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This paper reviews how concepts and techniques of system dynamics are being applied in

new ways to analyse the operations and formation of artificial and societal systems and then

to make decisions about them. The ideas and modelling methods to describe natural and

technological systems are mostly reductionist (or ‘bottom-up’) and based on general scien-

tific principles, with ad-hoc elements for any particular system. But very complex and large

systems involving science, technology and society, whose complete descriptions and pre-

dictions are impossible, can still be designed, controlled and managed using the methods of

system dynamics, where they are focused on the outputs of the system in relation to the input

data available, and relevant external influences. For many complex systems with uncertain

behaviour, their models typically combine concepts and methods of bottom-up system

dynamics with statistical modelling of past or analogous data and optimization of outputs.

System dynamics that has been generalized by advances in mathematical, scientific and

technological research over the past 50 years, together with new approaches to the use of data

and ICT, has led to powerful qualitative verbal and schematic concepts as well as improved

quantitative methods, both of which have been shown to be of great assistance to decisions,

notably about different types of uncertainty and erratic behaviour. This approach comple-

ments traditional decision-making methods, by introducing greater clarity about the process,

as well as providing new techniques and general concepts for initial analysis, system

description – using data in non-traditional ways – and finally analysis and prediction of the

outcomes, especially in critical situations where system behaviour cannot be analysed by

traditional decision-making methods. The scientific and international acceptance of system

methods can make decision-making less implicit, and with fewer cultural assumptions.

Topical examples of systems and decision-making are given.

1. Systems, Models and Decisions

Systems can be considered as collections of discrete entities within real or conceptual

boundaries that are linked by interrelationships and function as a whole. Most highly
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developed natural systems exhibit characteristic forms of behaviour in complex pro-

cesses, such as those in physics and chemistry that range over length scales from galaxies

down to molecules, and in biology in the evolution of natural varieties and in the social

activities of animals, including humans. Many of the basic concepts of system dynamics

come from engineering; and are now being applied to other artificial constructions and

even abstract thinking. As natural or artificial systems adapt to external influences the

entities change along with the interactions and connections between them. There are

important distinctions between such interactions involving the exchange of information

and physical or material actions, such as forces or the movement of objects or entities,

e.g. agents in social systems.

Using systems concepts is essential in mathematical and computational modelling of

many processes, especially in artificially defining regions and functions in real or virtual

spaces, systems as sets of entities, or ‘control surfaces’, with naturally or artificially defined

interactions, such as models of the formation of societies1 or Conway’s ‘Game of Life’.2

The fundamental idea about dynamical systems (both in reality and models), which

has great practical value, is that there are wide classes of quite different systems that

behave and evolve in similar ways, either because of their intrinsic properties or because

of similar types of influence acting on the systems. This generality of scientific

descriptions of systems extends to descriptions by narrative and graphical representa-

tions.3 General properties of systems have been discovered in various scientific fields,

such as abstract mapping and network representations of human activities (e.g. Euler4);

the systems of astronomical bodies governed by Newtonian physics;5 the statistics of

systems of plants and social organizations (e.g. Pearson6); and the dynamics and statistics

of social groups and nations (e.g. Richardson7).

Following Smuts,8 who explained how the persistence of personality traits can be

described as a system and who wrote the first comprehensive, multi-disciplinary review

of systems concepts, the broad approach to the study and application of dynamical

systems theory grew rapidly.9–12 System behaviour is affected by the functioning of

component entities, as well as by their grouping, and the geometrical and dynamical

connections between them (which may be qualitatively different in models of that system).

These aspects of connectivity and topology are particularly critical in biological and chemical

systems.13

A complex system is composed of many interacting and interdependent entities, with

emerging characteristic behaviour that differs significantly from the behaviour of indi-

vidual components (there are many modern popular treatments14,15). Most models of

complex systems, such as turbulent flows and fluctuations in financial markets, generally

have both predictable and unpredictable behaviour. In some systems this may be

determined by broader constraints such as a tendency to optimize certain aspects of their

behaviour or to evolve into new states.16

The study and applications of system dynamics involves the use of abstract, scien-

tifically based, explicit models and methods of interpreting their results. Therefore, it

must be possible to replicate the models and results and to relate them systematically to

other models and data analyses of the same system. The assumptions, methods and data

should all have to be explicitly stated, although in many useful models they are not
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precisely or accurately defined. Nevertheless, the scientifically based methodology for

the construction and analysis of system models, even when applied to non-quantitative

entities, provides people with a tool to understand, explain and address key challenges

and problems of our society (e.g. global climate change) and to have a more common

method of communication than by the usual language and concepts of history and

international diplomacy.

