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣|∇v|
∣∣∣∣∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

∣∣∣∣ dx

� CεN/2
( ∑

k∈ZN

∫
εk+εY

|∇v|2 dx

)1/2

×
( ∑

k∈ZN

∫
εk+2εY

|D2u0|N dx

)1/N( ∑
(εk+εY )∩Ω �=∅

1
)(N−2)/2N

� Cε‖v‖H1
0 (Ω).

Thus, we have∣∣∣∣
∫

RN

hi

(
x

ε

)
∇v

(
∂u0

∂xi
− 1

εN

∫
εY

∂u0

∂xi
(x + ρ) dρ

)
dx

∣∣∣∣ � Cε‖v‖H1
0 (Ω). (3.18)

To estimate the last term of (3.16) we use the fact that (3.1) and lemma A.1 imply
that the divergence of hi is zero in R

N . So,∫
RN

hi

(
x

ε

)
1

εN

∫
εY

∂u0

∂xi
(x + ρ)(∇v(x) − ∇v(x + ρ)) dρ dx

=
∫

RN

hi

(
x

ε

)
∇

(
1

εN

∫
εY

∂u0

∂xi
(x + ρ)(v(x) − v(x + ρ)) dρ

)
dx

−
∫

RN

hi

(
x

ε

)(
1

εN

∫
εY

∇
(

∂u0

∂xi

)
(x + ρ)(v(x) − v(x + ρ)) dρ

)
dx

= −
∫

RN

hi

(
x

ε

)(
1

εN

∫
εY

∇
(

∂u0

∂xi

)
(x + ρ)(v(x) − v(x + ρ)) dρ

)
dx.

Thus, we have∣∣∣∣
∫

RN

hi

(
x

ε

)(
1

εN

∫
εY

∇
(

∂u0

∂xi

)
(x + ρ)(v(x) − v(x + ρ)) dρ

)
dx

∣∣∣∣
�

∑
k∈ZN

∫
εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣ 1
εN

∫
εY

|D2u0(x + ρ)||v(x) − v(x + ρ)| dρ dx.
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Now, by (3.17), with w = v, r = 2, q = Np/(N(p − 1) − p), for every k ∈ Z
N , we

have∫
εk+εY

∣∣∣∣hi

(
x

ε

)∣∣∣∣ 1
εN

∫
εY

|D2u0(x + ρ)||v(x) − v(x + ρ)| dρ dx

�
(

εN

∫
Y

|hi|p dy

)1/p

×
( ∫

εk+εY

1
εN

∫
εY

|D2u0(x + ρ)|p/(p−1)|v(x) − v(x + ρ)|p/(p−1) dρ dx

)(p−1)/p

� ε−N(p−2)/p

( ∫
Y

|hi|p dy

)1/p( ∫
εk+εY

∫
εY

|D2u0(x + ρ)|N dρ dx

)1/N

×
( ∫

εk+εY

∫
εY

|v(x) − v(x + ρ)|Np/(N(p−1)−p) dρ dx

)(N(p−1)−p)/Np

� CεN/2
( ∫

Y

|hi|p dy

)1/p( ∫
εk+2εY

|D2u0|N dx

)1/N( ∫
εk+2εY

|∇v|2 dx

)1/2

.

So, using Hölder’s inequality and ∇v = 0 a.e. in R
N \ Ω, we get∣∣∣∣

∫
RN

hi

(
x

ε

)(
1

εN

∫
εY

∇
(

∂u0

∂xi

)
(x + ρ)(v(x) − v(x + ρ)) dρ

)
dx

∣∣∣∣
� CεN/2

( ∫
Ω

|D2u0|N dx

)1/N( ∫
Ω

|∇v|2 dx

)1/2( ∑
(εk+εY )∩Ω �=∅

1
)(N−2)/2N

� Cε‖v‖H1
0 (Ω). (3.19)

From (3.13)–(3.19), we then deduce that there exists C > 0, which does not depend
on ε, such that, for every v ∈ H1

0 (Ω), we have∣∣∣∣
∫

Ω

A

(
x

ε

)
∇

(
u0 + ε∇

[
u1

(
x,

x

ε

)])
∇v dx −

∫
Ω

fv dx

∣∣∣∣ � Cε‖v‖H1
0 (Ω).

This proves (3.6).

4. Two-scale convergence for the expansion near a plane boundary

In the present section, let us study the asymptotic behaviour of the sequence bε

defined by (3.9) in the case of a plane boundary.
In the rest of the paper, we consider an unit vector ν of R

N , and we denote by
P the orthogonal projection of R

N onto {ν}⊥. We assume there exist an open set
ω of {ν}⊥, a ∈ R, and δ > 0 such that

Λ = ω + aν ⊂ ∂Ω, (4.1)
Λδ = {z + (a + t)ν : z ∈ ω, 0 < t < δ} ⊂ Ω. (4.2)

Thus, Λ ⊂ Ω is an open subset of a hyperplane and ν is the inner unit normal to
Ω in Λ. To study the asymptotic behaviour of the solution bε of (3.9) near Λ, let us
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first realize a dilatation of Λδ in the direction of ν. For this purpose, we introduce
the change of variables

z + (a + t)ν ∈ Λδ → (z, s) =
(

z,
t

ε

)
∈ ω ×

(
0,

δ

ε

)
. (4.3)

We introduce the following definitions.

Definition 4.1. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and that

Ω ∈ C1,1, f ∈ LN+τ (Ω), τ > 0.
We define Ǎε : R

+ × {ν}⊥ → MN by

Ǎε(s, ζ) = A

(
ζ +

(
a

ε
+ s

)
ν

)
. (4.4)

For the solution bε of (3.9), we define b̌ε : ω × (0, δ/ε) → R by

b̌ε(z, s) = bε(z + (a + εs)ν), a.e. (z, s) ∈ ω ×
(

0,
δ

ε

)
. (4.5)

Also, we introduce the differential operator Dε as

Dεv = ε∇zv +
∂v

∂s
ν for all v ∈ H1

(
ω ×

(
0,

δ

ε

))
.

Here ∇zv is the unique vector in the direction of {ν}⊥, which is such that, for
every µ ∈ {ν}⊥, the derivative of v in the direction (µ, 0) ∈ {ν}⊥ × R coincides
with ∇zvµ.

From (3.9) and (3.11), we easily deduce that b̌ε satisfies the following proposition.

Proposition 4.2. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and Ω ∈

C1,1, f ∈ LN+τ (Ω), τ > 0. Then, defining Ǎε by (4.4) and b̌ε by (4.5), we have

‖Dεb̌ε‖L2(ω×(0,δ/ε))N � C, (4.6)

b̌ε(z, 0) = u1

(
z + aν,

z + aν

ε

)
, b̌ε ∈ H1

(
ω ×

(
0,

δ

ε

))
,

∫
ω×(0,δ/ε)

Ǎε

(
s,

z

ε

)
Dεb̌εDεv dz dt = 0,

for all v ∈ H1
0

(
ω ×

(
0,

δ

ε

))
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

Remark 4.3. Using the fact that A is periodic, we find that it can be obtained as
a limit in L2(Ω, MN ) of trigonometrical matrices of the form

R0
n +

∑
k∈ZN ,|k|�n

[Rk
n cos(2kπx) + Sk

n sin(2kπx)].
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We then find that Ǎε(s, ζ) can be obtained as the limit of the matrices

R0
n +

∑
k∈ZN ,|k|�n

[
Rk

n cos
(

2kπζ +
(

a

ε
+ s

)
ν

)
+ Sk

n sin
(

2kπζ +
(

a

ε
+ s

)
ν

)]

= R0
n +

∑
k∈ZN ,|k|�n

[(
Rk

n cos
((

a

ε
+ s

)
ν

)
+ Sk

n sin
((

a

ε
+ s

)
ν

))
cos(2πPkζ)

+
(

− Rk
n sin

((
a

ε
+ s

)
ν

)
+ Sk

n cos
((

a

ε
+ s

)
ν

))
sin(2πPkζ)

]

and hence, as a function of ζ, it is in B(G) with

G = {2πPk : k ∈ Z
N} ⊂ {ν}⊥. (4.8)

Moreover, we have

Ǎε(s, ζ) = A

(
ζ +

[
aν

ε

]
+ sν

)
,

[
aν

ε

]
∈ [0, 1)N ,

aν

ε
−

[
aν

ε

]
∈ Z

N .

