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Direct numerical simulations have been carried out for a fully developed turbulent
channel flow with a smooth upper wall and a lower wall consisting of square
bars separated by a rectangular cavity. A wide range of w/k, the cavity width
to roughness height ratio, was considered. For w/k � 7, recirculation zones occur
immediately upstream and downstream of each element while mean streamlines and
spatial distributions of the skin frictional drag indicate that each element is virtually
isolated. The maximum form drag occurs at w/k = 7 and coincides with the minimum
skin frictional drag. The dependence on w/k of the Clauser roughness function reflects
that of the form drag.

1. Introduction
Turbulent flows over rough surfaces are often encountered in practice; in the

atmosphere, the underlying surface is usually rough, while, in an engineering context,
pipes and ducts cannot be regarded as hydraulically smooth, especially at high
Reynolds numbers. Rough surfaces may be used to enhance heat transfer, albeit
at the expense of increasing the drag; alternatively, the roughness geometry may
be selected so as to decrease the drag, e.g. by using riblets, or delay transition.
Since the roughness can seriously degrade the performance of airfoils, wings and
turbomachinery blades, the ability to predict its effect is important. According to the
classical scheme (e.g. Nikuradse 1933; Clauser 1954; Perry, Schofield & Joubert 1969;
Raupach, Antonia & Rajagopalan 1991), the rough-wall boundary condition affects
the mean velocity distribution in the inner region (in the case of a channel flow,
y/h � 0.2, where h is the half–width of the channel). The effect of the roughness is to
shift the mean velocity profile, with respect to that on a smooth wall, by an increment
�U+, referred to as the roughness function, i.e.

U+ = κ−1 ln y+ + C − �U+, (1.1)

where C and κ are constants and + denotes normalization by either Uτ (≡ (τ/ρ)1/2),
τ is the wall shear equal to the sum of the viscous (or skin frictional) drag and the
form drag or ν/Uτ . The roughness function �U+ depends on the density (defined
as the total roughness frontal area per unit wall area), height (k) and nature of the
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roughness. Because of the general difficulties in making reliable measurements in the
vicinity of the roughness elements, τ is usually inferred by assuming the validity
of (1.1). Direct numerical simulations can provide an accurate determination of τ ,
albeit at small Reynolds numbers. They also allow quantification of the relative
contributions to τ of the form and skin frictional drag. In this paper, we examine
in detail how these contributions depend on w/k, after identifying and describing
the flow regimes associated with particular values of w/k. We also estimate �U+

and its dependence on w/k. Most of the results presented here are for k/h= 0.2 and
Re =4200, where Re =(Uch/ν) is the Reynolds number, Uc is the centreline velocity
and ν is the kinematic viscosity. A few simulations were carried out for k/h as small
as 0.1 and Re as large as 10 400 to assess the effect of these two parameters on the
results.

2. Numerical procedure
The incompressible non-dimensional Navier–Stokes and continuity equations may

be written as

∂Ui

∂t
+

∂UiUj

∂xj

= −∂P

∂xi

+
1

Re

∂2Ui

∂x2
j

+ Π, ∇ · U = 0, (2.1)

where Π is the pressure gradient required to maintain a constant flow rate; Ui ,
the component of the velocity vector in the i-direction and P the pressure. All
the quantities have been normalized by a combination of Uc and h. The Navier–
Stokes equations have been discretized in an orthogonal coordinate system using the
staggered central second-order finite-difference approximation. Here we recall only
the main features since details of the numerical method can be found in Orlandi
(2000). The discretized system is advanced in time using a fractional-step method
with viscous terms treated implicitly and convective terms explicitly. The large sparse
matrix resulting from the implicit terms is inverted by an approximate factorization
technique. At each time step, the momentum equations are advanced with the pressure
at the previous step, yielding an intermediate non-solenoidal velocity field. A scalar
quantity Φ projects the non-solenoidal field onto a solenoidal one. A hybrid low-
storage third-order Runge–Kutta scheme is used to advance the equations in time.
The roughness is treated by the immersed boundary technique described in detail
by Fadlun et al. (2000). This approach allows the solution of flows over complex
geometries without the need of computational intensive body-fitted grids. It consists
of imposing Ui = 0 on the body surface, which does not necessarily coincide with
the grid (• in figure 1). Another condition is required to avoid the geometry being
described in a stepwise way. Fadlun et al. (2000) showed that second-order accuracy
is achieved by evaluating the velocities at the closest point to the boundary (× in
figure 1) using a linear interpolation. This accounts for the physical behaviour of a
linear mean velocity profile very near the boundary even for turbulent flows, albeit
at the expense of clustering more points near the body. Fadlun et al. (2000) showed
that the velocity goes to zero where the boundary of the body is supposed to be, even
if this location does not coincide with the grid. The integration of (2.1) requires 5%
more CPU time with the immersed boundaries than without them.