Dynamical models can predict how the system develops, and also how it is affected by

changes to the model corresponding to changes in external conditions, such as in models

of the global climate.17 Richardson’s dynamic models7 of conflict between nations, not

dissimilar to models of predator and prey animal species,4 showed how changes in the

explicit but imprecisely defined assumptions about aggressiveness and submissiveness of

nations significantly affected the predictions. Other world system models, especially

where there are significant changes in social systems, may need to be altered in real time,

as economists and geo-political commentators are suggesting at the present time18.

Decision-makers can use systems modelling (and systems concepts more generally) as

a framework for describing and analysing the behaviour of a system in changing con-

ditions, and for changing the system to meet certain criteria. The methods developed for

physical and engineering systems (such as ship construction) and analysis of statistical

data have been applied to managing or changing organizational systems and these

methods have been used to make decisions, i.e. to determine the consequences (or

output) of the system being influenced by certain inputs (which may or may not be

known with much certainty). In all such input–output systems, which are the focus of this

review, the output interacts with some other system or objects or persons. It influences, or

feeds back into, the original system. This powerful method, developed for controlling the

operations of systems, has been generalized to improve the accuracy of a model. But if

the object of the modelling is to help make a decision, say about planning the economy,

based on predictions of the model, people react to the published predictions and then may

behave differently to the assumptions about their behaviour. This societal feedback

makes such predictions more difficult but has to be considered in the decision-making

procedure.18 Politicians did not envisage such complications when they first realized that

system methods might contribute to public policy.

There have been notable successes in the use of system dynamics in decision-making

for operational purposes. An example is in the use of network planning of both business

operations and physical networks (including tightly planned rail and electrical supply

networks to the loosely planned internet). But there have been occasional widespread

failures of large parts of all these networks, caused by human error, natural phenomena or

deliberate attacks. There have also been failures in the construction of some very large,

but highly connected organizational and ICT systems, which led some governments to a

policy decision to construct such systems incrementally in future.

Recent developments in system dynamics applied to biological and organizational

systems enabled governments and international agencies to monitor and predict the

spread of infectious diseases and decide how this could be controlled.19 From the

modelling descriptions of recent epidemics, public health policies have been established.

At the most ambitious level, system dynamics involving most branches of natural and
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social science and technology is being applied to predict the global and regional climate

and environment, and develop policies to mitigate its worst effects, which inevitably

involve the social challenge of adapting communities to changing conditions.17

In these examples, the use of system dynamics is, in itself, not controversial and is

generally agreed to be an essential part of making high-level decisions both about

operations and about policies where the key entities in the systems are defined, or where

the social interactions are highly predictable (e.g. in project management or the military).

But where the behaviour of the entities in the systems – whether people or ideas – are

much less certain, and can vary depending on the conditions, the assumptions and

predictions of models are also uncertain and may be controversial. Although certain

models provide insights of these systems in certain circumstances, such as economies

close to equilibrium18 or concepts of happiness in psychology,20 they are not generally

trusted as a basis for policy making or even for discussion about policies, as with

economics. But the language and concepts of system dynamics, especially with ICT

advances contributing more relevant data and simulations, provides a way of comparing

models, concepts and policies of decision-makers that could lead to clearer public discussion

and ultimately to better policies.

2. Complexity of Systems and Models

The types of complexity in behaviour can best be understood through models of the

system, which should define and describe the entities and how they interact, depending

on the inputs to the system and other external influences. Models are inevitably

incomplete and inaccurate, because of scientific limitations and a lack of data, or because

they have to be used in real time. Models are constructed and operated differently

depending on their application, for example whether for detailed study of a system or for

decision-making. Therefore, because models do not correspond exactly to the actual

system, some aspects of their behaviour differ from that of the system; indeed in some

cases models may be more or less complex than reality (see Figure 1).

