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We investigate the effects of an insulating lid of variable spatial extent on convection in
the stagnant-lid regime under thermally steady-state conditions. Using a combination
of laboratory experiments, numerical simulations and scaling analyses we characterize
the qualitative structure and quantitative heat transfer properties of flows in terms
of the fractional extent L of an insulating lid applied at the cold boundary, the
thermal resistance of the lid, the magnitude of the temperature dependence of the fluid
viscosity Λ and the effective Rayleigh number Rae for the composite system. A partial
insulating lid has two main effects: (i) To increase the mean interior temperature and
reduce the average viscosity of the system, which enhances fluid motions, and (ii) to
impart a lateral asymmetry to the thermal structure of the cold boundary that leads,
in turn, to lateral temperature gradients that drive an overturning flow. Consequently,
whereas flow in the uninsulated stagnant-lid regime is in the form of ‘small-scale’
rising and sinking thermals, there is an additional ‘large-scale’ circulation in the
presence of partial insulation. The structure, wavelength and heat transfer properties
of this large-scale stirring depends on L, Λ and Rae. For given Rae − Λ conditions
we find optimal values of L at which there occur well-defined maxima in the rate of
overturn, the local heat flux carried into the uninsulated part of the cold boundary
and in the global average heat flux Nu carried across the system. Whereas both
the rate of overturning and local heat flux are associated with the largest lateral
temperature gradients, the optimal basal heat flux depends also on a tradeoff with
the fractional surface area of the lid. Remarkably, maximal values of the global heat
flux can significantly exceed that of the uninsulated stagnant-lid case. The occurrence
of such maxima is insensitive to the mechanical boundary conditions applied and is
not strongly influenced by lid shape. However, the magnitude and location of optimal
heat fluxes depends in a complicated way on the lid surface area and shape, as well
as the structure of the hot and cold boundary layers and the wavelength of the
large-scale flow.

† Email address for correspondence: mjellinek@eos.ubc.ca

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

62
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006260


110 A. M. Jellinek and A. Lenardic

1. Introduction
Natural thermal convection in fluids with strongly temperature-dependent

viscosities plays an important role in many problems in Earth and planetary
sciences. Examples include the thermal evolution of planetary mantles, the growth
and differentiation of magma chambers, the circulation of hydrothermal brines and
ore genesis. In many such problems a fluid layer is heated from below and cooled
from above, analogous to classical Rayleigh–Bénard convection with homogeneous
isothermal (or constant heat flux) upper and lower boundaries. An additional class of
problems involves spatially varying surface cooling, arising due to the presence of an
insulating layer separating a convecting fluid either partially or completely from a cold
reservoir to which it is cooling. Natural occurrences of this phenomena are varied and
arise in a number of situations. Examples include the insulating effect of continents
on mantle convection in the Earth (e.g. Gurnis 1988; Zhong & Gurnis 1993; Guillou
& Jaupart 1995; King & Ritsema 2000; Grigne & Labrosse 2001; Lenardic & Moresi
2003; Korenaga & Jordan 2004; Grigne, Labrosse & Tackley 2005; Lenardic et al.
2005), spatially irregular porous media flow in geothermal areas such as mid-ocean
ridges (e.g. Lister 1972; Elder 1981; Hartline & Lister 1981; Donaldson 1982; Norton
1984; Davis & Chapman 1989; Lister 1990a,b 1995; Lowell & Burnell 1991), porous
media flow in sedimentary basins (e.g. Lister 1990; Person et al. 1996) and the effect
of sea ice on heat transfer from the oceans to the atmosphere (Parkinson et al. 1987;
Aargard & Carmack 1989; Hibler 1989; Gloersen et al. 1992), which can strongly
influence the global climate system (e.g. Aargard & Camack 1994; Parkinson 1997).

Qualitatively, previous experimental studies of convection at high Rayleigh (i.e.
Ra � O(106)) numbers have shown that lateral temperature variations related to a
partial insulating lid can influence the structure, wavelength and thermal properties
of the flow (Guillou & Jaupart 1995; Zhang & Libchaber 2000). In a recent two-
dimensional numerical study of mantle convection on Earth Lenardic et al. (2005) find
a particularly unintuitive consequence of partial insulation: Insulating continents can
enhance the rate of global mantle cooling over the continent-free situation, depending
on the surface area of continents and the mantle rheology. A scaling analysis shows
that provided the temperature-dependence of the mantle viscosity is large the presence
of continents raises the average internal mantle temperature, which, in turn, lowers the
viscosity of the system and increases the rate of subduction and mantle overturning.
Thus, depending on a tradeoff with the surface area of continents, which governs the
area through which heat can be transferred from the mantle to the atmosphere, the
presence of continents can augment the cooling of the Earth.

