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Abstract

Thermal time models have been widely applied to predict temperature requirements for seed
germination. Generally, a log-normal distribution for thermal time [θT(g)] is used in such
models at suboptimal temperatures to examine the variation in time to germination arising
from variation in θT(g) within a seed population. Recently, additional distribution functions
have been used in thermal time models to predict seed germination dynamics. However,
the most suitable kind of the distribution function to use in thermal time models, especially
at suboptimal temperatures, has not been determined. Five distributions (log-normal, Gumbel,
logistic, Weibull and log-logistic) were used in thermal time models over a range of tempera-
tures to fit the germination data for 15 species. The results showed that a more flexible model
with the log-logistic distribution, rather than the log-normal distribution, provided the best
explanation of θT(g) variation in 13 species at suboptimal temperatures. Thus, at least at sub-
optimal temperatures, the log-logistic distribution is an appropriate candidate among the five
distributions used in this study. Therefore, the distribution of parameters [θT(g)] should be
considered when using thermal time models to prevent large deviations; furthermore, an
appropriate equation should be selected before using such a model to make predictions.

Introduction

Seed germination is a pivotal stage in the life cycle of plants (Walck et al., 2011; Baskin and
Baskin, 2014). Temperature is a critical environmental factor regulating seed dormancy
break, germination and subsequent seedling establishment (Bradford, 2002; Baskin and
Baskin, 2014). Three ‘cardinal temperatures’, the minimum, optimum and maximum tempera-
tures, are used to characterize seed germination responses to temperature. The minimum (or
base, Tb) and maximum (or ceiling, Tc) temperatures are below and above those at which ger-
mination will occur, respectively, while germination is most rapid at the optimum temperature
(To) (Alvarado and Bradford, 2002; Bradford, 2002; Bewley et al., 2013; Dürr et al., 2015).
Thus, the knowledge of seed germination responses to temperature is required not only for
understanding the ecological adaptation of species but also for formulating effective strategies
for restoration (Fenner et al., 2005; Baskin and Baskin, 2014).

Many studies have found that the germination rate (GRg, the reciprocal of time to a given
germination fraction, 1/tg) is linearly related to temperature (Gummerson, 1986; Bradford,
2002; Hardegree, 2006; Hu et al., 2015; Felipe Daibes and Cardoso, 2018; Carhuancho León
et al., 2020; Zhang et al., 2020). Thus, the thermal time model has been developed to evaluate
the effect of temperature on progress towards germination (Covell et al., 1986; Ellis et al., 1986;
Gummerson, 1986; Allen et al., 2000; Bradford, 2002). In this model, several parameters were
fitted and used to quantify temperature requirements for seed germination, such as the cardinal
temperatures (Tb, To and Tc) and thermal time (θT, the thermal time required to reach the ger-
mination requirement of individual seeds in the population) (Bradford, 2002; Hu et al., 2015;
Saberali and Shirmohamadi-Aliakbarkhani, 2020; Zhang et al., 2020). Although thermal time
models are empirical, rather than mechanistic, they provide biologically meaningful parameters.
The intrinsic germination rate, reaction to temperature and uniformity of germination corres-
pond to θT(g), Tb and σθT, respectively, at suboptimal temperatures (Bradford, 2002).

Generally, implicit in thermal time models are the assumptions that the minimum tem-
perature, Tb, is constant for all fractions of the seed population and that thermal time, θT(g),
follows a log-normal distribution with a mean [ln(θT(50))] and standard deviation [σln(θT)]
at suboptimal temperatures (Covell et al., 1986; Cheng and Bradford, 1999; Hu et al., 2013,
2015; Rong et al., 2015; Daibes and Cardoso, 2018; Ostadian Bidgoly et al., 2018; Zhang
et al., 2020). The log-normal (or normal) distribution was originally selected for thermal
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time modelling on the basis of its adequate fit to data from ori-
ginal studies and its mathematical convenience, rather than for
any theoretical reasons (Mesgaran et al., 2013). However, θT(g)
is defined explicitly as an extreme value, at or below which no ger-
mination occurs. Thus, thermal time may be expected to follow
skewed frequency patterns, and some generalized extreme-value
models, such as the Gumbel and Weibull distributions, may be
satisfied in describing the pattern of θT(g) variation (Bradford,
2002; Watt et al., 2010). Sakanoue (2010) showed that the expo-
nential distribution with a lag phase provided concise and prac-
tical estimates of germination rates in the determination of the
base temperature and thermal time required for seed germination
of nine herb species. Rosbakh et al. (2015) reported that the
Weibull distribution provided a consistently close fit to the data
when used in thermal time models to calculate the cardinal tem-
peratures of 49 species. In addition, Peng et al. (2018) combined
the logistic function and a thermal time model to estimate the
base temperature and the thermal time for germination of two
desert species in the Junggar Basin of China. Moreover, using
the inverse normal distribution function (Cave et al., 2011) in
thermal time models also has led to more accurate and non-
biased estimates of cardinal temperatures and thermal time for
seed germination.