In particular, [aν/ε] is bounded and then, extracting a subsequence if necessary, we
can assume that

∃� = lim
ε→0

[
aν

ε

]
. (4.9)

Since Ǎε(s, ζ) is almost periodic in ζ, let us use the two-scale convergence theory
(see [1, 6, 8, 15–17]) to study the asymptotic behaviour of the solutions of (4.7). A
definition of two-scale convergence which is useful for our purpose is as follows.

Definition 4.4. We say that a sequence v̌ε ∈ L2(ω × (a, b)) two-scale converges to
a function v̌ ∈ L2(ω × (a, b); B(G)), and we write

v̌ε
2e
⇀ v̌ in ω × (a, b),

if and only if we have

lim
ε→0

∫
ω×(a,b)

v̌ε(z, s)ψ
(

z, s,
z

ε

)
dz ds =

∫
ω×(a,b)

Mζ(v̌(z, s, ζ)ψ(z, s, ζ)) dz ds

∀ψ ∈ C∞
c (ω × (a, b); CAP∞(G)).

⎫⎪⎬
⎪⎭

(4.10)

With this definition the main result of the present section is the following theo-
rem, which we will prove later.

Theorem 4.5. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and Ω ∈ C1,1,

f ∈ LN+τ (Ω), τ > 0. Consider a subsequence of ε, such that there exists the limit �
which appears in (4.9), and define b̌ as the unique solution of the variational prob-
lem:

b̌(z, 0, ζ) = u1(z + aν, ζ + �), D0b̌ ∈ L2(ω × R
+; B(G))N∫

R+
Mζ(A(ζ + � + sν)D0b̌D0v̌) ds = 0

∀v̌ with v̌(0, ζ) = 0, D0v̌ ∈ L2(R+; B(G))N , a.e. z ∈ ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)
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Then, the sequence b̌ε defined by (4.5) satisfies

b̌ε
2e
⇀ b̌ in ω × (0, M) for all M > 0, (4.12)

Dεb̌εχω×R+
2e
⇀ D0b̌ in ω × R

+. (4.13)

Remark 4.6. If we assume that ν belongs to R · Z
N , then the elements of B(G)

are periodic in {ν}⊥. So, using the results which appear in [4] (related results have
been obtained by L. Tartar (personal communication) and G. Weiske [19]), we find
that the solution b̌ of (4.11) satisfies that D0b̌ decreases exponentially as s → ∞, in
the sense that there exists λ > 0 with eλsMζ(D0b̌) ∈ L2(ω × R

+)N . So, in this case
b̌ coincides with the boundary-value term which was used in [3,12,13] to study the
asymptotic behaviour of the solution uε of (1.1) near a boundary plane with unit
normal proportional to an element of Z

N .

Remark 4.7. From theorem 4.5, Dεb̌ε two-scale converges to D0b̌. Thus, assuming
sufficient smoothness, we expect (see, for example, [1, 8, 15,16]) the approximation
Dεb̌ε(z, s) ∼ D0b̌(z, s, z/ε). From the definition (4.4) of b̌ε and (3.10), this implies
that

∇uε ∼ ∇u0 + ∇yu1

(
x,

x

ε

)
− D0b̌

(
Px,

|x − Px − aν|
ε

,
Px

ε

)
(4.14)

near Λ. But this only holds for a subsequence such that (4.9) holds. To avoid
the extraction of this subsequence we can replace b̌ by the solution b̌ε of (cf. the
definition (4.11) of b̌)

b̌ε(z, 0, ζ) = u1

(
z + aν, ζ +

a

ε
ν

)
, D0b̌

ε ∈ L2(ω × R
+; B(G))N

∫
R+

Mζ

(
A

(
ζ +

(
a

ε
+ s

)
ν

)
D0b̌

εD0v̌

)
dz ds = 0

for all v̌ with v̌(0, ζ) = 0, D0v̌ ∈ L2(R+; B(G))N , a.e. z ∈ ω.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.15)

In the case where ν is proportional to an element of Z
N , we know that b̌ε is periodic

in ζ and decreases exponentially to infinity. In this case, assuming u0 ∈ W 2,∞(Ω)
(take, for example, f ∈ C0,α(Ω̄), α > 0) we can prove that, for every compact set
K ⊂ Λ, every ψ ∈ C1(Ω̄), with supp(ψ) ⊂ Λ̄δ, ψ = 1 on K, and every φ ∈ C∞(Ω̄),
with φ = 0 on ∂Ω \ K, we have∥∥∥∥

(
uε−u0−ε

(
u1

(
x,

x

ε

)
−ψb̌ε

(
Px,

|x − Px − aν|
ε

,
Px

ε

)))
φ

∥∥∥∥
H1(Ω)

� Cε (4.16)

(φ can be taken to equal 1 if ∇u0 = 0 outside K). We do not give the proof of
this result because it is very similar to that of theorem 5.4, below. Moreover, we
are more interested in the case where ν is not proportional to an element of Z

N ,
which is the main novelty of the present paper. As we stated in § 1, to obtain a
similar result when ν is not proportional to an element of Z

N (then the functions
b̌ε are only almost periodic in ζ, and so they are not true functions) we will need
to consider stronger smoothness assumptions on A.
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The sequence b̌ε depends on ε, but we will see in § 5 how it can be obtained from
a fixed function.

Remark 4.8. Defining γ̌i
ε, 1 � i � N , by

γ̌i
ε(0, ζ) = Γ i

(
ζ +

a

ε
ν

)
, D0γ̌

i
ε ∈ L2(R+; B(G))N

∫ +∞

0
Mζ

(
A

(
ζ +

(
a

ε
+ s

)
ν

)
D0γ̌

i
εD0v̌

)
ds = 0

for all v̌ with v̌(0, ζ) = 0, D0v̌ ∈ L2(R+; B(G))N ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.17)

with Γ i given by (3.1), we find from (3.3) that the solution b̌ε of (4.15) satisfies

b̌ε(z, s, ζ) =
N∑

i=1

∂u0

∂xi
(z + aν)γ̌i

ε(s, ζ). (4.18)

In order to prove theorem 4.5 let us first obtain some compactness results for
the two-scale convergence defined in definition 4.4. The following theorem follows
from [6] by taking R ⊗ CAP (G) as an algebra (see also [16, 17]). Indeed, since G
is countable, the result can also easily be proved by using the arguments of the
classical periodic two-scale convergence compactness theorem (see [1, 15]).

Theorem 4.9. Let v̌ε be a bounded sequence in L2(ω × (a, b)). Then there exist
v̌ ∈ L2(ω × (a, b); B(G)), and a subsequence of ε, still denoted by ε, such that (for
this subsequence) v̌ε two-scale converges to v̌.

Let us apply the above result to the sequence b̌ε defined by (4.5). Since this
sequence satisfies (4.6), proposition 4.11, below, is more interesting than the previ-
ous result.

Definition 4.10. For v̌ ∈ L2(ω × (0, M); B(G)) for every M > 0 (v̌ = v̌(z, s, ζ))
with ∂v̌/∂s ∈ L2(ω × R

+; B(G)), we denote

D0v̌ = ∇ζ v̌ +
∂v̌

∂s
ν, (4.19)

where the gradient with respect to ζ is given in the sense of (2.3).

Proposition 4.11. Let v̌ε ∈ H1(ω × (0, 1/ε)) such that the application z ∈ ω →
v̌ε(z, 0) is bounded in L2(ω) and Dεv̌εχω×(0,1/ε) is bounded in L2(ω × R

+)N . Then
there exist v̌ ∈ L2(ω × (0, M); B(G)) for every M > 0, with D0v̌ ∈ L2(ω ×
R

+; B(G))N , and a subsequence of ε, still denoted by ε, such that (for this sub-
sequence) we have

v̌ε
2e
⇀ v̌ in ω × (0, M) for all M > 0, (4.20)

Dεv̌εχω×R+
2e
⇀ D0v̌ in ω × R

+. (4.21)

Proof. Since v̌ε(z, 0) and ∂v̌ε/∂sχω×(0,1/ε) are bounded in L2(ω) and L2(ω × R
+),

respectively, we have that v̌ε is bounded in L2(ω × (0, M)), for every M > 0.
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Thus, applying theorem 4.9 to v̌ε in ω × (0, n), for every n ∈ N, and using a
diagonal procedure, we deduce the existence of v̌ ∈ L2(ω × (0, M); B(G)), for every
M > 0, such that (4.20) holds. On the other hand, since Dεv̌εχω×(0,1/ε) is bounded
in L2(ω × R

+)N , theorem 4.9 also gives the existence of W̌ ∈ L2(ω × R
+; B(G))N

such that
Dεv̌εχω×R+

2e
⇀ W̌ in ω × R

+.