In their analysis, Lenardic et al. (2005) explore the effects of partial insulation
on a basic state of ‘active lid’ mantle convection that is driven by the subduction
and stirring of the cold boundary layer (i.e. a model lithosphere). Although a useful
analogue for the plate tectonic style of mantle convection that is peculiar to the Earth,
as a starting point for an analysis of partial insulation this regime is a special limit.
Indeed, to achieve this regime Lenardic et al. (2005) apply a viscoplastic yielding
rheology that allows for both an active-lid mode of convection and for an internal
mantle viscosity that is Newtonian and depends strongly on temperature. In more
detail, subduction of the cold boundary layer (i.e. the analogue lithosphere) occurs
where convective stresses exceed a critical yield stress, resulting in a localization of
shear strains and the mechanical failure and overturning of the cold boundary layer
and a large-scale flow. Because strain localization occurs where the effective viscosity
is very low, the process of overturning of the cold boundary layer is effectively inviscid
and thus most of the dissipation occurs in the fluid interior. In addition, because the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

62
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006260


Variable-viscosity convection with non-uniform surface cooling 111

cold surface temperature of the model Earth is stirred into the underlying mantle,
the time-averaged interior temperature is close to the mean of the two boundaries. In
contrast, convection under the same dynamical conditions in a Newtonian fluid with
a strongly temperature-dependent viscosity is typically in a ‘stagnant-lid’ regime. Flow
in the form of intermittent drips (thermals) from the cold upper boundary occurs
beneath a thick stagnant lid of relatively much more viscous fluid (see discussion in
§ 3). There is no large-scale overturning flow, and ‘small-scale’ thermals carry only a
minor fraction of the temperature drop across the cold boundary layer, resulting in
an internal temperature significantly higher than the mean of the boundaries. The
reduced temperature difference to the hot boundary leads, in turn, a lower average
basal heat flux. In addition, the formation of cold thermals involves the deformation
of fluid that is about 10 times more viscous than the interior and thus most of the
dissipation occurs within the cold boundary layer itself, causing the structure of the
cold thermal boundary layer to be qualitatively different to the active-lid case.

Bearing in mind these essential differences between the active- and stagnant-lid
regimes, the general question of the influence of partial insulation on variable viscosity
convection (i.e. μ(T )max/μ(T )min � 1) in a Newtonian fluid remains an open one. In
terms of laboratory experiments, published studies are largely limited to isoviscous or
mildly temperature-dependent viscosity convection (Guillou & Jaupart 1993; Zhang
& Libchaber 2000). The core of this study is a suite of laboratory experiments that
explore partially to fully insulated convection in a high-Prandtl-number fluid with a
strongly temperature-dependent viscosity. Preliminary results from this experimental
suite were presented in the form of a Nusselt number versus insulation extent plot
in Lenardic et al. (2005). That plot showed a peak in system heat transfer at an
insulation extent of 0.2 of the full tank width. We significantly extend this work
herein. In particular, we characterize and analyse the scale and vigour of overturning
motions arising due to a partial lid, and investigate conditions in which such motions
lead to local and global heat transfer maxima that are in excess of the classical
no-lid value. Our analysis of the global heat transfer properties of these flows is
based on a thermal network approach, as in Lenardic et al. (2005). However, the
difference between the physics of (uninsulated) active versus stagnant-lid convection
requires, and leads to, a new scaling theory. On the basis of our experimental results,
this new scaling theory and a suite of three-dimensional numerical simulations that
significantly extend our parameter space, we will argue that global heat transfer
maxima are robust properties of these highly nonlinear systems and that they reflect
well-defined minima in their global thermal resistance.

Our paper is organized in the following way. In §§ 2 and 3 laboratory experiments
are presented in which we analyse the effect of the surface area of an insulating lid
on the convection. A scaling analysis of the effect of an insulating lid on the heat flux
carried by the flow is developed in § 4 and compared with laboratory measurements. In
§ 5, to test the generality of our results we expand the parameter space investigated by
the laboratory experiments with a suite of three-dimensional numerical simulations.
We conclude in § 6.

2. Experiments
2.1. Experimental set-up and strategy

Our experiments are conducted in the apparatus sketched in figure 1. The 31.3 cm ×
31.3 cm × 7.5 cm high tank is constructed of glass insulated with polystyrene foam.
The floor of the tank is an aluminium heat exchanger through which hot water is
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Figure 1. (a) Schematic diagram of our experimental setup. (b) Problem definition for the
heat transfer analysis.

pumped at a high flow rate resulting in an isothermal basal temperature of ≈64.2◦C
at the base of the fluid layer. A glass heat exchanger in which there is a well-stirred
ice–water bath forms a transparent upper isothermal cold boundary. The working
fluid is an aqueous corn syrup solution, which is Newtonian and has a strongly
temperature-dependent viscosity that is well represented by

μ(T ) = μc exp(−γ T ), (2.1)
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Component Physical property Value (unit)

