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(Received 23 April 2002 and in revised form 28 February 2003)

In this paper, we continue to study the mechanisms of the receptivity of the supersonic
boundary layer to free-stream disturbances by using both direct numerical simulation
and linear stability theory. Specifically, the receptivity of a Mach 4.5 flow over a flat
plate to free-stream fast acoustic waves is studied. The receptivity to free-stream slow
acoustic waves, entropy waves and vorticity waves will be studied in the future. The
oblique shock wave induced by the boundary-layer displacement plays an important
role in the receptivity because the free-stream disturbance waves first pass through
the shock before entering the boundary layer. A high-order shock-fitting scheme is
used in the numerical simulations in order to account for the effects of interactions
between free-stream disturbance waves and the oblique shock wave. The results show
that the receptivity of the flat-plate boundary layer to free-stream fast acoustic waves
leads to the excitation of both Mack modes and a family of stable modes, i.e. mode I,
mode II, etc. It is found that the forcing fast acoustic waves do not interact directly
with the unstable Mack modes. Instead, the stable mode I waves play an important
role in the receptivity process because they interact with both the forcing acoustic
waves and the unstable Mack-mode waves. Through the interactions, the stable
mode I waves transfer wave energy from the forcing fast acoustic waves to the second
Mack-mode waves. The effects of incident wave angles, forcing wave frequencies,
and wall temperature perturbation conditions on the receptivity are studied. The
results show that the receptivity mechanisms of the second mode are very different
from those of modes I and II, which leads to very different receptivity properties of
these discrete wave modes to free-stream fast acoustic waves with different incident
wave angles, frequencies, and different wall boundary conditions. The maximum
receptivities of the second mode, mode I and mode II to planar free-stream fast
acoustic waves are obtained when incident wave angles approximately equal 26◦, 45◦,
and 18◦, respectively. The results of receptivity to a beam of free-stream fast acoustic
waves show that the leading edge is one of the most efficient regions for receptivity.

1. Introduction
The study of laminar–turbulent transition in supersonic and hypersonic boundary

layers is important to the development of future space vehicles operating at sustained
supersonic and hypersonic speeds. In an environment with small initial disturbances,
the paths to transition can conceptually be divided into three stages: (i) receptivity,
(ii) linear eigenmode growth or transient growth, and (iii) nonlinear breakdown to
turbulence. The first stage is the receptivity process, which converts the environmental
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disturbances into instability waves, such as the Tollmien–Schlichting (T-S) waves, in
the boundary layers. The study of the receptivity mechanisms is important because
it provides important initial conditions of amplitude, frequency, and phase angles for
the instability waves in the boundary layers (Goldstein & Hultgren 1989). The main
objective of a receptivity study of a boundary layer is to investigate the properties and
mechanisms of initial generation of unstable boundary-layer wave modes by forcing
waves.

This paper is concerned with the receptivity of a supersonic boundary layer over
a flat plate. The unstable wave modes in a supersonic boundary layer have been
identified and extensively studied by Mack (1984) using the linear stability theory
(LST). Mack found that, in a supersonic or hypersonic boundary layer, there are
multiple higher instability modes in addition to the first instability mode, which is
the compressible counterpart of T-S waves in incompressible boundary layers. The
instability modes in supersonic boundary layers, i.e. the first mode, the second mode,
the third mode, etc., have been termed the Mack modes. Among them, the second
mode is most important and has been extensively studied because it becomes the
dominant boundary-layer unstable mode in supersonic boundary layers at Mach
numbers larger than about 4. On the other hand, the oblique first mode is most
unstable for supersonic flow at lower Mach numbers. Therefore, the receptivities
of the first and the second modes to forcing disturbances are the main goal of a
receptivity study of a supersonic boundary layer.

Though the linear stability properties of the unstable Mack modes in supersonic
boundary layers are well understood, it is still a subject of current research with regard
to the receptivity of the supersonic boundary layers, i.e. the generation mechanisms
of the unstable Mack modes by various forcing waves. There have been a number of
experimental studies on the receptivity of supersonic and hypersonic boundary layers
(Maslov & Semionov 1986; Semionov, Kosinpv & Maslov 1996, 1998; Arnal et al.
1999; Maslov et al. 2001). It was found that the forcing fast acoustic waves impinging
on the leading edge generate Tollmien–Schlichting waves in supersonic boundary
layers. There is a dependence of receptivity coefficients on the incident wave angles
of the forcing waves. On the other hand, most of the computational and theoretical
studies on boundary-layer receptivity have been mostly for incompressible flow, which
have been reviewed by Saric Reed & Kerschen (2002). There have been only a few
theoretical and computational studies on the receptivity of compressible boundary
layers (Mack 1975; Gaponov 1977; Kerschen 1989; Choudhari & Streett 1990, 1993;
Fedorov & Khokhlov 1991, 1992). Fedorov and colleagues (Fedorov & Alexander
1997; Fedorov & Khokhlov 2001, 2002; Fedorov & Tumin 2001) showed by analysis
that strong excitation occurs when external waves and wall induced disturbances
are in resonance with the boundary-layer normal modes. Boundary-layer self-similar
solutions were used in Fedorov’s analyses. The effect of the bow shock wave on the
receptivity process, however, was not considered. Zhong (2001) studied the receptivity
of hypersonic flow over a parabola by numerical simulations of the full Navier–
Stokes equations. The effects of bow shock and the entropy layer were accurately
taken into account by using a fifth-order shock-fitting scheme. It was concluded that
the generation of boundary-layer stability waves was mainly due to the interaction
of the boundary layer with the transmitted fast acoustic waves instead of entropy
and vorticity waves. The receptivity coefficient was found to increase as the relative
nose radius was decreased. Malik, Lin & Sengupta (1999) studied the receptivity
of Mach 8 flow past a sharp wedge with 5.3◦ half-angle to three different types of
external disturbance by solving compressible linearized Navier–Stokes equations. The
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Figure 1. A diagram of the receptivity to free-stream disturbances for a supersonic
boundary layer over a flat plate.

forcing disturbances include a surface suction/blowing embedded in a wedge surface,
a narrow beam of free-stream fast acoustic waves, and planar free-stream fast acoustic
waves. Their results showed that similar boundary-layer instability wave patterns are
formed in all cases of different forcing disturbances. No quantitative analysis of the
supersonic boundary-layer receptivity mechanism was done on the computational
results.

Figure 1 shows a diagram of the receptivity process of a supersonic flat-plate
boundary layer to free-stream disturbances. An oblique bow shock wave is generated
in supersonic viscous flow over a flat plate owing to the displacement of the boundary
layer by the viscous effects. The strength of the bow shock, which is not known in
advance, depends on the free-stream Mach number and Reynolds number of the flow.
The induced oblique shocks were neglected in most of the previous theoretical and
computational studies of the stability and receptivity of supersonic and hypersonic
boundary layers. Such simplification is acceptable in the linear stability theory (Mack
1984) because the stand-off distance of the shock away from the wall is relatively large
compared with the boundary-layer thickness. Therefore, in linear stability analysis, the
shock does not interact with the instability wave in the boundary layer. For the study
of the supersonic boundary-layer receptivity to free-stream disturbances, however,
the effects of the oblique shock on the receptivity can be significant, hence cannot
be neglected. The receptivity phenomena can be altered considerably by the oblique
shock over the boundary layers. In the receptivity process, the forcing free-stream
disturbance waves must pass through the oblique shock wave before they enter the
boundary layer to excite the unstable Mack modes. The interactions between the
shock wave and the forcing waves generate complex wave patterns behind the shock.
Therefore, it is necessary to include the shock interaction in numerical simulations of
supersonic boundary-layer receptivity.

Kovasznay (1953) showed that weak disturbances in compressible flow can be
decomposed into three kinds of independent wave mode: acoustic, entropy and
vorticity waves. The acoustic waves propagate with the speed of sound relative to the
moving fluid, whereas the entropy and vorticity waves convect with the moving fluid
velocity. Before entering the boundary layer, free-stream disturbances pass through
and interact with the shock. Irrespective of the nature of free-stream disturbance
waves, it was shown that their interactions with the shock always generate all three
kinds of wave behind the shock (McKenzie & Westphal 1968). These three kinds of
transmitted wave propagate downstream and interact with the boundary layer on the
flat plate. Meanwhile, the perturbed boundary layer also generates reflected acoustic
waves propagating back to the shock. When the reflected acoustic waves reach the
shock, they generate additional disturbances of all three kinds of wave which also
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propagate downstream. The combined effects of these interactions between the oblique
shock and forced free-stream disturbances as well as reflected acoustic waves from
the wall can have strong effects on the receptivity process of the supersonic and
hypersonic boundary layer behind the shock.

This paper is Part 2 of our study on the receptivity of a supersonic boundary layer
over a flat plate. In Part 1 (Ma & Zhong 2003), the stability characteristics of the
boundary-layer wave modes and their mutual resonant interactions were studied by
using both direct numerical simulation (DNS) and linear stability analysis. It was
found that, in addition to the conventional unstable first and second Mack modes,
there exists a family of stable wave modes in the supersonic boundary layer. These
stable modes were termed mode I, mode II, etc. in Ma & Zhong (2002). It was shown
that although mode I and mode II waves are predicted to be stable by the linear
stability theory, they can have resonant interactions with both acoustic waves and the
Mack-mode waves. In addition, the stable wave modes such as mode I waves can
transfer wave energy from the fast acoustic waves to the unsteady second-mode waves.
Therefore, it is reasonable to expect that such stable mode waves can play a very
important role in the excitation of the unstable Mack modes, especially the second
mode, during the receptivity process to the free-stream fast acoustic waves. It was
also found that the wavenumbers and wave mode structures predicted by the linear
stability analysis agree very well with those obtained by the numerical simulations.
However, the linear stability analysis consistently underpredicts the growth rates of all
wave modes, including the Mack modes, because the non-parallel effects are neglected
by the linear stability analysis. It is necessary to conduct an in-depth study on the
receptivity process of the supersonic boundary layer to free-stream fast acoustic waves
by using accurate numerical simulations.

The objective of this paper is to study the receptivity mechanisms of the supersonic
boundary layer to free-stream fast acoustic waves by numerical simulations. The
transient interactions of the forcing free-stream disturbance waves with the oblique
bow shock are accurately taken into account in the numerical simulations by the
high-order shock-fitting scheme used in Zhong (1998). In the simulations, the free-
stream fast acoustic waves are superimposed on the steady base flow to investigate
the generation of boundary-layer instability waves. The receptivity properties are
analysed based on numerical simulations and by the linear stability analyses.
The effects of forcing incident wave angles, forcing wave frequencies and wall
temperature perturbations on the receptivity are studied. The numerical accuracy
of the computational results for the present study is evaluated by grid refinement
studies and by comparison with available theoretical results.

2. Governing equations and numerical methods
The governing equations, numerical methods, and flow parameters are described

briefly in this section. Under a thermally and calorically perfect gas regime, the
two-dimensional Navier–Stokes equations in conservative form can be written as:

∂U∗

∂t∗ +
∂

∂x∗ (F∗
1 + F∗

v1) +
∂

∂y∗ (F∗
2 + F∗

v2) = 0, (1)

where the superscript ‘∗’ represents dimensional variables, and U∗ is a vector
containing the conservative variables, {ρ∗, ρ∗u∗, ρ∗v∗, e∗}. F∗

1 and F∗
2 are inviscid flux

vectors and described in detail in Part 1 (Ma & Zhong 2003). Unless stated otherwise,
dimensional flow variables in this paper are non-dimensionalized by using the
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steady-state free-stream conditions. Specifically, velocities are non-dimensionalized
by the free-stream velocity u∗

∞, length scales by a boundary-layer thickness length
L∗ = x∗/R, density by ρ∗

∞, pressure by p∗
∞, temperature by T ∗

∞, time by L∗/u∗
∞, vorticity

by u∗
∞/L∗, entropy by c∗

p , wavenumber by 1/L∗, circular frequency by u∗
∞/L∗, etc. The

dimensionless flow variables have the same notation as their dimensional counterparts,
but without the superscript asterisk.