It remains to prove that W̌ satisfies W̌ = D0v̌. Taking

Ψ ∈ C∞
c (ω × R

+; CAP∞(G))N ,

we have∫
ω×R+

Mζ(W̌Ψ) dz ds

= lim
ε→0

∫
ω×(0,1/ε)

Dεv̌εΨ

(
z, s,

z

ε

)
dz ds

= lim
ε→0

∫
ω×(0,1/ε)

(
ε∇z v̌εPΨ

(
z, s,

z

ε

)
+

∂v̌ε

∂s
νΨ

(
z, s,

z

ε

))
dz ds

= − lim
ε→0

∫
ω×(0,1/ε)

v̌ε

(
ε divz(PΨ)

(
z, s,

z

ε

)

+ divζ(PΨ)
(

z, s,
z

ε

)
+

∂(Ψν)
∂s

(
z, s,

z

ε

))
dz ds

= −
∫

ω×R+
Mζ

(
v̌

(
divζ(PΨ) +

∂(Ψν)
∂s

))
dz ds

=
∫

ω×R+
Mζ(D0v̌Ψ) dz ds,

for every Ψ ∈ C∞
0 (ω × R

+; CAP∞(G))N . This proves that W̌ = D0v̌.

In order to apply proposition 4.11 to study the asymptotic behaviour of b̌ε, we
also need the following density result.

Lemma 4.12. For every v̌ such that v̌(z, 0, ζ) = 0, D0v̌ ∈ L2(ω×R
+; B(G))N , there

exists a sequence v̌n ∈ C∞
c (ω × R

+; CAP∞(G)) such that D0v̌n converges strongly
to D0v̌ in L2(ω × R

+; B(G))N .

Proof. It is clear that the result holds true if v̌ is such that v̌(z, 0, ζ) = 0, v̌ ∈ L2(ω×
R

+ : CAP∞(G))N , D0v̌ ∈ L2(ω × R
+ : CAP∞(G))N , and there exists M > 0, with

v̌(z, s, ζ) = 0 for s > M . So, in order to prove lemma 4.12, it is sufficient to prove
that, for every v̌ with v̌(z, 0, ζ) = 0, D0v̌ ∈ L2(ω×R

+ : B(G))N , there exists v̌n with
v̌n(z, 0, ζ) = 0, v̌n ∈ L2(ω × R

+; CAP∞(G))N , D0v̌n ∈ L2(ω × R
+ : CAP∞(G))N ,

v̌n(z, s, ζ) = 0 for s > 2n, such that D0v̌n converges to D0v̌ in L2(ω × R
+; B(G)).

For such v̌, using Fourier’s representation, we have

v̌(z, s, ζ) = α0(z, s) +
∑
g∈G∗

(αg(z, s) cos(gζ) + βg(z, s) sin(gζ))
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with α0(z, 0) = 0, αg(z, 0) = βg(z, 0) = 0 for every g ∈ G∗ and

∫
ω×R+

(∣∣∣∣∂α0

∂s

∣∣∣∣
2

+
∑
g∈G∗

(
|g|2(|αg|2 + |βg|2) +

∣∣∣∣∂αg

∂s

∣∣∣∣
2

+
∣∣∣∣∂βg

∂s

∣∣∣∣
2))

dz ds < +∞.

Using the fact that G∗ is countable, G∗ = {gi}i�1, we define v̌n(z, s, ζ) as

α0(z, s) +
n∑

i=1

(αgi(z, s) cos(giζ) + βgi(z, s) sin(giζ))

if 0 � s � n,(
α0(z, s) +

n∑
i=1

(αgi(z, s) cos(giζ) + βgi(z, s) sin(giζ))
)(

2 − s

n

)

if n � s � 2n and 0 if 2n � s.
Let us prove that D0v̌n converges to D0v̌ in L2(ω × R

+; B(G)). We have

‖D0v̌ − D0v̌n‖2
L2(ω×R+;B(G))N

� C

∫
ω×R+

( ∞∑
i=n+1

(
|gi|2(|αgi |2 + |βgi |2) +

∣∣∣∣∂αgi

∂s

∣∣∣∣
2

+
∣∣∣∣∂βgi

∂s

∣∣∣∣
2))

dz ds

+ C

∫
ω×(n,∞)

(∣∣∣∣∂α0

∂s

∣∣∣∣
2

+
n∑

i=1

(
|gi|2(|αgi |2 + |βgi |2)

+
∣∣∣∣∂αgi

∂s

∣∣∣∣
2

+
∣∣∣∣∂βgi

∂s

∣∣∣∣
2))

dz ds

+
C

n2

∫
ω×(n,2n)

(
|α0|2 +

n∑
i=1

(|αgi |2 + |βgi |2)
)

dz ds.

In the right-hand side of this inequality, the first and second terms clearly tend to
zero when n → ∞. To estimate the third term, we use the fact that, for every t < n
and s ∈ (n, 2n), we have

|αgi(z, s)|2 � 2|αgi(z, t)|2 + 2(2n − t)
∫ +∞

t

∣∣∣∣∂αgi

∂r
(z, r)

∣∣∣∣
2

dr,

for a.e. z ∈ ω, and similarly for βgi . Then, we have

1
n2

∫
ω×(n,2n)

(
|α0|2 +

n∑
i=1

(|αgi |2 + |βgi |2)
)

dz ds

� 2
n

∫
ω

(
|α0(z, t)|2 +

n∑
i=1

(|αgi(z, t)|2 + |βgi(z, t)|2)
)

dz

+ 2
2n − t

n

∫
ω×(t,∞)

(∣∣∣∣∂α0

∂s

∣∣∣∣
2

+
n∑

i=1

(∣∣∣∣∂αgi

∂s

∣∣∣∣
2

+
∣∣∣∣∂βgi

∂s

∣∣∣∣
2))

dz ds.

https://doi.org/10.1017/S0308210506000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000539


Two-scale convergence boundary behaviour 49

So

lim sup
n→∞

1
n2

∫
ω×(n,2n)

(
|α0|2 +

n∑
i=1

(|αgi |2 + |βgi |2)
)

dz ds

� 4
∫

ω×(t,∞)

(∣∣∣∣∂α0

∂s

∣∣∣∣
2

+
∑
g∈G∗

(∣∣∣∣∂αg

∂s

∣∣∣∣
2

+
∣∣∣∣∂βg

∂s

∣∣∣∣
2))

dz ds,

for every t > 0. This proves

lim
n→∞

1
n2

∫
ω×(n,2n)

(
|αg0 |2 +

n∑
i=1

(|αgi |2 + |βgi |2)
)

dz ds = 0.

Proof of theorem 4.5. Since b̌ε satisfies (4.6), we can apply proposition 4.11 in order
to deduce the existence of b̌ ∈ L2(ω × (0, M); B(G)), for every M > 0, with D0b̌ ∈
L2(ω × R

+; B(G))N such that (4.12) and (4.13) hold. Once we have proved that b̌
is the solution of (4.11), we may deduce by uniqueness that it is not necessary to
extract any subsequence.

For δ > 0, we consider Aδ ∈ C0
� (Ȳ ; MN ) such that

‖A − Aδ‖L2
�(Y ;MN ) < δ. (4.22)

For v̌ ∈ C∞
c (ω × R

+; CAP∞(G)), we take vε(z, s) = v̌(z, s, z/ε) as a test function
in (4.7). Adding and subtracting

Ǎδ
ε

(
s,

z

ε

)
= Aδ

(
z

ε
+

(
a

ε
+ s

)
ν

)
,

we get

∫
ω×R+

(
Ǎε

(
s,

z

ε

)
− Ǎδ

ε

(
s,

z

ε

))
Dεb̌εDεvε dz ds

+
∫

ω×R+
Ǎδ

ε

(
s,

z

ε

)
Dεb̌εDεvε dz ds = 0. (4.23)

Since Ǎδ
ε converges uniformly to Ǎδ defined by

Ǎδ(s, ζ) = Aδ(ζ + � + sν) for all ζ ∈ {ν}⊥ and all s � 0,

and

Dεvε − D0v̌

(
z, s,

z

ε

)
= ε∇z v̌

(
z, s,

z

ε

)

converges strongly to zero in L2(ω × R
+)N , we deduce

lim
ε→0

∫
ω×R+

(
Ǎδ

ε

(
s,

z

ε

)
Dεb̌εDεvε − Ǎδ

(
s,

z

ε

)
Dεb̌εD0v̌

(
z, s,

z

ε

))
dz ds = 0.