Although many distribution functions have been used in ther-
mal time models to describe the thermal requirements for seed
germination (Covell et al., 1986; Sakanoue, 2010; Cave et al.,
2011; Hu et al., 2015; Rosbakh et al., 2015; Peng et al., 2018;
Zhang et al., 2020), a conclusion regarding the most suitable dis-
tribution function for fitting germination data in thermal time
models based on a comparison of multiple distributions has not
yet been reached, which may lead to biased parameter estimates.
However, with the exception of a study on hydrothermal time
models (Mesgaran et al., 2013) in which the log-logistic distribu-
tion consistently provided the best explanation of Ψb(g) variation
among eight distributions for three weed species, little is known
about which kind of the distribution is most suitable when used
in thermal time models, especially at suboptimal temperatures.
In addition, it is also not clear whether the best distribution func-
tion differs among species, since the inconsistencies among previ-
ous studies may have been due to differences among species.
Therefore, a systematic evaluation of the best distribution function
to use in thermal time models is needed for estimating tempera-
ture or thermal time requirements for seed germination and pre-
dicting seed germination dynamics.

In our study, five distribution functions, including log-normal,
Gumbel, logistic, Weibull and log-logistic, were explored to
describe the variation in θT(g) at suboptimal temperatures for 15
common species, and the following questions were addressed:
(1) Does distribution function selection lead to a biased estima-
tion for parameters of the thermal time model? (2) If it is,
which function provides the best estimation? (3) Does the best
distribution function differ among species?

Materials and methods

Seed collection

Seeds of Elymus dahuricus, Elymus nutans, Elymus sibiricus,
Ephedra intermedia, Festuca sinensis, Hedysarum multijugum,
Lepidium apetalum, Lolium multiflorum, Lolium perenne,
Medicago sativa, Onobrychis viciifolia, Poa crymophila, Sorghum
bicolor, Trifolium pratense and Trifolium repens were used in

this study, and they were provided by the Official Herbage and
Turfgrass Seed Testing Centre, Lanzhou, Ministry of Agriculture
and Rural Affairs, China. Seeds were stored dry in paper bags
at 4°C until used in experiments in March 2017. On the one
hand, these species are common herbages and weeds in China,
and thus the conclusion based on these species is universal. On
the other hand, species with a germination percentage of more
than 80% were selected and used in the present study, which is
helpful to estimate the thermal time model correctly and effect-
ively and get a more accurate conclusion.

The initial seed germination percentage and the thousand-seed
weight (TSW) of all tested species and water-impermeable seeds
of H. multijugum,M. sativa, O. viciifolia, T. pratense and T. repens
were determined before the experiments commenced (supple-
mentary Table A1). The seed germination percentage and the
TSW were determined according to the International Seed
Testing Rules (the seed germination percentages of E. dahuricus,
E. nutans, E. sibiricus, F. sinensis, H. multijugum, L. apetalum and
P. crymophila were based on those for corresponding genera,
while the seeds of E. intermedia were examined at 20°C according
to the habitat conditions of the species, as this genus is not
included in the International Seed Testing Rules) (ISTA, 2014).
The percentage of water-impermeable seeds was determined by
incubating seeds at 20°C for 14 d, after which the number of
seeds remaining water-impermeable was determined (Hu et al.,
2015). The initial seed germination percentage of all species was
greater than 80%, and the water-impermeable percentage of the
five species was less than 5%.