A fifth-order shock-fitting method of Zhong (1998) is used to compute the two-
dimensional Navier–Stokes equations in the flow field bounded by the bow shock
and the flat plate (figure 1). The shock-fitting method treats the bow shock as
a computational boundary. The flow variables behind the shock are determined
by Rankine–Hugoniot relations across the shock and a characteristic compatibility
equation from behind the shock. The transient movement of the shock and its
interaction with free-stream disturbance waves are solved as part of the solutions.
The use of the shock-fitting method makes it possible to use high-order finite-
difference schemes for spatial discretization. A fifth-order upwind finite-difference
scheme is applied for the convective terms while a sixth-order central scheme is used
for the discretization of the viscous terms. The spatial discretization of the governing
equations leads to a system of first-order ordinary differential equations. An explicit
Runge–Kutta method is used for temporal discretization. The details of the numerical
method are in Zhong (1998) and are not repeated here.

As described in Part 1, the results computed by the second-order total variation
diminishing (TVD) shock-capturing methods are used as inflow condition. The non-
slip wall boundary condition is used for velocity. An adiabatic wall boundary condition
is used for the steady base flow. For unsteady simulations, although it is more physical
to assume isothermal wall (T ′ =0) conditions other than adiabatic wall (∂T ′/∂y = 0)
for unsteady supersonic flow at high frequencies (Mack 1984; Malik 1990), both
the adiabatic wall and isothermal wall boundary conditions are used for the
temperature perturbations as two bounds for real cases if the physical condition
for temperature perturbations is difficult to determine. In addition, the study of
the effect of the two wall temperature boundary conditions on the boundary-layer
receptivity helps to understand the receptivity process, which is shown in § 5. Although
adiabatic wall and isothermal wall boundary conditions are commonly used for
the base steady flow, ∂T ′/∂y|y=0 = 0 is called adiabatic wall and T ′|y=0 = 0 is called
isothermal wall for convenience of discussion in this paper without causing confusion.

3. Flow conditions
The same flow conditions as those in Part 1 are used to study the receptivity of

a Mach 4.5 boundary-layer flow to free-stream sound because the stability of this
Mach 4.5 flow has been extensively studied (Guo, Kleiser & Adams 1996; Kendall
1967; Kerschen 1989; Bayliss, Maestrello & Krishnan 1991; Pruett & Chang 1993).
The flow conditions are also the same as those used in Kendall’s (1975) experiment
on the stability of a Mach 4.5 flow over a flat plate, i.e.

M∞ =4.5 , T ∗
∞ = 65.15 K,

p∗
∞ =728.44 Pa , Pr = 0.72,

Unit Reynolds number: Re∗
∞ = ρ∗

∞u∗
∞

µ∗
∞

= 7.2 × 106 m−1.

In many figures of this paper, the results are plotted as a function of the dimensional
x∗ coordinate along the flat plate because this case has been studied in previous
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experiments. The dimensional x∗ coordinate can be converted easily to dimensionless
local Reynolds numbers according to the following formula:

Rex =Re∗
∞ x∗ = 7.2 × 106 m−1x∗, (2)

where x∗ is the dimensional coordinate in metres measured from the leading edge
along the plate surface for the current simulations. The range of computational
domain and grid distribution of the current simulations have been presented in
Part 1.

4. Free-stream disturbances
The receptivity of the supersonic boundary layer to free-stream disturbance waves

is considered by the numerical simulations. The oblique shock plays an important
role in the current study because the disturbance waves first pass through the shock
before entering the boundary layer. In the simulations, the free-stream disturbances
are superimposed on the steady base flow to investigate the excitation and the
development of boundary-layer instability waves. The free-stream disturbances are
assumed to be weak monochromatic planar fast acoustic waves before reaching
the shock. The perturbations of flow variables in the free-stream introduced by the
free-stream fast acoustic waves can be written in the following form:


u′

v′

p′

ρ ′




∞

=




|u′|
|v′|
|p′|
|ρ ′|




∞

exp[i(kx x + ky y − ωt)], (3)

where |u′|, |v′|, |p′| and |ρ ′| are dimensionless perturbation amplitudes satisfying the
following relations:

|u′|∞ = εkx/k∞, |v′|∞ = εky/k∞, (4)

|p′|∞ = γM∞|u′|, |ρ ′|∞ = |p′|/γ, (5)

where ε is a small non-dimensional parameter representing the free-stream wave
magnitude. The parameter k∞ is the free-stream wavenumber with components kx

and ky in the streamwise and wall-normal directions respectively, i.e.

kx = k∞ cos(θ∞), ky = − k∞ sin(θ∞), (6)

where θ∞ is the incident wave angle of the free-stream fast acoustic waves relative to
the streamwise direction, as shown in figure 1. The non-dimensional wavenumber is
related to the circular frequency ω by the dispersion relation:

ω = k∞ (1/M∞ + cos θ∞). (7)

The frequency is characterized by a dimensionless frequency F defined by

F =
ω∗µ∗

∞
ρ∗

∞u∗2
∞

, (8)

where ω∗ is the dimensional circular frequency. The relation between non-dimensional
circular frequency ω and F is

F =
ω

R
. (9)
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Figure 2. Instantaneous density perturbation contours induced by planar free-stream fast
acoustic wave (F = 2.2 × 10−4 and θ∞ = 0◦).

5. Receptivity to planar free-stream fast acoustic waves
In this group of cases, planar free-stream fast acoustic waves with different

frequencies and incident wave angles (θ∞) are imposed at the top of the computational
boundary in front of the shock. The amplitude of the velocity disturbance in the
freestream is chosen to be ε = 5.0 × 10−4 so that the boundary-layer responses to
the free-stream forcing waves are linear, which is demonstrated in our numerical
tests. The receptivity mechanisms and properties of different boundary-layer discrete
normal modes to planar free-stream fast acoustic waves with different incident wave
angles, frequencies, and different wall boundary conditions are studied in this section.

5.1. Distribution of disturbances in the flow field

As in the first case, planar free-stream fast acoustic waves at F = 2.2 × 10−4 with zero
incident angle (θ∞ = 0) are considered. Figure 2 shows the contours of instantaneous
density perturbations induced by planar free-stream fast acoustic waves with zero
incident wave angle. The upper boundary of the flow field stands for the position
of the oblique shock wave. There are strong transmitted acoustic waves propagating
in the direction almost parallel to the wall surface. Figure 2 also shows a typical
rope-like second mode pattern near the wall in the region (0.1 m< x∗ < 0.2 m), where
the second mode is expected to be dominant based on our previous study (figure 16
in Part 1).

The distributions of the amplitudes of pressure disturbances along different
streamwise grid lines are shown in figure 3, where j =1 stands for the grid line
on the wall surface, j = 121 represents the grid line immediately behind the shock,
and j = 41, j = 81 are grid lines located in the middle of the flow field. The particular
grid lines are also plotted in the figure to show their locations. This figure shows
that the amplitudes of pressure perturbations change dramatically along different
grid lines. Along the wall surface (j = 1), a complex wave structure for pressure
disturbances is shown in this figure. Such a wave structure is the result of the
excitation of several boundary-layer wave modes. The identification of different
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(a)
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m
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Figure 3. Distribution of (a) pressure perturbation along (b) different grid lines due to free-
stream planar acoustic waves (M∞ = 4.5, Rex =7.2 × 106 m−1x∗, F = 2.2 × 10−4 and θ∞ = 0◦).

generated boundary-layer wave modes will be analysed in detail in this section.
The maximum pressure perturbations occur outside the boundary layer owing to
the interaction between transmitted acoustic waves behind the shock and reflected
acoustic waves from the wall. This figure also shows that the amplitudes of pressure
perturbations immediately behind the shock (j = 121) are almost constant in the
downstream area. The interaction between free-stream disturbances and the shock
wave is discussed below.

5.2. Interaction between free-stream disturbances and the shock wave

Again, the first case of a planar free-stream fast acoustic wave with zero angle
(θ∞ = 0) is considered. Before entering the boundary layer, fast acoustic waves are
first processed by the shock wave. The interaction between free-stream disturbances
and the oblique shock generates all three kinds of disturbance waves, i.e. acoustic
waves, vorticity waves and entropy waves, irrespective of the nature of the free-stream
disturbance waves. The linear interaction between free-stream disturbance waves with
an oblique shock was studied by McKenzie & Westphal (1968), among others. For
a given shock angle, which is numerically computed for the current case as shown
in figure 2, and given amplitude and incident wave angle of the free-stream fast
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|s′2|/Cp (simulation)

|p′2|/|p′1| (simulation)

|s′2|/Cp (McKenzie)

|p′2|/|p′1| (McKenzie)

1.6

1.2

0.8

0.4
0 0.1 0.2 0.3 0.4 0.5
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(×10–7)

|p′2|

|p′1|

5.0

2.5

0

|s′2|

Cp

Figure 4. The distribution of the amplitudes of pressure and entropy perturbations
immediately behind the oblique shock. The simulation results are compared with the linear
theoretical results of McKenzie & Westphal (1968) (F = 2.2 × 10−4 and θ∞ = 0◦).

acoustic waves, the amplitudes and wave angles of three generated disturbance waves
immediately behind the oblique shock can be calculated from McKenzie & Westphal’s
theory. The theoretical results are valid under the condition that no wave or a very
weak wave is reflected back to the shock from the boundary layer. Therefore, for
the case of weak wave reflection towards the shock, theoretical predictions on wave
transmission through the oblique shock can be used to validate the accuracy of the
numerical simulations in computing the shock interactions.

Figure 4 compares amplitudes of pressure and entropy perturbations immediately
behind the oblique shock between the numerical results and the theoretical results
according to McKenzie & Westphal’s theory. In the figure, subscripts 1 and 2 stand for
the parameters in front of the shock and immediately behind the shock, respectively.
There are strong oscillations on the numerical results of disturbance amplitudes near
the leading edge. The reason for strong oscillations is because there are strong wave
reflections between the shock and the boundary layer near the leading edge, where
the shock is very close to the wall. As a result, the reflected disturbances from the
wall interact with the shock wave to produce new waves behind the shock. The
theoretical prediction is not expected to agree with the simulation in this region
because the effect of wave reflection from the wall was not considered in Mckenzie
& Westphal’s theory. In the downstream region, on the other hand, the shock moves
far away from the wall. The figure shows that, as expected, there is good agreement
between the numerical results and theoretical predictions for both pressure and
entropy disturbances downstream of the leading-edge region. The figure also shows
that pressure disturbances are amplified owing to the interaction between free-stream
fast acoustic waves and oblique shock. In addition, from Mckenzie & Westphal’s
linear theory, the maximum wave angle (relative to the horizontal direction) of the
transmitted fast acoustic waves is less than 1.02◦ for the current case. Therefore,
the transmitted acoustic waves propagate in the direction almost parallel to the wall
surface shown in figure 2.

The shock oscillations induced by the planar free-stream fast acoustic waves
are shown in figure 5. The shock oscillations are normalized by the fast acoustic
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–10
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H ′
λ�

Figure 5. Instantaneous shock perturbations induced by a planar acoustic wave from the
free stream (F = 2.2 × 10−4 and θ∞ = 0◦).

wavelength in the free stream. The figure shows that the amplitudes of shock
oscillations are less than 0.1% of the acoustic wavelength.

5.3. Identification of boundary-layer wave modes

Figure 6 shows the distribution of instantaneous pressure perturbations along the
wall surface. Pressure perturbations on the wall show complex wave patterns, which
indicates the existence of a number of wave modes generated in the boundary layer
by the receptivity process. The discrete wave modes induced in the boundary layer
include both Mack modes and a family of stable modes, such as mode I, mode II,
etc. Based on our previous study (figure 16 in Part 1), the second Mack-mode
disturbances are expected to be the dominant instability waves in a local region
between x∗ = 0.1 m (R = 848.5) and x∗ = 0.2 m (R = 1200). However, figure 6 shows
that there are no dominant second-mode disturbances in this range. On the contrary,
a clearly dominant wave mode appears after x∗ = 0.2m. Its amplitudes increase before
reaching a peak value at x∗ ≈ 0.31 m, although all normal modes are stable in this
region as predicted by the linear stability theory. In fact, a strongly unstable band lying
at frequencies beyond the second-mode one was also observed in Kendall’s (1975)
experiment on hypersonic boundary-layer disturbances induced by acoustic waves.
So far, the contradiction on the stability of the boundary-layer normal mode between
experimental observation and the LST results has not been resolved. Therefore, it is
necessary to identify all the different wave modes in the boundary layer in order to
understand the receptivity mechanisms.