Glass Thickness dg 0.005 (m)
Thermal conductivity Kg 0.81 (W m−1 ◦C−1)
Specific heat Cg 830 (J kg−1 ◦C−1)
Density ρg 2500 (kg m−3)
Thermal expansion αg 9 × 10−6 ◦C−1

Thermal resistance dg/Kg 0.0063 (W ◦C−1)
Lid Thickness dg 0.012 (m)

Thermal conductivity Kl 0.21 (W m−1 ◦C−1)
Specific heat Cl 1465 (J kg−1 ◦C−1)
Density ρl 1180 (kg m−3)
Thermal expansion αl 9.2 × 10−5 ◦C−1

Thermal resistance dl/Kl 0.057 (W ◦C−1)
Fluid Thickness hf 0.0.075 (m)

Thermal conductivity Kf 0.365 (W m−1 ◦C−1)
Specific heat Cf 2616 (J kg−1 ◦C−1)
Density ρf 1395 (kg m−3)
Thermal expansion αf 5.61 × 10−4 ◦C−1

Reference viscosity μc 12 Pa·s
Rheological temperature scale γ 0.2 ± 0.02 ◦C−1

Table 1. Physical properties of the experimental system.

where μc is a reference viscosity, and the characteristic rheological temperature scale
γ = −d lnμ/dT ) (table 1).

A series of control experiments without an insulating lid are performed first.
The qualitative structure and quantitative heat transfer properties of these flows are
compared to previous studies of variable viscosity convection with isothermal upper
and lower boundaries. In addition, the validity of the isothermal boundary conditions
for all flows is verified. Next, a suite of experiments is performed in which a 1.2 cm
thick block of acrylic is clamped to the floor of the cold bath as an insulating lid.
The lid extends from the front to the back of the tank but has a width that we vary
systematically. In ‘partial lid’ cases, where the lid does not extend the full width of
the cold boundary, experiments are characterized by a laterally heterogeneous upper
thermal boundary condition composed of a composite ‘lid’ and a ‘gap’ side. The
heat transfer properties of each side are characterized in terms of their resistance
to thermal conduction dg,l/Kg,l , where d and K are an appropriate thickness and
thermal conductivity, respectively, and the subscripts ‘g’ and ‘l’ refer to ‘gap’ and ‘lid’
sides of the tank, respectively. The physical properties and thermal resistances of the
lid and gap sides are compared in table 1.

The structure and heat transfer properties of all flows are studied under statistically
thermally steady-state conditions. The styles of convection are characterized
quantitatively using a combination of time-lapse video, shadowgraph images and
time series of temperature and heat flux at the floor, the roof and in the fluid interior.
The interior fluid temperature and the temperature at the interface between the solid
cold (and hot) boundary are determined from time-averaged measurements obtained
from thermocouples distributed throughout the system. Local and average heat fluxes
are obtained at the roof and floor of the tank using an array of Omega HFS-4
thermopile sensors, and from the temperature gradients across the solid boundaries,
the physical properties of which are well known. Local heat fluxes obtained from both
techniques are quantitatively identical. These measurements are also applied to verify
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114 A. M. Jellinek and A. Lenardic

interfacial temperatures determined at the solid boundaries using thermocouples.
Steady-state conditions are indicated by constant (and equal) average roof and
floor heat fluxes, as well as statistically stationary time series of temperature in the
interior.

2.2. Dimensionless parameters and scaling

Building on published investigations of Rayleigh–Bénard convection in variable
viscosity fluids in the presence of rigid boundaries (e.g. Booker 1976; Richter,
Nataf & Daly 1983; Zhang, Childress & Libchaber 1997; Manga & Weeraratne
1999; Jellinek, Lenardic & Manga 2002), we characterize our experimental system
with six dimensionless parameters. The effective Rayleigh number for the composite
system,

Rae = ρ2gαΔT CH 3/μ(Ti)K, (2.2)

which is essentially a ratio of the buoyancy force driving fluid motions, modulated
by thermal diffusion, to the retarding viscous force arising due to the diffusion of
momentum, is large in all experiments (Ra > 5 × 105). Here, g is gravity, ΔT = Th − Tc

is the vertical temperature difference from the hot boundary to the cold bath and
μ(Ti) is a viscosity based on the mean interior temperature of the fluid layer Ti . Here,
subscripts h, c and m refer to the hot boundary, cold boundary and system mean,
respectively. The effective layer depth

H = h + dg + (dlL) (2.3)

includes the fluid layer height h, the thickness of the overlying glass dg and the
effective thickness of the insulating lid, which depends on the thickness of the lid dl

and the fractional areal extent of the lid L, defined below. An effective volumetric
coefficient of thermal expansion, density, thermal conductivity and specific heat for
the composite system are, respectively,

α = (1/H )(αf h + αgdg + αldlL), (2.4)

ρ = (1/H )(ρf h + ρgdg + ρldlL), (2.5)

