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The usual asymptotic expansion for the solutions of an elliptic linear problem with
oscillatory periodic coefficients is known to not be accurate near the boundary. In
order to obtain a better approximation it is necessary to add to this expansion a
boundary-layer term. This term has been obtained by other authors in the case of a
plane boundary, such that its normal is proportional to some period. We consider the
case where the normal is arbitrary.

1. Introduction
Let us deal with the asymptotic behaviour when £ — 0 of the solutions of
- divA(j)VuE —f in®,
ue =0 on 0f2,

(1.1)

where 2 is a bounded open set of RN, N > 2, A is a matrix-valued function,
uniformly elliptic, bounded and periodic, of period the unit cube Y in RY and f is
a given function in 2. This homogenization problem arises for example in the study
of the electric behaviour of a periodic medium with small period. The study of the
asymptotic behaviour of the solution of (1.1) has been considered by several authors
(see, for example, [1-3,9-15]). Usually, we search for an asymptotic expansion of
u. of the form

ue () ~ ug () + cuy (x §> + uy (:c 9;) +e (1.2)

where w1, us,... are periodic of period Y in the second variable. Substituting this
expression for u. in (1.1), introducing I'!,..., I'N by
—divA(VI'4¢)=0 inRY, 13

I'! is periodic of period Y .
(they are defined up to a constant) with ey,...,ex the usual basis of RY, and
defining Ay € My (the homogenized matrix) by

Ape; = / ANT + ) dy, (1.4)

Y
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we find that ug is the solution of

—div AHVUO = f in .Q, (15)
ug =0 on 02
and (up to a function which depends only on x) u; is given by
N du
0 .
= — ()" (y). 1.6
ui(z,y) oz, (@)™ (y) (1.6)

i=1

Tt is well known (see, for example, [1-3,9-15]) that the solution u. of (1.1) converges
weakly to ug in H&(Q), and assuming that wu; is sufficiently smooth, u. — ug —
euy(z,z/e) converges strongly to zero in H'(£2). This justifies (1.2), but we remark
that in general Vug, and thus u; (z, z /), does not vanish on 9(2. Thus, since u. =0
on 952, we deduce that (1.2) cannot give a good description of the behaviour of u,
near the boundary. Deriving (1.2), we formally obtain

Vue(x) ~ Vaup(x) + Vyur (:1:, i) + E(Vmul (m, i) + Vyus (:107 j)) + e

So, we hope to have the estimate

Ue — Ug — Up <x7$>H < Ce. (1.7)
AL

Assuming sufficient smoothness, estimate (1.7) holds if Vug and then the u; vanish
on 0f2. When Vug does not vanish on the boundary, we still have [11]

Ue — Uy — Up (x, x) H < Core, (1.8)
€/ lm )

for every open set {2’ with 2’ C £2, where Co» depends on (2. However, in the
whole set {2, we only have (see, for example, [3,12])

Ue — Ug — Uy (:v,x>H < Cy/e. (1.9)
=/l

In order to obtain a better approximation of u. such that ug + euy(z,z/¢c), it
is necessary to add a boundary-layer term. To the best of our knowledge, this has
been carried out only for a plane boundary with unit normal v proportional to an
element of Z (see, for example, [3,12,13]). The goal of the present paper is to
study the case where v is arbitrary. Our results will be applied in [5] to study the
case for a curved boundary. The organization of the paper and the main results
contained in it, are as follows.

In §2, we introduce some notation and we recall some results about almost-
periodic functions which will be used in this paper. In § 3 we obtain some estimates
related to the behaviour of the sequence ug + cus(x, /). Then, we show that
obtaining a boundary-layer term which describes the behaviour of u. near 9f2 is
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equivalent to studying the asymptotic behaviour of the solution b. of

—divA(z)VbE —0 in 2,

be = uq <x, z> on 0f2.

In §4, we study the asymptotic behaviour of the solutions of (1.10) near a plane
boundary A = {av+z: z € w} C 912, where a € R and v is the inner unit normal to
2 on A. For this purpose, we obtain the two-scale limit b(z, s, ¢) (see [1,6,8,15-18])
of the sequence Bs(z, s), obtained from b, by the change of variables

(1.10)

)
r=z+(a+tes)y, z€w, s€ <0,>.
€

This is given in theorem 4.5, assuming that 2 € C1'!, A € LE(Y;My) and f €
LN*7(02), 7 > 0. When v is proportional to an element of ZN, b(z, s,¢) is periodic
in ¢ € {v}*+. Then, assuming ug € W2°°(§2) and defining b° (1t works better than
b) by (4.15), we can use the sequence

B‘E(Pa: |z — Pz — av| Px)

)
9 9

with P the orthogonal projection from RY onto {v}* to obtain an approximation
of order ¢ of u. in H! of a neighbourhood of A (see [3,12,13] for related results).
When ¢ is not proportional to an element of ZV, b (and be ) is only almost periodic
in ¢ in the Besicovitch sense. Thus, it is not a true function but a class of functions,

and so, the sequence
BE<P33, | —Px—au|7Px)
€ €

is meaningless. Thus, although for composite materials it is usual to deal with a
discontinuous matrix-valued function A, the only assumption A € LﬁOO(Y;M N)
does not appear to be sufficient to obtain a good approximation of u. when v is
not proportional to an element of Z~. We remark that b is obtained rigorously and
so this difficulty is inherent to the problem.

In §5, assuming 2 € C™! and A€ Ly (Y; My) are uniformly elliptic and
0y, A € L(Y; My), uo € W2 ((2), we study the decay to infinity and some

smoothness properties for b°. As a consequence, we get an approximation of order
e+/|logu.| of u. in H! of a neighbourhood of A.

2. General notation

We take N € N, N > 2. We define {ey,...,en} as the usual basis of RY. The space
of matrices of dimension N x N is denoted by M y.

We denote by Y the unit cube in RY. We will use the index f to mean Y -periodic,
for example, Lg(Y), with 1 < p < 400, denotes the space of functions of LT (RY),
which are Y-periodic.
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The orthogonal set in RY of a set S € R” is denoted by S+. For a function
u = u(z), defined in an open set of R and v € RY, we denote by 9, u the
derivative of u in the direction v.

We will denote by C' a generic positive constant which can change from one line
to another and does not depend on the parameter e which appears in (1.1).

Given a subspace V of RY and an additive group G C V, we define G* by

“={9= (0, --,in) € G\ {0} : ji, > 0 with i = min{i : j; # 0}}.

We denote by CAP(G) the space of almost-periodic functions in the Bohr sense
relating to G. It is defined as the space of uniformly continuous functions v : V — R
such that, for every e > 0, there exist ¢!, ..., g" € G*, a%, o' ,a™, B ., 8" eER
with

<e.

u—a’ Zacosg(+ﬂzs1n(g<))
i=1 Le=(V)
We denote by CAP>(G) the space of functions of CAP(G) with partial derivatives
of arbitrary order in CAP(G).
For u € L{, (V), we define M (u) by

1
M(u) = limsup

e — udx, 2.1
Rooo HICI < R} Jici<ry =y

where the measure |{|¢| < R}| and the integral are taken in the sense of V.

The space of the almost-periodic functions in the Besicovitch sense relating to
G, B(G), is defined as the space of functions w : V' — R such that, for every
€ > 0, there exists an almost-periodic function v in the sense of Bohr which satisfies
M(Ju — v|?) < e. We recall that, for every u in B(G), the supremum limit in (2.1)
is in fact a limit, and it is finite.

In the space B(G) we define

lulBg) = M(Jul?) for all u € B(G).

However, || -[|g(g) is not a norm but a semi-norm. Note, for example, that every
u € L*(V) satisfies [|u||pg) = 0. In order to have a Hilbert space it is necessary to
consider a quotient space. Thus, the elements of B(G) are not functions in V' but
rather are a class of functions. Two functions in the same class can differ in every
point of V.

The space CAP(G) is dense in B(G). Moreover, as elements of B(G), the functions
of CAP(G) have a unique representative which is uniformly continuous in V.

The space B(G) can be identified with the space (which we also denote by B(G))

{a0+ 3 (09 cos(90) + B9 sin(g0)) < [a® + 3 (a2 +1872) < +oo}, (2.2)

geg* geg*

endowed with the norm

2
1

=1’ +35 > (P + 6.