As the first step, the dominant wave mode in the downstream region is identified.
The change of pressure perturbations along the wall surface in the downstream region
shown in figure 6 has very similar wave patterns as those of mode II when a single
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Figure 6. Instantaneous pressure perturbations along the wall surface for the case of a
planar acoustic forcing wave from the free stream (F = 2.2 × 10−4 and θ∞ = 0◦).

mode II wave is introduced at the inlet (see figure 28 in Part 1). Though mode II
is predicted to be always stable by the linear stability theory, it was shown that the
growth of mode II is caused by a resonant interaction between mode II disturbances
inside the boundary layer and fast acoustic waves outside the boundary layer in
the region near the synchronization point between the two waves (Part 1). Figure 7
compares the amplitudes of pressure perturbations along the wall surface due to two
different ways of imposing disturbances: the current case of planar free-stream fast
acoustic waves and the previous case of imposing a mode II wave at the inlet located
at x∗ = 0.185 m (figure 28 in Part 1). The amplitudes of mode II waves which are
introduced at the inlet are multiplied by a factor so that the maximum amplitude
of pressure perturbations on the wall surface is the same as that induced by planar
free-stream fast acoustic waves in the current case. This figure shows that there are
very similar wave patterns of growth and decay for pressure perturbations in the two
cases. Hence, the receptivity to the free-stream fast acoustic wave generates mode II
waves in this region. To support this conclusion, figure 8 compares the profiles of
induced disturbances with the structure of the mode II wave obtained from linear
stability theory at x∗ = 0.362 m (R = 1614.43). It shows that the structure of induced
disturbances inside the boundary layer (y∗/L∗ < 12.9) from the numerical simulations
matches the structure of the mode II wave from linear stability theory very well. The
differences in the region outside the boundary layer are due to the existence of
transmitted acoustic waves outside the boundary layer in the numerical simulations.
Therefore, the boundary-layer disturbances in the downstream region (x∗ > 0.2 m) of
current case contain a dominant mode II.
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Figure 7. Comparison of amplitudes of pressure perturbations along the wall surface for two
cases of different ways of imposing forcing perturbations (F = 2.2 × 10−4).. . . , mode II (forcing
at the inlet); —, forcing from plane acoustic wave.
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Figure 8. Comparison of the wave structures of disturbances induced by free-stream fast
acoustic waves and those of mode II obtained by the linear stability theory at R = 1614.43
(F = 2.2 × 10−4 and θ∞ = 0◦).

The phase velocities of the induced boundary-layer disturbances from numerical
simulations are calculated based on pressure perturbations by using temporal Fourier
analysis according to the following formula:

αr =
dψ

dx
, (10)

a =
RF

αr

, (11)

where ψ is the phase angle from temporal Fourier analysis. The values calculated
by using (10) and (11) correspond to the streamwise wavenumber (αr ) and phase
velocity (a) of a single wave if the numerical solutions are dominated by a single
discrete wave mode in a local region. If the numerical solutions contain a mixture of
two or more wave modes, the values of the streamwise wavenumber and the phase
velocity demonstrate the result of a modulation of these mixed wave modes. Figure 9
shows the distribution of the phase velocities along the wall surface. The phase
velocities of the Mack modes, mode I and mode II from the linear stability theory are
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Figure 9. Distribution of phase velocity along the wall surface (F = 2.2 × 10−4 and θ∞ = 0◦).
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Figure 10. Comparison of the wave structures of disturbances induced by free-stream fast
acoustic waves and those of mode I disturbances of linear stability theory at R =684.11
(F = 2.2 × 10−4 and θ∞ = 0◦).

also plotted in the same figure for comparison with the numerical solutions. In the
figure, the long-dashed line represents the results of phase velocities from numerical
simulations, while the solid line, the short-dashed line and the dash-dot line stand
for phase velocities of the Mack modes, mode I and mode II from linear stability
analysis, respectively. The figure shows that phase velocities of the induced waves are
close to those of mode I waves in the upstream region (x∗ < 0.1 m). This indicates
that mode I waves are generated inside the boundary layer owing to the resonant
interaction between mode I waves and fast acoustic waves near the leading edge. This
is confirmed by the fact that the structures of the induced disturbances can match
the structure of mode I from the linear stability theory in this region. Figure 10
compares the structure of disturbances induced by free-stream fast acoustic waves
and the structure of mode I disturbances from linear stability theory at a grid station
x∗ = 0.065 m. Again, there is good agreement in the structure of disturbances between
simulation results and LST results, except for the difference in the region outside the
boundary layer owing to transmitted acoustic waves in the numerical simulations.

Figure 9 also shows that the phase velocities of mode I waves decrease during
propagation downstream. As a result, mode I waves decay because of their inherent
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stable properties when phase velocities of mode I waves decrease to a certain value and
there is no more resonant interaction between mode I waves and acoustic waves after
passing the first peak at x∗ = 0.0492 m, which is shown in figure 6. Before mode I
waves die out during propagation, they are synchronized with the Mack mode at
x∗ = 0.11 m. According to our previous study (figure 7 in Part 1), both the first
Mack-mode waves and mode I waves have almost the same profiles of disturbance
structure across the boundary layer at the synchronization point. As a result, mode I
waves convert to the Mack-mode waves in the synchronization region (figure 9).
figure 9 also shows a strong oscillation in the phase velocity plot between x∗ = 0.1 m
and x∗ = 0.2 m, where the second mode is expected to be dominant. The oscillation in
the phase velocity curve results from the modulation between the second-mode waves
and other wave modes.

In the region further downstream (x∗ > 0.2 m), figure 9 shows that the disturbances
in the boundary layer are dominated by mode II. As shown in figure 8, the structures
of induced disturbances match the structure of mode II predicted by the linear
stability theory in this region. At location of x∗ > 0.5 m, mode II waves die down
because of their inherent stable properties. As a result, no dominant modes exist in
this region. Therefore, there are strong oscillations in phase velocities again in the
region even further downstream (x∗ > 0.5 m).

Based on the preceding analysis, the induced wave structures demonstrated by the
distribution of pressure perturbations and phase velocities along the wall can be
summarized as follows. After the interaction between the free-stream fast acoustic
waves and the oblique shock, the transmitted acoustic waves penetrate the boundary
layer to form the Stokes waves which are the combination of acoustic waves, vorticity
waves and entropy waves. Among the Stokes waves, the components of fast acoustic
waves are dominant. The incident fast acoustic waves are reflected by the wall
surface after the impingement on the wall. As a result, mode I disturbances are first
generated because of the synchronization of wavenumbers or wave speeds between
mode I waves and the fast acoustic waves near the leading edge. Though mode I
is stable from the LST results, the amplitudes of induced mode I waves grow as
they propagate downstream because there is strong resonant interaction between
mode I waves and the acoustic waves in the region near the leading edge. After
reaching the first peak value at x∗ = 0.0492 m (figure 6), mode I waves decay because
of their inherent stable properties after phase velocities of mode I waves decrease
and there is no more resonance between mode I waves and acoustic waves. Before
mode I waves die out during propagation, they are synchronized with the Mack
mode. At the synchronization point, the phase velocity of the first mode is same as
that of mode I. Furthermore, both the first Mack-mode waves and mode I waves
have almost the same profiles of disturbance structure across the boundary layer
at the synchronization point. As a result, mode I waves convert to the Mack-mode
waves in the synchronization region (figure 9). Subsequently, the developed Mack-
mode waves are amplified after they enter the second-mode unstable region. In this
region, there exist second-mode waves and the Stokes waves (dominated by fast
acoustic waves) as discussed above. The phase velocities of the second-mode waves
are substantially different from those of the fast acoustic waves. Therefore, in this
region (0.1 m< x∗ < 0.2 m), there is wave modulation between the second-mode waves
and the fast acoustic waves, which leads to a strong oscillation in the phase velocity
curve between x∗ =0.1 m and x∗ =0.2 m as shown in figure 9. The second-mode waves
decay after they pass the Branch II neutral point and become stable at x∗ = 0.155 m.
In the downstream region (x∗ > 0.2 m), mode II waves are generated because of
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the synchronization between mode II waves and fast acoustic waves. Because of
the resonance between mode II waves and the acoustic waves, mode II waves are
significantly amplified. In the region further downstream, mode II waves decay owing
to their inherent stable property after their phase velocities decrease and there is no
more resonance between mode II waves and the acoustic waves. The modulation
between mode II waves and acoustic waves results in strong oscillation in pressure
perturbations and phase velocities on the wall after x∗ > 0.34 m.

Therefore, the stable mode I waves play an important role in the receptivity process.
They exchange energy with both the forcing acoustic waves and Mack-mode waves.
The Mack modes are converted from mode I waves in the boundary layer owing to
the synchronization and energy exchange with mode I waves.

5.4. Decomposition of boundary-layer wave modes

In response to the forcing free-stream disturbance waves, a number of discrete wave
modes as well as the Stokes waves with continuous spectra are generated in the
boundary layer. These wave modes together with the forcing fast acoustic waves form
the disturbance field obtained in the numerical simulation. To further analyse the
receptivity of the boundary layer to the free-stream fast acoustic wave, it is necessary
to decompose various wave modes induced in the boundary layer. By doing so, a
receptivity coefficient, which is defined as the ratio of induced wave amplitude in
the boundary layer to that of the forcing free-stream disturbance waves, can be
determined.

In the current study, it is found that different discrete modes are generated and
develop in different regions of the flow field in the receptivity to free-stream fast
acoustic waves. For example, at F = 2.2 × 10−4, mode I waves exist in the region
of x∗ < 0.1 m, Mack-mode waves show up in the region of 0.1 m < x∗ < 0.2 m, and
mode II waves are dominant in the region of x∗ > 0.2 m. Meanwhile, the Stokes
waves dominated by fast acoustic waves exist in the boundary layer of all different
regions. As shown in figure 9, the Mack-mode waves and fast acoustic waves have
very different wavenumbers. This can be used to extract wave components of the
second Mack mode from the overall disturbance field in the boundary layer by means
of a spatial Fourier analysis. Spatial Fourier analyses are performed in different zones
of the computational domain as follows:

P (k) =

N−1∑
n=0

p(n) exp(−j2πkn/N ), k = 0, 1, 2, . . . , N − 1, (12)

where P (k) stands for the spectrum of spatial distribution of pressure at spatial
frequency (wavenumber) ωk = 2πk/(N	x), 	x = xn+1 − xn and N =8192. Here, zero
padding is used when N is greater than the total number of available data points.

Figure 11 shows the spatial spectra (wavenumbers) of pressure disturbances on the
wall in three continuous zones: zone 5, zone 6, zone 7, where the spatial intervals of
zone 5, zone 6 and zone 7 are 0.105 m � x∗ � 0.153 m, 0.145 m � x∗ � 0.193 m and
0.185 m � x∗ � 0.25 m, respectively. Figure 11 shows that there are two major peaks
in pressure perturbations in zone 5 and zone 6, where the second-mode waves are
expected to be dominant. The first peak has a wavenumber of k∗ ≈ 1323.6 m−1 and
the corresponding phase velocity is a =1.20, which is very close to the phase velocity
of the fast acoustic wave 1 + 1/M∞ = 1.22. The second peak has a wavenumber of
k∗ ≈ 1800 m−1 and the corresponding phase velocity is a = 0.88, which is very close
to the phase velocity of the second Mack-mode waves at the Branch II neutral
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Figure 11. Amplitude of pressure perturbations in spatial wavenumber domain
(F = 2.2 × 10−4 and θ∞ = 0◦).

point (RF = 0.2324 and a = 0.90). In zone 7, the wavenumber spectra show only one
dominant peak located at k∗ = 1307.9 m−1. The wave spectra shown in figure 11 are
consistent with our analysis about different components included in boundary-layer
disturbances. Both the second Mack-mode waves and fast acoustic waves exist in
zone 5 and zone 6. Because Mack-mode waves and fast acoustic waves have very
different wavenumbers, there are two peaks associated with these two different waves
in the spectra of boundary-layer disturbances. Similarly, both mode II waves and
fast acoustic waves coexist in zone 7. However, the phase velocities of mode II
waves are very close to those of fast acoustic waves in this zone. Therefore, there is
only one dominant peak when the computational zone is located downstream where
x∗ > 0.2 m.