Reductionist models are built up from sub-models and data of basic processes, such as

scientifically established laws or processes (e.g. climate models). By contrast, empirical

‘statistical’ models are based on past data, which may be specific to the system, because

Figure 1. A schematic diagram showing action flow (solid) and information flow
(dashed) in actual systems; and also information flow in model systems (which also lead
to consequences for users and decision-makers).
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there are no reliable models for the entities in the system (e.g. financial trading or certain

types of seasonal forecasting). The disadvantage of purely statistical models is that they

rely on past data and cannot reliably be used in situations where external conditions or

the entities themselves are changing and evolving. This is the main justification for the

use of largely reductionist models for predicting climate change rather than relying on the

extrapolation of current trends. Mixed reductionist and statistical models are also com-

mon, such as those involving natural and social systems.

Broadly, systems and their models fall into one of five categories (see Table 1). The

first, denoted by X0, being non-complex, comprising defined entities and connections

between them. There are simple relations between inputs and outputs, such as in electrical or

mechanical systems. The behaviour is often linear but non-linearity is possible. Typically for

these systems, resonance is the most influential behaviour. Models of X0 systems can be

applied to describe features of very complex systems. For example, Richardson7 proposed a

linear set of differential equations to describe the complex features of an arms race between

two nations.

In the lowest category of systems that can be characterized as being complex –

denoted by X1 – there are typically a few types of well-defined sub-systems that have

semi-spontaneous, self-organizing behaviour that depends only weakly on external

influences and the previous states or history of the system. An example is the repetitive

Table 1. Categories of complex system behaviour

System and subsystem Connections
Dynamics and Input (I)
and Output (O) relations

X0 Non-complex; entities with
defined sub-systems.

Defined networks
(deterministic or statistical)
mostly local, linear
relationship.

Behaviour defined by I-O
relation (but resonance
possible, could be
random).

X1 Single type of complexity;
entities with defined
sub-systems.

Multiple, variable connections
(local to non-local), non-
linear, well defined
(independent of I-O).

Self-organising and
Multiple solutions (weak
I-O dependence) and
non-unique. Sensitivity
of I-O relation to internal
fluctuation.

X2 Multi-type/multi-science
complexity; entities with
defined sub-systems.

Multiple variable connections
(local to non-local), non-
linear, connections between
different system types, well
defined.

As in X1, but with
complex interactions
across the different
model types

X3 Interactive, adaptive chaotic
complexity; entities adapt
to environment and I-O
influences.

As in X1 and X2, with complex
multiple connections. The
number of nodes and forms of
entities can vary over time.

As in X1 and X2, but the
dynamics can switch as
the system changes.

XN Non-system No spatial/temporal ordering in
connections/interactions

No statistical correlation,
no persistent patterns.
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formation of cloud shapes, or patterns of vibrations of most mechanical systems.21 X1

systems respond to external conditions and inputs in a defined statistical sense, even if

their behaviour cannot be predicted exactly. Decisions about risk in such systems have to

allow for behaviour to occur unpredictably with very large amplitude, such as ‘rogue’

ocean waves, or sudden price movements (a focus of ‘complexity economists’18).

The second category of complex system, X2, are multi-type systems with generic

differences in their component entities and sub-systems. X2 systems have to be modelled

using a range of sciences and technologies. The behaviour of such systems is less

predictable a priori, because the different types of sub-system are open to different, and

often unknown, influences. Nevertheless, observations and experience show that these

multi-type systems can have patterns of behaviour that are common to other systems with

comparable connectivity and interactions between entities (see section 3). There are large

gradients over space and time and differing time scales of significant processes.

Examples of X2 systems include models of weather and climate; traffic flow; basic

biological systems such as cells; and certain, well-defined, social units.

The third type of characteristic system, X3, has a higher degree of complexity since

the forms of the entities and connections are transformed into some new forms with

persisting characteristic behaviour. In other words, such systems are interactive,

adaptive and generally chaotic (IAC), since their behaviour depends sensitively on their

previous behaviour as well as on input conditions and external influences. This category

describes most living systems ranging from simple organisms12 to the entire Earth

system.22 Large organizations and governments fall into this category, as they adapt and

evolve under external influences and varying inputs to the system. Models of X3 systems

have to account for uncertainty associated with unpredictable feedback from agents

and other systems.

Note that some collections of interacting entities cannot be described as systems if

their individual and group behaviours have no internal memory, if outputs are uncor-

related to inputs, and if the internal connections and properties of the entities keep

changing (e.g. perfectly elastic spheres in a container23).