3. Flow configuration
Direct numerical simulations have been performed for a fully developed turbulent

channel flow with square bars on the bottom wall (figure 2). Several values of w/k

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

55
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003005500


DNS of turbulent channel flow with transverse square bars 231

Figure 1. Geometrical sketch of immersed boundary method. Arrows, velocity vectors as
defined in a staggered grid ( ); •, points inside the roughness element; ×, points nearest
to the boundary of the roughness element. The solid line delineates part of the roughness
element.
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Figure 2. Mean streamlines, averaged with respect to time and z, for different w/k and
k/h = 0.2. The thick line corresponds to the zero streamfunction; , positive streamfunction,

, negative (primary recirculation zone). The definitions of k,w, do, y, ŷ and λ are indicated.
Flow is left to right.

have been investigated (0.33, 0.6, 1, 2.07, 3, 4, 5.5, 7, 8, 9, 10, 19) with k = 0.2h.
Periodic boundary conditions apply in the streamwise (x) and spanwise (z) directions,
and there is a no-slip condition at the wall in the wall-normal direction (y). The
computational box is 8h × 2h × πh in x, y and z respectively. The Reynolds number
is Re = 4200 and corresponds to Reτ = 180 when both walls are smooth. The flow
rate has been kept constant in all simulations. Hence, Uτ , k+ and Reτ depend on w/k.
The value of Reτ on the rough wall ranges between 190 (for w/k = 1) and 460 (for
w/k = 7) and k+ ranges from about 40 to about 90. For this particular surface (with
an infinite aspect ratio), Bandyopadhyay (1987) found that, for k+ � 10, the flow can
be assumed to be ‘fully rough’ so that the roughness function (�U+) depends only
on k+ and not on the Reynolds number. We have verified this (the results are not
given here) by running four simulations (Re = 4200, k =0.2h; Re =8400, k = 0.1h and
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0.15h; Re = 10 400, k = 0.1h) for w/k = 3. We have also verified that the results are
not affected by blockage. Three different grids have been used for all the simulations
at Re =4200: 200 × 140 × 97, 400 × 140 × 97 and 300 × 140 × 97. The first two are
non-uniform in y while the third is non-uniform in x, y. In the normal direction,
the points are clustered near the wall: within the cavity �y|min =0.005. The mesh
increases toward the channel centreline, with �y|max = 0.03. In x, points are clustered
near the roughness elements. Since results obtained with the 300 × 140 × 97 and
400 × 140 × 97 grids are virtually identical, only results for the latter grid are shown
here. The simulations at Re =8400 and Re =10 400 have been carried out with a grid
600 × 177 × 193 on a cluster of PCs.