(4.24)
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But, by the definition of two-scale convergence, we have

lim
ε→0

∫
ω×R+

Ǎδ

(
s,

z

ε

)
Dεb̌εD0v̌

(
z, s,

z

ε

)
dz ds =

∫
ω×R+

Mζ(Ǎδ(s, ζ)D0b̌D0v̌) dz ds.

(4.25)
In order to estimate the first term in (4.23), we use (4.6), Dεvε bounded in L∞(ω×
R

+) and the existence of S > 0 such that v̌(z, s, ζ) is zero for s > S. Thus, we
deduce that there exists C > 0 (which does not depend on ε and δ) such that∣∣∣∣
∫

ω×R+

(
Ǎε

(
s,

z

ε

)
− Ǎδ

ε

(
s,

z

ε

))
Dεb̌εDεvε dz ds

∣∣∣∣
� C

∥∥∥∥Ǎε

(
s,

z

ε

)
− Ǎδ

ε

(
s,

z

ε

)∥∥∥∥
L2(ω×(0,S);MN )

. (4.26)

On the other hand, using the change of variables

y =
z

ε
+

(
a

ε
+ s

)
ν,

we get∥∥∥∥Ǎε

(
s,

z

ε

)
− Ǎδ

ε

(
s,

z

ε

)∥∥∥∥
2

L2(ω×(0,S);MN )
= εN−1

∫
(aν+ω)/ε+(0,S)ν

|A−Aδ|2 dy � Cδ,

for every ε > 0. So, taking the limit in (4.23) first in ε and then in δ by (4.24)–(4.26),
we deduce∫

ω×R+
Mζ(Ǎ(ζ + � + sν)D0b̌D0v̌) dz ds = 0 for all v̌ ∈ C∞

c (ω × R
+; CAP∞(G)).

By lemma 4.12, this equality holds in fact for every v̌ such that v̌(z, 0, s) = 0 and
D0v̌ belongs to L2(ω×R

+; B(G))N . In order to show that b̌ is the solution of (4.11),
it remains only to prove b̌(z, 0, ζ) = u1(z + aν, ζ + �). For this purpose we use the
fact that

b̌ε(z, 0) = u1

(
z + aν,

z + aν

ε

)
.

Thus, for every ρ > 0 and every ψ ∈ C∞
c (ω; CAP∞(G)) we have∫

ω

(
1
ρ

∫ ρ

0
b̌ε(z, s) ds − u1

(
z + aν,

z + aν

ε

))
ψ

(
z,

z

ε

)
dz

� Cρ

∥∥∥∥∂b̌ε

∂s

∥∥∥∥
L2(ω×(0,ρ))

‖ψ‖C0(ω̄;CAP (G)).

Using (4.12), the fact that u1(z + aν, (z + aν)/ε) two-scale converges to u1(z +
aν, ζ + �) (see, for example, [1, 8, 15,16]), and (4.6), we easily deduce that∫

ω

Mζ((b̌(z, 0, ζ)−u1(z +aν, ζ +�))ψ(z, ζ)) dz = 0 for all ψ ∈ C∞
c (ω; CAP∞(G)),

which proves b̌(z, 0, ζ) = u1(z + aν, ζ + �).

https://doi.org/10.1017/S0308210506000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000539


Two-scale convergence boundary behaviour 51

5. Expansion near a plane boundary with irrational normal

In this section, we obtain an estimate of the left-hand side of (4.16) for an irrational
normal. For this purpose we will use the following result, showing that the functions
γ̌i

ε of (4.17), which are almost periodic in the variable ζ, can be obtained from a
periodic problem.

Proposition 5.1. Assume A ∈ L∞
� (Y ; MN ), uniformly elliptic. For 1 � i � N ,

we define Υ i : R
+ × R

N → R by

Υ i periodic in y, Υ i(0, y) = Γ i(y), P∇yΥ i +
∂Υ i

∂s
ν ∈ L2(R+; L2

� (Y ))N ,∫
Y ×R+

A(y + sν)
(

P∇yΥ i +
∂Υ i

∂s
ν

)(
P∇yϕ +

∂ϕ

∂s
ν

)
ds dy = 0

for all ϕ periodic in y, P∇yϕ +
∂ϕ

∂s
ν ∈ L2(R+; L2

� (Y ))N , ϕ(0, y) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(5.1)

We suppose that (at least) one of the following assumptions holds:

(i) ν �∈ R · Z
N ;

(ii) A ∈ C0
� (Y ; MN ), P∇yΥ j + ν(∂Υ j/∂s) ∈ L2(R+; C0

� (Y )N ).

Then, for every ε > 0 and every i ∈ {1, . . . , N}, the solution γ̌i
ε of (4.17) satisfies

γ̌i
ε(s, ζ) = Υ i

(
s,

a

ε
ν + ζ

)
. (5.2)

Better than Υ i, we will use the following functions T i = T i(r, µ) which follows
from Υ i by using the change of variables

y = Pµ + rν, s = µν ⇐⇒ µ = Py + sν, r = yν. (5.3)

Definition 5.2. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, that ∂yν A ∈

L∞
� (Y ; MN ) and define Υ i by (5.1). Denoting by H the half-space of R

N ,

H = {µ ∈ R
N : µν > 0},

we define T i : R × H → R by

T i(r, µ) = Υ i(µν, Pµ + rν) a.e. in R × H. (5.4)

Remark 5.3. From (5.2), we have γ̌i
ε(s, ζ) = T i(a/ε, ζ + sν).

The main result of this section is the following theorem.

Theorem 5.4. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, that ∂yν A ∈

L∞
� (Y ; MN ), u0 is a solution of (3.2) in W 2,∞(Ω), ψ ∈ C∞(Ω̄) with ψ = 1 on a

compact subset K of ω, supp(ψ) ⊂ Λ̄δ, and define

ũε(x) = u0(x)+ε

N∑
i=1

(
∂u0

∂xi
(x)Γ i

(
x

ε

)
−∂u0

∂xi
(aν+Px)T i

(
a

ε
,
x − aν

ε

)
ψ(x)

)
. (5.5)
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Then there exists C > 0 such that if uε is the solution of (1.1), we have

‖(uε − ũε)φ‖H1
0 (Ω) � C‖φ‖W 1,∞(Ω)ε

√
| log ε| for all ε > 0, (5.6)

for every φ ∈ C∞(Ω), with φ∇u0 = 0 on ∂Ω \ K.

In order to prove proposition 5.1, we start by observing that, by the definition
of CAP (G), with G given by (4.8), and Fejer’s theorem, the restriction to the
hyperplane cν + {ν}⊥, c ∈ R, of a function of C0

� (Ȳ ) is in CAP (G). Related to
this result, we also have the following proposition.

Proposition 5.5. We assume that ν does not belong to R · Z
N , and we define G

by (4.8). Then, for every c ∈ R, the application J : L2
� (Y ) → B(G) defined by

J(u) = u|cν+{ν}⊥

is an isometric isomorphism.

Proof. Let us first show that P satisfies the property

Pk1 = Pk2 ⇐⇒ k1 = k2 for all k1, k2 ∈ Z
N , (5.7)

for it is sufficient to use

Pk1 = Pk2 ⇐⇒ P (k1 − k2) = 0 ⇐⇒ ∃ρ ∈ R such that k1 − k2 = ρν.

However, since ν �∈ R · Z
N , this is equivalent to k1 = k2.

Using Fourier’s formulation, J is defined by (for y ∈ cν + {ν}⊥, we use the
decomposition y = cν + ζ with ζ ∈ {ν}⊥)

J

(
α0 +

∑
k∈(ZN )∗

(αk cos(2πky) + βk sin(2πky))
)

= α0 +
∑

k∈(ZN )∗

(αk cos(2π(ckν + Pkζ)) + βk sin(2π(ckν + Pkζ)))

= α0 +
∑

k∈(ZN )∗

(αk cos(2πckν) + βk sin(2πckν)) cos(2πPkζ)

+
∑

k∈(ZN )∗

(−αk sin(2πckν) + βk cos(2πckν)) sin(2πPkζ).