B(9) 9€G*\{0}

a®+ Y (a cos(gC) + 4 sin(gC))

geg*
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Using this representation of the elements of B(G), we can also define the gradient
of a function of B(G) by

v (ao + Z (af cos(g¢) + B¢ sin(g())) = Z g(—a?sin(g¢) + B9 cos(g¢)) (2.3)

geg* geg*

(see also [6,7,16,17]).

3. Global error estimates

As stated in §1, we will study the asymptotic behaviour near the boundary of
the solutions of (1.1), where {2 is a bounded open set of RV, A € LY, Mn) is
uniformly elliptic, and f is an element of H~1(§2) (stronger bmoothness properties
for 2, A and f will be needed later). We start this section by recalling some well-
known results relating to the homogenization of (1.1).

For 1 <i < N, we define I'* as the solutions of (1.3) or, more rigourously, as the
solutions of the variational problem (the mean value of I'* is taken as zero in order
to have uniqueness)

/ I'dy=0, I'"eH(Y),
Y (3.1)

/ A@)(VI" +¢;)Vody =0, Vv e H(Y).
Y

The homogenized matrix Ay € My of A is defined by (1.4). We have the following
theorem (see [1-3,9,10,12-15]).

THEOREM 3.1. For A € LEO(Y,MN) uniformly elliptic, and f € H~1(02), the
solution ue of (1.1) converges weakly in HZ(£2) to the unique solution ug of

—divAgVug=f in (2, (3.2)
up=0 on Of2.
Moreover, if ui : 2 x RV = R given by
Z auo I'(y) for a.e. (x,y) € 2 XY, (3.3)
axz ’ ’
1s sufficiently smooth, we have
Us — Uy — EUP (m,i) =0 in HY(0). (3.4)

Let us now improve assertion (3.4) by obtaining some estimates for the difference
ue — up — euq(z, xz/e). This will be a consequence of the following theorem, which
we prove later, showing that ug + euq (z, /) satisfies an equation similar to that
satisfied by wu..
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THEOREM 3.2. Assume that A € LQX’(Y;MN) is uniformly elliptic, and 2 € Cb1,
f e LN(Q). Then, for uy defined by (3.3), the application x € 2 — uy(z,x/c)
belongs to H'(82), and there exists C' > 0, independent of €, such that

g g Hl(.Q) 13

Moreover, the function ug + euy(x, x/€) satisfies

— divA(Z)V(uo + euy (z, :)) =f+eg. in§2, (3.6)

in the sense of the distributions, where g. is bounded in H1(2).

<C,
L2(2)

REMARK 3.3. If, in addition to the hypotheses of lemma 3.2, we assume that Vug
vanishes on the boundary of §2, then, from (3.3), we obtain that uy(z,z/¢) is in
H}(£2), and so, taking u. — up — cuy(z,z/€) as a test function in the difference
of (1.1) and (3.6), we deduce the existence of C' > 0 such that

U — Uy — EUT (x, x) H < Ce. (3.7)
€/ (2

When Vug does not vanish on 92, all we can prove is estimate (3.8), below. This
estimate was obtained in [3] (see also [12]). It can also be deduced from (3.6),
taking into account the fact that if ug € WH°°(£2) (for it is sufficient to assume
f e LN*7(2), 7 > 0), then, for ¢ € C>([0,+00)) with ¢(0) = 0, ¢(s) = 1 for
s > 1, we have

(e (v 2) e (=) <
€ £ €/l

uo(z) + 5¢<W)u1 (x ‘;) =0 ondn.

£

and

THEOREM 3.4. Assume that A € Ly°(Y; My) is uniformly elliptic and that {2 €
Cll, f € LNTT(Q), 7 > 0. Then, taking u. as the solution of (1.1) and defining
ug, ur by (3.2) and (3.3), we get

X
Ug — U —EUL| Ty —
3

In order to obtain an approximation of u. better than ug + euy (z, z /) we need
to search for a boundary-layer term. In this sense, we have the following result.

< Cye. (3.8)
H'(R2)

COROLLARY 3.5. Assume that A € LEO(Y;MN) is uniformly elliptic, 2 € Cb,
fe LNt (2), 7 >0, and define u., ug and uy by (1.1), (3.2) and (3.3), respec-
tively. We introduce b. as the solution of

—divA(j)Vbs -0 in,

b: = uq (az, :) on 012.

(3.9)
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Then, we have

Ue — (uo + €<u1 (x, x) — b6)> ’ < Ce (3.10)
€ H3(2)
and o
[bc || 211 (2) < % (3.11)

Proof. From (3.6) and (3.9), ug + €(uy(z, x/e) — b) satisfies

—divA(i)V(uo—l—a(ul(x,j)—b5>):f—f—agg in £2,
T
u0+s<u1 <x,6) —b5> =0 on 942,

with g. bounded in H~1(§2). Taking u. — (ug + e(ui(z,x/c) — b)) as a test func-
tion in the difference of (1.1) and (3.12), we deduce (3.10). From (3.8), we then
obtain (3.11). O

(3.12)

REMARK 3.6. In the hypotheses of corollary 3.5, b. is bounded in L°°(§2) by the
maximum principle. Then, taking b.?, with ¢ € C2°(£2), as a test function in (3.9),
we may deduce that b is bounded in H'({2), i.e. b. is bounded in H{ (£2).
From (3.10), we then get

T
Ue — U — EUL <$,>H < Core,
&/ lH )

for every open set 2’ with 2/ C £2, where Cr depends on 2. A better result has
been obtained in [11], where it is assumed only that f € L?(£2'). In this case, it is
necessary to replace u; by a regularization of it.

Proof of theorem 3.2. Since 2 € C%! and f € LY (£2), the solution ug of (3.2) is in
W2N(£2). Moreover, since — div, A(y)e;, 1 < i < N, belongs to W~1°(RY), we
deduce (see lemma A.1) that the solutions I'* of (3.1) are in Cé)’a(Y), for every
a € [0,1). In particular, they are in Lg(Y). By Meyer’s regularity theorem, we
also know that there exists p > 2 such that I’ ¢ belongs to Wnl’p (Y). From these
smoothness properties of ug and I, and using (3.3), we deduce (3.5).

To prove (3.6), we consider v € H}(§2), which, by taking its extension by zero, we
assume to be defined in the whole space RY. Since 2 is C1'! and ug is in W3V (£2),
we also know that there exists an extension of ug, still denoted by ug, in W2~ (RY).
Using the definitions (1.4) and (3.3) of Ay and wuq, respectively, we have

)l o) o

N
T Oug
-/ A 2
/Q gVugVudr + ;21 /th(5>Vv8xi dx
N T ou T
0 il ®
+6i§_1/QA<€)V(8xi>VvF <E>dx, (3.13)
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with

ha(y) = A(y) (VI () + ) — /Y A(p) (VT (p) + 1) dp
=AWy)(VI'(y) +e;) — /Y Aly +p) (VT (y+p) +e;)dp for ae. y € RY.

Since ug is in WM (£2) (it would be sufficient for ug to be in H%(£2)) and I'* in
L (Y), 1 <i < N, the third term on the right-hand side of (3.13) satisfies

Ao (2) e

By (3.2), the first term on the right-hand side of (3.13) satisfies

< Cellvll g o), (3.14)

/AHVUOVvda::/ fudx. (3.15)
Q Q

In order to estimate the second term on the right-hand side of (3.13), we use the
fact that h; has mean value zero in Y. Thus, for 1 <7 < N, we have

/hl(x)Vvauo dz
0 9 3%
x 8u0
:/ hi| = - (:c—i—p)dp dz
RN e
AE 3UO_L "o
_/szhl(€>vv(5’$i =~ |, om (x —|—p)dp>d:r

+ /RN hy (:) ELN /EY ?)Z‘Z (& + p)(Vo(@) — Vo(z + p)) dpda.
(3.16)

For the first term on the right-hand side of this equality we use

T Oug 1 Oug
‘/Rth(g)V’U(al‘i_E amz( +p)dp>d$

x Oug 1 / Oug
< hil = |||V =— — —= —(x+p)dp
kgz:lv -/alc-i-aY (5> ’| | O, &N )y O ( )

Now, using the fact that h; is in L§(Y) for some p > 2, the periodicity of h;, and
the inequality (which can easily be proved by using a translation and a dilatation
that transforms ek +¢Y in Y)

/ / z+p)|?dpdz
k+eY

q/r
< Cq,TEQN—((N—”q)/’“( / |Vw|" da:) , VkeN,
k+2eY

dx.