4. Mean streamlines
Prior to quantifying the magnitudes of the form and skin frictional drag over the

rough wall, we investigated the effect of w/k on the overall behaviour of the flow
between roughness elements. Mean streamlines, averaged with respect to time and
z are shown in figure 2. For w/k � 4, a separation occurs at the trailing edge of
the element (point A) and reattachment is on the opposite vertical wall. The cavity
is occupied by a large recirculation region with two secondary vortices, of opposite
direction to the main recirculatory zone, in the corners (D) and (B). For w/k � 7,
the flow reattaches on the bottom wall (point E) at about 4.8k downstream of the
back face of the element (BE � 4.8k). The near-wall streamlines are essentially
horizontal between E and G, the distance GD being approximately 1.5k. As the next
element is approached, the streamlines are tilted upward and separation occurs. This
is in very close agreement with the flow visualizations of Liu, Kline & Johnston
(1966). They reported a reattachment length of 5k for w/k = 7 and w/k = 11. Le,
Moin & Kim (1997) performed a DNS of a turbulent flow over a backward facing
step with inlet and outlet boundary conditions; the streamwise length of the domain
was 20k. They showed that the instantaneous reattachment location, averaged in z,
oscillates between Xr/k = 4.8 and Xr/k =8 (Xr is measured from the step) with an
averaged value of about 6.3k. Liu et al. (1966) reported a reattachment length of
6k for w/k = 23. In the present case BE = 5.8k for w/k = 19. The previous results
suggest that, when w/k is large enough, the reattachment length is not influenced by
the presence of other elements, while for w/k � 7, the vertical downstream wall (CD)
causes an adverse pressure gradient (relative to a backward-facing step) which leads
to a shorter reattachment length.

5. Skin friction and form drag
Figure 2 clearly shows that once w/k exceeds a ‘critical’ value (� 7), the flow

remains virtually unchanged around a roughness element. Despite the slight increase
in the reattachment length, the only noticeable difference in the patterns between
w/k = 7 and 10 is in the length of the region where the streamlines are parallel to
the bottom wall (EG). The size and strength of the recirculation zones do not change
significantly for w/k � 7. This is further corroborated by the non-dimensional viscous
shear stress at the wall, 〈Cf 〉 = (µ∂〈U ∗〉/∂y∗)(1/ρU 2

c ) = (Re−1)(∂〈U〉/∂y)y =0, where ∗

indicates dimensional units and 〈 〉 denotes averaging with respect to time and z.
In figure 3, 〈Cf 〉 is shown for w/k = 3, 4, 7, 8, 9, 10 along the horizontal wall,

with s = 0 at the leading edge of an element. Over the ranges −1 <s/k < 0 and
1 <s/k < 5.5, the 〈Cf 〉 values agree reasonably well with each other for w/k � 7.
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Figure 3. (a) 〈Cf 〉 for different values of w/k. � , w/k = 3; ◦ , 4; , 7;
, 8; , 9; , 10. (b) Contours of pressure around a roughness element: ,

positive, · · · · ·, negative. The interval between successive contour levels is 0.01.
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Figure 4. Distributions of the pressure 〈P 〉 along the walls. (a) Horizontal walls (CA + BD),
(b) vertical walls (AB+ CD). Symbols as in figure 3. The inset near the top of (a) shows
streamlines for w/k = 10. The thick line corresponds to the zero streamfunction; ,
negative streamfunction (primary recirculation zone).

Within the cavity, 〈Cf 〉 is negative underneath the primary recirculation region, with
one negative peak for w/k � 4 and two for w/k � 7. For w/k � 7, the distance EG,
over which the mean viscous shear is positive, increases with w/k.

On the element crests (0 <s/k < 1), the same peak is observed in each case, although
separation occurs for w/k � 7. By increasing w/k, the intensity of the recirculation
zone increases and 〈Cf 〉 is reduced. This is due to the pressure field near the roughness
element. Maximum and minimum values of 〈P 〉 (figure 3) are located on the upstream
face and crest of the element, so that a strong pressure gradient drives the flow outward
around the vicinity of the leading edge of the element. By increasing w/k, the pressure
gradient increases, resulting in separation above the crests for w/k � 8.