Thus, from (5.7), we easily obtain that J is bijective and∥∥∥∥J

(
α0 +

∑
k∈(ZN )∗

(αk cos(2πky) + βk sin(2πky))
)∥∥∥∥

2

B(G)

= |α0|2 + 1
2

∑
k∈(ZN )∗

(|αk|2 + |βk|2)

=
∥∥∥∥α0 +

∑
k∈(ZN )∗

(αk cos(2πky) + βk sin(2πky))
∥∥∥∥

2

L2
�(Y )

,

which shows that the linear application J is an isomorphism isometric.
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Remark 5.6. Proposition 5.5 can be surprising because it gives a meaning to the
restriction of u ∈ L2

� (Y ) to a hyperplane such that its unit normal is not propor-
tional to an element of Z

N . However, J(u) is only in B(G) and thus it is not a
function but a class of functions.

Proof of proposition 5.1. This is immediate, using the fact that the restriction to
the hyperplane cν +{ν}⊥ of a function in C�(Ȳ ) is in CAP (G) and proposition 5.5.

Taking the derivative of problem (5.1) with respect to y in the direction of ν,
which we denote by ∂yν we easily have the following proposition.

Proposition 5.7. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and that

∂yν
A ∈ L∞

� (Y ; MN ). Then, for every i ∈ {1, . . . , N}, the derivative (in the sense
of the distributions) ∂yν Υ i of the solution Υ i of (5.1) is given by

∂yν
Υ i is periodic in y, ∂yν

Υ i(0, y) = ∂yν
Γ i(y),

P∇y(∂yν Υ i) +
∂

∂s
(∂yν Υ i)ν ∈ L2(R+; L2

� (Y ))N ,∫
R+×Y

(
A(y + sν)

(
P∇y(∂yν Υ i) +

∂

∂s
(∂yν Υ i)ν

)

+ ∂yν A(y + sν)
(

P∇yΥ i +
∂Υ i

∂s
ν

))(
P∇yϕ +

∂ϕ

∂s
ν

)
ds dy = 0

for all ϕ periodic in y, P∇yϕ +
∂ϕ

∂s
ν ∈ L2(R+; L2

� (Y ))N , ϕ(0, y) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)

Reasoning as in the proof of lemma A.1, we deduce from (5.1) and (5.7) that Υ i

and ∂yν Υ i satisfy the following proposition.

Proposition 5.8. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, that ∂yν A ∈

L∞
� (Y ; MN ) and define Υ i by (5.1). Then, Υ i and ∂yν Υ i respectively satisfy∫

R+×RN

A(y + sν)
(

P∇yΥ i +
∂Υ i

∂s
ν

)(
P∇yϕ +

∂ϕ

∂s
ν

)
dy ds = 0

for all ϕ with P∇yϕ +
∂ϕ

∂s
ν ∈ L2(R+ × R

N )N ,

ϕ(0, y) = 0 on R
N , ∃R > 0 with ϕ(s, y) = 0 a.e. in |y| > R, s > 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)

and∫
R+×RN

A(y + sν)
(

P∇y(∂yν
Υ i) +

∂

∂s
(∂yν

Υ i)ν

+ ∂yν A(y + sν)
(

P∇yΥ i +
∂Υ i

∂s
ν

))(
P∇yϕ +

∂ϕ

∂s
ν

)
dy ds = 0

for all ϕ with P∇yϕ +
∂ϕ

∂s
ν ∈ L2(R+ × R

N )N ,

ϕ(0, y) = 0 on R
N , ∃R > 0 with ϕ(s, y) = 0 a.e. in |y| > R, s > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)
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Remark 5.9. Proposition 5.8 shows in particular that Υ i and ∂yν Υ i respectively
satisfy the following partial differential equations in the sense of the distributions:

− ∂

∂s

(
A(y + sν)

(
P∇yΥ i +

∂Υ i

∂s
ν

)
ν

)

− divy

(
PA(y + sν)

(
P∇yΥ i +

∂Υ i

∂s
ν

))
= 0 in R

+ × R
N , (5.11)

and

− ∂

∂s

(
A(y + sν)

(
P∇y(∂yν Υ i) +

∂

∂s
(∂yν Υ i)ν

)
ν

)

− divy

(
PA(y + sν)

(
P∇y(∂yν Υ i) +

∂

∂s
(∂yν

Υ i)ν
))

=
∂

∂s

(
∂yν A(y + sν)

(
P∇yΥ i +

∂Υ i

∂s
ν

)
ν

)

+ divy

(
P∂yν

A(y + sν)
(

P∇yΥ i +
∂Υ i

∂s
ν

))
in R

+ × R
N . (5.12)

Using these properties for Υ i, we can now show that the T i given by (5.4) satisfies
the following proposition.

Proposition 5.10. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and that

∂yν A ∈ L∞
� (Y ; MN ). Then, for every i ∈ {1, . . . , N} and every r ∈ R, the function

µ �→ T i(r, µ) is in H1(B(0, R) ∩ H), for every R > 0, and there exists C > 0 such
that, for every r ∈ R, we have

T i(r, µ) = Γ i(µ + rν) for µ ∈ {ν}⊥, (5.13)

‖T i(r, µ)‖L∞(H) � C, (5.14)∫
{µ∈H:|Pµ−ζ|<1}

|∇µT i(r, µ)|2 dµ � C for all ζ ∈ ν⊥, (5.15)

− div A(µ + rν)∇µT i(r, µ) = 0 in H. (5.16)

Proof. We consider i ∈ {1, . . . , N}. Statement (5.13) is immediate from Υ i(y, 0) =
Γ i(y) for a.e. y ∈ R

N and the definition, (5.4), of T i. Since Γ i is in L∞
� (Y ), taking

(Υ i − ‖Γ i‖L∞
� (Y ))+, (Υ i + ‖Γ i‖L∞

� (Y ))− as a test functions in (5.1), we deduce that
Υ i is in L∞(R+ × R

N ). From (5.1) and (5.7) we also have Υ i in H1
loc(R

+ × R
N ).

Thus, from (5.4) we get (5.14). Using the fact that

P∇yΥ i +
∂Υ i

∂s
ν and P∇y(∂yν Υ i) +

∂

∂ys
(∂yν Υ i)ν

belong to L2(R+; L2
� (Y ))N , definition 5.4 of T i and the inequality

|v(r0)|2 � 2
∫ r0+(1/2)

r0−(1/2)
|v(r)|2 dr

+ 2
∫ r0+(1/2)

r0−(1/2)

∣∣∣∣dv

dr
(r)

∣∣∣∣
2

dr for all v ∈ H1(r0 − 1
2 , r0 + 1

2 ),
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we deduce that for every r0 ∈ R, and every ζ0 ∈ {ν}⊥, we have∫
{µ∈H:|Pµ−ζ0|<1}

|∇µT i(r0, µ)|2 dµ

=
∫

{µ∈H:|Pµ−ζ0|<1}

∣∣∣∣P∇yΥ i(µν, Pµ + r0ν) +
∂Υ i

∂s
(µν, Pµ + r0ν)ν

∣∣∣∣
2

dµ

=
∫ +∞

0

∫
{ζ∈{ν}⊥:|ζ−ζ0|<1}

∣∣∣∣P∇yΥ i(s, ζ + r0ν) +
∂Υ i

∂s
(s, ζ + r0ν)ν

∣∣∣∣
2

dζ ds

� 2
∫ +∞

0

∫ r0+(1/2)

r0−(1/2)

∫
{ζ∈{ν}⊥:|ζ−ζ0|<1}

∣∣∣∣P∇yΥ i(s, ζ + rν)

+
∂Υ i

∂s
(s, ζ + rν)ν

∣∣∣∣
2

dζ dr ds

+ 2
∫ +∞

0

∫ r0+(1/2)

r0−(1/2)

∫
{ζ∈{ν}⊥:|ζ−ζ0|<1}

∣∣∣∣P∇y(∂yν
Υ i)(s, ζ + rν)

+
∂

∂s
(∂yν Υ i)(s, ζ + rν)ν

∣∣∣∣
2

dζ dr ds

� 2
∫ +∞

0

∫
Y

(∣∣∣∣P∇yΥ i +
∂Υ i

∂s
ν

∣∣∣∣
2

+
∣∣∣∣P∇y(∂yν Υ i) +

∂

∂s
(∂yν Υ i)ν

∣∣∣∣
2)

dy ds

� C.