K = (1/H )(Kf h + Kgdg + KldlL) (2.6)

and

C = (1/H )(Cf h + Cgdg + CldlL). (2.7)

Here the subscripts f , g and l refer to ‘fluid’, ‘gap’ and ‘lid’, respectively. The aspect
ratio of the system

A= w/h, (2.8)

where w is the width of the tank, is fixed to be 4.2. The Prandtl number

Pr = μC/K (2.9)

is a fluid property that indicates the ratio of time scale for the thermal diffusion of
heat to the time scale for the viscous diffusion of momentum. In our experiments and
numerical simulations Pr is sufficiently large (Pr > 104 in experiments and Pr = ∞
in numerical simulations) so that inertial forces have a negligible effect on the
dynamics of flow (i.e. the Reynolds number, Re < 0.1 in the experiments and Re = 0
in the simulations). From (2.1), we characterize the magnitude of the temperature
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dependence of the viscosity in terms of the parameter

Λ = γΔT . (2.10)

In our experimental system, γ is fixed and the total viscosity ratio across the fluid
layer λt = μc/μh is of order 105. In subsequent numerical simulations we vary Λ such
that λt is in the range 100 to 106.

To characterize the influence of an additional insulating lid at the cold boundary
we require two additional parameters. For an � × w rectangular lid, the lid surface
area per unit surface area w2 of the tank is

L = �/w. (2.11)

Although the lids in our experiments are rectangular, different lid shapes are, in
principle, possible for the same surface area implied by L. This is potentially an
important consideration because the spatial configuration of variations in surface
cooling will influence the planform of convection in the underlying fluid layer (Guillou
& Jaupart 1993), which will influence the heat transfer properties of the flow. The
rectangular shape of the lids in our experiments impose a fore-aft geometric symmetry
on the flows. In subsequent numerical simulations we break this symmetry, and
investigate its importance, with square lids characterized by the same L. Finally, we
characterize the insulative properties of the lid with a Biot number

Bi = dlKg/dgKl, (2.12)

which is the ratio of the thermal resistance of the insulating lid to conductive heat
transfer to the thermal resistance of the glass forming the cold upper boundary. In
the experiments Bi is fixed to be 9.3 and in our subsequent numerical simulations
Bi = ∞, which has a quantitatively identical effect on the flow and simplifies the
numerical treatment of the system.

In addition to these external parameters it will be useful to introduce a number
of internal parameters derived from the experiments. The internal temperature of the
fluid

θ = (Ti − Tc)/(Th − Tc), (2.13)

where the subscript ‘i’ refers to the mean interior temperature. The horizontal
difference between the glass–fluid interfacial temperatures at lid and gap sides is

θh =
(
T l

int − T
g
int

)
/(Th − Tc). (2.14)

Here, T
g,l
int is measured at the top of the fluid layer at the interface between the fluid

and the cold boundary on the ‘gap’ or ‘lid’ side of the tank. For comparison with
previous work and to facilitate analysis of heat transfer from the hot boundary we
introduce a basal Rayleigh number based on the depth and physical properties of
the fluid layer, and the temperature drop from the hot boundary to the convecting
interior ΔTi = (Th − Ti),

Rai = ρ2
f gαθΔTiCf h3/μ(Tm)Kf , (2.15)

where Tm = (Th − Tc)/2. For analysis of heat transfer to the cold boundary in the
stagnant-lid regime where μ(T g,l

int )/μ(Ti) > O(102) (Morris & Canright 1984; Manga
et al. 2001; Thayalan et al. 2006) it will be useful also to introduce a Rayleigh number
based on the rheological temperature scale γ ,

Raγ = ρ2
f gαCf h3/μ(Tm)γKf , (2.16)
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Figure 2. Regime diagram summarizing the influence of an insulating lid of extent L on
the flow. The left panel shows shadowgraph images of typical experiments. The right panel
shows sketches of the main components of each flow regime. Ascending (red) and descending
(blue) thermals sketched in the right panel appear as time dependent, nearly vertical light
(downwelling) and dark (upwelling) structures in the shadowgraphs. Arrows indicate the
large-scale flow as determined from analyses of video data. Also shown are the relative
thicknesses of the hot and cold thermal boundary layers (solid blue line). See figure 3(b) and
the text for the experimental conditions.

where Tm is the mean of the boundary temperatures. Finally, a Rayleigh number based
on the horizontal temperature difference at the top of the fluid layer ΔTh = T l

int − T
g
int ,

Rah = ρ2
f gαθhΔThCf h3/μ(Ti)Kf , (2.17)

characterizes the vigour of convective motions driven by lateral variations in
temperature related to the presence of a partial insulating lid.