As theory and observation show, there are limits to the accuracy of models, notably

about prediction and about adaptation, which depend on the structure and nature of the

system. Such errors naturally affect the reliability of decisions based on the models and

need to be understood by decision-makers, as well as knowing whether such errors can

be reduced, and at what cost.

With computers operating faster and accessing ever-greater volumes of data, and with

greater capacity and speed of communication, it is technically possible to construct

model systems that operate and control ever-larger artificial systems, such as networks of

communications, computers or transportation. Similarly, it is possible, in principle, to

compute formal models of partially continuous systems with ever-greater numbers of

entities and types of sub-system.

Research and experience shows that in the operations of large real systems, sudden

and unpredicted events can occur, or the systems can become unstable. For similar

reasons, errors in the models can grow unexpectedly. Much research is directed at

showing under what conditions such events occur and how, by comparing observations
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and model behaviour, and correcting the models through the technique of data assim-

ilation, the accuracy, and also understanding, of the models can be greatly improved.

3. Decisions and Connectivity

3.1. Connectivity

Between the sub-systems and entities in complex systems there are connections that are

local; for example, between adjacent eddies or organisms, and connections that are non-local

and which extend over groups of entities within the system (such as between the atmosphere

and ocean, or between groups of species). In systems with characteristic types of behaviour,

the nature of these connections, and their complexity, largely determine the main features of

behaviour and can explain the different patterns of behaviour in disparate systems. Focusing

on connectivity helps understand modelling, designing and deciding about the underlying

properties and the common features of real systems and their models – even the frustrating

behaviour of transport systems during major disruptions. Connectivity is often the key to

decisions taken by managers of organizations and by designers, repairers, and operators of

conceptual and physical systems. Heart surgeons and architects have to be topologists as they

deal with intersection points in arteries and buildings.24,25

Following Euler, many aspects of connectivity can be described in terms of idealized

networks and intersection points, which, like underground maps, are idealized depictions

of reality. Typically, a system can be modelled as N distinct and labelled entities or nodes.

The strength of the connection between the ith and the jth node is denoted by cij – which

can vary between 0 and 1. Following Barrat et al.26,

networks are specified not only by their topology but also by the dynamics of infor-
mation or traffic flow taking place on the structure. In particular, the heterogeneity in the
intensity of connections may be very important in the understanding of social structure.

Graphs may represent one-way or two-way connections, up to a maximum of N(N21).

Thence, an overall measure of connectivity C can be defined as the average of cij,(1)

C ¼
X

i;j

cij
N ðN � 1Þ

ð1Þ

so that C5 0 in a totally disconnected network and C approaches unity in networks with

high connectivity. The local connectivity or ‘clustering’ of the interactions in a system

can also be defined objectively in terms of the average value of cij for entities whose

distance apart lij is small.

Complex systems, such as large physical systems or organizational systems, may have

different connections and/or weightings for information and for action between the

entities or nodes. Insight on the functioning of organizational networks can be gained by

considering the connectivities in these networks, denoted by CI and CA respectively.

In hierarchical, strongly managed or secretive organizations, the connections may be

strong (i.e. cij51 or is close to unity) but the number of connections across the organization

may be deliberately small (so that CI and CA are of the order 1/N). On the other hand, in

creative organizations there should be many connections – which may be relatively weak –

to encourage ideas and originality (so that the average value of cij,, 1 but CE1).
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Managers of high-risk organizations realize the dangers of having too few connections

when key elements of the organization or structure are damaged (see Section 3.2).

Avoiding low connectivity between ecologically significant regions is also a critical

objective of biodiversity policy.27 On the other hand, in social organizations, patholo-

gical behaviour of the whole organization can result from too many strong connections

(with high values cij), as is sometimes seen in political groups and companies (where

CIECAE 1); for example, the scandal and system failure of Enron28 or information

overload via the world wide web.

In buildings and structures, the connectivity of action between spaces, CA, varies

between a small value (e.g. 1/N for a submarine) and a value close to 1 in the communal

design of a typical ranch style or terrace house. Bentham’s ideal of the Panopticon29 was for

each room in the institution to be visible from a central atrium, but not inter-communicable,

i.e. CA5 1/N. The three-dimensional geometry of how the actual spaces are connected is also

of great importance for the functioning of buildings.25 Resilient structures deliberately

include some redundancy in their design, i.e. reduction in interconnectivity of actions CA, so

that minor failures do not lead to major catastrophes.30 But in some buildings CA is so large

that they can collapse following the destruction of a limited part of the structure, as, for

instance, the collapse of the Twin Towers in New York.31

Connectivity is also a useful concept for assessing models of complex systems, such

as those for interconnected sub-systems32 of global climate change, seen in Figure 2.