N
VT € [1,+OO)7 Vq S |:].7 Ni/r

), Yw € WH(ek +2¢Y),  (3.17)
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applied to ¢ = 2p/(p — 2), r = N, w = Qug/0x;, we get

8u0 1 an
— d
/sk+6Y ( )’W | Ox; N y Oz; o TP
2\ [P 1/p 1/2
(Lo ()] ) (/ ol az)
k+eY € k+eY
2p/(p—2) (p—2)/2p
L, )
k+eY
1/p 1/2 1/N
<C£N/2(/ |hi|pdy) (/ |V02dx) (/ D2u0|Ndx) .
Y ek+eY ek+2eY

So, from Holder’s inequality and Vv = 0 a.e. in RV \ 2, we have

dz

8’[1,0 8u0
8351 ox;

(z +p)

S [ ()G - 5 [ e pagfas

kezZN ek+eY € eY L
1/2

< C€N/2< Z / |Vol? dx>
kezN ek+eY
1/N (N—2)/2N
X ( Z / |D2u0|Nd:c) < Z 1>
kezN Y ekt2eY (ek+eY)N02£0

< Cel|v]lpy(o)-
Thus, we have
T Oug 1 Oug
hil S Vo[ 222 — — dp ) d
~/]RN <€> U<3$i el syaxi(x+p) p) !

To estimate the last term of (3.16) we use the fact that (3.1) and lemma A.1 imply
that the divergence of h; is zero in RY. So,

/RN h<m) : ZZZ’ (z + p)(Vov(z) — Vo(z + p)) dpda

< Celolmyoy  (3.18)

e

:/RN hl<§)v(;\, N ZZ? (z + p)(v(z) —v(x+p))dp> da
*/RN h(j) <;V/Eyv(g$>(x+p)(v(x)v(x+p))dp) dz
:_/RN h(i) (;V /Eyv(ng)uw)(v(x)—U<x+p))dp) az.

Thus, we have

Los(5) (5 [, 7(52) e+ oete) - ot + o) aa

T 1
S Z /Ek+sY hl <€>

& [ 1Dl + p)lota) = oo + o)l dp i
kezN & Jey
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Now, by (3.17), with w = v, 7 =2, ¢ = Np/(N(p — 1) — p), for every k € ZV, we

have
Lo ()
ck+eY € Y
1/p
(s
Y

1 (p—1)/p
([ e [ 10wt PO ) — oo+ PO dpas)
Ekl-‘rEYE eY

1/p 1/N
gg_N(p—2)/p</ |hs|P dy) (/ / |D2uo(33+0)|Ndpdx>
Y ek+eY JeY
(N(p—1)—p)/Np
x (/ / [u(x) — v(x + p)| NP/ N P=D=P) dpdx)
ek+eY JeY
1/2

1/p 1/N
< CEN/2</ |hi|pdy> (/ |D2u0|Ndx) (/ |Vv2dm)
Y ek+2eY ek+2eY

So, using Hélder’s inequality and Vo = 0 a.e. in RY \ £2, we get

/RN i <:> (;V /EY v (?f) (@ + p)(v(z) = v(z +p)) dp> dw
< C’eN/2( /Q |D2uoNdx>1/N< /Q |Wl2dx)1/2< > 1>(N2)/2N

(ek+eY)NNRAD
< Celjvllmy (o) (3.19)

& [ 1D+ p)le(e) = ol + )l dpds

€

From (3.13)—(3.19), we then deduce that there exists C' > 0, which does not depend
on g, such that, for every v € H{(£2), we have

‘/QAC)V(%HV{M(%Z)Dvudx—/gfvdx

This proves (3.6). O

< Cellollmy(o)-

4. Two-scale convergence for the expansion near a plane boundary

In the present section, let us study the asymptotic behaviour of the sequence b.
defined by (3.9) in the case of a plane boundary.

In the rest of the paper, we consider an unit vector v of R, and we denote by
P the orthogonal projection of RY onto {r}+. We assume there exist an open set
w of {v}*, a € R, and 6 > 0 such that

A=w+av C 012, (4.1)
As={z+(a+t)v:zew, 0 <t <} C .

Thus, A C {2 is an open subset of a hyperplane and v is the inner unit normal to
2 in A. To study the asymptotic behaviour of the solution b, of (3.9) near A, let us
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first realize a dilatation of As in the direction of v. For this purpose, we introduce
the change of variables

t 1
z+(a+t)ye/15—>(z,s):<z,€)€w><<0,€>. (4.3)
We introduce the following definitions.
DEFINITION 4.1. Assume that A € LﬂOO(Y;./\/lN) is uniformly elliptic, and that

ReCh, feLNtT(Q2), 7> 0.
We define A, : Rt x {v}+ — My by

A(s, ¢) = A<§ + (Z + 5) 1/>. (4.4)

For the solution b, of (3.9), we define b, : w x (0,6/¢) — R by
. )
be(z,8) =be(z+ (a+es)v), ae. (z,8) €wx |0, - ) (4.5)
Also, we introduce the differential operator D, as
D.ov=¢eV, v+ @1/ for all v € H' <w X <0, 5>)
0s €

Here Vv is the unique vector in the direction of {v}*, which is such that, for
every u € {v}+, the derivative of v in the direction (1,0) € {vr}+ x R coincides
with V vp.

From (3.9) and (3.11), we easily deduce that b. satisfies the following proposition.

PROPOSITION 4.2. Assume that A € Lg°(Y; M) is uniformly elliptic, and 2 €
CUl, f e LN*7(Q2), 7 > 0. Then, defining A. by (4.4) and b. by (4.5), we have

I Debell 2w 0,8/~ < C (4.6)
be(2,0) = (z+au, ”8“”), b € H' (w x (0, ‘2))
/ A. (s Z)Dségpgv dzdt = 0, (4.7)
wx(0,6/¢) €
1 0
for allv e Hy|w x O’E .

REMARK 4.3. Using the fact that A is periodic, we find that it can be obtained as
a limit in L?(£2, My) of trigonometrical matrices of the form

RY + Z [RE cos(2kmz) + SI sin(2kmz)].
KEZN |k|<n
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We then find that A.(s,¢) can be obtained as the limit of the matrices

Ry + Y [Rﬁ cos <2k7rC + (a - s) y> + Sk sin (2k7r§ + (“ + 3) ”)}
9 9

kEZN k| <n

=R+ > [(Rﬁ cos ((Z + s) 1/> + Sk sin ((Z + s) u)) cos(2m PkC)

kEZN |k|<n

+ ( — RFsin <<Z + s> y> + S¥ cos ((Z + s> 1/>) sin(27rPkC)}

and hence, as a function of ¢, it is in B(G) with
G={2rPk:kezZ"} c{v}+ (4.8)
Moreover, we have
Ad(s,0) A(<+ {a”] +sz/), [‘”’] clo,1)N, ¥_ {a”} czZVN.
€ € € €
In particular, [av/e] is bounded and then, extracting a subsequence if necessary, we

can assume that

%
Jo= c}l_l’)r(l) {5] . (4.9)

Since A.(s, ) is almost periodic in ¢, let us use the two-scale convergence theory
(see [1,6,8,15-17]) to study the asymptotic behaviour of the solutions of (4.7). A
definition of two-scale convergence which is useful for our purpose is as follows.

DEFINITION 4.4. We say that a sequence 9. € L?(w x (a,b)) two-scale converges to
a function ¥ € L?(w x (a,b); B(G)), and we write

Ve 2% inwx (a,b),
if and only if we have

lim 0e (2, s)w(z, s, Z) dzds = / M (9(z,8,0)Y(z,8,¢))dzds
€ wXx(a,b)

e—0 wx (a,b)
Vi € C°(w x (a,b); CAP™(G)).
(4.10)

With this definition the main result of the present section is the following theo-
rem, which we will prove later.