3. Experimental results
3.1. Flow regimes

Analyses of time-lapse video, shadowgraphs and time series of temperature reveal
three flow regimes, depending on the lid extent L, which are summarized in figure 2.
For the control case, L = 0, the strong temperature dependence of the viscosity
leads to large vertical viscosity variations in the cold thermal boundary layer
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(μ(Tc)/μ(Ti) ∼ O(105)) and the flow is in the well-studied ‘stagnant lid’ regime
(Booker 1976; Stengel, Oliver & Booker 1982; Richter et al. 1983; Christensen
1984; Ogawa, Schubert & Zebib 1991; Giannandrea & Christensen 1993; Moresi &
Solomatov 1995, 1998; Solomatov, 1995; Solomatov & Moresi 1996, 2000; Trompert
& Hansen 1998). In this regime, the flow is constructed of three layers (figure 2, right
panel): thin gravitationally unstable conductive thermal boundary layers at the hot
and cold boundaries underlie and overlie a well-mixed interior. The cold boundary
layer is thicker than the hot boundary layer because the majority of its thickness is
too viscous to take part in the flow (Davaille & Jaupart 1993). Convection is driven
by the intermittent detachment of a thin rheological sublayer of cold fluid as discrete
thermals or diapirs with transient tails (Weeraratne & Manga 1998; Jellinek et al.
2001) that carry only a fraction of the full temperature difference across the cold
boundary layer and are around 10 times more viscous than the interior fluid. The
interior temperature θi of the system is consequently higher than the mean of the
hot and cold boundaries (i.e. θi > 0.5) (figure 3a). In turn, because θi approaches θh,
flow from the relatively thin hot boundary layer is an approximately isoviscous rising
thermals (Weeraratne & Manga 1998; Jellinek & Manga 2004).

By contrast, for L = 1 the internal temperature is relatively higher because of
the greater insulating effect of the additional lid. That is, the imposed plastic lid
acts in much the same way as a stagnant lid but absorbs a greater fraction of
the total temperature drop across the system because of a higher intrinsic thermal
resistance (Sleep & Jellinek, 2008). The three-layer structure of the flow and the style
of convection from the cold boundary is, however, broadly similar to the stagnant-
lid regime with a key difference being that the cold thermal boundary layer is
approximately isoviscous and approximately of the same thickness as the hot thermal
boundary layer. That is, the structure of the flow for L= 1 is essentially symmetric
whereas a defining characteristic of the flow for L = 0 is a broken symmetry in the
vertical thermal structure of the flow (Solomatov 1995; Zhang et al. 1997).

The character of the flow in the presence of a partial lid is qualitatively different to
the L = 0 and L = 1 cases. At the roof of the tank, the flow can be divided laterally
into two regions. Far from the lid-gap boundary, the flow is similar to the L =0
and L = 1 control experiments: Convection from beneath the lid and gap sides is in
the form of intermittent thermals descending from uniformly thick thermal boundary
layers. However, an important difference to the control experiments is that compared
to the lid side the thermal boundary layer beneath the colder gap side is relatively
thick and downwellings carry a larger temperature difference into the underlying fluid
interior. Because the experiments are in steady state this variation in thickness is a
response to horizontal variations in surface heat flux resulting from a combination
of a partial insulating lid and an overlying isothermal cold bath. As a result, in the
vicinity of the lid–gap boundary, there is a monotonic increase in thermal boundary
layer thickness from the lid to the gap sides. The corresponding horizontal variations
in heat flux lead, in turn, to a lateral temperature gradients (figure 3a, inset) that drive
large-scale flows the character of which depends on L, the aspect ratio of the system
and presumably also on the magnitude and character of the viscosity variations in
the cold thermal boundary layer (cf. (2.1)). Thus, a major effect of imposing partial
roof insulation on a stagnant-lid regime is to introduce additional lateral asymmetry
to both the thermal and viscosity structures of the system.

In the shadowgraphs and accompanying sketches in figure 2, arrows determined
from analyses of time-lapse video indicate that partial lid regimes are characterized
by large-scale stirring, in addition to rising and sinking thermals. Qualitatively, all
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Figure 3. Plots showing (a) the mean internal temperature θ and (inset) the horizontal
temperature difference at the cold boundary θh, (b) the Rayleigh number Rae and (c) the
ratio Rah/Rae as a function of the fractional lid extent L. The ratio Rah/Rae indicates the
vigour of overturning motions driven by lateral temperature gradients, in comparison to rising
and sinking thermals. The internal fluid temperature θ ≈ 0.76 and is slightly higher than the
θ ≈ 0.7 value obtained by Manga & Weeraratne (1999) for similar experimental conditions.
This discrepancy occurs because the internal temperature is defined on the basis of the bath
temperature rather than the temperature at the top of the fluid layer.