Effect of temperature on germination

Germination responses to temperature were tested for seeds of all
species by incubation at six constant temperatures from 10 to 35°
C, depending on the species, at 5°C intervals. Seeds were exposed
to a 12/12 h daily photoperiod (white fluorescent tubes, photo
irradiance: 60 μmol m−2 s−1, 400–700 nm). For each treatment,
three replicates of 50 seeds were placed in 10-cm-diameter Petri
dishes on two sheets of filter paper (Shuangquan, Hangzhou,
China) moistened with 7 ml of distilled water. Seeds were moni-
tored for germination every 8, 16 and 24 h, depending on the ger-
mination rate, for at least 28 d until no further germination
occurred for three consecutive days; seedlings were removed at
each counting. Seeds were counted as germinated when the radicle
was visible (≥2 mm). All chambers used for temperature experi-
ments were set to have the same light and humidity conditions.
The temperature, light and humidity in each chamber were moni-
tored carefully, and the position of Petri dishes inside each chamber
was randomized every day. Thus, we assumed that temperature was
the only environmental factor that varied between the chambers.

Distributions

In this study, five distribution functions, namely, the log-normal,
Gumbel, logistic, Weibull and log-logistic functions, were used to
fit the data and describe the variation in θT(g) at suboptimal tem-
peratures [see Mesgaran et al. (2013) for more details on these
distributions].

Log-normal distribution

At suboptimal temperatures, the log-normal distribution of the
thermal time model is as follows:
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uT(g) = es · probit(g) + m (1)

probit(g) = ln ((T − Tb) · tg ) − m

s
(2)

where θT(g) is the thermal time required to reach the germination
requirements among individual seeds in the population at the
suboptimal temperatures (with units of °C per day or hour); pro-
bit(g) is the probit transformation of cumulative germination per-
centage g, which linearizes the sigmoidal time course on a log
time scale (Finney, 1971); μ(ln(θT(50))) and σ(σlnθT) are the
median thermal time and standard deviation of ln(θT) require-
ments among individual seeds in the population, respectively; T
is the germination temperature; Tb is the minimum temperature
and tg is the actual time to germination of fraction g. If θT(g) fol-
lows a log-normal distribution, then at ln(θT(g)) = μ, the fraction
of germinated seeds is 0.5.

Gumbel distribution

The inverse cumulative distribution for predicting θT and the
cumulative distribution function for predicting the germination
percentage (g) with the Gumbel distribution can be formulated
into a thermal time model at suboptimal temperatures as follows:

uT(g) = m − s · ln ln
1
g

( )( )[ ]
(3)

g = exp − exp − ((T − Tb) · tg − m)

s

( )( )[ ]
(4)

where μ and σ are location and scale parameters, respectively. If
θT(g) follows a Gumbel distribution, then at θT(g) = μ, the fraction
of germinated seeds is ≈0.366 (with a log-normal distribution, the
value is 0.5).

Logistic distribution

An applicability of the logistic distribution in thermal time mod-
els at suboptimal temperatures was evaluated as follows:

uT(g) = m+ s · ln
g

1 − g

( )
(5)

g = 1

1+ exp − ((T − Tb) · tg − m)

s

( )( ) (6)

Weibull distribution

The Weibull distribution can be incorporated into a thermal time
model at suboptimal temperatures as follows:

uT(g) = m+ s · [− ln (1 − g)]1/l (7)

g = 1 − exp − ((T − Tb) · tg − m)

s

( )l
( )[ ]

(8)

where λ is the shape parameter that determines the skewness and
kurtosis of the distribution. Regardless of the shape value, if θT(g)
− μ = σ, then the proportion of germinated seeds is ≈0.632.

Log-logistic distribution

For this distribution, the thermal time model at suboptimal tem-
peratures becomes the following:

uT(g) = m+ s · g
1 − g

( )1/l

(9)

g = 1

1+ ((T − Tb) · tg − m)

s

( )−l
(10)

Data analysis

All distributions, having been formulated into a thermal time
model, were fitted to data using non-linear regression in SPSS
25.0 (SPSS Inc., Chicago, IL). The value of θT(50) can be obtained
from regression (equations 1, 3, 5, 7 and 9) when g = 50% in all
models (in a log-normal distribution, the value is eμ). The
model parameters, μ, σ, λ and Tb, were estimated by an iterative
method until the residual sum of squares (RSS) (equation 11)
of the regression (equations 2, 4, 6, 8 and 10) was minimized
(Ellis et al., 1986). To identify the best model for estimating Tb

and θT(50) at suboptimal temperatures, the adjusted coefficient
of determination (Ra2) (equation 12) and the corrected Akaike
information criterion (AICc) (equation 13) were used (Sugiura,
1978; Hu et al., 2015; Parmoon et al., 2015).