THEOREM 4.5. Assume that A € L;jX’(Y;MN) is uniformly elliptic, and 2 € C11,
feLNtT(2), 7 > 0. Consider a subsequence of &, such that there exists the limit o
which appears in (4.9), and define b as the unique solution of the variational prob-
lem:

b(2,0,¢) = uy(z + av,C + o), Dob € L?(w x RT; B(G))N
/ M¢(A(C + o + sv)DgbDyd) ds = 0 (4.11)
R+

Vo with 5(0,¢) =0, Do € L*(RT; B(G))Y, a.e. 2z € w.
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Then, the sequence b. defined by (4.5) satisfies

be 25D inwx (0,M) for all M >0, (4.12)
D568XuxR+ % Dob inw x RY. (4.13)

REMARK 4.6. If we assume that v belongs to R - Z¥ then the elements of B(G)
are periodic in {v}*. So, using the results which appear in [4] (related results have
been obtained by L. Tartar (personal communication) and G. Weiske [19]), we find
that the solution b of (4.11) satisfies that Dyb decreases exponentially as s — 0o, in
the sense that there exists A > 0 with e**M¢(Dgb) € L?(w x RT)N. So, in this case
b coincides with the boundary-value term which was used in [3,12,13] to study the
asymptotic behaviour of the solution u. of (1.1) near a boundary plane with unit
normal proportional to an element of Z".

REMARK 4.7. From theorem 4.5, DEBE two-scale converges to DOB. Thus, assuming
sufficient smoothness, we expect (see, for example, [1,8,15,16]) the approximation
D.b.(z,8) ~ Dob(z,s, z/¢). From the definition (4.4) of b, and (3.10), this implies
that

. — Px — P
V. ~ Vg + Vyur ( ) _ Dob(px, g ) (4.14)

near A. But this only holds for a subsequence such that (4.9) holds. To avoid
the extraction of this subsequence we can replace b by the solution b* of (cf. the
definition (4.11) of b)

b (2,0,¢) = uy (z +av,( + 31/), Dob® € L?(w x RY; B(G))Y

/ Me (A (C * (: * S) V) DOB€D0T)> dzds =10 (4.15)
R+

for all & with 9(0,¢) = 0, Do € L*(RT; B(G))Y, a.e. z € w.

In the case where v is proportional to an element of Z” , we know that b° is periodic
in ¢ and decreases exponentially to infinity. In this case, assuming ug € W?2°°°(£2)
(take, for example, f € C%%(£2), a > 0) we can prove that, for every compact set
K C A, every ¢ € C1(£2), with supp(v)) C As, ¥ = 1 on K, and every ¢ € C>(42),
with ¢ =0 on 02\ K, we have

H (ug—uo—zz(ul (95, x) —b° (Px, w, Pm)))q&” < Ce (4.16)
€ € € H(0)

(¢ can be taken to equal 1 if Vug = 0 outside K). We do not give the proof of
this result because it is very similar to that of theorem 5.4, below. Moreover, we
are more interested in the case where v is not proportional to an element of Z,
which is the main novelty of the present paper. As we stated in §1, to obtain a
similar result when v is not proportional to an element of Z~ (then the functions
b are only almost periodic in ¢, and so they are not true functions) we will need
to consider stronger smoothness assumptions on A.
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The sequence b° depends on e, but we will see in §5 how it can be obtained from
a fixed function.

REMARK 4.8. Defining %!, 1 <i < N, by

(C +
( << o+ 3) V) Do?é%@) ds =0 (4.17)

for all o with #(0,¢) = 0, Do € L*(R*; B(G))V,

QNS

) Doii € I2(R*; BG)™

with I given by (3.1), we find from (3.3) that the solution b° of (4.15) satisfies

N

3i(s,¢). (4.18)

In order to prove theorem 4.5 let us first obtain some compactness results for
the two-scale convergence defined in definition 4.4. The following theorem follows
from [6] by taking R @ CAP(G) as an algebra (see also [16,17]). Indeed, since G
is countable, the result can also easily be proved by using the arguments of the
classical periodic two-scale convergence compactness theorem (see [1,15]).

THEOREM 4.9. Let 9. be a bounded sequence in L*(w x (a,b)). Then there exist
¥ € L?(w x (a,b); B(G)), and a subsequence of €, still denoted by e, such that (for
this subsequence) V. two-scale converges to v.

Let us apply the above result to the sequence b. defined by (4.5). Since this
sequence satisfies (4.6), proposition 4.11, below, is more interesting than the previ-
ous result.

DEFINITION 4.10. For ¥ € L?(w x (0, M); B(G)) for every M > 0 (v = 9(z,s,())
with 99/0s € L?(w x R*; B(G)), we denote

ov
Do =V + —
oY CU—’_@SV’

where the gradient with respect to ¢ is given in the sense of (2.3).

(4.19)

PROPOSITION 4.11. Let ©. € H'(w x (0,1/¢)) such that the application z € w —
0<(2,0) is bounded in L*(w) and Dz0zXwx (0,1/¢) is bounded in L*(w x RY)N . Then
there exist ¥ € L%*(w x (0,M);B(G)) for every M > 0, with Dod € L*(w x
R*;B(G))N, and a subsequence of €, still denoted by €, such that (for this sub-
sequence) we have

b X inwx (0,M) for all M >0, (4.20)
DeteXuxrs % Doi inw x RY. (4.21)

Proof. Since ¥(z,0) and 9. /0SXwx (0,1/¢) are bounded in L*(w) and L?(w x RT),
respectively, we have that v. is bounded in L?*(w x (0, M)), for every M > 0.
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Thus, applying theorem 4.9 to ¥ in w x (0,n), for every n € N, and using a
diagonal procedure, we deduce the existence of v € L?(w x (0, M); B(G)), for every
M > 0, such that (4.20) holds. On the other hand, since De¥cXux (0,1/¢) is bounded
in L?(w x RT)N theorem 4.9 also gives the existence of W € L?(w x RT; B(G))N
such that

DbeXoxps S W inwx RY.
It remains to prove that W satisfies W = Dy. Taking
¥ e CX(wx RT;CAP>(G))Y,

we have

/ M (W) dzds
wxR+

= lim D.o.W (z, s, Z) dzds
€20 Jux(0,1/¢) €

Py
= lim <6V2175Pd7 (z, S, Z) + Ve (z, s, Z)) dzds
e—0 wx(0,1/€) 13 aS e
= —lim / Ve <€ div,(PV) (z, s, Z)
=0 Jux(0,1/¢) €

+ le((PW) (Z,57 i) + a(g’/) <Z,S, z)) dzds
S

_ /MW M, (é(divC(PW) + a(gs”>>) dzds

= / MC (D()f}!p) dz dS7
wxR+t

for every ¥ € Cg°(w x RT; CAP>(G))N. This proves that W = Dyd. O

In order to apply proposition 4.11 to study the asymptotic behaviour of b., we
also need the following density result.

LEMMA 4.12. For every v such that 9(z,0,() =0, Dov € L?*(w x RT; B(G))Y, there
erists a sequence v, € CX(w x RY; CAP>(G)) such that Dod, converges strongly
to Dov in L?(w x RT; B(G))N.

Proof. 1t is clear that the result holds true if ¥ is such that ¥(z,0,¢) = 0,9 € L?(wx
RY : CAP®(G))N, Dot € L*(w x RY : CAP>(G))", and there exists M > 0, with
0(z,8,() =0 for s > M. So, in order to prove lemma 4.12, it is sufficient to prove
that, for every © with ©(2,0,¢) = 0, Dot € L?(wxR* : B(G))", there exists #,, with
Un(2,0,() = 0, B, € L?*(w x RT;CAP>®(G))N, Dot,, € L*(w x RT : CAP>(G))V,
Un(2,8,¢) = 0 for s > 2n, such that Dyd,, converges to Dot in L*(w x RT; B(G)).
For such v, using Fourier’s representation, we have

0(z,5,¢) = a’(z,5) + ) (a¥(z,5) cos(gC) + (=, ) sin(gC))

geg*
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with a%(z,0) = 0, a¥(z,0) = 39(2,0) = 0 for every g € G* and

0 2
/ 8& dzds < +o0.
wxR+t ds

Using the fact that G* is countable, G* = {g;}i>1, we define 0,,(z, s,¢) as

2 2

oo’
201 g2 g2
X (I + 1) + |5

geg*

957
Os

i

a®(z,s) + Z(ag"' (z,8) cos(g:C) + B9 (z, s) sin(g;C))

i=1
if0<s<n,

n

(a%z, $)+ 3 (0% (z,5) cos(giC) + B (2, ) Si“<9i0)> (2 ) )

i=1

ifn<s<2nand0if 2n < s.
Let us prove that Dyd, converges to Dot in L?(w x R*; B(G)). We have

e
e

| Dov — DoT)nH%Z(waﬁB(Q))N

<C < > (lgz‘|2(|agi|2 + 169 %) +
wXxR+

i=n+1

e f (
w X (n,00)

dadi |?