Here processes in one part of the system (e.g. oceans) are directly connected with a

limited number of processes, and not directly connected with processes in other parts of

the system (e.g. atmosphere-land) because of their different time scale and interfaces

between them. The boundaries of the modelling systems have to be defined (as discussed

in Section 3.3) – in Figure 2, the input assumptions and decision-making processes based

on the global climate predictions are also assumed to be a part of the system. There are

14 (5N) modelling entities, and 32 connections between them, which is only a pro-

portion of the total number of 182 (5N(N2 1)) possible connections, i.e. CA 5 0.18, a

quite low level of connectivity. This probably ensures a certain level of stability and lack

of sensitivity to small changes in the models, but not to large changes, such as when

Mitchell introduced aerosol effects.33

3.2. Breakdowns and Barriers

Design, operational and policy decisions about systems should be based on under-

standing how interactions between connections and entities behave in the event of

possible disruptions. These have particular features where there are coupled networks in

the system.

Consider a transport network with N entities, labelled from 1,2,y,N, which may be

intersection points or stations (Figure 3). Suppose the matrix cij in Section 3.1 defines the

connections between these entities. To estimate the effect of Nb breakages in the network

(with just one breakage on each affected connection), it is assumed that the nodes at

either end of the broken connections also cease operating. If each node has an average of

/kS connections (/kS � 5 for central London underground nodes), then the total
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number of connections affected, Nc say, is much greater than the number of breakages.

In fact, for central London underground,

Nc � 2Nb /kS � 10Nb ð2Þ

Figure 2. The system of climate modelling and monitoring (both images reproduced
with permission of the UK Meteorological Office). (a) Elements that have to be
considered as variable, or fixed, parameters in weather or climate models depending on
the timescale of the calculation (from days to millennia): the climate model has a small
level of connectivity CA 5 0.18. (b) Time scale of the development of more complex
features of climate models, and the data sets used for verification such as those used by
UK’s MET Office Hadley Centre and the IPCC.
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so that only a few simultaneous deliberate or accidental breakages can quickly affect a

high proportion of the central part of a network. Angeloudis and Fisk34 confirmed how the

three breakages in London on 7 July 2005, affected the whole central system (by affecting 30

connections according to equation (2) and, therefore, around 50% of the network).

However, infrastructure systems in cities are tightly coupled. The operation of the

underground train network is closely linked to a much larger, more diffuse network, namely

the ground transportation network, consisting of streets carrying vehicles and walkers. There

are parallels with the movement of oil and water through porous rock and through connected

cracks in the rock, or indeed with urban networks of fractured water mains.35

In a disrupted situation, modelling the concentration of people per unit area in the train

system, PT(x,t), and on the ground, PG(x,t), at any time t and location x, can be greatly

simplified by using a coupled diffusion process:

@PG

@t
¼ So þ SI � kðPG�PT Þ þ rðDGrPGÞ

@PT

@t
¼ kðPG�PT Þ þ rðDTrPT Þ

where SI is an influx of people into the central area and So is an outflow of people from

the ground network into offices and building. DT and DG are the ‘diffusivities’ of the

coupled networks. These equations describe the transition – from train to ground net-

works – when there is a breakdown in the train network. People transfer to ground

transportation at a rate of the difference between PT(x,t) and PG(x,t).
The equations can approximate the flux (number of people per second per metre) of

people on the train and ground networks, denoted by FT and FG respectively. In the outer

parts of the city, these fluxes are proportional to the speeds of the train and the ground

networks, bringing people into the centre. The fluxes are proportional to, and in opposite

directions to, the spatial variation (or ‘gradient’) of the number of people per unit area,

and the diffusivities of the networks. There are also fluxes FGT between the networks

proportional to PT 2PG.