The pressure variation along both the horizontal and vertical wall surfaces is
shown in figure 4. It is assumed that for each roughness geometry, 〈P 〉 is zero at
s/k =0. On the horizontal wall BD, 〈P 〉 is constant over a distance of about 2k,
because the vortex at B is too weak to cause a significant pressure gradient. For a
sparse roughness (7 � w/k � 10), 〈P 〉 grows linearly with x, from approximately the
centre of the vortex to the reattachment point E (4 � s/k � 6). The similarity between
the different pressure distributions over this range of w/k suggests that the roughness
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Figure 5. (a) Dependence of the skin frictional drag Cf , form drag Pd and of their sum
on w/k. Averaging is over one roughness wavelength. �, Cf ; �, Pd ; ◦, Pd + Cf ; k/h = 0.2,
Re= 4200. (b) Drag coefficient Pd/k. , k =0.2h, Re= 4200; ◦, k = 0.1h, Re= 8400; •,
k = 0.15h, Re= 8400; �, k = 0.15h, Re= 8400; �, k = 0.15h, Re= 6300; �, k = 0.1h, Re= 10400.

elements are isolated. Figure 4(b) shows 〈P 〉 on the two vertical walls (the origin of
ŷ is on the cavity floor, figure 2). As a result of the recirculation region immediately
downstream of the roughness element, 〈P 〉 is constant on section AB. On the opposite
wall (CD), 〈P 〉 is approximately constant in the separated region up to 0.75k, and
decreases near the leading edge (C) of the element (see figure 3).

Over a streamwise wavelength λ, the relative contributions of 〈Cf 〉 and 〈Pd〉 to τ

are Cf = λ−1
∫ λ

0
〈Cf 〉 ds and Pd = λ−1

∫ λ

0
〈P 〉n · x ds respectively, where Pd is the form

drag obtained by projecting 〈P 〉 onto the x-direction (n is the normal to the surface).
For a square bar roughness, Pd is simply the difference between the pressure integrals
along each vertical wall. Figure 5(a) shows that there are two distinct regimes for both
Cf and Pd . For w/k � 7, Cf needs to decrease as w/k increases. This corresponds to
a lengthening of the separated region adjacent to the cavity floor. Beyond w/k =7,
Cf increases slowly as EG increases. The geometry (with the shortest EG) that
minimizes Cf corresponds to w/k = 7. Pd has a maximum at w/k = 7 and exhibits
a weak dependence on w/k for 5 <w/k < 10. This behaviour is in agreement with
the experimental results of Furuya, Miyata & Fujita (1976) who used cylindrical
rods attached to the wall, transversely to the flow. This suggests that w/k is the key
parameter of the flow, whereas the shape of the roughness element is likely to be less
important. The form drag per unit area Cd = Pd/k ( =

∫
P ∗ dy∗ dz∗/(ρU ∗2

λ∗k∗)), or
drag coefficient, is shown in figure 5(b). The distribution for k/h = 0.2 and Re =4200,
as estimated from figure 5(a), represents the other results obtained at different k/h

and Re to a good approximation. The implication of figure 5(b) is that, for this flow,
Cd depends only on w/k and it is not sensitive to k/h and Re.

To gain some insight into the relationship among Pd , Cf and the Reynolds shear
stress at the edge of the cavity, the Navier–Stokes equation for U was integrated
over the cavity region S (see figure 2) bounded by consecutive roughness elements
(x1, x2, x3 are equivalent to x, y, z):

∫
S

(
∂U

∂t
+

∂UUj

∂xj

)
dx1 dx2 dx3 =

∫
S

(
−∂P

∂x
+

1

Re

∂2U

∂x2
j

)
dx1 dx2 dx2. (5.1)

Since the flow rate is constant (∂Q/∂t = 0), and there is periodicity in x and z, (5.1)
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Figure 6. −〈uv〉|yb
as a function of x/k. �, w/k = 3; ◦, w/k = 7; •, w/k = 10; �, w/k = 19.
The range of x on the abscissa extends from xa to xb .
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Figure 7. 〈(1/Re)(d〈U〉/dy)〉|y as a function of x/k. (a) y = yb (plane of the crests),
(b) y = ya (bottom wall). Symbols and range for x are as in figure 6.