Since there is a large difference in phase velocities (or wavenumbers) between the
second-mode waves and the fast acoustic waves, these two different waves can be
separated by a Fourier analysis. A band-pass filter window is put upon the second
peak of wave spectra to extract the second-mode disturbances (see figure 11) by using
the inverse discrete Fourier transform of P (k),

p(n) =

N−1∑
n=0

P (k)W (k) exp(j2πkn/N ), n = 0, 1, 2, . . . , N − 1, (13)

where W (k) = 1 when ωk is located in the second-mode range, otherwise W (k) = 0.
Figure 12 shows instantaneous pressure disturbances of the extracted second Mack
mode induced by the planar acoustic waves. The growth and decay of the extracted
second mode is very similar to the results shown in Part 1 (figure 16), where only a
single Mack mode is introduced at the inlet. Figure 13 compares the second-mode
wave structures separated from the numerical solutions by the Fourier analysis with
those from the linear stability theory. The wave structures obtained by the numerical
solutions before wave decomposition are also shown together for comparison. It
shows that the unseparated waves contain a strong component of acoustic waves
outside the boundary layer. The acoustic components are removed from the total
boundary-layer disturbances by using the Fourier analysis. The separated second-
mode wave structures agree well with those of the second mode predicted by the
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Figure 12. Distribution of the second-mode disturbances separated from the total
boundary-layer disturbances induced by the free-stream fast acoustic wave (F = 2.2 × 10−4

and θ∞ = 0◦).
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Figure 13. Comparison of (a) the wave structures of the separated second mode, (b) the
unseparated simulation wave fields, and those obtained from linear stability theory for the
second mode (R = 1033, F = 2.2 × 10−4 and θ∞ = 0◦).

linear stability theory. Therefore, the extracted wave mode is indeed the second mode.
The receptivity coefficient of the second mode can be computed based on the result
of the extracted second mode from the numerical simulations.
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Figure 14. Instantaneous pressure perturbations along the wall surface after subtracting the
second mode disturbances (F = 2.2 × 10−4 and θ∞ = 0◦).

Figure 14 shows the wave components after the second Mack-mode waves have been
removed. After removing the second-mode components, the envelope of disturbances
becomes much smoother between x∗ = 0.1 m and x∗ = 0.2 m as compared to that
shown in figure 6. The wave components shown in figure 14 consist of mode I waves,
mode II waves and the Stokes waves. Unlike the case of the second mode, it is very
difficult to decompose mode I and mode II from the total disturbances by using a
band-pass filter window because the wave speeds of mode I (or mode II) are very
close to those of the acoustic waves. On the other hand, the results shown in figure
9 indicate that at locations where mode I (or mode II) waves reach their maximum
wave amplitudes, the wave components inside the boundary layer are dominantly the
components for mode I (or mode II) only, which is proved by the comparison of
mode I and mode II structures from the linear stability theory with the corresponding
numerical solutions shown in figures 8 and 10. Therefore, even though a clean response
coefficient for mode I and mode II cannot be obtained from the numerical solutions,
an approximate value can be obtained by using the maximum wave amplitudes in the
mode I and mode II region. Furthermore, the main interest of a receptivity study is
on the response and receptivity coefficients of the unsteady second mode other than
stable mode I and mode II. The response and receptivity coefficients for the second
mode can be determined accurately from the numerical simulation results by spatial
Fourier decompositions.

5.5. Response coefficients

We define a response coefficient to quantitatively study the acoustic receptivity of the
boundary layer. Specifically, the response coefficient of the boundary layer to forcing
disturbances for a given mode is defined as

Kmode =
|p′

mode|
|p′

∞| , (14)

where |p′|mode is the maximum amplitude of pressure perturbations for the given wave
mode. For the second mode, this maximum value is located at the Branch II neutral
point of the decomposed second-mode waves as shown in figure 12. The response
coefficients are used to measure the maximum responses of the relevant wave modes
to forcing disturbances. Since they are not the same as the commonly used Branch I
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receptivity coefficient used in the literature (Saric et al. 2002), they are termed the
response coefficients in this paper. The Branch I receptivity coefficient for the second
mode will be considered later in this section.

In the upstream region near the leading edge, the disturbance waves are dominated
by mode I waves. The response coefficient for the mode I wave is close to the
receptivity coefficient of mode I. In the downstream region, mode II waves are
dominant. The response coefficient for the mode II wave in this region is close to the
receptivity coefficient of mode II. On the other hand, boundary-layer disturbances
in mode I and mode II dominant regions also contain some relatively weak Stokes
waves, which cannot be separated from mode I and mode II waves. Therefore, we use
the term response coefficient instead of receptivity coefficient for mode I and mode II
waves. For example, for the current case of free-stream fast acoustic waves at zero
incident wave angle, the response coefficients for the second mode, mode I and
mode II are:

Second mode: Ksecond = 1.03,
Mode I: KmodeI = 1.75,
Mode II: KmodeII = 2.14.

Mode II has much stronger receptivity than the other two modes because of its
resonant interaction with the fast acoustic waves.

5.6. Effects of incident wave angles of the forcing waves

The forcing fast acoustic waves in the free-stream can impinge on the flat plate at
different incident wave angles. The effects of incident wave angles on the receptivity
are studied by numerical simulations on receptivities of the Mach 4.5 boundary layer
to free-stream fast acoustic waves at different incident wave angles. Specifically, 12
computational cases of different incident wave angles θ∞ are considered, i.e.

Case number 1 2 3 4 5 6 7 8 9 10 11 12
θ∞ (deg.) 0 7.5 15.0 18.0 20.0 22.5 30.0 37.5 45.0 60.0 75.0 90.0

All other flow conditions are the same for these cases. In particular, the frequencies
of different cases are the same at F = 2.2 × 10−4. The adiabatic boundary condition
is used for temperature perturbations on the wall for these cases. Equation (6)
shows that the wavenumbers in the streamwise direction are different for cases of
different incident wave angles. When θ∞ increases, the horizontal components of the
wavenumber kx for the forcing fast acoustic waves decreases. For different incident
wave angles, there always exist the components of fast acoustic waves propagating
in the direction parallel to the wall surface owing to the diffraction and diffusion
of transmitted acoustic waves inside the boundary layer near the leading edge.
However, the amplitudes of the components for fast acoustic waves propagating
in the direction parallel to the wall surface may change significantly with different
incident wave angles. As discussed earlier, the excitation of mode I and mode II
results from synchronization of fast acoustic waves propagating in the streamwise
direction with these two modes. Therefore, the receptivity process in the boundary
layer is expected to be strongly affected by the incident wave angles.

Figure 15 shows the wave amplitudes of pressure disturbances on the wall surface
owing to planar free-stream fast acoustic waves for 4 of the 12 cases of different
incident wave angles: θ∞ = 0◦, 22.5◦, 45◦ and 75◦. As expected, the figure shows very
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Figure 15. Amplitudes of pressure perturbations on the wall for the cases of free-stream fast
acoustic waves at different incident wave angles (F = 2.2 × 10−4).

different wave amplitudes on the wall for cases of different incident wave angles. The
common feature among these four cases is that there are strong wave modulations
in pressure perturbations inside the second-mode region (0.1 m < x∗ < 0.2 m), which
indicates the coexistence of several wave modes. As discussed earlier, the wave
modulation in this region is a result of the interaction between the Stokes waves and
the second Mack mode. In other words, the second-mode instability waves are always
generated for all different incident acoustic wave angles. For cases of different incident
wave angles, however, the induced second-mode wave amplitudes are different.

Figure 15 also shows very different amplitudes of mode II waves, which are excited
in the region after the decay of the second mode. For the cases of θ∞ =0◦ and
θ∞ = 22.5◦, the second mode region is followed by a strong growth of mode II. As
discussed earlier in this paper, the pressure perturbations on the wall are strongly
amplified because of the resonant interaction between mode II waves and the fast
acoustic waves in the region where the phase velocities of mode II waves and fast
acoustic waves are close to each other. The peak value of mode II growth for the case
of θ∞ = 22.5◦ reaches a very high value because of strong resonance. On the other
hand, as θ∞ increases further, the amplitudes of mode II decrease dramatically. For
the case of θ∞ = 75◦, there are essentially no components of mode II in the mode II
region. This is because horizontal components of fast acoustic waves, which result
from diffusion and diffraction of incident transmitted fast acoustic waves inside the
boundary layer, become very weak in the θ∞ =75◦ case. As a result, the amplitudes
of induced mode II waves by horizontal components of fast acoustic waves are too
weak to be visible.

The receptivity characteristics of second mode, mode I and mode II can be measured
by the response coefficients defined in (14). Figure 16 shows the response coefficients
for computational cases of different incident acoustic wave angles. Each symbol in the
plot represents one of the 12 computational cases of different incident wave angles
with the same frequency. It shows that the receptivity of mode II has a much stronger
receptivity response to the forcing fast acoustic waves than that of the unstable second
mode. This is a significant result because it demonstrates the importance of stable
modes in the receptivity process and shows the effects of incident wave angles on the
receptivity process.

Figure 16 also shows that there is a dramatic change in the receptivity of mode I
and mode II to planar free-stream fast acoustic waves with different incident wave
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Figure 16. Response coefficients of the boundary-layer normal modes to free-stream
acoustic waves vs. incident wave angles (F = 2.2 × 10−4).

angles. For a fixed frequency of the current case, there is an ‘optimal’ incident wave
angle θ∞ for each wave mode to reach maximum wave amplification. The maximum
receptivity for mode II is reached for θ∞ around 18◦. The maximum receptivity for
mode I is reached for θ∞ around 45◦. Compared with that of mode I and mode II,
the response coefficient for the second mode is less sensitive to the change of the
incident wave angles. The maximum receptivity for the second mode is reached for
θ∞ around 26◦. The second mode is not very sensitive to the incident wave angles
because the linear growth of the second mode is independent of the forcing waves.
However, the second-mode waves are converted from mode I waves, which provide
initial conditions for the second-mode waves and are affected by incident wave angles.
Thus, the response coefficients of all discrete modes are affected by incident wave
angles, although the sensitivities to this effect are different for different wave modes.

5.7. Effect of forcing frequency

In addition to the incident wave angles, the receptivity process is also strongly
affected by the frequency of the forcing fast acoustic waves. To study the frequency
effects on the receptivity process, the receptivity to the planar acoustic waves of
four computational cases of different frequencies are studied. The four frequencies
are: F =0.6 × 10−4, 1.2 × 10−4, 1.6 × 10−4 and 2.2 ×10−4. Except for the frequencies,
all four cases have the same flow conditions with zero incident wave angle for the
forcing fast acoustic waves. The adiabatic boundary condition is used for temperature
perturbations on the wall for these cases. Figure 17 shows the amplitudes of pressure
perturbations on the wall generated by planar free-stream fast acoustic waves with
zero incident wave angle and four different frequencies. From preceding analysis,
different discrete boundary-layer normal modes and the Stokes waves with continuous
spectra are generated inside the boundary layer by forcing fast acoustic waves. As
a result, there are obvious oscillations in pressure amplitude curves owing to the
modulation between different waves. Based on the results shown in Part 1 (figure 5),
the existent region of the boundary-layer normal modes can be represented by the
same range in terms of the dimensionless parameter RF for different frequencies.
Consequently, as frequency F decreases, the existent region of normal modes in term
of R will increase. In other words, all different mode existent regions expand with
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Figure 17. Amplitudes of pressure perturbations along the wall surface induced by
free-stream fast acoustic waves of different frequencies (θ∞ = 0◦).

decreasing frequency. The increase in R leads to the increase in the x-coordinate
according to the following relation:

x∗ = (ω/F )2/Re∗
∞, (15)

where ω = RF. For fixed RF, x∗ ∝ R2 ∝ F −2. Therefore, the generation locations
of boundary-layer normal modes, such as mode II, and the second mode, will move
downstream when F decreases. For example, the second-mode dominant region for
the case of F = 2.2 × 10−4 is approximately in the range of 0.1 m < x∗ < 0.2 m, or
0.187 < RF < 0.264. Based on (15), it is expected that the second-mode dominant
regions will be 0.19 m < x∗ < 0.38 m, 0.34 m < x∗ < 0.67 m and 1.34 m < x∗ < 2.69 m
for the other three cases of F = 1.6×10−4, 1.2×10−4 and 0.6×10−4, respectively. Mode
I waves are dominant upstream of the second-mode region, while mode II waves are
dominant downstream of the second-mode region. Therefore, as the second-mode
wave region moves downstream with decreasing F , the mode I wave region expands
and the mode II wave region moves to further downstream, which is clearly shown
in figure 17.