0s

aﬁgi
Os

"

2 n

+ 3 (laP(ar P 4 )
i=1

2 B
939
+’ﬁ

dal

0s

Oa9i

Os

+‘ Os

416

C/ ( 02 - 2
+ = la®|” + (Ja9 ) | dzds.
n? wX(n,2n) ;

In the right-hand side of this inequality, the first and second terms clearly tend to

zero when n — oo. To estimate the third term, we use the fact that, for every t < n
and s € (n,2n), we have

2

Oadi
e dr,

or

“+o0o
|adi(z, s)|2 < 2|af (z,t)|2 +2(2n — t)/ ‘ (z,7)
t

for a.e. z € w, and similarly for 89. Then, we have

1 n
= %1%+ ) (o
n? wXx(n,2n) ( ;

<2 [ (1008 + S ar 07 + 187,00 )

=1
n a gi
(%

2n —t / ( dal
+ 2 D
n wX (t,00) Os

2_~_|I@g7‘,

2)) dzds

2 2

aﬂgi
Js

e

"
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So

1 n
limsup — / ( Z (Ja% | 4 |39 | )) dzds
wX(n,2n) i—1

n—oo T

012 g 2 g 2
wx(t,00) \| 08 ot 0s Os
for every t > 0. This proves
1 n
lim —/ <|0490|2 +) (Ja%|? + |39 2)) dzds = 0.
n—ro0 n? wX(n,2n) ;

O

Proof of theorem 4.5. Since b, satisfies (4.6), we can apply proposition 4.11 in order
to deduce the existence of b € L?(w x (0, M); B(G)), for every M > 0, with Dyb €
L*(w x RT; B(G))"N such that (4.12) and (4.13) hold. Once we have proved that b
is the solution of (4.11), we may deduce by uniqueness that it is not necessary to
extract any subsequence.

For § > 0, we consider A° € CJ(Y; My) such that

1A = A°l| 2 v ipmy) < 6 (4.22)

For © € CX(w x RT; CAP>(G)), we take v.(z,s) = 0(z,s,2/¢) as a test function
n (4.7). Adding and subtracting

Ag<572> =A5<Z + (a +s>u>7
13 19 13
/ (/15 (s Z) - AS (s Z))DJ)EDaUE dzds

wxR+ 9 g

+ / Ag <5, Z) DsBsDE’UE dzds = 0. (423)
xR+ 13

Since /1‘2 converges uniformly to A% defined by

Ad(s5,¢) = A%(C+ o+ sv) forall ¢ € {v}* and all s >0,

D.v. — Dgv (z, S, Z) = evaJ(z, s, Z)
€ €

converges strongly to zero in L?(w x RT)N, we deduce

lim (Ag (s, Z)DEBEDEUE — A6< )D b.Dy0 (z s, )) dzds = 0.
=0 J  wRr+ € €

(4.24)

and
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But, by the definition of two-scale convergence, we have

lim A? <s, Z)DEEEDofz (z, s, Z) dzds = / M (A%(s,¢)DobDot) dz ds.
wXR+ € € wxR+

e—0

(4.25)
In order to estimate the first term in (4.23), we use (4.6), D.v. bounded in L (w x
RT) and the existence of S > 0 such that #(z,s,() is zero for s > S. Thus, we
deduce that there exists C' > 0 (which does not depend on ¢ and ¢) such that

‘ / (AE (s, z> — Ag (s, Z))DJ)EDEU8 dzds
wxRT € €
i S CHERCH
€ €

On the other hand, using the change of variables

z a
y:+<+8)y7
3 S

(4.26)

L2 (wx(0,5);Mn)

we get

AE<&Z)-—A§<&Z>
g &

for every € > 0. So, taking the limit in (4.23) first in € and then in § by (4.24)—(4.26),
we deduce

2
|A— A’ dy < C5,

:eN_{/
L2(wx(0,9);Mn) (av+w)/e+(0,8)v

/X]R+ M¢(A(C + 0+ sv)DgbDyd) dzds =0 for all & € C°(w x RT; CAP>(G)).
w

By lemma 4.12, this equality holds in fact for every ¢ such that 0(2,0,s) = 0 and
Dy belongs to L?(w x RY; B(G))N. In order to show that b is the solution of (4.11),
it remains only to prove b(z,0,() = ui(z + av,{ + p). For this purpose we use the

fact that
be(2,0) = uy (z + av, s al/).

3

Thus, for every p > 0 and every ¢ € C°(w; CAP>(G)) we have

pv
/(1/ bs(z,s)ds—u1<z+au,Z+Cw>>w(2,z)dZ
w P Jo € €
Db,
< P
\CPH 0s

U]l co@:cap@))-
L2(wx(0,p))

Using (4.12), the fact that ui(z + av, (z + av)/e) two-scale converges to uj(z +
av, ¢ + o) (see, for example, [1,8,15,16]), and (4.6), we easily deduce that

/ Mg((i)(z,(),() —uy(z+av,(+0)YP(z,0)dz =0 for all ¢ € C°(w; CAP™(G)),

which proves b(z,0,¢) = u1(z + av, ¢ + o). N

https://doi.org/10.1017/50308210506000539 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506000539

Two-scale convergence boundary behaviour 51

5. Expansion near a plane boundary with irrational normal

In this section, we obtain an estimate of the left-hand side of (4.16) for an irrational
normal. For this purpose we will use the following result, showing that the functions
% of (4.17), which are almost periodic in the variable ¢, can be obtained from a
periodic problem.

PROPOSITION 5.1. Assume A € LEO(Y;MN), uniformly elliptic. For 1 <i < N,
we define T : RT x RV = R by

T periodic iny, Y'(0,y)=TI"(y), PV,T" + s
_ Ti
/ Aly+ sv)| PV, T + 0 PVyo+ — 00 dsdy =0
Y xR+ 88 Js

for all ¢ periodic in y, PVyp + g—wy € L*(R; LE(Y))N,
s

(R LF(Y

O‘l
._\

We suppose that (at least) one of the following assumptions holds:
(1) v ¢ R- ZN;
(ii) A e C?(Y;MN), PV, Y7 +v(9Y7/0s) € LZ(R+;C§)(Y)N).
Then, for every e > 0 and every i € {1,..., N}, the solution ¥¢ of (4.17) satisfies
<i i a
(5.0 =T ( ‘ot c). (5.2)
Better than 7%, we will use the following functions T* = T*(r, u) which follows
from T by using the change of variables
y=Pu+rv, s=uw <= u=Py+sv, 1=y (5.3)

DEFINITION 5.2. Assume that A € L°(Y; My) is uniformly elliptic, that 0,, A €
L®(Y; My) and define % by (5.1). Denoting by H the half-space of R,

H={peRY:uw >0},
we define T? : R x H — R by
Ti(r,pu) = T (uv, Pu+rv) ae. in R x H. (5.4)
REMARK 5.3. From (5.2), we have ¥(s,() = T%(a/e, ( + sv).
The main result of this section is the following theorem.

THEOREM 5.4. Assume that A € L3°(Y; M) is uniformly elliptic, that 9,,A €
Le(Yi My), ug is a solution of (3.2) in W22 (82), 4 € C®(02) withy =1 on a
compact subset K of w, supp(y) C As, and define

. (z) = uo(x)+s§: (gzo (x)ri(””> g’““’ (av+Px)T" (a, T “”)w(x)). (5.5)

T 9 9
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Then there exists C > 0 such that if u. is the solution of (1.1), we have

[(ue — )@l ga(2) < Clldllwr(2)eV/|loge|  for all e >0, (5.6)

for every ¢ € C*(12), with ¢Vug =0 on 02\ K.
In order to prove proposition 5.1, we start by observing that, by the definition
of CAP(G), with G given by (4.8), and Fejer’s theorem, the restriction to the

hyperplane cv + {v}+, ¢ € R, of a function of CL?(Y) is in CAP(G). Related to
this result, we also have the following proposition.

PROPOSITION 5.5. We assume that v does not belong to R - Z", and we define G
by (4.8). Then, for every c € R, the application J : Lf(Y) — B(G) defined by
J(u) = Uept )+
18 an tsometric isomorphism.
Proof. Let us first show that P satisfies the property
Pky = Pky <= ki =ko forall ki, ko cZ", (5.7)
for it is sufficient to use
Pky = Pky <= P(k1—ko)=0 <= IpeRsuchthat ky — ky = pr.