can be simplified to∫ yb

ya

〈P |xb
〉−〈P |xa

〉 dy =

∫ xb

xa

1

Re

d〈U〉
dy

∣∣∣∣
yb

dx −
∫ xb

xa

〈uv〉|yb
dx −

∫ xb

xa

1

Re

d〈U〉
dy

∣∣∣∣
ya

dx, (5.2)

where U =U + u. After dividing by λ, we obtain

Pd =
1

λ

∫ xb

xa

1

Re

d〈U〉
dy

∣∣∣∣
yb

dx − 1

λ

∫ xb

xa

〈uv〉|yb
dx − 1

λ

∫ xb

xa

1

Re

d〈U〉
dy

∣∣∣∣
ya

dx. (5.3)

Figure 6 shows that 〈uv〉|yb
is maximum near the reattachment point. Hence, the

integral of 〈uv〉|yb
divided by λ (Pd is the pressure drag divided by λ) is maximum

when w/k =7. This is the smallest value of w/k for which reattachment occurs on
the bottom wall. Downstream of the reattachment point (x/k � 8), 〈uv〉|yb

decreases
and at a sufficiently large distance (x/k � 15) from the element, it approaches the
value for a flat surface. For small values of w/k, reattachment occurs on the vertical
downstream wall, and since the separated region is more stable, the magnitude of
〈uv〉 is smaller. The value of (1/Re) d〈U〉/dy|yb

(figure 7a), decreases slowly with x so
that its integral with respect to x, after dividing by λ, decreases when w/k increases.

The quantity (1/Re) d〈U〉/dy|ya
(figure 7b), represents the friction on the bottom

wall. It is negative almost everywhere for w/k = 7 since reattachment on the
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Figure 8. (a) Dependence of the displacement height do on w/k. (b) Distributions of U
+
.

Origin in y estimated with the Jackson (1981) method. , Kim, Moin & Moser (1987).
�, w/k = 1; �, 3; ◦, 4; •, 7; �, 9; �, 19. The straight lines of reference are
U

+
=1/0.41 ln y+ + C ′, C ′ being 2.9, −4, −6.2, −7.7, −7.6, −6.1 for w/k =1, 3, 4, 7, 9, 19

respectively.

bottom wall is immediately followed by separation due to the downstream element.
Collectively, the information in figures 6 and 7 implies that Pd is likely to be maximum
at w/k � 7 since the contributions from the second and third terms on the right-hand
side of (5.3) are maximum for that geometry. The contribution from the first term is
negligible.

6. Roughness function
Since the results of the previous section allow Uτ to be estimated reliably, we now

turn our attention to the estimation of �U
+

and its dependence on w/k. There
are three unknowns in (1.1): Uτ , κ and the origin for y. Usually, experimentalists
determine Uτ and do (measured from the base of the roughness element) by fitting
the mean velocity data to (1.1) after assuming a value of κ (usually 0.41). Perry
& Joubert (1963) pointed out that several combinations of Uτ , do are possible so
that there is inevitable ambiguity associated with their determination, even when the
same type of roughness is considered. Since Uτ has been determined accurately here
(≡ (Pd + Cf )1/2), independently of (1.1), only one unknown (do) remains. We have
followed two different approaches: that of Jackson (1981) who identified do with the
centroid of the moment of forces acting on the elements, and that in which κ is
assumed (� 0.41). The first approach is especially attractive since it allows �U

+
to

be estimated independently of (1.1). By defining M as the moment due to the forces
in the streamwise direction with respect the base of the element, M =