Q>0- -people moving inwards

Figure 3. Coupled train/underground and over-ground transport networks; note the
inward flux of people by train FT and the diffusive fluxes FG in the over-ground system.
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The model shows how, when disruptions occur, travellers transfer from one network

to the other. On the morning of the London terrorist attacks on 7 July 2005, when people

were moving to the centre, a breakage in the train network meant DT decreased to zero in

the centre, so that large concentrations of people rapidly developed near the disruptions

and people surged onto the streets (i.e. PT and then FGT and PG increased). These

tendencies were accentuated because of the lack of public information. Later the decision-

takers controlled the situation by varying all these parameters through physical controls (e.g.

road blocks reducing the value of DG) and provision of public communication, which led to

people leaving the centre. Improved modelling of the physical and communications systems

is essential to minimize risks in urban and other kinds of disaster.36,37

Other types of geophysical hazards, whose importance depends on local circum-

stances, have to be predicted for many years into the future as urban areas grow in size

and population38 and sea levels rise, raising the risks from tsunamis. In addition, one of

the most serious hazards, which may interrupt telecommunications and electrical power

for transport and environmental services, is the possibility of severe solar eruptions.

3.3. Systems with Boundaries

The structure and behaviour of most spatial systems and their models are greatly affected

by how their boundaries form, move and perhaps break up in certain conditions. In most

complex systems the external and internal boundaries are strongly related to the networks

of connections joining entities within and on either side of boundaries. In these networks,

agents or objects interact as they move between the various entities and spaces. For

example, decision-makers have to identify and consider how to deal with internal

boundaries that mark differences in functionality and levels of activity, for example

disease or economic capacity (as in the ‘sure-start’ social improvement programmes in

deprived urban areas in the UK and US39,40).

General models have been developed for the evolution and disruption of external and

internal interfaces in systems with different properties or activities, such as those

separating layers with different intensities of turbulence in the atmosphere. Modern

research into active interfaces that occur within dynamic networks or continua shows that

even though interactions between entities may occur, for example with agents moving

between them, interfaces can remain sharp and do not necessarily smooth out as in

simple diffusive processes. This is because there are counteracting processes, such as

attractive forces and defensive instincts within social groups (or a physical system like

stars and planets) much like the separation processes seen in Schelling’s model of

neighbourhood segregation.41 Similarly, near the edges of crowds or turbulent flows, the

people or eddies do not act like simple diffusive elements, because they cannot change

direction fast enough (i.e. over a length scale that is short compared with the width of the

flow42). Other examples are in blockages in flooding patterns43 and brain networks.13

Observers of the initial stages of riots in urban areas have noted how people stay within

zones or move around community boundaries rather like fluid flow. To control these events,

the connections and interactions between the zones are established, which also help deal with

long-term consequences. However, civil and military decision-makers generally assume that
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with large enough disruptions near the interface or direct influences on local entities, inter-

faces can be disrupted. The cost of such a disruption is then of interest.

Richardson44 first showed the power of applying these concepts to social systems in

his analysis of the frequencies of conflicts between nations, which he found were cor-

related positively with the lengths LB of the boundaries B that separated them (recent

geo-politics after 1989 seem to confirm this observation7). Recent research on complex

networks of biological systems, which have evolving interfaces that separate different

parts of a network, is useful for models of diseased areas in a network, such as tumours.45

4. System Changes and Decision-Making

4.1. Stability of the System

Decisions about a system involve first considering, for certain relevant external condi-

tions, a number of possible future scenarios, which should be based on an understanding

of the broad structure of the system and how it operates. Then decisions have to be made

in the light of these possible scenarios. The scenarios can be represented schematically as

graphs of the changes in the operation, or output, O(t), over time, t, depending on inputs

or external influences (Figure 4(a)). In most realistic complex systems – natural, artificial or

social – rapid changes occur at critical times, when the system might change to new kinds of

persistent and robust scenarios (or ‘stable states’), or to other possible scenarios, which are

not robust. A well-known example is how water heated in a saucepan is static until, at a

certain level of heating, upward and downward eddy motions are generated (which have

various stable forms). At this point the static scenario can no longer be stable.

This kind of general analysis can lead to surprising predictions in new situations (such

as Benjamin’s analysis of types of swirling flow46). Gladwell47 describes examples of

such ‘tipping points’. Some political scientists and historians have used these concepts to

conclude that certain of types of rapid change of governmental structure are more stable

than others, depending on the distribution of power and information between the top,

middle and bottom of the organization – not unlike the heated water pan.