Unlike mode II and the second mode, mode I waves are always generated near
the leading edge. However, the locations of peak amplitude for mode I waves move
downstream when F decreases. At F = 2.2 × 10−4, mode I waves reach maximum
amplitude at x∗ = 0.0492 m or RF = 0.131. Similarly, the maximum amplitudes of
mode I occur at x∗ = 0.084 m (or RF = 0.124) and 0.144 m (or RF = 0.122) for
F =1.6 × 10−4 and 1.2 × 10−4, respectively. Again, the locations of induced maximum
mode I waves in term of RF are almost the same for different frequencies. At
F =0.6 × 10−4, the maximum mode I amplitude occurs at the location outside the
computational domain.

At F = 1.6 × 10−4, figure 17(a) shows that mode I is dominant near the leading
edge (0.0 < x∗ < 0.20 m), while the second mode is dominant in the middle region
(0.20 m < x∗ < 0.38 m), followed by a mode II dominant region further downstream
(x∗ > 0.38 m). The existent regions of the boundary-layer discrete modes are consistent
with our expectation based on (15) and the results of the F = 2.2 × 10−4 case.
Compared with the F = 2.2 × 10−4 case (figure 17a), the second-mode waves in the
current case are more strongly amplified and become the dominant wave mode in the
boundary-layer disturbances, while the peak of mode II does not change very much.
As frequency decreases further to F = 1.2 × 10−4, pressure perturbations on the wall
surface, shown in figure 17(b), are very similar in the growth pattern to that of the
F =1.6 × 10−4 case, with the exception that mode II waves will appear downstream
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of the computational domain. Meanwhile, the second mode region moves further
downstream, as expected. Again, the maximum amplitude of the second-mode wave
is even higher compared with the F = 1.6 × 10−4 case. This result is expected based
on the linear stability theory analysis of the frequency effect on the instability of
the second mode. The growth of the second mode is due to its inherent unstable
properties which can be predicted by the linear stability theory. The same growth
rates curves vs. RF are obtained for the second mode at different frequencies in
Part 1 (figure 17). Therefore, the second-mode waves are amplified more in the lower-
frequency case. According to the linear stability theory, the second-mode Branch
II neutral stability point is located at RF = 0.2324, or x∗ = 0.155 m for frequency
F = 2.2 × 10−4, or x∗ = 0.293 m for frequency F = 1.6 × 10−4, or x∗ = 0.521 m for
frequency F = 1.2 × 10−4. Figure 17 shows that the second-mode waves reach the
peak amplitudes at x∗ = 0.153 m, 0.291 m and 0.510 m for F = 2.2 × 10−4, 1.6 × 10−4

and 1.2 × 10−4, respectively. Therefore, the numerical solution and the LST results
have very good agreement in the prediction of the Branch II neutral stability point
for the second mode. For the last case of F =0.6 × 10−4 (figure 17b), the expected
second mode region (1.34 m < x∗ < 2.69 m) is outside the computational domain.
Therefore, only mode I waves and the Stokes waves are present in figure 17(b).

Similarly, the maximum mode II waves take place at x∗ =0.312 m (or RF = 0.329)
for F = 2.2 × 10−4 and x∗ = 0.581 m (or RF = 0.327) for F = 1.6 × 10−4. Again, for
different frequencies, the locations of maximum mode II waves in term of RF are
almost same.

Spatial Fourier analyses and band-pass filter windows are used to decompose the
components of the second mode waves from the total boundary-layer disturbances.
The response coefficients for mode I, the second mode and mode II are 2.32, 4.65
and 2.52, respectively, for the case of F = 1.6 × 10−4. The second mode is the most
amplified among the three boundary-layer normal modes in this case. The response
coefficients for mode I and the second mode are 2.94 and 9.88, respectively, for the
case of frequency F =1.2 × 10−4.

5.8. Combined effects of incident wave angles and frequencies

The boundary-layer receptivities to planar free-stream acoustic waves with different
incident wave angles and different frequencies are also studied by numerical
simulations. Specifically, three sets of incident wave angles are considered, i.e.
θ∞ =0◦, 22.5◦ and 45◦. For each incident wave angle, three cases of different
frequencies are simulated at F = 1.2 × 10−4, F =1.6 × 10−4 and F = 2.2 × 10−4.
Overall, there are nine computational cases with different combination of frequencies
and incident wave angles. An adiabatic boundary condition is used for temperature
perturbations on the wall for these cases. The response coefficients for mode I, mode II
and the second mode are compared among these cases.

Figure 18 compares response coefficients for nine computational cases of different
frequencies and incident wave angles. Owing to the exponential growth of the second
mode, the response coefficients of the second mode are strongly affected by the change
in wave frequencies. It shows that the response coefficients of the second mode are
much larger for the cases of lower frequency with the same incident wave angle.
On the other hand, for cases with the same frequency, the response coefficients for
the second mode of the θ∞ = 22.5◦ case are larger than those of the other two cases
of θ∞ = 0◦ and θ∞ = 45◦. Nevertheless, the effects of incident wave angles on the
second-mode response coefficients are relatively weak compared to the effects of the
frequencies.
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Figure 18. Response coefficients for cases of different frequencies and different incident
wave angles.

The results for mode I and mode II are very different from those of the second
mode in response to changing frequencies or incident wave angles. Figure 18 shows
that the response coefficients of both mode I and mode II do not change very much
when the frequencies change for cases of the same incident wave angle. As discussed
earlier, this is because the amplifications of mode I and mode II are caused by a
different mechanism from that of the second mode. Specifically, the growth of mode I
and mode II results from their resonant interactions with the forcing fast acoustic
waves, while the growth of the second mode is amplified owing to its inherent unstable
property. As a result, the growth of mode I and mode II in the boundary layer is
not sensitive to the change in frequencies, but very sensitive to the change in incident
wave angles, while the growth of the second mode is not very sensitive to the change
in incident wave angles, but very sensitive to the change in frequencies.

For cases of high frequencies (F � 1.6 × 10−4), the response coefficients of mode II
may be larger than those of the second mode (when θ∞ = 22.5◦, for example). As
frequency decreases, the receptivity of the second mode increases substantially while
the response coefficients of mode II stay about the same. Hence, the second mode
response coefficients are much larger than those of mode II when F � 1.2 × 10−4.
Among θ∞ = 0◦, 22.5◦ and 45◦, the maximum response coefficients of second mode and
mode II take place at θ∞ = 22.5◦. At θ∞ = 22.5◦, the response coefficients based on the
maximum pressure perturbations on the wall are 6.10 (mode II), 7.45 (mode II) and
13.2 (second mode) for F = 2.2 × 10−4, 1.6 × 10−4 and 1.2 × 10−4, respectively.

5.9. Branch I receptivity coefficient, KI , of the second mode

The objective of a receptivity study is to study the relationship between the
induced boundary-layer instability waves and the free-stream forcing waves. For an
incompressible boundary-layer flow over a flat plate, the receptivity can be measured
by a Branch I receptivity coefficient (Saric et al. 2002) defined as the ratio of the
induced T-S amplitude at the Branch I neutral stability location to the amplitude of
free-stream disturbances, i.e.

KI =
|u′

T S |I
|u′

∞| , (16)

where |·| stands for the amplitude values of the waves. The same definition can also be
used to define a Branch I receptivity coefficient in a supersonic boundary layer. Since
the second mode is the most important instability mode of interest in the current
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Mach 4.5 supersonic boundary layer, only the Branch I receptivity coefficient for the
second mode is considered in this paper.

In the current study of the receptivity of a supersonic boundary layer over a flat
plate, the calculations of the Branch I receptivity coefficients from the simulation
results are difficult because the complex transient flow fields contain many interacting
wave modes. In this paper, the response coefficients of the second and other
wave modes are used to characterize the responses of the wave modes to forcing
disturbances. The response coefficients of the second mode, however, are influenced
by both the initial receptivity process and the subsequent eigenmode growth in the
region between the Branch I and Branch II neutral stability points. Consequently, the
receptivity of the second mode is characterized better by the second-mode Branch I
receptivity coefficient KI defined by (16).

In order to compute the Branch I receptivity coefficient KI for the second mode, it
is necessary to determine the amplitude of the second mode at the branch I location.
In our previous study on the characteristics of the boundary-layer normal modes by
the DNS (figure 16 in Part 1), the amplitudes of the second-mode waves start to grow
in our numerical simulations before they reach the Branch I neutral point predicted
by the linear stability analysis. Therefore, it is difficult to locate the second-mode
Branch I neutral stability point from the simulation results. On the other hand, the
second-mode amplitudes at the Branch II location can be determined accurately
from the numerical simulation results. Since the growth of the second mode from
the Branch I to the Branch II locations is mainly caused by the eigenmode growth
of the unstable second mode, the second-mode amplitude at the Branch I location
can be determined by using the maximum wave amplitude at the Branch II location
and an integration of the spatial growth rates between the Branch I and Branch II
locations. Specifically, the amplitude rise from the Branch I to Branch II locations can
be obtained by integrating the spatial growth rates obtained from the linear stability
analysis with respect to x:

|p′|II = |p′|I exp

(∫ xII

xI

−αi(ω) dx

)
, (17)

where |p′|I and |p′|II are the wave amplitudes at the Branch I (xI ) and Branch II
(xII ) locations, respectively. From (17), the value of |p′|I can be determined from
the value of |p′|II obtained by the numerical simulations and the integration of the
growth rate αi obtained by the linear stability analysis.

According to (17), for the cases of adiabatic wall boundary conditions, the
amplitudes of the second-mode waves at the Branch II neutral points are 6.5, 13.3 and
27.0 times those at the Branch I neutral points for three cases of different frequencies
at F = 2.2×10−4, 1.6×10−4 and 1.2×10−4, respectively. Based on these amplitude ratio
values, the second-mode Branch I receptivity coefficient KI can be calculated from
the second-mode response coefficients, which represent the ratio of maximum second-
mode amplitude at the Branch II neutral point to the forcing acoustic wave amplitude.
For the cases of adiabatic wall boundary conditions with θ∞ = 0◦, the second-mode
response coefficients are 1.03, 4.65 and 9.88 for F = 2.2 × 10−4, 1.6 × 10−4 and
1.2 × 10−4, respectively. Therefore, the second-mode Branch I receptivity coefficients
are calculated from the second-mode response coefficients to be:

F = 2.2 × 10−4, KI = 0.158,
F = 1.6 × 10−4, KI = 0.350,
F = 1.2 × 10−4, KI = 0.366.
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Figure 19. Branch I receptivity coefficients for cases of different frequencies and different
incident wave angles.

The results show that the Branch I receptivity coefficients KI increase when the
frequencies of the forcing waves decrease.