partial lid experiments are characterized by persistent unsteady upwellings into the
base of the lid side, consistent with the isoviscous results of Guillou & Jaupart
(1995) and also with the investigation of turbulent convection by Zhang & Libchaber
(2000). The strength of the cold downwellings and the lateral extent and vigour
of the large-scale flow is apparently governed by the extent of the lid L. In the
‘short lid’ case (0 < L � 0.2) the large-scale flow has a lateral extent that scales
approximately with L. By contrast, in the ‘long lid’ case (0.83 � L < 1) overturning
motions are restricted in horizontal extent to a region close to the width of the
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gap and thus scale approximately as (1 − L). In this regime the flow is separated
laterally into approximately two parts: rising and sinking thermals beneath the lid
and convection through a combination of thermals and overturning motions beneath
the gap. At L = 0.6 the large-scale flow fills the full width of the tank and advects
plume instabilities near the hot boundary laterally in a way analogous to the ‘plume
cluster’ regime identified in the isoviscous experiments of Guillou & Jaupart (1995).
The most complicated flow regime is the L = 0.43 case in which motions acting over a
large range of length scales advect plume instabilities, particularly beneath the lid–gap
boundary.

Quantitatively, In addition to imparting lateral temperature gradients that drive
overturning motions (figure 3a, inset), a partial insulating lid raises the average
internal temperature of the system roughly in proportion to L (figure 3a). This effect
leads to a reduction in the average viscosity of the fluid, expressed, in part, through an
increase in Rae in figure 3(b), as L is increased from 0 to 1. This effect demonstrably
enhances the rate of rise (or descent) of hot (or cold) thermals, which is approximately
proportional to Ra1/3

e , as well as the rate at which large-scale motions stir the fluid
interior. The vigour of the large-scale flow and the extent to which this flow governs
the vertical heat transfer across the layer for a given L depends critically, however,
on the magnitude of the driving lateral temperature variations imparted at the top of
the fluid layer (figure 3a, inset). In figure 3(c) the ratio Rah/Rae, which indicates the
relative driving forces for overturning motions and thermals, is maximized at L = 0.6,
although the viscous resistance to flow is minimized for larger L. This result indicates
an optimized interplay among the four main factors that govern the vigour of the
large-scale stirring: the lid extent, the internal temperature, the rheology of the fluid
and the magnitude of the lateral temperature variations imparted to the top of the
convecting layer.

3.2. Local dynamics of the hot thermal boundary layer

Figure 4 shows time series of temperature from two thermocouple probes located
within the hot thermal boundary layer, which are labelled as ‘TC1’ and ‘TC2’ in
figure 1. The time series indicate temporal variations about the mean temperature.
Also shown (figure 4, inset) are differenced data in which the high-frequency content
of the signals associated with the formation of thermals is enhanced. All flows are
unsteady. The L =0 and L =1 cases are characterized mostly by intermittent hot
anomalies related to thermals. In the L = 0 case longer period cold thermals are
also observed (Schaefer & Manga 2001; Robin et al. 2007). There is an additional
long-period variation of the mean temperature that may reflect a weak overturning
flow, consistent with Weeraratne & Manga (1999) who identify the emergence of
a large-scale flow in addition to thermals at Ra ∼ O(105). An indication of the
small strength of this flow and its relative unimportance to the vertical heat transfer
across the layer is that the internal temperature is quantitatively consistent with a
fully developed stagnant-lid regime (figure 3a and § 4) in which the heat flux carried
predominantly by rising and sinking thermals is independent of the layer depth (§§ 3.3
and 4.1).

In contrast, figure 5 shows that in partial lid experiments longer period hot
structures associated with large-scale stirring occur in addition to short period hot
thermals. The nature of the additional longer period harmonics, as well as the
relative power distribution among these features vary with the lid extent. Spectra
for the L = 0.2 and L = 0.83 cases are each characterized by power distributed
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Figure 4. Plots showing time series of temperature variations about the mean temperature
of the hot thermal boundary layer recorded by thermocouples ‘TC1’ (solid line) and ‘TC2’
(dashed line) (left panel). Also shown are the same data after it has been low pass filtered and
differenced such that the contributions of thermals to the signal in each regime emerges more
clearly (right panel).
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Figure 5. The power spectra for the time series of temperature for TC1 from figure 4 plotted
as a function of lid extent L. Spectra shown are estimated with an adaptive multitaper method
(see Appendix A).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

62
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006260


Variable-viscosity convection with non-uniform surface cooling 121

approximately evenly between two periods corresponding to thermals and the largest
scale overturning motion apparent in figure 2. The comparatively broad distribution
of power at the longer periods for the L = 0.2 case may indicate that the large-scale
flow is relatively more complicated. However, this result is influenced by the sensors
not being ideally located to characterize this flow regime and should be interpreted
cautiously. The L = 0.6 case is also characterized by two periods, although the long-
period signal is concentrated over a narrower range of frequency bands, consistent
with the quasi-steady tank-filling flow observed. In marked contrast, the L = 0.43
regime involves comparable power distributed over the most numerous as well as
the longest periods. In particular, although a distinct period of thermal formation is
observed, there is statistically significant power distributed broadly about two longer
periods. This result is consistent with the observation that complicated unsteady
motions occur over a range of time and length scales (§ 3.1 and figure 2).