RSS =
∑

(yobs − ypre)
2 (11)

Ra2 = 1−
∑

(yobs − ypre)
2/(n − k − 1)∑

(yobs − �yobs)
2/(n − 1)

(12)

AICc = n · ln RSS
n

( )
+ 2k+ 2k · (k+ 1)

n − k − 1

( )
(13)

Di = AICc − AICcmin (14)

where yobs refers to the observed values, ypre refers to the pre-
dicted values, �yobs is the mean of the observed values, n is the
number of observations, k is the number of model parameters,
and AICcmin is the minimum calculated AICc among all distri-
bution models.

The most accurate estimation model is the one with the lowest
RSS value, highest Ra2 value and lowest AICc value, when the
AICc value is estimated according to Parmoon et al. (2015). If
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Table 1. Estimated parameters for five statistical distributions used in thermal time models for seed germination of 15 species at suboptimal temperatures

Species Distributions μ (°C h) σ λ θT(50) (°C h) Tb (°C) RSS Ra2 AICc Δi

E. dahuricus Log-normal 1,408.687 0.614 – 1,408.687 8.114 0.276 0.784 −78.162 1.819

Gumbel 995.482 711.770 – 1,256.355 9.412 0.271 0.787 −78.527 1.454

Logistic 694.945 358.427 – 694.945 17.350 0.252 0.802 −79.981 0.000

Weibull 599.466 1,084.159 0.846 1,302.447 7.952 0.236 0.803 −78.126 1.855

Log-logistic 553.848 713.022 1.298 1,266.870 7.964 0.226 0.811 −78.992 0.989

E. nutans Log-normal 1,016.691 0.505 – 1,016.691 7.010 0.283 0.811 −116.026 0.482

Gumbel 892.579 464.797 – 1,062.933 6.763 0.278 0.814 −116.508 0.000

Logistic 1,103.549 318.014 – 1,103.549 6.648 0.302 0.798 −114.272 2.236

Weibull 406.911 833.409 1.221 1,024.208 6.931 0.269 0.815 −114.622 1.886

Log-logistic 212.717 816.618 2.376 1,029.335 6.847 0.275 0.808 −114.026 2.482

E. sibiricus Log-normal 1,046.545 0.479 – 1,046.545 6.193 0.371 0.672 −103.400 4.783

Gumbel 878.775 428.111 – 1,035.683 6.130 0.380 0.664 −102.777 5.406

Logistic 1,053.754 333.758 – 1,053.754 6.118 0.430 0.620 −99.563 8.620

Weibull 723.790 413.149 0.416 894.979 6.501 0.289 0.733 −107.080 1.103

Log-logistic 641.683 290.490 1.017 932.173 6.468 0.277 0.744 −108.183 0.000

E. intermedia Log-normal 1,701.016 0.848 – 1,690.996 8.205 0.170 0.777 −123.690 1.683

Gumbel 1,459.247 1,217.747 – 1,905.567 7.242 0.198 0.740 −119.726 5.647

Logistic 2,004.248 845.755 – 2,004.248 7.026 0.237 0.689 −115.052 10.321

Weibull 890.252 2,436.009 0.378 1,814.061 7.347 0.179 0.754 −119.535 5.838

Log-logistic 747.529 1,017.044 0.665 1,764.573 7.643 0.143 0.803 −125.373 0.000

F. sinensis Log-normal 2,218.925 0.704 – 2,218.925 7.037 0.308 0.880 −229.749 0.000

Gumbel 1,727.772 1,219.584 – 2,174.765 7.319 0.329 0.872 −226.649 3.100

Logistic 2,172.606 841.546 – 2,172.606 7.698 0.392 0.847 −218.414 11.335

Weibull 560.881 2,177.001 1.187 2,159.557 7.186 0.313 0.875 −226.598 3.151

Log-logistic 214.070 1,917.733 2.108 2,131.803 7.149 0.297 0.881 −229.064 0.685