Figure 19 shows the second-mode Branch I receptivity coefficients for the three
cases of different frequencies as functions of the incident angles of the forcing acoustic
waves. For a fixed frequency, the second-mode Branch I receptivity coefficients reach
a maximum value at θ∞ around 22.5◦. Again, this figure shows that the second-mode
Branch I receptivity coefficients increase when frequencies decrease. This is because
the range of mode I waves is longer and the change of phase velocity of mode I
waves is much slower at lower frequencies. The second mode waves are induced by
the mode I waves, which are in turn induced by the forcing acoustic waves. At lower
frequencies, the range of interaction between mode I waves and fast acoustic waves is
longer. As a result, the induced mode I waves by the fast acoustic waves are stronger
at lower frequencies. Since the second mode waves are induced by their interaction
with the mode I waves, the initial amplitudes of the second-mode waves converted
from mode I waves are stronger at lower frequencies, which leads to the increase of
the second-mode Branch I receptivity coefficients at lower frequencies.

The second-mode Branch I receptivity coefficients can also be computed directly
from the simulation results of the decomposed second-mode waves at Branch I neutral
points predicted by the linear stability theory. For instance, at F = 2.2 × 10−4, the
Branch I neutral point is predicted by the linear stability theory to be located at
x∗ = 0.083 m (R = 772.7). The second-mode Branch I receptivity coefficient at this
location for the case of θ∞ = 0◦ can be calculated from figure 12 to be KI = 0.120. This
value is slightly lower than the value of KI =0.158 obtained by that of KI computed
by using the second-mode response coefficients (equation (17)). These two sets of
values are different because it is difficult to determine accurately the second-mode
wave amplitudes at the Branch I location as the second mode waves are very weak
there. The weak second mode waves are mixed with other waves, and it is difficult
to obtain a clean separation of the second mode from the simulation results by
using the spatial Fourier analyses and band-pass filter windows without an aliasing
effect, because the second mode is not dominant at the Branch I location. Therefore,
the second-mode Branch I receptivity coefficient converted from the second-mode
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Figure 20. Pressure perturbation along the wall surface induced by free-stream fast
acoustic waves of zero incident wave angle and different temperature boundary conditions
(F = 2.2 × 10−4 and θ∞ = 0◦).

response coefficient based on (17) is a better characterization of the second-mode
receptivity than that obtained directly from the decomposed second-mode waves.

5.10. Effect of wall temperature perturbation conditions

In the current study, the steady base flow field is always the same supersonic boundary-
layer flow over a flat plate with an adiabatic wall boundary condition. In the unsteady
simulations, either adiabatic or isothermal conditions can be used for temperature
perturbations on the wall. In practical applications, the temperature perturbation
condition will be somewhere between these two extreme cases, so both boundary
conditions have been considered in this paper. In this section, the effect of the wall
temperature perturbation boundary conditions on the receptivity are investigated by
numerical simulations.

To study the effect of wall temperature perturbation conditions on the boundary-
layer receptivity properties, the receptivity to planar acoustic waves at fixed frequency
F = 2.2 × 10−4 is considered. Both isothermal wall and adiabatic wall boundary
conditions are used separately while all other flow conditions are the same. The
forcing fast acoustic waves in the free-stream can impinge on the flat plate at different
incident wave angles. The effects of incident wave angles on the receptivity have been
discussed above by comparing 12 computational cases of different incident wave
angles, and an adiabatic wall boundary condition has been used in these cases. Here,
these cases are repeated and an isothermal wall boundary condition for temperature
perturbations is used instead of an adiabatic wall boundary condition to investigate
the effect of the wall temperature boundary condition on the receptivity.

Figure 20 compares the amplitudes of pressure perturbations induced by free-
stream fast acoustic waves at θ∞ = 0◦ for the two different wall boundary conditions
of the temperature perturbations. The figure shows very similar wave patterns for
both cases of different wall temperature boundary conditions. The main difference is
that the amplitudes of pressure perturbations on the wall in the isothermal case are
smaller than those in the adiabatic case, especially in the second mode region. A close
examination of peak values of induced discrete boundary-layer normal modes in the
figure shows that the second mode is much weaker for the isothermal case, while
mode I and mode II are not affected very much by the change in the wall temperature
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Figure 21. Comparison of receptivity of boundary-layer normal modes to planar free-stream
acoustic waves with different incident wave angles and wall temperature boundary conditions
(F = 2.2 × 10−4).

perturbation boundary conditions. Quantitatively, the response coefficients for the
second mode, mode I and mode II in both the isothermal case and adiabatic case
are:

Isothermal case Adiabatic case
Second mode: Ksecond = 0.187 Ksecond = 1.03
Mode I: KmodeI = 1.45 KmodeI = 1.75
Mode II: KmodeII = 1.62 KmodeII = 2.14

It is obvious that the effect of temperature perturbation boundary conditions on
receptivity of the second mode is different from that of mode I or mode II. Compared
with the results for the isothermal case, the response coefficient of the second mode in
the adiabatic case is 5.5 times larger. On the other hand, the response coefficients of
mode I and mode II in the adiabatic case are only 1.2 and 1.3 times as large as those
in the isothermal case. Therefore, because of the different receptivity mechanisms
and stability properties among the second mode, mode I and mode II, the use of
an isothermal wall boundary condition substantially stabilizes the second mode, but
does not affect mode I and mode II very much.

Figure 21 compares response coefficients as a function of the incident wave
angles for two groups of cases with two different wall boundary conditions for
the temperature perturbations. The distributions of response coefficients for different
incident wave angles are very similar for two groups of cases with different boundary
conditions except that all response coefficients in the isothermal cases are smaller than
corresponding values in the adiabatic cases. In particular, the response coefficients of
the second mode are several times smaller for isothermal cases than those in adiabatic
cases. On the other hand, the response coefficients for mode I and mode II of the
isothermal cases are only moderately smaller than those of the adiabatic cases. The
incident wave angle at which mode II reaches the maximum response coefficient is
also about the same (θ∞ = 18◦) for the two groups of wall boundary conditions. The
different effects on response coefficients for mode I (or mode II) and second mode
are due to their different receptivity mechanisms.
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Figure 22. Pressure perturbation amplitudes along the wall surface induced by planar acoustic
waves of different boundary conditions at two sets of different frequencies: (a) F = 1.6 × 10−4

and (b) F = 1.2 × 10−4 (θ∞ = 22.5◦).

The general trend on the effects of wall temperature perturbation boundary
conditions is also true for computational cases of other frequencies. Figure 22
shows the effect of different wall boundary conditions on the amplitudes of pressure
perturbations along the wall surface owing to planar free-stream fast acoustic waves
with an incident wave angle of θ∞ = 22.5◦ at two different frequencies: (a) F =
1.6 × 10−4 and (b) F = 1.2 × 10−4. For both frequencies, pressure amplitudes are
smaller in the isothermal cases than those in the adiabatic cases. For F =1.6 × 10−4,
the response coefficients of mode I, the second mode and mode II in the isothermal
case and the adiabatic case are:

Isothermal case Adiabatic case
Second mode: Ksecond =0.87 Ksecond = 5.61
Mode I: KmodeI =2.82 KmodeI = 3.47
Mode II: KmodeII =5.47 KmodeII = 7.45

Again, the response coefficients of mode I and mode II in the isothermal case are
relatively close to those in the adiabatic case. However, the response coefficient of
the second mode in the adiabatic case is 8.56 times as large as that in the isothermal
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case. As discussed earlier, for the cases of F = 1.2 × 10−4, mode II waves do not
appear in the computational domain because the domain is not long enough. The
response coefficients of mode I and the second mode of the isothermal case at this
frequency are 3.19 and 2.44, respectively. The corresponding values of the adiabatic
case are 4.50 and 13.2 for mode I and the second mode, respectively. The response
coefficient of the second mode in the adiabatic case is 5.41 times as large as that in
the isothermal case at F = 1.2 × 10−4.

There is a large difference in the response coefficients of the second mode between
the adiabatic cases and the isothermal cases because the normal modes in the
isothermal cases are linearly more stable than those of the adiabatic cases, which
is shown in Part 1 (figure 10). Compared with adiabatic cases, mode I waves in
isothermal cases are less amplified before they reach the peak values, which is clearly
shown in figures 20 and 22. Furthermore, the amplitudes of mode I waves in the
isothermal cases decay much faster and die down to a much smaller value when
mode I waves propagate to the synchronization point between mode I and the first
Mack mode. Then, mode I waves convert to Mack-mode waves. As a result, the
initial amplitudes of the induced second Mack-mode waves by mode I waves are
much smaller in the isothermal cases than those in the corresponding adiabatic cases.
In addition, the growth rates of the second-mode waves are smaller for the isothermal
case than those in the adiabatic cases. Therefore, the response coefficients of the
second-mode waves are significantly smaller in the isothermal cases than those in
the adiabatic cases. On the other hand, mode I and mode II are less affected by
temperature perturbation boundary conditions because they are mainly induced by
their resonant interactions with the forcing fast acoustic waves.

6. Receptivity to a beam of free-stream acoustic waves
In experiment, the free-stream disturbances may contain only a beam of fast

acoustic waves other than continuous plane acoustic waves. In this section, receptivity
to a beam of free-stream acoustic waves is studied by numerical simulations. Free-
stream fast acoustic waves are allowed to enter the flow field through an incident slot
on the shock boundary. The slot starts from x∗

0 = 0.01 m and ends at x∗
1 = 0.022 m.

The perturbation of free-stream acoustic waves satisfy (3)–(5) and the distribution of
dimensionless amplitude ε is given by the following formula:

ε = ε0

[(
x∗ − x∗

c

(x∗
1 − x∗

0 )/2

)2

− 1

]2 (
x∗

c − 1
2 l

∗ � x∗ � x∗
c + 1

2 l
∗) , (18)

where ε0 = 5 × 10−4, l∗ =0.012 m and x∗
c is the coordinate of the centre of the incident

slot. An adiabatic boundary condition is used for temperature perturbations on the
wall in this section.

6.1. A beam of acoustic waves with F = 2.2 × 10−4 and θ∞ = 0◦

Figure 23 shows the contours of instantaneous pressure perturbations induced by a
beam of free-stream fast acoustic waves with a frequency of F = 2.2 × 10−4 and an
incident wave angle of θ∞ = 0◦. It shows that the forcing fast acoustic waves pass
through an incident slot on the oblique shock. When transmitted fast acoustic waves
propagate downstream, they penetrate the boundary layer and impinge on the wall
between x∗ =0.04 m and x∗ = 0.06 m, which results in a number of reflected waves as
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Figure 23. Contours of instantaneous pressure perturbations induced by a beam of
free-stream fast acoustic waves (F = 2.2 × 10−4 and θ∞ = 0◦).
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Figure 24. Instantaneous pressure perturbations along the wall surface induced by a beam of
free stream fast acoustic waves entering the slot located at xc = 0.016 m (F = 2.2 × 10−4 and
θ∞ = 0◦).

well as boundary-layer disturbance waves including discrete normal modes and the
Stokes waves.

Figure 24 shows the distribution of instantaneous pressure perturbations along the
wall surface induced by a beam of free-stream fast acoustic waves. The first peak
amplitude of pressure disturbances is due to the impingement of acoustic waves on
the wall and the interaction between mode I waves and the acoustic waves. Then
mode I waves convert to Mack-mode waves at the synchronization point (x∗ = 0.11 m)
between mode I and the Mack mode. The induced second Mack-mode waves are
amplified when they enter the second-mode unstable region (0.11 m < x∗ < 0.155 m).
There is wave modulation between fast acoustic waves and the second-mode waves
in this region. The second-mode waves decay and die down when they propagate
further downstream. In the downstream region (x∗ > 0.2 m), mode II waves are
generated because of the synchronization between mode II waves and fast acoustic
waves. Owing to the resonant interactions between mode II waves and acoustic waves,
mode II waves are significantly amplified in this region. In the region even further
downstream, mode II waves decay because of their inherent stable property.