This proves (5.15).
In order to prove (5.16), we consider v ∈ C∞

c (H). Then, for ψ ∈ C∞
c (R), we define

ϕ : R
+ × R

N → R by

ϕ(s, y) = v(Py + sν)ψ(yν), a.e. (y, s) ∈ R
N × R

+.

Taking ϕ as a test function in (5.9) and using the change of variables (5.3), we get∫ +∞

−∞

∫
H

A(µ + rν)∇T i∇v dµψ(r) dr = 0. (5.17)

Moreover, since P∇y(∂yν Υ i) + (∂/∂s)(∂yν Υ i)ν belongs to L2(R+; L2
� (Y ))N , we

deduce that the application

r �→
∫

H

A(µ + rν)∇µT i∇v dµ

is continuous. Thus, since (5.17) holds for every ψ ∈ C∞
c (R), we deduce (5.16).

Let us now estimate, for r > 0, the decay to zero of ∇µT i(r, µ), when

dist(µ, {ν}⊥) → ∞.

This will follow from the following result.

Lemma 5.11. There exists CN > 0, which depends only on N , such that, for every
w ∈ L∞(R+ × R

N−1) ∩ H1
loc(R

+ × R
N−1), and every B ∈ L∞(R+ × R

N−1; MN )
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such that

∃M > 0 with
∫

R+×Q

|∇w|2 dx � M for all Q ⊂ R
N−1, cube of side 1, (5.18)

∃α, β > 0 with α|ξ|2 � Bξξ, |Bξ| � β|ξ| for all ξ ∈ R
N , a.e. in R

+ × R
N−1,
(5.19)

− div B∇w = 0 in R
+ × R

N−1, (5.20)

we have∫ 2S

S

∫
{|x′|<R}

|∇w|2 dx′ dx1 � CN

(
M

1 + S
+

β2

α2 ‖w‖2
L∞(RN−1×R+)

)
RN−1

1 + S

(5.21)

and∫ R

0

∫
{|x′|<R}

|∇w|2(1 + x1) dx′ dx1 � CN

(
M +

β2

α2 ‖w‖2
L∞(RN−1×R+) log R

)
RN−1,

(5.22)

for every R > 2 and every S ∈ [0, R].

Proof. Throughout the proof we will denote by CN a generic positive constant which
depends only on N and which can change from one line to another. The points
x ∈ R

+ × R
N−1 will be decomposed as x = (x1, x

′), with x1 ∈ R
+, x′ ∈ R

N−1.
For R > 2, we define η : R

+ × R
N−1 → R by

η(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(x1 + 1)N−1 if |x′| < R,

e−(|x′|−R)/(x1+1)

(x1 + 1)N−1 if |x′| > R.

Let us first estimate ∫
R+×RN−1

|∇w|2η dx,

for which we consider a cut-off function ζ ∈ C∞([0, +∞)) such that ζ(0) = 0, ζ = 1
in (1, +∞), 0 � ζ � 1 in (0, 1), |dζ/ds| � 2. Also, for T > 0, we take a cut-off
function ϕT ∈ C∞(RN ) such that ϕT = 1 in (−T, T )N , ϕT = 0 in R

N \(−2T, 2T )N ,
0 � ϕT � 1, |∇ϕT | � 2/T , in R

N . Taking ζ(x1)wηϕ2
T as the test function in (5.20),

we obtain

∫
R+×RN−1

B∇w∇wζ(x1)ηϕ2
T dx +

∫
R+×RN−1

B∇we1
dζ

dx1
(x1)wηϕ2

T dx

+
∫

R+×RN−1
B∇w∇ηζ(x1)wϕ2

T dx + 2
∫

R+×RN−1
B∇w∇ϕT ζ(x1)wηϕT dx = 0.
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Using (5.19), w ∈ L∞(RN−1 × R
+) and the properties of ϕT and ζ, we deduce

α

∫
R+×RN−1

|∇w|2ζ(x1)ηϕ2
T dx

� 2β‖w‖L∞(R+×RN−1)

∫ 1

0

∫
RN−1

|∇w|η dx′ dx1

+ β‖w‖L∞(R+×RN−1)

∫
(0,2T )×(−2T,2T )N−1

|∇w||∇η|ζ(x1)ϕ2
T dx

+
4β

T
‖w‖L∞(R+×RN−1)

∫
(0,2T )×(−2T,2T )N−1

|∇w|ζ(x1)ηϕT dx,

which, by Young’s inequality and ζ, ϕT � 1, gives

α

2

∫
R+×RN−1

|∇w|2ζ(x1)ηϕ2
T dx

� 2β‖w‖L∞(R+×RN−1)

∫ 1

0

∫
RN−1

|∇w|η dx′ dx1

+
β2

α
‖w‖2

L∞(R+×RN−1)

( ∫
R+×RN−1

|∇η|2
η

dx +
16
T 2

∫
(0,2T )×(−2T,2T )N−1

η dx

)
.

(5.23)

Let us estimate the first term on the right-hand side of (5.23). Denoting Y ′ =
(− 1

2 , 1
2 )N−1, |k|∞ = max1�i�N−1 |ki|, for every k = (k1, . . . , kN−1) ∈ Z

N−1 and
taking into account (5.18) and the definition of η, we have∫ 1

0

∫
RN−1

|∇w|η dx′ dx1

=
+∞∑
j=0

∑
k∈ZN−1,|k|∞=j

∫ 1

0

∫
k+Y ′

|∇w|η dx′ dx1

�
∑

k∈ZN−1,|k|∞�[R]+1

∫ 1

0

∫
k+Y ′

|∇w| dx′ dx1

+
+∞∑

j=[R]+2

∑
k∈ZN−1,|k|∞=j

∫ 1

0

∫
k+Y ′

|∇w| exp
{−

√
N − 1(j + 1

2 ) + R

2

}
dx′ dx1

�
(

(2[R] + 3)N−1 +
+∞∑

j=[R]+2

((2j + 1)N−1 − (2j − 1)N−1)

× exp
{−

√
N − 1(j + 1

2 ) + R

2

})√
M

� CN (R + 1)N−1
√

M. (5.24)

Additionally, using ∫
R+×RN−1

|∇η|2
η

dx � CN (R + 1)N−2
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and

lim
T→∞

1
T 2

∫
(0,2T )×(−2T,2T )N−1

η dx = 0,

we deduce from (5.23) that∫
(1,+∞)×RN−1

|∇w|2η dx � lim
T→∞

∫
R+×RN−1

|∇w|2ζ(x1)ηϕ2
T dx

� CN
β

α
‖w‖L∞(R+×RN−1)

√
M(R + 1)N−1

+ CN
β2

α2 ‖w‖2
L∞(R+×RN−1)(R + 1)N−2.

Then, since ∫
(0,1)×RN−1

|∇w|2η dx � CN (R + 1)N−1M,

which can be proved similarly to (5.24), we conclude∫
R+×RN−1

|∇w|2η dx � CN (R + 1)N−1
(

M +
β2

α2 ‖w‖2
L∞(R+×RN−1)

)
. (5.25)

In order to show (5.21), we consider ϕ ∈ C∞
c (R+) and φn ∈ C∞

c (RN−1), which
converges to 1 everywhere and satisfies ‖φn‖L∞(RN−1) � 1, ‖∇φn‖L∞(RN−1)N−1 con-
verging to zero. Taking wηφn(x′)ϕ(x1) as a test function in (5.20), we get (we define
∇x′φn = (∇φn, 0))

∫
R+×RN−1

B∇w∇(wη)φn(x′)ϕ(x1) dx

+
∫

R+×RN−1
B∇w∇x′φn(x′)wηϕ(x1) dx

+
∫

R+×RN−1
B∇we1

dϕ

dx1
(x1)wηφn(x′) dx = 0. (5.26)

Using the inequality

∣∣∣∣
∫

RN−1×R+
B∇w∇x′φn(x′)wηϕ(x1) dx

∣∣∣∣
� β‖w∇φn‖L∞(RN−1)N−1

( ∫
RN−1×R+

|∇w|2η dx

)1/2( ∫
RN−1×R+

η|ϕ(x1)|2 dx

)1/2

(5.27)

in the second term of (5.26), we deduce that this term tends to zero when n → ∞.
To pass to the limit in the other two terms of (5.26), we use the fact that

B∇w∇(wη)ϕ(x1) and B∇we1
dϕ

dx1
(x1)wη
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are in L1(R+ × R
N−1) and the Lebesgue dominated convergence theorem. We get

∫ +∞

0

∫
RN−1

B∇w∇(wη) dx′ϕ(x1) dx1

+
∫ +∞

0

∫
RN−1

B∇we1wη dx′ dϕ

dx1
(x1) dx1 = 0,

for every ϕ ∈ C∞
c (R+), which, by definition of the weak derivative, implies

d
dS

( ∫
{x1=S}

B∇we1wη dx′
)

=
∫

{x1=S}
B∇w∇(wη) dx′ in R

+,

in the sense of distributions. Since on the other hand, we know that

d
dS

( ∫ +∞

S

∫
RN−1

B∇w∇(wη) dx′ dx1

)
= −

∫
{x1=S}

B∇w∇(wη) dx′,

we deduce that there exists a constant c such that∫ +∞

S

∫
RN−1

B∇w∇(wη) dx′ dx1 = −
∫

{x1=S}
B∇we1wη dx′ + c, a.e. S ∈ R

+.