H. multijugum Log-normal 774.941 0.439 – 812.420 8.336 0.069 0.930 −72.544 2.930

Gumbel 645.145 275.489 – 746.115 8.439 0.067 0.932 −72.985 2.489

Logistic 707.119 201.023 – 707.119 8.888 0.090 0.909 −68.558 6.916

Weibull 488.555 406.026 0.998 769.784 8.090 0.058 0.935 −71.330 4.144

Log-logistic 476.653 278.487 1.557 755.140 8.076 0.044 0.951 −75.474 0.000

L. apetalum Log-normal 368.153 0.666 – 368.153 11.412 0.164 0.893 −136.923 2.094

Gumbel 335.723 183.892 – 403.122 11.129 0.214 0.860 −129.472 9.545

Logistic 424.930 156.215 – 424.930 10.858 0.235 0.847 −126.850 12.167

Weibull 214.001 253.193 0.983 388.392 11.178 0.149 0.899 −136.869 2.148

Log-logistic 127.273 262.121 2.242 389.394 11.195 0.138 0.906 −139.017 0.000

L. multiflorum Log-normal 724.519 0.637 – 724.519 3.672 0.233 0.916 −211.533 7.012

Gumbel 566.398 333.002 – 688.448 4.112 0.233 0.916 −211.533 7.012

Logistic 704.200 243.220 – 704.200 4.131 0.290 0.896 −202.341 16.204

Weibull 279.868 539.697 1.102 666.866 4.105 0.219 0.919 −211.686 6.859

Log-logistic 157.484 500.745 2.236 658.229 4.185 0.186 0.931 −218.545 0.000

L. perenne Log-normal 2,246.793 0.745 – 2,246.793 7.083 0.301 0.908 −298.699 2.929

Gumbel 1,743.622 1,363.858 – 2,243.494 7.226 0.364 0.889 −287.676 13.952

Logistic 2,298.378 994.028 – 2,298.378 7.389 0.471 0.856 −272.729 28.899

(Continued )
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Δi < 10, there is no significant difference between models, and the
model with a higher AICc value is also suitable. If Δi > 10, the
model with a higher AICc value is not suitable and does not fit
well. Therefore, to select the best model, appropriate AICc values
were first determined according to the Δi value, and then, the
values of RSS and Ra2 were assessed.

Thermal time models include residuals, which were estimated
from the difference between the virtual θT(g) and predicted θT(g) at
suboptimal temperatures, and denoted RT. The residuals were
plotted against fitted values to evaluate each distribution function
visually for any systematic bias, and a quadratic polynomial was
used to fit the residuals for better visualization of trends
(Mesgaran et al., 2013).

Results

The parameter estimates of the 15 species obtained with the five
distributions at suboptimal temperatures are summarized in
Table 1. The log-logistic distribution provided the best fit to the
θT(g) [or ln(θT(g))] data for 13 of the 15 species in this study (E.
dahuricus, E. sibiricus, E. intermedia, F. sinensis, H. multijugum,
L. apetalum, L. multiflorum, L. perenne, M. sativa, O. viciifolia,
P. crymophila, S. bicolor and T. pratense). The log-normal and
Weibull distributions provided the best fit for seeds of T. repens
and E. nutans, respectively. On the contrary, the logistic and log-
normal distributions provided the worst fit for 12 and 3 species,
respectively (Table 1).

Table 1. (Continued.)