Figure 25 shows the phase velocity distribution based on the pressure perturbations
on the wall by using temporal Fourier analysis and (10) and (11). Again, the phase
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Figure 25. Distribution of phase velocities along the wall surface induced by a beam of
acoustic waves entering the slot located at x∗

c = 0.016m (F = 2.2 × 10−4 and θ∞ = 0◦).

velocities of the Mack modes, modes I and mode II from the linear stability theory are
also plotted in the same figure for comparison with the numerical solutions. Unlike
the phase velocities shown in figure 9 for boundary-layer disturbances induced by
planar fast acoustic waves, boundary-layer disturbances induced by a beam of fast
acoustic waves are strongly modulated by forcing fast acoustic waves. As a result,
there are strong oscillations in the upstream phase velocity plot, shown in figure 25.
In the region downstream (x∗ > 0.2 m), the induced mode II waves are dominant.
Therefore, the phase velocities from simulation agree with those of mode II predicted
by the linear stability theory.

Spatial Fourier analyses and band-pass filter windows are used to decompose the
second-mode waves from the total boundary-layer disturbances. For the current case
of θ∞ =0◦, the response coefficients for mode I, the second mode and mode II are
0.875, 0.227 and 0.642, respectively.

6.2. A beam of acoustic waves with different incident wave angles

A beam of free-stream fast acoustic waves is allowed to enter the shock boundary
with different incident wave angles to study the effects of incident wave angles on the
boundary-layer receptivity. Four different incident wave angles, θ∞ =0◦, 30◦, 60◦ and
90◦, are considered. All other flow conditions are the same, i.e. F = 2.2 × 10−4 and
the adiabatic wall condition is used for temperature perturbations.

The amplitudes of pressure perturbations on the wall induced by a beam of
acoustic waves with frequency F = 2.2 × 10−4 and four different incident wave angles
are shown in figure 26. It shows that the amplitudes of pressure perturbations reach
peak values near the leading owing to the impingement of the forcing fast acoustic
waves on the wall. Boundary-layer wave modes, such as mode I, mode II and the
second mode, are generated afterwards. At θ∞ =90◦, the amplitudes of the induced
second mode and mode II are too small to be visible. The effects of incident wave
angles on receptivity will be discussed in the following subsection.

6.3. Combined effects of incident wave angles and frequencies

The effects of incident wave angles and frequencies on the boundary-layer receptivity
to a beam of fast acoustic waves are studied by numerical simulations. At F =
2.2 × 10−4, thirteen computational cases of different incident wave angles evenly
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Figure 26. Amplitudes of pressure perturbations along the wall surface induced by a beam of
free-stream fast acoustic waves entering the slot located at x∗

c =0.016 m with different angles
(F = 2.2 × 10−4).
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Figure 27. Response coefficients to a beam of free-stream acoustic waves vs. incident wave
angles for two frequencies at F = 2.2 × 10−4 and F = 1.6 × 10−4.

spaced between 0◦ and 90◦ are considered. At F = 1.6 × 10−4, seven different incident
wave angles evenly spanned between 0◦ and 90◦ are studied. At F = 1.2 × 10−4, three
different incident wave angles, θ∞ = 0◦, 22.5◦ and 45◦, are considered. All other flow
conditions are the same, and the adiabatic wall condition is used for temperature
perturbations.

Figure 27 shows the response coefficients as functions of forcing incident wave
angles for two group of cases with two different frequencies, i.e. F = 2.2 × 10−4 and
F = 1.6 × 10−4. Again, the response coefficients of the second mode are not very
sensitive to the incident wave angles when θ∞ � 45◦, but response coefficients of
mode I are very sensitive to the change in incident wave angles. For both groups
of cases of different frequencies, the maximum response coefficients for mode I are
obtained when the impingement wave angle θ∞ is in the range of 60◦–75◦. For the
second mode and mode II, the maximum response coefficients occur at θ∞ around
22.5◦.
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Figure 28. Response coefficients to a beam of free-stream fast acoustic waves at different
frequencies and incident wave angles.

Figure 28 shows the response coefficients of boundary-layer normal modes to a
beam of acoustic waves with different frequencies and incident wave angles. At
F = 1.2 × 10−4, the receptivity of the second mode is dominant, while the receptivity
of mode I is dominant for F = 1.6 × 10−4 and 2.2 × 10−4. The response coefficients
of the second mode increase significantly with decrease of frequencies. On the other
hand, for the same incident wave angle, the response coefficients of mode II decrease
when the frequencies decrease, which is in conflict with the results shown in figure
18. It is shown in figure 18 that the response coefficients of mode II increase when
the frequencies decrease for receptivity to planar free-stream fast acoustic waves
with the same incident wave angle. The conflict in effects of frequency on the
response coefficients of mode II can be explained based on the receptivity mechanism
of mode II. The generation and amplification of mode II waves are caused by
synchronization and resonant interaction between mode II waves and fast acoustic
waves. For receptivity to planar free-stream fast acoustic waves, there are continuous
planar fast acoustic waves passing the shock and entering the boundary to provide
perturbation energy for boundary-layer disturbances. Based on (15), the range of
interaction between mode II waves and fast acoustic waves is longer for lower
frequency. Therefore, the response coefficients of mode II increase as F decreases
for receptivity to planar free-stream fast acoustic waves with fixed incident wave
angle. However, for receptivity to a beam of free-stream fast acoustic waves, forcing
disturbances can only enter the flow field through a narrow incident slot on the shock
boundary. Downstream of the slot, there are no forcing acoustic waves passing the
shock and entering the boundary layer to provide perturbation energy for boundary-
layer disturbances. On the other hand, there is dissipation during propagation of the
induced Stokes waves, which is dominated by fast acoustic waves. In other words, the
amplitude of fast acoustic waves inside the boundary layer decay as they propagate
downstream, which is shown in figure 29. Figure 29 shows the comparison of pressure
perturbations on the wall induced by a beam of fast acoustic waves at the same
incident wave angle θ∞ = 0◦, but with two different frequencies, F = 2.2 × 10−4 and
F = 1.6 × 10−4, respectively. It shows that the initial amplitude of mode II waves
induced by fast acoustic waves at the beginning of the mode II region (x∗ = 0.2 m
for F = 2.2 × 10−4, and x∗ = 0.38 m for F = 1.6 × 10−4) is much smaller for the
F = 1.6 × 10−4 case, which indicates that the amplitudes of fast acoustic waves decay
during propagation downstream. As a result, the interaction between mode II waves
and fast acoustic waves becomes weaker for lower frequencies, although the range
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Figure 29. Comparison of pressure perturbations on the wall induced by a beam of
free-stream fast acoustic waves at different frequencies (θ∞ = 0◦).
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Figure 30. Instantaneous pressure perturbations along the wall surface due to a beam of
free-stream fast acoustic waves entering the slot located at x∗

c = 0.032m (F =2.2 × 10−4 and
θ∞ = 0◦).

of interaction is longer. Therefore, the response coefficients of mode II decrease as
F decreases for receptivity to a beam of free-stream fast acoustic waves with fixed
incident wave angle.

6.4. Effect of incident slot locations

To study the effect of incident slot locations on the boundary-layer receptivity, a
number of cases are considered where a beam of forcing fast acoustic waves enter
the oblique shock at different locations of incident slot.

Figure 30 shows the instantaneous pressure perturbations along the wall surface
induced by a beam of acoustic waves at θ∞ = 0◦ entering the incident slot spanning
from x∗ =0.026 m to x∗ = 0.038 m on the shock boundary. The first peak amplitude
of pressure perturbations is due to the impingement and reflection of transmitted
acoustic waves on the wall. This figure shows that induced wave components in the
boundary layer consist mainly of mode II waves. However, the second mode does
not appear in the flow field, which is different from the wave pattern shown in the
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Figure 31. Distribution of phase velocities based on pressure perturbations on the wall for
the case of a beam of free-stream fast acoustic waves entering the slot located at x∗

c = 0.032m
(F = 2.2 × 10−4 and θ∞ = 0◦).
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Figure 32. Response coefficients for a beam of acoustic waves with different incident wave
angles (F =2.2 × 10−4 and x∗

c = 0.032 m).

previous case (figure 24), where the incident slot is located closer to the leading edge
than in the current case. Figure 31 compares the phase velocities between the results
predicted by linear stability theory and those obtained by the numerical simulation.
It is obvious that only mode II waves are generated in the current case. At the
location of impingement, the phase velocity of mode I is much smaller than that of
fast acoustic waves. Therefore, no mode I waves are generated by the forcing fast
acoustic waves because there is no resonant interaction between mode I waves and
fast acoustic waves. Consequently, no second-mode waves are generated in this case
when mode I is absent, because the second mode is converted from mode I in the
receptivity to fast acoustic waves.

The effects of incident wave angles on the receptivity of the current case are studied
by considering a number of cases with different incident wave angles. Figure 32
shows the response coefficients measured at two peak amplitudes based on pressure
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Figure 33. Comparison of the amplitudes of pressure perturbations along the wall surface for
the case of a beam of free-stream fast acoustic waves entering the flow field through different
locations (F = 2.2 × 10−4 and θ∞ = 30◦).

perturbations on the wall. The first peak value is due to the impingement of acoustic
waves on the wall, and the second peak value is due to the amplification of mode II.
The maximum response coefficient is obtained from impingement at the acoustic
angle θ∞ = 75◦.

The effects of incident slot locations on receptivity to a beam of free-stream
fast acoustic waves are also studied. A number of computational cases with fixed
frequency of F = 2.2 × 10−4 and θ∞ = 30◦ are considered, where the forcing wave
incident slots are placed at different locations. The results of five cases of different
incident slot locations are shown in figure 33. It shows that the impingement of the
transmitted acoustic waves on the wall moves downstream when the centre of the
incident slot is moved gradually from x∗

c = 0.016 m to x∗
c = 0.152 m. The location of the

first peak value of pressure perturbation due to the impingement moves accordingly.
The peak value of pressure perturbations decreases when the incident slot is moved
downstream. Figure 33 also shows that when the impingement location of acoustic
waves on the wall is close to the leading edge, the mode I, the second mode and
mode II are generated in the boundary layer. As the location of the incident slot
moves downstream, both mode I and the second mode are absent while mode II
waves are amplified. As the impingement location moves even further downstream,
mode I, the second mode and mode II are absent. These results again can be explained
by the receptivity mechanisms of mode I, mode II, and the second mode. When the
impingement location is close to the leading edge, mode I wave is synchronized with
the forcing fast acoustic wave. As a result, mode I is generated in the boundary layer.
Mode I then converts to the second mode. In the region further downstream, mode
II is generated by resonant interaction with the forcing fast acoustic waves. As the
forcing-wave impingement location moves downstream, mode I cannot be generated
because the phase velocity of mode I is much smaller than that of fast acoustic waves
at the location of impingement and there is no resonant interaction between mode I
and fast acoustic waves. Therefore, only mode II is generated downstream. When the
incident slot is moved from x∗

c = 0.016 m to x∗
c = 0.032 m, the induced mode II waves

are more strongly amplified because there is less decay in fast acoustic waves and the
resonant interactions between mode II waves and fast acoustic waves are stronger in
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Figure 34. Response coefficients of boundary-layer disturbances due to impingement of a
beam of free-stream fast acoustic waves with the incident wave angle at θ∞ = 30◦ entering the
flow field through different locations (F =2.2 × 10−4).

the latter case. However, when the incident slot is moved beyond xc = 0.072 m, there
are no amplified mode II waves shown in the boundary layer, because the phase
velocity of mode II waves becomes much smaller than that of fast acoustic waves at
the location of impingement and there are no resonant interactions between mode II
waves and fast acoustic waves.

Figure 34 shows the maximum response coefficients of boundary-layer disturbances
to a beam of acoustic waves at θ∞ = 30◦ entering the flow field through different
incident slot locations. It is obvious that the response coefficients due to the
impingement of acoustic waves on the wall are larger in the upstream region than
those in the downstream region, which indicates that the leading edge is one of the
most efficient regions for boundary-layer receptivity.

7. Results summary and conclusions
The receptivity of a Mach 4.5 supersonic boundary layer to free-stream fast acoustic

waves is studied by numerical simulations in this paper. The receptivity properties
are analysed based on numerical simulation results and linear stability analyses.
The effects of incident wave angles, forcing wave frequencies, and wall temperature
perturbations on the receptivity are studied.