Integrating the above equality in (T, T + 1), with T > 0, we get

∫ T+1

T

∫ +∞

S

∫
RN−1

B∇w∇(wη) dx′ dx1 dS

= −
∫ T+1

T

∫
RN−1

B∇we1wη dx′ dx1 + c. (5.28)

Since B∇w∇(wη) belongs to L1(R+ × R
N−1), the first term on the left-hand side

of this equality tends to zero when T → ∞. For the second term, we use

∣∣∣∣
∫ T+1

T

∫
RN−1

B∇we1wη dx′ dx1

∣∣∣∣
� β‖w‖L∞(R+×RN−1)

( ∫ T+1

T

∫
RN−1

|∇w|2η dx′ dx1

)1/2

×
( ∫ T+1

T

∫
RN−1

η dx′ dx1

)1/2

,

which tends to zero. Thus, from (5.28), we get c = 0, and so we have∫ +∞

S

∫
RN−1

B∇w∇(wη) dx′ dx1 = −
∫

{x1=S}
B∇we1wη dx′, a.e. S > 0.

Using the inequality

|∇η| � η

x1 + 1

(
N +

|x′| − R

x1 + 1
χ{|x′|>R}

)
, a.e. in R

+ × R
N−1
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here, we get∫ +∞

S

∫
RN−1

B∇w∇wη dx′ �
∫

{x1=S}
|B||∇w||w|η dx′ +

∫ +∞

S

∫
RN−1

|B||∇w||w|

× η

x1 + 1

(
N +

|x′| − R

x1 + 1
χ{|x′|>R}

)
dx′ dx1.

So, from (5.19), w in L∞(R+ × R
N−1) and Young’s inequality, we obtain

α

2

∫ +∞

S

∫
RN−1

|∇w|2η dx′ dx1

� β‖w‖L∞(R+×RN−1)

( ∫
{x1=S}

|∇w|2η dx′
)1/2( ∫

{x1=S}
η dx′

)1/2

+
β2

α
‖w‖2

L∞(R+×RN−1)

×
∫ +∞

S

∫
RN−1

η

(x1 + 1)2

(
N2 +

(|x′| − R)2

(x1 + 1)2
χ{|x′|>R}

)
dx′ dx1.

Estimating the integrals which do not depend on w, and assuming S < R, we
deduce the existence of CN > 0 such that

α

2

∫ +∞

S

∫
RN−1

|∇w|2η dx′ dx1 � CN
β2

α
‖w‖2

L∞(R+×RN−1)
RN−1

(S + 1)N

+ βCN‖w‖L∞(R+×RN−1)
R(N−1)/2

(S + 1)(N−1)/2

( ∫
{x1=S}

|∇w|2η dx′
)1/2

, a.e. S > 0.

(5.29)

Now, we define

Ψ(S) =
∫ +∞

S

∫
RN−1

|∇w|2η dx′ dx1 for all S > 0.

Then, applying Young’s inequality in (5.29) we deduce that

Ψ(S) � CN
β2

α2 ‖w‖2
L∞(RN−1×R+)

RN−1

(S + 1)N
− S + 1

N + 1
Ψ ′(S), a.e. S > 0,

which gives

(N + 1)(S + 1)NΨ(S) + (S + 1)N+1Ψ ′(S) � CN
β2

α2 ‖w‖2
L∞(R+×RN−1)R

N−1,

for a.e. S ∈ (0, R), i.e.

d
dS

((S + 1)N+1Ψ) � CN
β2

α2 ‖w‖2
L∞(R+×RN−1)R

N−1, a.e. S > 0.

Integrating this inequality in (0, S), we get

Ψ(S) � Ψ(0)
(S + 1)N+1 + CN

β2

α2 ‖w‖2
L∞(R+×RN−1)

RN−1S

(S + 1)N+1 for all S ∈ [0, R].
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So, from (5.25) and the inequality

1
(S + 1)N−1

∫ 2S

S

∫
{|x′|<R}

|∇w|2 dx′ dx1 � Ψ(S),

we conclude (5.21).
To prove (5.22), we take n ∈ N such that 2n−1 � R � 2n. From (5.21) we get∫ R

0

∫
{|x′|<R}

|∇w|2(1 + x1) dx′ dx1

�
n∑

j=1

(1 + 2j)
∫ 2j

2j−1

∫
{|x′|<R}

|∇w|2 dx′ dx1

� CN

(
M

n∑
j=1

1 + 2j

(1 + 2j−1)2
+

β2

α2 ‖w‖2
L∞(R×RN−1)

n∑
j=1

1 + 2j

1 + 2j−1

)
RN−1

� CN

(
M +

β2

α2 ‖w‖2
L∞(R×RN−1) log R

)
RN−1.

This proves (5.22).

Using a rotation which transforms H in R
+ × R

N−1, and taking into account
proposition 5.10, we can apply lemma 5.11 to T i. This gives the following corollary.

Corollary 5.12. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, and ∂yν A ∈

L∞
� (Y ; MN ). Then there exists a constant C > 0 such that, for every R > 2, every

r ∈ R, and every i ∈ {1, . . . , N}, we have∫ R

0

∫
B(0,R)∩{ν}⊥

|∇µT i(r, ρ + sν)|2(1 + s) dρ ds � CRN−1 log R. (5.30)

Remark 5.13. We do not know whether (5.30) is optimal. Indeed, if we consider
an algebra generated by a sequence si ∈ R

N−1 such that |si| strictly decreases to
zero, then, taking φ0(x′) =

∑
αi sin(six′), with

∑+∞
i=0 |si||αi|2 < +∞, the solution

of the problem (it has a similar structure to problem (4.11) and so it is closely
related to the problem defining Υ i and then T i)

φ(0, x′) = φ0(x′), ∇u ∈ L2(R+,B(S))N ,∫
R+

Mx′(∇φ∇v) dx1 = 0 for all v with v(0, x2) = 0, ∇v ∈ L2(R+,B(S))N ,

is given by

φ(x) =
+∞∑
i=0

αie−|si|x1 sin(six′),

and so it satisfies the condition that∫
R+

Mx′(|∇φ|2)x1 dx1 < +∞,
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while, by lemma 5.11, we just expect (this estimate can be proved for the solution
of problem (4.11)) that

∫ R

0
Mx′(|∇φ|2)x1 dx1 � C(1 + log R) for all R > 1.

We also observe in this example that, for every γ > 1, we can choose ϕ0 such that∫ +∞

0
Mx′(|∇φ|2)xγ

1 dx1 = +∞.

This means in particular that we cannot expect an exponential decay for T i.

From corollary 5.12 we have the following result.