However, since v € R - Z | this is equivalent to k; = ko.
Using Fourier’s formulation, J is defined by (for y € cv + {v}+, we use the
decomposition y = cv + ¢ with ¢ € {v}1)

7+ 3 (aeosznky) + # sinizniy)

ke(zZN)*

=a’+ Z (o cos(2m(ckv + PkC)) + B* sin(2n(ckv 4+ PkC)))
ke(zZN)*

=a’+ Z (aF cos(2mckv) 4 B¥ sin(2mckr)) cos(2n PkC)
ke(zZN)=*

+ Z (—a® sin(2rckv) 4 B¥ cos(2mcky)) sin(2n PkC).
ke(zZN)*
Thus, from (5.7), we easily obtain that J is bijective and

2

7(a+ 5 (@ costamty) + 5 snceei) )

ke(zN)*

B(9)

1

=10’ +35 D (lafP+ (8"
ke(zN)*

2

)

L2(Y)

a® + Z (o cos(2mky) 4 B* sin(27ky))
ke(zZN)*

which shows that the linear application J is an isomorphism isometric. O
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REMARK 5.6. Proposition 5.5 can be surprising because it gives a meaning to the
restriction of u € LQ(Y) to a hyperplane such that its unit normal is not propor-
tional to an element of ZN. However, J(u) is only in B(G) and thus it is not a

function but a class of functions.

Proof of proposition 5.1. This is immediate, using the fact that the restriction to
the hyperplane cv+ {v}+ of a function in Cy(Y) is in CAP(G) and proposition 5.5.

O

Taking the derivative of problem (5.1) with respect to y in the direction of v,
which we denote by 9,, we easily have the following proposition.

PROPOSITION 5.7. Assume that A € Lg"(Y;MN) is uniformly elliptic, and that

9y, A € L(Y; My). Then, for every i € {1,.

of the dzstmbutzons} 0y, T of the solution T of (5 1) is given by

d,, 1" is periodic in y, 8yuTi((),y) =0, I"(y),
N
0
/ (A(y + sy)( (8, 7% + 35 (0, TV )
R+ xY

+ 0y, Ay + sv) (PVyTi + 3

e
—V

for all ¢ periodic in y, PV p + 3
S

ort Oy
) (oo s 220 asty=o

€ LR Li(Y))™

©(0,y) = 0.

, N}, the derivative (in the sense

(5.8)

Reasoning as in the proof of lemma A.1, we deduce from (5.1) and (5.7) that 7
and 9, 1" satisfy the following proposition.

PROPOSITION 5.8. Assume that A € L§°(Y; M) is uniformly elliptic, that 0,, A €

L (Yi My) and define T by (5.1). Then T and 9, 1" respectively satisfy

i

. or
/ Ay + sv) (PVyT’ +
R+ xRN Os

Op
for all ¢ with PV + 99

¢(0,y) = 0 on RY,

and

)(PV + gu) dyds =0

v e L*(RT x RV)N,

IR > 0 with ¢(s,y) =0 a.e. in ly| > R, s >0

. 1o}
LA (PR,0,1) 4 0,1
R+ xRN

g

+ 0y, Ay + sv) (PVyTi +

for all ¢ with PV o + gcp
s

©(0,y) =0 on RY,
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IR > 0 with ¢(s,y) =0 a.e. in ly| > R, s > 0.

(5.9)

(5.10)
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REMARK 5.9. Proposition 5.8 shows in particular that 7 and 9,, 7" respectively
satisfy the following partial differential equations in the sense of the distributions:

0 ;. oT
~ 5 <A(y + sv) (PVyT + s I/> 1/>

— div, (PA(y + sv) <PVyTi +

or?
s

u)>=o in R* x RV, (5.11)

9 iy, 0 i
~ 3 (A(y + sv) <va(8yyf )+ a(any )1/> 1/)
— div, (PA(y + sv) (PVy (0,,7") + %(8% Ti)l/)>
0 ;0T
= 55 <6yVA(y + sv) (PVyT + s 1/> V)

or?
0s

+ div, (PﬁyyA(y + sv) (PVyTi + 1/>) in RT xRY. (5.12)
Using these properties for 7, we can now show that the T given by (5.4) satisfies
the following proposition.

PROPOSITION 5.10. Assume that A € Lg°(Y; My) is uniformly elliptic, and that
Oy, A € LE"(Y; My). Then, for everyi € {1,...,N} and every r € R, the function
w— TH(r, ) is in HY(B(0, R) N H), for every R > 0, and there exists C > 0 such
that, for every r € R, we have

T'(r,p) = I'(p+rv)  for pe {v}, (5.13)

1T (r, )| s (ay < Cs (5.14)

/ V. T r,p)>du < C - for all ¢ € v, (5.15)

{neH:|Pu—(|<1}

—div A(p + )V, T (r,u) =0 in H. (5.16)

Proof. We consider i € {1,..., N}. Statement (5.13) is immediate from 7%(y,0) =

I'(y) for a.e. y € RN and the definition, (5.4), of T*. Since I'* is in L3*(Y'), taking

(X = Tl r) ™ (X + [T Lge(vy) ™ as a test functions in (5.1), we deduce that

T is in L®°(R* x RY). From (5.1) and (5.7) we also have 7 in H} (Rt x RY).
Thus, from (5.4) we get (5.14). Using the fact that

or ; 0
5" and PV, (9,,71") + s

belong to L*(R™; LF (Y)Y, definition 5.4 of T* and the inequality

PV, 7" + (0, T

ro+(1/2)

o<z [ P

ro—(1/2)
ro+(1/2) 2
12 /
ro—(1/2)

d
S| dr for all v e HY(rg — 3,70+ 1),

'
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we deduce that for every 79 € R, and every (o € {v}+, we have

/ IV, T (o, )P du
{neH:|Ppn—{o|<1}

i 2
:/ PV, T (pv, Pp+rov) + or (v, P+ rov)v| dp
{ne Hi| Pu—Col<1} 9s
oo : or' ?
= / / PV, Y (s, +rov) + —=—(s,{ +rov)v| d{ds
{Cefr)Lilc—Col <1} Os
+oo  pro+(1/2) )
/ / / PV, T (s,(+1v)
(1/2) J{Ce{v}+:[¢—Col<1} )
+ s (s, +rv)v| d¢drds
+o0 ro+(1/2) )
vz [ PY,(0,,T)(s.C + 1)
0 ro—(1/2) J{¢e{v}+:[(—Col<1}
9 : ?
+ %(8%7“’)(5,( +rv)y| d¢drds
+o0 i . 9 2
/ /(’PV Ti4 a v +’PV (0,,77) + (0, T} )dyds

This proves (5.15).
In order to prove (5.16), we consider v € C°(H). Then, for ¢y € C°(R), we define
¢ :RT x RY = R by

o(s,y) = v(Py + sv)p(yv), ae. (y,s) € RN x RT.

Taking ¢ as a test function in (5.9) and using the change of variables (5.3), we get

+o0
/ / A(p +rv)VT Vo duap(r) dr = 0. (5.17)
—0o0 H

Moreover, since PV, (8,,T") + (9/9s)(9,,T")v belongs to L*(RT; LF(Y))N, we
deduce that the application

T / Alp + 1)V, T'Vodu
H
is continuous. Thus, since (5.17) holds for every ¢ € C°(R), we deduce (5.16). O
Let us now estimate, for r > 0, the decay to zero of V,T"(r, 1), when
dist(p, {v}+) = oco.
This will follow from the following result.

LEMMA 5.11. There exists Cn > 0, which depends only on N, such that, for every
we LXRY x RVN-1) N HL (RT x RN=1), and every B € L®(RT x RN~ My)
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such that

M >0 with / \Vw|*>dz < M for all Q C RN™1) cube of side 1, (5.18)
R+ xQ

3o, >0 with ol|* < BEE,  |BE| < BlE| for all € € RY, a.e. in RT x RN~

(5.19)
—divBVw =0 in RT x RN, (5.20)
we have
25 2 N-1
M I R
2 d /d g o M 200 . -
/S /{I;m|<R} Vel da’dz, < Ci 1+5 * o2 R 1+
(5.21)
and

52

R
/0 /{I n |Vwl|?(1 4 z;1)da’ dz; < Oy <M+ ?kuimw,lxw) 1ogR)RN1,

(5.22)
for every R > 2 and every S € [0, R].

Proof. Throughout the proof we will denote by C a generic positive constant which

depends only on N and which can change from one line to another. The points

r € Rt x R¥~! will be decomposed as x = (x1,2'), with #; € Rt 2/ € RV ~1,
For R > 2, we define n : Rt x R¥~=! — R by

1 .
W if |l'/| < R,
N2 = e emses /
IO if |2’| > R.