∫ C

D
〈P 〉ŷ ds +∫ A

B
〈P 〉ŷ ds + Cf k (see figure 2 for symbols), so that do = M/(Pd + Cf ). Figure 5(a)

shows that when w/k < 2, Pd is small so that Cf k provides the main contribution
to M and do ∼ k, implying that the origin is virtually on the crest (figure 8a). As
w/k increases, the contribution from Pd dominates (figure 5a) and the moment
due to Cf can be neglected. For each of the limiting conditions, (w/k → ∞) and
(w/k → 0), do approaches the expected limits of 0 and k respectively. Figure 8(b) shows
distributions of U+ for a wide range of w/k and the smooth channel flow distribution
of Kim et al. (1987) is included as reference. Averaging has been carried out with
respect to x, z, t because, for a particular roughness density, there is no perceptible
dependence on s/k (position within one wavelength) for ŷ > 3k. As expected, the
velocity exhibits a downward shift with respect to the smooth channel. The maximum
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w/k
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Figure 9. Comparison between the roughness function �U
+

and the form drag Pd , each
plotted against w/k. �, present �U

+
; - - -◦- - -, Furuya et al. (1976) transverse wires; �,

Krogstad & Antonia (1999) rods; •, Moore (1951) square ribs; , Pd × 1000.

shift occurs at w/k =7, i.e. the geometry which yielded the maximum value of Pd .
The resulting value of κ varies significantly with w/k, ranging between 0.33 and
0.47, so that the validity of (1.1) is questionable at least for the present Reynolds
numbers. When both Uτ and do are unknown, fitting to (1.1) could result in an
incorrect estimation of Uτ . With κ taken as 0.41, and by fitting the velocity profiles to
U

+
= (1/0.41) ln y+ +C ′, the magnitude of C ′ was estimated to be 2.9, −4, −6.2, −7.7,

−7.6, −6.1 for w/k = 1, 3, 4, 7, 9, 19 respectively. The corresponding distributions are
shown as straight lines in figure 8(b). They compare favourably with the profiles
obtained when the method of Jackson is used to determine do. The present results
suggest that the roughness function, �U

+
, depends only weakly on do. Figure 9

shows that �U
+

= C −C ′ (with C = 5.5) increases rapidly over the range 2 <w/k < 4.
For 4 <w/k < 10, it is approximately constant, with a weak maximum at w/k = 7.
The distribution of total drag Pd + Cf , shown in figure 5(a) and reproduced in

figure 9, is very similar to that for �U and close to �U
+
. The implication is that the

pressure distribution around the roughness element influences �U directly. When the
flow reattaches on the bottom wall, �U can be thought of as a momentum defect
induced by the elements, and is therefore proportional to the drag (mostly form
drag). Since �U

+
is the ratio �U/Uτ and Uτ is also proportional to the drag, �U

+

is nearly constant. Over this range of w/k, there is reasonable agreement between
the present distributions and the experimental data (results from three different
experiments are included in figure 9). In particular, the present results confirm
and extend the trend indicated by the wire roughness data obtained by Furuya

et al. (1976). Larger differences (figure 9) between the present values of �U
+

and
those of Furuya et al. (1976) are found for small w/k because the geometry differs
in the two cases. For example, w/k =0 corresponds to a smooth wall in the present
context, whilst in the Furuya et al. (1976) experiment, the wires touch each other,
thus forming an undulating boundary.

7. Conclusions
The present study demonstrates the advantage of direct numerical simulations

for providing reliable information on the pressure distributions around roughness
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elements and hence the form drag. The skin frictional drag Cf and the form drag Pd ,
which are extremely difficult to obtain in physical experiments, have been determined
for a range of w/k, as well as several values of k/h. The distributions of 〈Cf 〉 and 〈P 〉,
in conjunction with the mean streamlines, indicate that, for w/k > 7, the roughness
elements are isolated since the strength and size of the main recirculation zone no
longer depend on w/k. The minimum Cf and maximum Pd occur at w/k = 7 when
the reattachment on the bottom wall occurs immediately upstream of the subsequent
element. For w/k � 2, the total drag is closely approximated by the skin frictional drag
on the crests of the elements. In the range 5 <w/k < 19, the total drag is contributed
almost entirely by Pd . One would expect that, for this range, the Reynolds number
dependence would be much smaller than in the previous case. The behaviour of
�U

+
, as a function of w/k, compares favourably with that previously obtained by

experiment (Furuya et al. 1976) and reflects the way the form drag varies with w/k.
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