Species Distributions μ (°C h) σ λ θT(50) (°C h) Tb (°C) RSS Ra2 AICc Δi

Weibull 652.114 2,152.797 1.005 2,147.043 7.237 0.302 0.906 −296.196 5.432

Log-logistic 463.836 1,646.252 1.663 2,110.088 7.184 0.275 0.915 −301.628 0.000

M. sativa Log-normal 632.074 0.529 – 632.074 −2.394 0.161 0.875 −118.988 3.854

Gumbel 491.270 210.437 – 568.398 −0.065 0.138 0.893 −122.842 0.000

Logistic 590.836 165.564 – 590.836 −0.425 0.149 0.884 −120.924 1.918

Weibull 299.163 347.684 1.219 556.562 0.008 0.141 0.885 −119.447 3.395

Log-logistic 86.337 464.022 3.453 550.359 0.330 0.129 0.895 −121.670 1.172

O. viciifolia Log-normal 1,988.441 1.158 – 1,988.441 4.906 0.072 0.895 −159.972 24.313

Gumbel 1,519.829 2,307.756 – 2,365.651 3.922 0.146 0.784 −140.178 44.107

Logistic 2,594.499 1,863.565 – 2,594.499 3.433 0.180 0.738 −134.316 49.969

Weibull 806.203 2,227.710 0.430 1,756.119 5.017 0.028 0.957 −183.678 0.607

Log-logistic 612.447 1,166.889 0.799 1,779.336 5.052 0.027 0.959 −184.285 0.000

P. crymophila Log-normal 2,355.432 0.655 – 2,355.432 6.851 0.280 0.875 −179.895 3.990

Gumbel 1,784.435 1,256.246 – 2,244.865 7.261 0.315 0.859 −175.419 8.466

Logistic 2,141.150 879.663 – 2,141.150 8.170 0.387 0.827 −167.597 16.288

Weibull 902.543 2,006.594 0.920 2,249.779 6.753 0.253 0.883 −181.242 2.643

Log-logistic 749.418 1,452.522 1.492 2,201.940 6.753 0.236 0.891 −183.885 0.000

S. bicolor Log-normal 536.942 0.543 – 536.942 7.402 0.153 0.935 −126.430 0.864

Gumbel 443.343 230.621 – 527.869 7.511 0.148 0.937 −127.294 0.000

Logistic 536.664 163.260 – 536.664 7.671 0.167 0.929 −124.153 3.141

Weibull 196.962 430.359 1.347 524.801 7.425 0.151 0.932 −123.958 3.336

Log-logistic −6.881 528.298 3.326 521.417 7.463 0.140 0.937 −125.925 1.369

T. pratense Log-normal 558.393 0.528 – 599.684 6.317 0.292 0.873 −172.424 60.616

Gumbel 458.524 163.003 – 585.525 6.642 0.173 0.925 −191.792 41.248

Logistic 522.050 124.246 – 595.175 6.682 0.245 0.894 −178.917 54.123

Weibull 435.812 118.693 0.487 547.016 6.533 0.114 0.949 −204.702 28.338

Log-logistic 348.740 150.467 1.467 540.392 6.576 0.053 0.976 −233.040 0.000

T. repens Log-normal 533.624 0.617 – 533.624 6.736 0.252 0.821 −131.623 0.000

Gumbel 429.522 296.725 – 538.276 6.753 0.274 0.805 −128.236 3.387

Logistic 543.848 221.692 – 543.848 6.808 0.310 0.779 −124.656 6.967

Weibull 245.124 418.169 0.926 526.610 6.657 0.256 0.810 −127.500 4.123

Log-logistic 146.894 380.107 1.861 527.001 6.664 0.261 0.807 −126.939 4.684
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Using T. pratense as an example, the log-logistic distribution
resulted in the best fit, with the lowest RSS and AICc values
and the highest Ra2 value among the five distributions (0.053,
−233.040 and 0.976, respectively) (Table 1). The log-normal dis-
tribution gave the poorest fit (the RSS, AICc and Ra2 values were
0.292, −172.424 and 0.873, respectively), and the other three dis-
tributions (Gumbel, logistic and Weibull) performed only slightly
better. The fits between seed germination and thermal time at
suboptimal temperatures for the five distributions are shown in
Fig. 1, which shows the best agreement between the predicted
and observed values for the log-logistic distribution. All these
results were further evaluated by inspecting residual plots
(Fig. 2), which showed that using the log-normal, Gumbel or
logistic distribution led to highly biased predictions of θT(g) resi-
duals (RT) compared with those obtained with the log-logistic
and Weibull distributions. Similarly, the log-logistic distribution
gave the best fit for 12 species (Table 1; supplementary
Appendixes B and C).

The Weibull and log-normal distributions were the most suit-
able distributions for E. nutans and T. repens, respectively, and the
RSS, AICc and Ra2 values were 0.269, −114.622 and 0.815 for E.
nutans, respectively, and 0.252, −131.623 and 0.821 for T. repens,
respectively (Table 1; supplementary Appendixes B and C). The
logistic distribution provided the worst fit for these two species,
with an apparent predicted thermal time–RT relationship; in
other words, the outputs obtained with the logistic distribution
were highly biased (supplementary Appendix C). Similarly, the
logistic distribution provided the worst data fit for E. sibiricus,
E. intermedia, F. sinensis, H. multijugum, L. multiflorum, L. per-
enne, O. viciifolia, P. crymophila and S. bicolor.