3.3. Rising thermals and lateral motions in the hot thermal boundary layer

The results of numerous published studies of variable viscosity convection at high Ra
and high Pr show that the formation of hot thermals is governed by the diffusive
growth and intermittent detachment of the gravitationally unstable hot thermal
boundary layer (e.g. Manga & Weeraratne 1999). This condition implies that the
hot thermal boundary layer is on average critically thick and that heat transfer is
governed by local processes and independent of the layer depth. If accurate, this
picture implies that the period of thermal formation will be proportional to Rae

−2/3

(Howard 1964; Schaeffer & Manga 2001). Periods for hot thermal formation are
identified at TC1 and TC2 in all experiments. In figure 6 we plot the average period
from both locations as a function of L against Rae

−2/3 and find very good agreement
with Howard’s theory, consistent with the thermals observed in all experiments
(figure 2).

The implication that heat transfer is independent of the layer depth in the vicinity
of the sensors is surprising for the L =0.43 and L= 0.6 and possibly L =0.83 regimes
because overturning motions interact with the hot boundary layer as well as nascent
upwellings near both sensors. In particular, lateral motions advect hot fluid causing
local variations in thermal boundary layer thickness and the downstream movement
of nascent thermals (Jellinek, Gonnermann & Richards 2003; Gonnermann et al.
2004). A practical consequence of this interaction is that we can use the time for
thermals to be advected between the sensors to estimate the average velocity of lateral
motions within the hot boundary layer (e.g. Niemela et al. 2000). Quantitatively, we
investigate whether the signal at TC2 is the same signal recorded at TC1, but shifted
in time because hot convective instabilities are advected by the large-scale flow. A
velocity is obtained from this lag time and the distance between the sensors. The
methodology is outlined in detail in the Appendix. Figure 7 shows the estimated
average horizontal velocity near the hot boundary normalized to a characteristic
scale for the rise speed for thermals that is proportional to (κ/H )Rae

1/3 (cf. Jellinek
et al. 2003). Whereas this velocity ratio is 0 for L = 0 and L = 1 it is maximized when
L = 0.6, which is a regime characterized by the most intense tank-filling flow (figure
2), and minimized at L= 0.83. No reliable estimate was possible at L= 0.2 because
of the position of the sensors relative to the location of the overturning flow (cf.
§ 3.2). From further comparison with figure 3(c), the magnitude of the increase in
lateral velocity from L= 0.43 to a well-defined maximum at L =0.6 is similar to the
variation of the total driving force for large-scale flow Rah with L.
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Figure 6. A comparison of the estimated periods for thermal formation and Howard’s
theory assuming heat transfer is independent of the layer depth.
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Figure 7. Variations in the horizontal flow velocity within the hot boundary layer, normalized
to a scale for the rise velocity for hot thermals, as a function of lid extent L. Velocities are
estimated using the technique outlined in Appendix A.

3.4. Heat transfer

Figure 8 shows a comparison of the measured average dimensionless heat flux
through the gap side Qgap and the measured average dimensionless global heat flux
or Nusselt number Nu from the hot boundary as a function of lid extent. All heat
fluxes are non-dimensionalized with the conductive heat flux across the system and
then normalized to the average heat flux for the L = 0 case. Dotted lines indicate
only the trend in the data, a scaling analysis for which is developed in § 4. Two
results are apparent. First, partial lid regimes exist where despite insulation at the
cold boundary the local heat flux through the gap side and the average heat flux
carried across the system exceed the L =0 case. Second, peaks in Qgap and Nu occur
for different L: Whereas Nu is maximized for L = 0.2, Qgap is maximized for the
L = 0.6 case, which is characterized by the highest Rah and the most vigorous and
extensive convective stirring. From inspection of figure 8 together with figures 2 and
7 it is clear that whereas Qgap is governed by the rate of overturning, the average
heat flux carried across the system Nu depends in a potentially complicated way on
L for our working fluid.
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Figure 8. Measured variations of the average basal heat flux Nu (squares) and the heat flux
through the gap side (diamonds) as a function of lid extent L. Dotted lines are spline fits to
the data and are intended to show only the trend in the data.

3.5. Summary

Through varying an externally imposed control parameter, the insulation extent,
we move our experimental system through a peak in its heat transfer properties
while characterizing qualitative and quantitative changes in the flow regime. Our
results show that there are two main mechanical effects of imposed partial insulation
at the cold boundary that would otherwise be absent in a system convecting in the
stagnant-lid regime. First, there is an increase in the internal temperature of the system
that leads to a reduction in the average viscosity of the fluid layer. This effect enhances
flow in all regimes. Second, for our working fluid partial insulation imparts a lateral
asymmetry in the thermal structure of the flow that gives rise to lateral temperature
and viscosity gradients in the cold thermal boundary layer, the magnitude and nature
of which depend on L. These temperature gradients drive a large-scale flow that is
governed by L but will probably be influenced by the magnitude of the temperature
dependence of the viscosity Λ. In addition, the sensitive dependence of the flow
regime on L suggests that variations in lid shape for a given L and Rae will also enter
the problem. We explore effects related to lid shape, Λ and Rae with an additional
limited suite of numerical simulations in § 5.