Let us first estimate

[ uPyds
R+ xRN-1

for which we consider a cut-off function ¢ € C°°([0, +00)) such that ((0) =0,{ =1
n (1,400), 0 < ¢ < 1in (0,1), |[d¢/ds| < 2. Also, for T' > 0, we take a cut-off
function pr € C(RY) such that pr = 1in (=T, 7)Y, o1 = 0in RV \ (2T, 27V,
0 < or <1, |Ver| <2/T,in RY. Taking ((z1)wnp3 as the test function in (5.20),
we obtain

d
/ BYwVw(z1)nps dx + / BVwe, & (z1)wnps dx
R+ xRN -1 R dz

+xRN-1

+ / BYwVnl(z1)wp dz + 2/ BVwVer((xz)wnpr dz = 0.
R+ xRN -1 R

+xRN-1
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Using (5.19), w € L= (R¥~! x R*) and the properties of @7 and ¢, we deduce
a/ [Vw|*¢(a1)net dz
Rt xRN-1

1
[ F— / / Vwlnda’ day
0 JrRN-1

1 Bllwll e i -1y / IVl ValG(@1)e3 do
(0,2T)x (—2T,2T)N 1
43
+ ?”U)HLW(HHXRN*) |Vw|C(x1)ner dz,
(0,2T) x (—2T,2T)N 1

which, by Young’s inequality and ¢, pr < 1, gives

(07
5/ \Vw|*¢(z1)neF da
R+ xRN-1

1
3 / / Vuwly da’ day
0 JrN-1

B 2 [V|? 16
+ E”wHL"O(R‘*'XRN—l) RN 1 n dz + ﬁ

ndx).
(0,2T) x (—2T,2T)N 1
(5.23)

Let us estimate the first term on the right-hand side of (5.23). Denoting Y’ =

(—%,%)N_17 |k|oo = maxicicn—1 |ki|, for every k = (k1,...,ky_1) € ZV~1 and

taking into account (5.18) and the definition of 7, we have

1
// |Vwlndz' da;
0 Jry-1

+oo
= Z Z / / |Vw|ndz' dzy
k

=0 k€ZN 1 |k|oo=7 v

Z / / |Vw|dz' dzy
k+Y”

KEZN =1 |k o <[R]+1

N

—VN-1(+3H+RY .,
+ |Vw|ex dz’ dzy
%4—2 kezZN IZ|1c| / /’“Y’ P{ 2 }
(( [R] +3)N ! + Z (25 + )N — (25 — DN
j=[R]+2
—VN-1(j+3)+R
‘ exp{ : })m
< Cy(R+1DN"WM. (5.24)

Additionally, using

2
/ Val® 4 < Cn(R+1)N2
R+t xRN-1 7]
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and

ndx =0,
T—o0 T2 /(072T)><(—2T,2T)N_1

we deduce from (5.23) that

/( - |Vw[*nde < lim |Vw|*¢(x1)np3 de
1,+00) X -

T—o0 R+ xRN-1

p _

< CNanHLao(RJrX]RN—l)\/M(R—I— l)N 1
C B 2 R+1)N—2
+ NOZQHw”LOO(]RerRN*l)( +1)7 7%

Then, since

/ [VuPnde < Oy (R+ 1N,
(0,1) xRN —1

which can be proved similarly to (5.24), we conclude

2

/1R+ . [Vw|*nde < Cy(R+ 1)V <M + aQHMHiN(RJrXRNl))' (5.25)
% —1

In order to show (5.21), we consider ¢ € C®°(R*) and ¢,, € C°(RV~1), which
converges to 1 everywhere and satisfies || ¢y, || oo mv-1) < 1, [[V@n || poo mr-1)v-1 con-
verging to zero. Taking wne, (x')p(x1) as a test function in (5.20), we get (we define

vx’d)n = (v¢na O))

/ BYwY (wn)n (@ )p(a1) da
R+ xRN-1

+ / BVwV (2 )wnp(zr) do
R+t xRN—1

—I—/ BVweldi(ml)wnqﬁn(x’) dz=0. (5.26)
R+ xRN -1 dxy

Using the inequality

‘ / BYwWY ¢y (2" wnep(aq) dae
RN-1xR+

1/2 1/2
< BV bl e ar-1yv1 ( / Wndx) ( / nlw(x1)|2dfc>
RN -1 xR+ RN-1xR+
(5.27)

in the second term of (5.26), we deduce that this term tends to zero when n — oco.
To pass to the limit in the other two terms of (5.26), we use the fact that

d
BVwV(wn)p(x1) and BVwe; %(xl)wn
1
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are in L'(R* x RN¥~1) and the Lebesgue dominated convergence theorem. We get

“+oo
/ / BVwV (wn)dz'¢(z1) dry
0 RN-1
+o0 d<p
+ / / BVweywn dz' ——(x1)dz; =0,
0 RN-1 dl‘l

for every p € C2°(R*), which, by definition of the weak derivative, implies

d</ BVweyumdx’) :/ BVwV(wn)d2 in RT,
dS\ Jizy=5} {21=5}

in the sense of distributions. Since on the other hand, we know that

—+oo
d(/ / BVwV (wn) dz’ dx1> = —/ BYVwV (wn)da’,
ds S RN-1 {z1=5}

we deduce that there exists a constant ¢ such that

+o0
/ / BVwV (wn)da' dzy = —/ BVweywndaz' +c¢, ae. S€RY,
s RN-1 {z1=S5}

Integrating the above equality in (7,7 + 1), with 7' > 0, we get

T+l ptoo
/ / / BVwV (wn)dz’ deq dS
T s Jry-1

T+1
= —/ / BVwejwndz' dzy + c. (5.28)
T RN -1

Since BVwV (wn) belongs to L' (Rt x RN~1), the first term on the left-hand side
of this equality tends to zero when 1" — oco. For the second term, we use

T+1
‘ / / BVweywndz' dz,
T RN-1

T+1 1/2
< Bllw]| poe m+ xrN-1) (/ / |Vwl|?n da’ dxl)
T RN -1

T+1 1/2
X (/ / ndx’dx1> ,
T RN-1

which tends to zero. Thus, from (5.28), we get ¢ = 0, and so we have

“+o0
/ / BVwV(wn)dz' dzy = —/ BVwejwndz', ae. S>0.
S RN—1 {z1=S}

Using the inequality

n 2’| - R . + N-1
V< —— (N + 212 . ae. inRT xR
V] x1+1( T Xl >Ry a.e. in
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here, we get

+00 +oo
/ / BVwVwndz' </ |B||Vw||w\77dm/+/ / | B||Vw]||w]
S RN-1 {zx1=S} S RN-1

2| — R
X " (N + |X{|m/|>3}> dz’ dz;.

33'1+1 I1+1

So, from (5.19), w in L>®(R* x RN¥~!) and Young’s inequality, we obtain

a [T
f/ / |Vw|*nda’ do
2 S RN-1

1/2 1/2
<ﬁ||w||mwml>( / S}IVwIQHdw’) ( / S}ndm’>
xr1= Tr1=

2
+ E”w“%w(RerRN*l)

+oo , 2
n 2, (2" - R) ,
— e\ NV e Xl da’ dzy.
8 /S /]RN—I (xl + 1)2 ( + (xl + 1)2 X{|='|>R} T dxy

Estimating the integrals which do not depend on w, and assuming S < R, we
deduce the existence of C > 0 such that

@ oo v 2 d /d <C ﬁQ 2 RNil
3 Js oo Vel e dn S Ol v e
RN-1)/2 , 1/2
+ BCN 0| oo (mt xrN -1 _</ [Vw| ndx’) , a.e. S>0.
(R+x )(S+1)(N 1)/2 (21=5)
(5.29)
Now, we define

+oo
vU(S) = / / |Vw|*nda’ dz;  for all S > 0.
s Jry-1

Then, applying Young’s inequality in (5.29) we deduce that

B RN-1 S+1
W(S) < CN;HwHLOO(RN—lxRﬂ(SJF1)N o N+1

v'(S), a.e. S >0,

which gives
2
(N4 1)(S + 1) VW(S) + (5 + DN 1(S) < O e 1) RV,

for a.e. S € (0, R), i.e.

d 2
—((S+ 1)V CN%||w||§M(R+XRN,1)RN*1, a.e. S > 0.

ds
Integrating this inequality in (0, S), we get
v (0) 32 9 RN-1S
W(S) < m + CN?H'LUHLOQ(HWXRNA)W for all S e [O,R]-
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So, from (5.25) and the inequality

1 /QS/ ) ,
—_— Vw|* dz' dzy < ¥(9),
(S+1)N-1 Jg {|m’|<R}| |

we conclude (5.21).
To prove (5.22), we take n € N such that 2"~1 < R < 2". From (5.21) we get

R
/ / |Vw|?(1 4 1) do’ day
0 {l='|<R}

n 2.7
<)o+ 2]’)/ / |Vw|? da’ da;
= 2i-1 J{|2’|<R}

1427 1+27 \ prnea
CN(MZ 1+42i-1) Hw”L”(Rxﬂw 1)214—27 1>R

< CN (M -+ ?”w”%m(RXRN*I) log R> RNil.