Discussion

Thermal time models, in a standard form (log-normal distribu-
tion) at suboptimal temperatures, provide several useful

parameters of seed quality, which are related to the temperature
tolerance (Tb), speed [θT(50)] and uniformity (σθT) of germination
(Bradford, 2002). The θT(g) [or ln(θT(g))] of the seed sample is
commonly assumed to follow a log-normal (or normal) distribu-
tion (probit transformation) at suboptimal temperatures (Cheng
and Bradford, 1999; Bradford, 2002). However, in the present
study, the data of only one of the 15 tested species were the
best fit by this distribution at suboptimal temperatures. These
results are similar to those that Mesgaran et al. (2013) obtained
with a hydrothermal time model, in which using the normal dis-
tribution resulted in the worst fit and led to biased predictions for
three of four species. Thus, the log-normal (or normal) distribu-
tion, at least at suboptimal temperatures, is not necessarily the
best distribution for thermal time [θT(g)] [or ln (θT(g))] in thermal
time models; indeed, it may result in biased predictions. However,
the suitability of the log-normal distribution has been taken for
granted in thermal time models in most studies (Cheng and
Bradford, 1999; Bradford, 2002; Hu et al., 2013, 2015; Rong
et al., 2015; Daibes and Cardoso, 2018; Ostadian Bidgoly et al.,
2018; Zhang et al., 2020).

The log-logistic distribution (an asymmetrical model) consist-
ently provided the best explanation of θT(g) and germination of
all tested species except E. nutans and T. repens. Similar to the pat-
tern observed for the parameterΨb(g) in hydrothermal time models
(Mesgaran et al., 2013), our results indicate that θT(g) may often be
right-skewed. In addition, we found that using symmetrical models
(the logistic distributions) resulted in the least precise and least
accurate data fits for all species, which further confirm that the dis-
tribution of θT(g) is asymmetrical. Notably, the Weibull distribution
(a generalized extreme-value model) was satisfactory only for seeds
of E. nutans in describing the pattern of θT(g) variation, which was
contrary to the results from a study by Watt et al. (2010). All these
results suggest that, at least at suboptimal temperatures, there
will be a large deviation if the parameter distribution is not consid-
ered in the thermal time model. However, the standard form

Fig. 1. Thermal time of T. pratense seeds predicted by thermal time models based on five distributions at suboptimal temperatures. Circles show the observed
mean thermal times. The red dashed lines show the predicted thermal time, which was fitted by the thermal time model based on the five distributions.
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(the log-normal distribution) is used only for convenience.
Compared with the Gumbel and logistic distributions, the
log-logistic distribution is more flexible and can provide a more
realistic estimate of θT(0) (Mesgaran et al., 2013). Therefore,
the log-logistic distribution is an appropriate candidate among
the five distributions used in this study.

It is worth noting that Tb, the minimum temperature, was
more than 10°C for L. apetalum seeds when using all five distri-
butions and, thus, was overestimated by all thermal time models,
as seed germination was 28% for L. apetalum when incubated at
10°C. One possible reason for the overestimation is that the ger-
mination temperature is very close to Tb (10 vs 11°C), and a slight
temperature fluctuation in the incubator may lead to a relatively
high deviation in thermal unit, and consequently germination
percentage and model fitting. Zhang et al. (2020) also found a
deviation between predicted and observed Tb when the germin-
ation temperature was close to the Tb. Similarly, the logistic distri-
bution overestimated the value of Tb for E. dahuricus seeds, which
was two or more times greater than the values obtained with the
other four distributions. This result further illustrates that the
logistic distribution provided the worst fit among the five distribu-
tions used in our study. In addition, although the log-normal and
Weibull distributions provided the best fit for seeds of T. repens
and E. nutans, respectively, other distributions also explained
the θT(g) variation of these species very well. These results
imply that the appropriate distribution function used to describe
the pattern of θT(g) variation in the thermal time model may not
be unique for some species; similar results have been found in the
study by Mesgaran et al. (2013). Moreover, whether the best dis-
tribution function differs among species remains to be further
studied, since the results based on individual cases (2 species vs
13 species) are not sufficient. In any case, our results suggested
that the distribution of parameters [θT(g)] should be considered
when using the thermal time model to prevent large deviations.

In conclusion, the assumption of a log-normal distribution, at
least in some datasets, is clearly not appropriate and will lead to

both a poor description and poor prediction of germination
data when used in thermal time models. The log-logistic distribu-
tion, a more flexible distribution, can be used in thermal time
models to describe the effect of temperature on seed germination.
Future work should examine the reliability of our results through
more empirical experiments.

Supplementary material. To view supplementary material for this article,
please visit: https://doi.org/10.1017/S0960258521000040.
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