There is an ongoing debate48 in most management, including governments, about how

much to explain publicly (and for companies to explain to investors) the scenarios and their

consequences that are under consideration. The advantage is that the public (or investors) can

more easily understand and accept when decision-makers need to change policy and when

new scenarios have to be considered following unforeseen events. Decision-makers are well

aware that in complex systems, from weather to politics, the likely future states of the system

are usually better predicted than the exact timing and the rapidity with which they will occur

(although the latter information is what speculative investors really want).

With new methods of simulating complex organizations, for example by multi-agent

models, and ever more comprehensive models of the scientific and technological aspects

of the system, both the stable and unstable scenarios can be explored by decision-makers.

The system ‘map’ corresponds approximately to how some governments have been

making decisions about energy and sustainability policies. The characteristic ‘states’

determine decisions about different energy sources (e.g. fossil/non fossil, etc.), all of

which were feasible over the short term, say at time t1, but as the consequences of these
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decisions become apparent for the long term (e.g. climate change and storage of nuclear

wastes), and there is feedback from society, at time t2 decisions in different countries

change quite suddenly (e.g. to more non-fossil fuels, and relating energy decisions to

those about sustainability). For example, the sharp changes seen in the UK and German

government policy since 2003 including anti- and pro-nuclear policies were not driven

by technical factors, but more by external political and social considerations.

Figure 4. Stability of system behaviour. (a) Diagram of stable (solid) and unstable
(dashed) scenarios of a system; showing how its outputs O(t) or measure of decisions
(e.g. carbon emissions associated with energy policy) vary with time t or amplitude of
external disturbances A. Decisions follow a pathway of possible strategies following
stable scenarios as they change with external interactions. (b) Dynamic system behaviour
in relation to the speed of operation and speed of information processing/communication
(such as traffic flow/decision making within an organization or an individual).
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An important question always is how, as decisions are made about future policies and

explanations are given about future scenarios, organizations and individual agents

respond and possibly adapt. Multiple consequences can be explored using simulations of the

whole system. Agent-based modelling can simulate the effects on individuals and their

feedback. Organizations may adapt by altering their external influences through interacting

with the external systems that determine these influences, e.g. by plants forming their own

ecosystems and by commercial advertising or political lobbying by organizations.

4.2. Dynamics of Change

Decision-makers need to know broadly how their particular system changes as a result of

internal fluctuations or external influences. Often, decision-makers rely either on

experience or intuition and incidental data. However, as some business and governmental

decisions have demonstrated, dynamical systems concepts can provide both specific and

general insights into how systems change with time naturally or deliberately, depending

on their complexity and the data that are available in different conditions. This approach

can indicate whether they are likely to change either smoothly or chaotically and

intermittently, and whether the fluctuations are small or large. These tendencies affect

how predictably the systems behave during these changes. Consequently, understanding

these factors can assist making decisions about when to make decisions.

In well-defined systems with connected entities, changes can occur quite suddenly,

even where change occurs repeatedly and with characteristic forms. Mathematical

‘catastrophe theory’49 categorized the different types of sudden behaviour that can occur,

whether abruptly, like a shock wave, or by growing fluctuations, or by a sudden transition

into a different pattern, such as an ocean wave curling over and breaking. Applications to

events in complex social systems have become possible as a result of many kinds of real-

time observations and measurements of human activities and communications, which now

are widely available in critical situations, such as dealing with hostages.50,51

Where changes in a system build up with time (but not instantaneously) as a result of

changing patterns of interactions between entities, they can be described and even pre-

dicted using general concepts, provided some basic data are available. The interactions

may involve both physical and material actions on the one hand and information on the

other, as they pass through the systems. A familiar example is a system of vehicles on

roads driven by humans, with finite response times, influenced by real-time visual and

electronic information. When the external influences change slowly and produce effects

(e.g. slowing down of the traffic) over a longer time than the response time, each entity in

the system can adjust smoothly. Typically, these ‘slow-local’ changes initially affect only

some entities in the system before they have wider effects.

‘Slow-local’ changes in a system differ qualitatively from ‘fast-global’ changes that

occur suddenly and either much faster than the response or predictability of the system or

much faster than the speed at which entities interact. They may affect large parts of the

system almost simultaneously, such as rapid natural disasters or stock market crashes.