This proves (5.22). O

Using a rotation which transforms H in RT x RY¥~! and taking into account
proposition 5.10, we can apply lemma 5.11 to T*. This gives the following corollary.

COROLLARY 5.12. Assume that A € Lg° (Y; Mn) is uniformly elliptic, and 0, A €
LEO(Y; My). Then there exists a constant C > 0 such that, for every R > 2, every
r € R, and everyi € {1,..., N}, we have

R
/ / IV T (r,p+sv)>(1+s)dpds < CRY 'log R. (5.30)
B(0,R)N{v}+

REMARK 5.13. We do not know whether (5.30) is optimal. Indeed, if we consider
an algebra generated by a sequence s* € RV~1 such that |s?| strictly decreases to
zero, then, taking ¢°(z') = 3" o sin(s'a’), with 3 %|s|a|? < 400, the solution
of the problem (it has a similar structure to problem (4.11) and so it is closely
related to the problem defining 7 and then T)

#(0,2") = ¢° ('), Vue L*(R*,B(S))Y

M,/(V¢Vv)da, =0 for all v with v(0,25) =0, Vve L*(RT,B(S))Y
R+

is given by
—+oo
T) = E e 1" gin(stz'),
i=0

and so it satisfies the condition that

Mz'(‘v¢|2)931 dzy < +oo,
R+
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while, by lemma 5.11, we just expect (this estimate can be proved for the solution
of problem (4.11)) that

R
/ Mo (|Vé[2)z1 dey < C(1+logR) for all R > 1.
0

We also observe in this example that, for every v > 1, we can choose ¢ such that

—+oo

My (|V[?)a day =
0

This means in particular that we cannot expect an exponential decay for T".
From corollary 5.12 we have the following result.

LEMMA 5.14. Assume that A € Lg°(Y; My) is uniformly elliptic, that 9,,A €
L (Y; My), and consider ¢ € Whee () such that supp(p) C As, with As defined
by (4.2). Then, for everyi € {1,..., N}, we have

divA(”g)v(le(“ T a”>> =hi inQ, (5.31)
13 g g

where hi is such that there exists C > 0 (which depends on ) with

B2 ]l -1 () < Cey/[logel. (5.32)

Proof. For v € H(£2), we have

/QA< ) (apTZ gx_ ))de
et e
A(:)V T’(a T - V)Vgovdx
+6/QA( >V<vaTZ<Z z E“”) da. (5.33)

The first term on the right-hand side of (5.33) can be estimated easily by using (5.16)
and the change of variables x = av + eu. We have

/QA<E)V T(Z < ;W>V(gpv)da;
—sN1/HA<GEV+M>VuTi<Z,u>V#<<p<a€V+u)v(iV—i—,u))dx—().

(5.34)

To estimate the second term on the right-hand side of (5.33) we use ¢ = 0 outside
As and v = 0 on A. Thus, the change of variables x = z + (a + t)v, with z € w,
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0 <t < 6, shows that

’/ ( >V Tl<a T V)Vgovdx
e’ €
<C’/ V“Tz<a x — az/)
€
1/2 1/2
C’/ ( v T’(Z th> dz) (/v(z+(a+t)u)|2dz> dt
1/2
:o/ ( vr(“ Z”") dz>
0 e’ €
2 \1/2
dz) dt

X < 2, V(2 + (a+ T)v)dr

C/ ( ;T(Z Z““) ’ )1/2< // IVu(z + (a+ 7)v )2d7d2> th

1/2
¢
( \Y T’(a G ”) tdzdt) 1o/l 2 52

&/e ]
o i ()
0 B(0,R/e)n{v}+ €

with R > § and such that w C B(0, R) N {v}*. So, by (5.30), we get

‘/ < )V Tl(z - E V)Vgovdx < Cey/|logel||v| g (5.35)

For the third term on the right-hand side of (5.33) we merely use the fact that T*
is bounded in L*°({2), which easily gives

/QA( >wvm(“ T - ”) de

From (5.33)(5.36), we deduce (5.31), where h’ satisfies (5.32). O

|v| da

2 1/2
sdpds) oll3 -

€

< Celollmyery- (5.36)

Proof of theorem 5.4. From (3.3), (3.6) and lemma 5.14 applied to

0
= + Pa)p, ie{l,...,N},
8.731'
we see that there exists r. € H™(£2), with [|re||g-1(0) < Cey/|loge|, such that .
satisfies
—divA<$>va5 —f+r. onf2 (5.37)
€

Now, analogously to the solution b. of (3.9), we define b by
. X > .
d1VA<>Vb€ =0 in £,
€ (5.38)
b. = 1. on 0.
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From the maximum principle, we know that HEEHLOO(Q) < ||tie || o< (a62)- Thus, since
ug vanishes on 92, we deduce that there exists C' > 0 such that

1Be | = (2 < Cee. (5.39)
From (5.37) and (5.38), the sequence @ — b. satisfies
—divA(j)V(ﬁg —b.)=f+r. in,

Ue —b. =0 on 0f2.

(5.40)

Taking u. — tie + b, as a test function in the difference of (1.1) and (5.37) we deduce

[ue — e + b || 10y < Cey/|logel,
and thus, for every ¢ € C*°(£2), with ¢ = 0 on 92 \ K, we have

”(Us - '&s + Bs)¢||H1(Q) < Cé‘\, ‘10g6|'

Inequality (5.6) will be then proved if we show that

1b-0 1 (2) < Cligllwr 2y v/ ogeel- (5.41)
For this purpose, we use
b= 1 (2) < CIb=0 L2 (2) + 10Vl 2y + [IVD0l £2(02)), (5.42)
where, by (5.39), the first and second terms on the right-hand side satisfy
b=l 2(2) + 1=V Bll 22w < Cllpllwre (e (5.43)

To estimate the last term in (5.42), we take b.o? € H}(£2) as a test function
in (5.38). This gives

/ A<x>v65vz}€¢2 dz + 2/ A(m)végwl?aqbdw =0.
0 € 0 €

Owing to A being bounded and uniformly elliptic, and the Cauchy—Schwarz inequal-
ity and (5.39), we have [|Vb.d|| .20y~ < C|l@llw1.0 ()€, which on combination with
(5.42) and (5.43) shows that [[b-¢| g1(0) < C|l@|lwi.=(0)e, and thus we get (5.41).

O

REMARK 5.15. If we assume Vug = 0 outside of K in theorem 5.4, then we can
take ¢ = 1.

REMARK 5.16. By (3.2) and 2 € Cb1, assuming f € C%%(02), a € (0,1], we then
have that ug € C%%(@) and thus is also in W2>(£2).
Appendix A.

The following result permits us to show that the solution of a standard variational
problem for an elliptic equation with periodic conditions (see, for example, equa-
tion (3.1)) is in fact a solution in the sense of the distributions. We refer the reader
to [9] for related results.
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LeEMMA A.1. Assume G € L{(Y)N such that

/ GVvdy =0 forallve C{P(Y). (A1)
Y
Then, G satisfies the equation
—divG =0 inR"Y, (A2)
in the sense of the distributions.
Proof. We have to prove
GVedy =0 forall p € C(RY). (A3)

RN

The periodicity of G gives

GVpdy = Gly) Vel dy= 3 / Gy + F)\Vely + k) dy
RN kezZN k+Y kezZN Y
:/ G(y)V( 3 <p(y+k)> dy for all p € C2(RN),
Y kezN

However, > .z~ ¢(y+Fk) belongs to C9°(Y), for every ¢ € C>(RY). Thus, by (A1)
we get (A 3). O
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