Lemma 5.14. Assume that A ∈ L∞
� (Y ; MN ) is uniformly elliptic, that ∂yν

A ∈
L∞

� (Y ; MN ), and consider ϕ ∈ W 1,∞(Ω) such that supp(ϕ) ⊂ Λ̄δ, with Λδ defined
by (4.2). Then, for every i ∈ {1, . . . , N}, we have

− div A

(
x

ε

)
∇

(
εϕT i

(
a

ε
,
x − aν

ε

))
= hi

ε in Ω, (5.31)

where hi
ε is such that there exists C > 0 (which depends on ϕ) with

‖hi
ε‖H−1(Ω) � Cε

√
| log ε|. (5.32)

Proof. For v ∈ H1
0 (Ω), we have∫

Ω

A

(
x

ε

)
∇

(
εϕT i

(
a

ε
,
x − aν

ε

))
∇v dx

=
∫

Ω

A

(
x

ε

)
∇µT i

(
a

ε
,
x − aν

ε

)
∇(ϕv) dx

−
∫

Ω

A

(
x

ε

)
∇µT i

(
a

ε
,
x − aν

ε

)
∇ϕv dx

+ ε

∫
Ω

A

(
x

ε

)
∇ϕ∇vT i

(
a

ε
,
x − aν

ε

)
dx. (5.33)

The first term on the right-hand side of (5.33) can be estimated easily by using (5.16)
and the change of variables x = aν + εµ. We have

∫
Ω

A

(
x

ε

)
∇µT i

(
a

ε
,
x − aν

ε

)
∇(ϕv) dx

= εN−1
∫

H

A

(
aν

ε
+ µ

)
∇µT i

(
a

ε
, µ

)
∇µ

(
ϕ

(
aν

ε
+ µ

)
v

(
aν

ε
+ µ

))
dx = 0.

(5.34)

To estimate the second term on the right-hand side of (5.33) we use ϕ = 0 outside
Λδ and v = 0 on Λ. Thus, the change of variables x = z + (a + t)ν, with z ∈ ω,
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0 < t < δ, shows that∣∣∣∣
∫

Ω

A

(
x

ε

)
∇µT i

(
a

ε
,
x − aν

ε

)
∇ϕv dx

∣∣∣∣
� C

∫
Λδ

∣∣∣∣∇µT i

(
a

ε
,
x − aν

ε

)∣∣∣∣|v| dx

� C

∫ δ

0

( ∫
ω

∣∣∣∣∇µT i

(
a

ε
,
z + tν

ε

)∣∣∣∣
2

dz

)1/2( ∫
ω

|v(z + (a + t)ν)|2 dz

)1/2

dt

= C

∫ δ

0

( ∫
ω

∣∣∣∣∇µT i

(
a

ε
,
z + tν

ε

)∣∣∣∣
2

dz

)1/2

×
( ∫

ω

∣∣∣∣
∫ t

0
∂xν

v(z + (a + τ)ν) dτ

∣∣∣∣
2

dz

)1/2

dt

� C

∫ δ

0

( ∫
ω

∣∣∣∣∇µT i

(
a

ε
,
z + tν

ε

)∣∣∣∣
2

dz

)1/2(
t

∫
ω

∫ δ

0
|∇v(z + (a + τ)ν)|2 dτ dz

)1/2

dt

� C

( ∫ δ

0

∫
ω

∣∣∣∣∇µT i

(
a

ε
,
z + tν

ε

)∣∣∣∣
2

t dz dt

)1/2

‖v‖H1
0 (Ω)

= C

(
εN+1

∫ δ/ε

0

∫
B(0,R/ε)∩{ν}⊥

∣∣∣∣∇µT i

(
a

ε
, ρ + sν

)∣∣∣∣
2

s dρ ds

)1/2

‖v‖H1
0 (Ω),

with R > δ and such that ω ⊂ B(0, R) ∩ {ν}⊥. So, by (5.30), we get∣∣∣∣
∫

Ω

A

(
x

ε

)
∇µT i

(
a

ε
,
x − aν

ε

)
∇ϕv dx

∣∣∣∣ � Cε
√

| log ε|‖v‖H1
0 (Ω). (5.35)

For the third term on the right-hand side of (5.33) we merely use the fact that T i

is bounded in L∞(Ω), which easily gives

ε

∣∣∣∣
∫

Ω

A

(
x

ε

)
∇ϕ∇vT i

(
a

ε
,
x − aν

ε

)
dx

∣∣∣∣ � Cε‖v‖H1
0 (Ω). (5.36)

From (5.33)–(5.36), we deduce (5.31), where hi
ε satisfies (5.32).

Proof of theorem 5.4. From (3.3), (3.6) and lemma 5.14 applied to

ϕ =
∂u0

∂xi
(aν + Px)ψ, i ∈ {1, . . . , N},

we see that there exists rε ∈ H−1(Ω), with ‖rε‖H−1(Ω) � Cε
√

| log ε|, such that ũε

satisfies

− div A

(
x

ε

)
∇ũε = f + rε on Ω. (5.37)

Now, analogously to the solution bε of (3.9), we define b̃ε by

− div A

(
x

ε

)
∇b̃ε = 0 in Ω,

b̃ε = ũε on ∂Ω.

⎫⎪⎬
⎪⎭ (5.38)
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From the maximum principle, we know that ‖b̃ε‖L∞(Ω) � ‖ũε‖L∞(∂Ω). Thus, since
u0 vanishes on ∂Ω, we deduce that there exists C > 0 such that

‖b̃ε‖L∞(Ω) � Cε. (5.39)

From (5.37) and (5.38), the sequence ũε − b̃ε satisfies

− div A

(
x

ε

)
∇(ũε − b̃ε) = f + rε in Ω,

ũε − b̃ε = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (5.40)

Taking uε − ũε + b̃ε as a test function in the difference of (1.1) and (5.37) we deduce

‖uε − ũε + b̃ε‖H1(Ω) � Cε
√

| log ε|,

and thus, for every φ ∈ C∞(Ω), with φ = 0 on ∂Ω \ K, we have

‖(uε − ũε + b̃ε)φ‖H1(Ω) � Cε
√

| log ε|.

Inequality (5.6) will be then proved if we show that

‖b̃εφ‖H1(Ω) � C‖ϕ‖W 1,∞(Ω)ε
√

| log ε|. (5.41)

For this purpose, we use

‖b̃εφ‖H1(Ω) � C(‖b̃εφ‖L2(Ω) + ‖b̃ε∇φ‖L2(Ω)N + ‖∇b̃εφ‖L2(Ω)), (5.42)

where, by (5.39), the first and second terms on the right-hand side satisfy

‖b̃εφ‖L2(Ω) + ‖b̃ε∇φ‖L2(Ω)N � C‖ϕ‖W 1,∞(Ω)ε. (5.43)

To estimate the last term in (5.42), we take b̃εφ
2 ∈ H1

0 (Ω) as a test function
in (5.38). This gives∫

Ω

A

(
x

ε

)
∇b̃ε∇b̃εφ

2 dx + 2
∫

Ω

A

(
x

ε

)
∇b̃ε∇φb̃εφ dx = 0.

Owing to A being bounded and uniformly elliptic, and the Cauchy–Schwarz inequal-
ity and (5.39), we have ‖∇b̃εφ‖L2(Ω)N � C‖ϕ‖W 1,∞(Ω)ε, which on combination with
(5.42) and (5.43) shows that ‖b̃εφ‖H1(Ω) � C‖ϕ‖W 1,∞(Ω)ε, and thus we get (5.41).

Remark 5.15. If we assume ∇u0 = 0 outside of K in theorem 5.4, then we can
take φ = 1.

Remark 5.16. By (3.2) and Ω ∈ C1,1, assuming f ∈ C0,α(Ω̄), α ∈ (0, 1], we then
have that u0 ∈ C2,α(ω̄) and thus is also in W 2,∞(Ω).

Appendix A.

The following result permits us to show that the solution of a standard variational
problem for an elliptic equation with periodic conditions (see, for example, equa-
tion (3.1)) is in fact a solution in the sense of the distributions. We refer the reader
to [9] for related results.
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Lemma A.1. Assume G ∈ L1
� (Y )N such that∫

Y

G∇v dy = 0 for all v ∈ C∞
� (Y ). (A 1)

Then, G satisfies the equation

− div G = 0 in R
N , (A 2)

in the sense of the distributions.

Proof. We have to prove∫
RN

G∇ϕ dy = 0 for all ϕ ∈ C∞
c (RN ). (A 3)

The periodicity of G gives∫
RN

G∇ϕ dy =
∑

k∈ZN

∫
k+Y

G(y)∇ϕ(y) dy =
∑

k∈ZN

∫
Y

G(y + k)∇ϕ(y + k) dy

=
∫

Y

G(y)∇
( ∑

k∈ZN

ϕ(y + k)
)

dy for all ϕ ∈ C∞
c (RN ).

However,
∑

k∈ZN ϕ(y+k) belongs to C∞
� (Y ), for every ϕ ∈ C∞

c (RN ). Thus, by (A 1)
we get (A 3).
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