However, as science, technology and practice develop, with ever-faster data gathering

and transmission speed, such rapid changes become redefined as ‘dynamic’ changes, as
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with disaster warning and some financial systems. In ‘slow-local’ systems, the

throughputs of action or objects averaged over some characteristic region of the system,

denoted by Q (units per second), are made up of ‘movements’ or fluxes of quantities

(objects, activity, credit, ideas, etc) travelling through the system at an average speed V
which varies markedly with the conditions in the system (Figure 4(b)). The throughput Q

and speed V may vary through the system as entities are influenced by the speed c – at

which information and action is transmitted through the system via the entities or agents

within that system. Where Q varies, V also varies, leading to queues or accumulation of

people, traffic, information, etc.

Changes in fluid flows, such as rivers, provide a good example to show how similar

behaviour occurs in different liquid and gaseous systems. These concepts have already

been used to analyse and control non-fluid systems.52 In these flows, signal waves move

with speed c through the fluid. In general, this differs from the speed of the flow V, which
may be affected by the flow where it originates.

Where the flow has a speed V that is less than c, it responds immediately to speed

changes elsewhere in the system (e.g. further along a river). This situation is not sensitive

to local disturbances and is highly predictable. However when the ratio V/c (the Froude
number for liquids or Mach number for gases) exceeds 1, the flow is faster than the speed

of the waves or signals from elsewhere and cannot respond to distant signals (e.g. what

happens downstream). Hydraulic engineers know – like managers experiencing a lack of

timely data – that in this super-critical situation the system responds to extraneous

influences in quite a different way to behaviour in sub-critical systems. In super-critical

flow, the information is not transmitted fast enough to prevent ‘shocks’ where the

throughput Q and the velocity are locally disturbed. In such cases, the position or timing

of the sudden jump is very sensitive to disturbance and is often unpredictable.

A well-known example of similar behaviour in a non-fluid system is the variation in

the moving patterns of traffic density or ‘stop-start waves’ on highways, which

approximately correspond to the compressible flows of gases.52 As usual, however,

similarities have to be considered carefully. Traffic has two forms of flow depending on

the same ‘Mach’ ratio of speed of cars, V, to speed at which ‘waves’ travel, c. The speed
of waves, c, depends on the density of traffic and driver reaction time (typically c is

about 40 km/h in near static conditions). As is well known, there is a slow flow where

V/c , 1 and free flowing supercritical traffic where V/c . 1. The latter is an unstable

situation – any blockage can soon lead to a ‘shock’ in the density and speed V of the

vehicles. To predict in detail the behaviour of these systems with many agents requires

computational simulations based on thousands of individual vehicle movements, but a

simple wave equation analysis is useful for strategic decisions. The system dynamics is

affected by the effective information ‘speed’ c at which agents receive and respond to

‘signals’ (e.g. days to travel from one office in an organization to another or seconds to

respond over a car’s pausing in traffic).

The patterns of mass movements of people in streets and buildings have many of the

same smooth/shock transitions. Systems modelling could be more widely used to avoid

overcrowding events.51 There are many operational and social systems where the var-

iation of throughput, Q, has similar characteristic variations depending on the relation
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between the speed at which the system operates (V) and the speed (c) with which information

is considered or at which changes to the system propagates through it. Decision-makers

might find this concept useful firstly for considering how organizations work and how they

can be more effectively managed (e.g. by changing their characteristic parameters) and

secondly for considering how to respond to situations, analogous to roadblocks on roads.

Perhaps the answer is that the most effective organizations should operate near the critical

value of V/c5 1. But if low risk is required then V/c should be less than 1. Applying this

system dynamics approach to organizations, by detailed study with quantification of relevant

parameters (V, c, etc) might help regulators and even shareholders assess companies in future.

These ideas are also guiding research into how individuals operate in the modern world

where a certain imposed ‘speed’ V is required to deal with their activities (which they can

choose to some extent). People’s effectiveness, and perhaps even their happiness, are pos-

sibly determined by how this (partly self-imposed) speed V relates to an individual’s innate

speed c of processing information and responding to external influences. Perhaps the greatest

contentment and physiological health20 comes from operating close to the critical ratio,

although Layard53 implies that happiness comes with less risk, which corresponds to

operating with V/c , 1.

This example shows how ‘systems-thinking’ can not only provide a scientifically

based framework for decision-making, but also provide revealing concepts that can be

communicated in layman’s languages, worldwide.
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