7.1. Mechanisms of boundary-layer receptivity to free-stream disturbances

When fast acoustic waves are introduced from the free stream, the numerical results
show that a number of wave modes are generated in the boundary layer by the
receptivity process. The overall wave structures in the boundary layer induced by the
forcing fast acoustic waves from the free stream are summarized below.

The receptivity of the flat-plate boundary layer to planar free-stream fast acoustic
waves lead to the excitation and development of both Mack modes and the family of
stable modes, i.e. mode I, mode II, etc. The generation of boundary-layer normal
modes mainly results from the resonant interactions, which include interactions
between the forcing fast acoustic waves and the stable modes (mode I, mode II,
etc.) and those between the stable modes and the Mack modes (the first mode, the
second mode, etc.). Specifically, the forcing fast acoustic waves from the free stream
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first interact with the oblique shock and generate transmitted fast acoustic waves. The
transmitted fast acoustic waves penetrate the boundary layer to form the Stokes waves
which are the combination of fast acoustic waves, vorticity waves and entropy waves.
Among the Stokes waves, the components of fast acoustic waves are dominant. The
incident fast acoustic waves in the boundary layer are reflected by the wall surface
after the impingement. As a result, mode I disturbances are first generated because
the phase velocity of mode I near the leading edge is very close to that of the fast
acoustic waves. The synchronization of the wavenumbers or wave speeds leads to a
strong resonance between mode I waves and the fast acoustic waves. Though mode I
is predicted to be stable by the linear stability theory, the amplitudes of the induced
mode I waves grow as they propagate downstream because of the resonant interaction
with the fast acoustic waves. After reaching the first peak value, mode I waves decay
owing to their stable property after their phase velocities decrease during downstream
propagation and there is no more resonance between mode I waves and fast acoustic
waves.

Before mode I waves die out during propagation, they are synchronized with
the Mack mode at their synchronization point, where both the first Mack mode
and mode I have almost the same profiles of disturbance structure across the
boundary layer. As a result, mode I waves convert to the Mack-mode waves in the
synchronization region. Subsequently, the developed Mack-mode waves are amplified
after they enter the second-mode unstable region. The second-mode waves decay after
they pass the Branch II neutral stability point and become stable.

Meanwhile, in the region located approximately behind the second-mode unstable
region, mode II waves are generated independently because of their synchronization
with the fast acoustic waves. Because of the resonant interaction between mode II
waves and the acoustic waves, mode II waves are significantly amplified even though
mode II is predicted to be stable by the linear stability theory. Just like mode I
waves, mode II waves decay owing to their stable property after their phase velocities
decrease and there is no more resonance between mode II waves and the fast acoustic
waves as they propagate downstream.

7.2. Wave-mode decomposition and response/Branch-I-receptivity coefficients

In the current receptivity study, the wavenumbers of the Mack modes, especially the
second Mack mode, are considerably different from those of the acoustic waves. This
fact is used to extract the wave components of the second Mack mode from the
overall disturbance field in the boundary layer by means of a spatial Fourier analysis
in order to quantitatively analyse the receptivity of the boundary layer to free-stream
fast acoustic waves. The separated second mode structures are shown to agree well
with those of the second mode predicted by the linear stability theory. The results of
the separated second modes are used to compute both the response coefficients and
the Branch I receptivity coefficients of the supersonic boundary layer.

Though the second mode waves can be separated from the total wave fields, it is
impossible to decompose mode I (or mode II) and the acoustic waves from the total
disturbances cleanly by using a band-pass filter window, because the wavenumbers
of mode I (or mode II) are very close to those of the acoustic waves. Fortunately, the
results indicate that, at the locations where mode I (or mode II) waves reach their
maximum amplitudes, the wave components inside the boundary layer are dominated
by the components for mode I (or mode II). This is evident in the comparison
of wave structures of mode I and mode II from the linear stability theory with
corresponding numerical solutions at those locations. Therefore, even though a clean
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receptivity coefficient for mode I and mode II cannot be obtained from the numerical
solutions, response coefficients can be obtained to serve as the approximate values of
the receptivity coefficients by using the maximum wave amplitudes of mode I and
mode II. Therefore, the response coefficients of the boundary layer are defined for
both the Mack modes and the stable mode I and mode II to study the acoustic
receptivity of the boundary layer quantitatively.

7.3. Effects of incident wave angles, frequencies and wall temperature conditions

The effects of incident wave angles on the receptivity are studied by considering planar
free-stream fast acoustic waves at different incident wave angles. The excitation of
mode I and mode II is a result of the synchronization between fast acoustic waves
propagating in a streamwise direction and these two wave modes. The receptivities
of mode I and mode II in the boundary layer are strongly affected by the incident
wave angles of free-stream fast acoustic waves. The second mode, which is excited
by mode I at their synchronization location, is not very sensitive to the change in
incident wave angles because there is no direct interaction between the second-mode
waves and forcing fast acoustic waves. However, for cases of different incident wave
angles, the initial amplitudes of the second-mode waves are different because the
second mode is induced by mode I, which is dependent on the incident wave angles.
Thus, the receptivity of the second mode is also affected by the incident wave angles,
although this effect is not as significant as that on mode I and mode II.

In addition to the incident wave angles, the receptivity process is also strongly
affected by the frequencies of the forcing fast acoustic waves. The region of different
wave modes for different frequencies can be represented by the same range in term
of dimensionless parameter RF. Consequently, as frequency F decreases, the existent
region of normal modes in terms of R will increases. Therefore, as the second-mode
wave region moves downstream with decreasing F , the mode I wave region expands
and the mode II wave region moves further downstream. The receptivity results for
mode I and mode II are very different from those of the second mode in response
to changing frequencies or incident wave angles. As frequency decreases, the existent
regions of all different modes expand. Therefore, the second mode is amplified in
a longer unstable region which leads to larger maximum amplitude of the second
mode at the Branch II neutral point for lower frequencies. On the other hand, the
response coefficients of both mode I and mode II do not change very much when
the frequencies change for the same incident wave angle. The difference in the effects
of frequency on receptivities of mode I, mode II and the second mode is because the
amplifications of mode I and mode II result from different mechanisms from that
of the second mode. Specifically, the growth of mode I and mode II result from the
resonant interactions with the forcing fast acoustic waves, while the growth of the
second mode is due to its inherent unstable property. As a result, the receptivity of
mode I and mode II is not sensitive to the change in frequencies, but is very sensitive
to the change in incident wave angles, while the receptivity of the second mode is
not very sensitive to the change in incident wave angles, but is very sensitive to the
change in frequencies.

The effect of the wall boundary condition for temperature perturbations on the
receptivity to free-stream fast acoustic waves has also been investigated. The results
of receptivity in both adiabatic cases and isothermal cases show very similar wave
patterns inside the boundary layer. The main difference is that the response coefficients
of the second mode are several times smaller in the isothermal cases than those in the
adiabatic cases, while the receptivities of mode I and mode II are not affected very
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much by the change in the wall temperature perturbation conditions. The different
effects of the wall temperature perturbation conditions on receptivities of mode I (or
mode II) and the second mode are due to the different receptivity mechanisms and
stability properties of different boundary-layer normal modes. Specifically, mode I and
mode II are less affected by temperature perturbation boundary conditions because
they are generated and amplified by synchronization and resonant interaction with
the forcing fast acoustic waves. Unlike mode I and mode II, the forcing fast acoustic
waves do not interact directly with the second mode because of the large difference
in phase velocities between the second-mode waves and fast acoustic waves. Instead,
the second-mode waves are converted from mode I waves in receptivity to the fast
acoustic waves. From the linear stability analysis, the normal modes in the isothermal
cases are more stable than those in the adiabatic cases. Thus, the induced mode I
waves in isothermal cases are less amplified than those in adiabatic cases. In addition,
the amplitudes of mode I waves in the isothermal cases decay much faster and die
down to a much smaller value when mode I waves convert to the Mack-mode waves
at the synchronization point between mode I and the first Mack modes. As a result,
the initial amplitudes of the induced second Mack-mode waves by mode I waves
are much smaller in the isothermal cases than those in the corresponding adiabatic
cases. Furthermore, the growth rates of the second mode are smaller in the isothermal
case than those in the adiabatic case. Therefore, the receptivity coefficients of the
second-mode waves are significantly smaller for the isothermal cases than those for
the adiabatic cases.

7.4. Receptivity to a beam of forcing fast acoustic waves

The receptivity to a beam of fast free-stream acoustic waves with different frequencies
and incident wave angles has also been investigated. To simulate the receptivity to a
beam of free-stream acoustic waves, free-stream fast acoustic waves are allowed to
enter the flow field through an incident slot on the shock boundary. The results show
the same general trend in terms of the receptivity process for the case of a beam of
acoustic waves as the previous cases of planar free-stream fast acoustic waves.

The effect of incident slot locations on the boundary-layer receptivity is studied by
considering a number of cases where a beam of forcing fast acoustic waves enters the
oblique shock at different locations. When the slot locations on the shock boundary
change, the impingement locations of incident acoustic waves on the wall change
accordingly. When the impingement location is close to the leading edge, mode I, the
second mode and and mode II are generated sequentially in the boundary layer. As
the location moves downstream, both mode I and the second mode are absent while
mode II are amplified. As the impingement location moves even further downstream,
mode I, the second mode and mode II are absent. These results can be explained by
the receptivity mechanisms of mode I, mode II, and the second mode. The results
also show that the response coefficients due to the impingement of acoustic waves on
the wall are larger in the upstream region than in the downstream region. In other
words, the leading edge is one of the most efficient regions for the boundary-layer
receptivity.

7.5. Conclusions

The results of this paper show that the stable mode I waves play an important role
in the receptivity process because they interact with both the forcing acoustic waves
and Mack-mode waves. Through the interactions, mode I waves transfer perturbation
energy from the forcing fast acoustic waves to the second Mack-mode waves. Mack-
mode waves are induced by the mode I waves in receptivity to the free-stream fast
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acoustic waves. Although both mode I and mode II are predicted to be stable by
the linear stability theory, the induced mode I waves and mode II waves are strongly
amplified owing to the resonant interactions with the forcing fast acoustic waves.
At high frequencies, F = 2.2 × 10−4, for example, the receptivity of mode II, other
than the second mode, may become the dominant component of boundary-layer
disturbances. It is necessary to study receptivities of both unstable Mack modes and
stable modes, such as mode I and mode II, in order to understand the receptivity
process in the supersonic boundary layers.

Owing to different mechanisms of amplifications of mode I (or mode II) and the
second mode, the effects of incident wave angles on the receptivity of mode I (or mode
II) and the second mode are different. The receptivities of mode I and mode II are
strongly affected by incident wave angles, but not sensitive to change in frequencies. On
the other hand, the receptivity of the second mode is strongly affected by frequencies,
but is not very sensitive to change in incident wave angles. For receptivity to the
planar free-stream fast acoustic waves at fixed frequency F = 2.2 × 10−4, there is an
‘optimal’ incident wave angle θ∞ for each wave mode to reach a maximum wave
amplification. The maximum response coefficients of mode I, mode II and the second
mode are obtained at θ∞ = 45◦, 18◦ and 26◦, respectively. For the cases of adiabatic
wall boundary conditions at θ∞ = 0◦, the second-mode Branch I receptivity coefficient
is KI = 0.158 for the case of F =2.2 × 10−4. The value of KI increases when the
frequencies of the forcing waves decrease.

Numerical simulations also show that the induced second mode by mode I is
very weak in the isothermal cases. In addition, the induced second-mode waves are
modulated by the Stokes waves inside the boundary layer. As a result, the growth
of the second-mode waves affected by the Stokes waves becomes too weak to be
detectable.

The results of receptivity to a beam of forcing fast acoustic waves provide further
evidence that the second-mode waves are converted from mode I waves in the
receptivity process. The response coefficients due to the impingement of acoustic
waves on the wall are larger in the upstream region than in the downstream region,
which indicates that the leading edge is one of the most efficient regions for boundary-
layer receptivity.
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or the US Government.
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