The most interesting consequence of partial insulation in our experiments is that the
basal heat flux and the rate of overturn (or the local gap heat flux) have well-defined
optimal values and that these values occur at different L. Whereas the flow velocity
and gap heat flux are maximized where Rah is the largest and the overturning flow is
the most vigorous, the average basal heat flux also depends strongly on the surface
area of the gap side. In particular, there is a tradeoff between the rate at which
large-scale overturning carries temperature variations away from the hot boundary
and the surface area of the gap side through which most of this heat flux is delivered
to the cold bath. The nature of this tradeoff is explored in § 4.

4. Scaling theory for the average basal heat flux
To build understanding of the global heat flux data in figure 9 we follow Lenardic

et al. (2005) in spirit and model the system using a thermal network approach shown
schematically in figure 1(b) (e.g. Incropera & DeWitt 1996). For a given flow regime
the heat transfer across the gap or lid sides depends on the viscous resistance of the
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Figure 9. (a) Plot showing the temperature of the hot boundary and cold bath (solid black
lines) and a comparison of theoretical predictions and data for the mean internal temperature
(diamonds and dash-dot curve), the temperatures at the interface between the fluid and the
cold boundary on the lid side (circles and dotted curve) and the interfacial temperature at the
gap side (squares and dashed curve) as a function of lid extent L. (b) A comparison of the
average basal heat flux as a function of L from figure 8 with predictions from the no-mixing
(solid curve) and complete-mixing (dashed curve) theories outlined in § 4.3.

fluid to the motion of thermals and to large-scale stirring, as well as on the thermal
resistance of the laminated cold boundary. The total heat transfer across the system
is governed ultimately by the thermal coupling between the heat transfer paths to the
lid and gap sides of the system, which varies in a complicated way with L. In more
detail, because the two sides are coupled through the large-scale flow, variations in
the heat transfer properties in one path can influence the other as well as the mean
interior temperature of the system as a whole, which sets the average basal heat
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Figure 10. Calculations of the average basal heat flux from three-dimensional numerical
simulations showing effects of the total viscosity variations in the system λt = μcold/μhot , lid
shape and the mechanical boundary conditions in the system (rigid versus free-slip). R: ‘rigid’,
F: ‘free slip’, S: ‘square lid’. Comparison of the top and bottom plots provides a further
indication of the influence of Ra. Dotted lines are spline fits to the data and are intended to
show only the trend in the data.

flux. Bearing in mind this picture our analysis is constructed in the following way.
We first characterize the heat transfer properties of flows with and without a lid.
Expressions for the basal heat flux and internal temperatures for these endmembers
are presented, in turn, and lead to predictions for the temperature at the interface
between rigid cold boundary and underlying fluid. We are unable to find a satisfying
theory for the variation of lateral temperature gradients at the top of the fluid layer
and flow wavelength with L. Nevertheless, to investigate some general effects related
to variable extents of thermal coupling with L we define the two limiting scenarios
of no- and complete-mixing across the layer. Results of this analysis are compared
with Nu–L data from figure 10.

4.1. Full lid and lid-free cases

We consider the two endmember model systems shown in figure 1(b). A fluid layer
with depth h is convecting at high Rayleigh number and bounded uniformly at
the top by a composite layer of glass with thickness dg and an overlying insulating
acrylic lid of thickness dl . We assume that the system is convecting under thermally
steady-state conditions. At high Ra the solid boundaries forming the lid and gap sides
are each underlain by thin conductive thermal boundary layers with approximately
uniform time-averaged thicknesses δl

c and δg
c , respectively, defined below. The cold
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bath temperature Tc and the hot boundary temperature Th are fixed. The mean
interior temperature Ti depends on the conductive heat transfer across a cold thermal
boundary layer, the glass and lid, respectively.

In the presence of a lid the dimensionless average roof heat flux or Nusselt number
is

Nul =

(
HUl

Kf

)(
Ti,l − Tc

Th − Tc

)
. (4.1)

Here, the subscript l refers to ‘lid side’, and the heat transfer coefficient governing
conduction across the composite cold boundary is given by the sum of the thermal
resistance of each layer in series:

Ul =
[
δl
c/Kf + dg/Kg + dl/LKl

]−1
, (4.2)

where Kf , Kg and Kl are the thermal conductivities of the syrup, glass and lid,
respectively. The average insulating effect of the lid on the system is assumed to
scale with L such that the thermal resistance of the full thickness of the lid occurs
where L= 1 and the no-lid case is recovered where L= 0. From examination of (4.1)
and (4.2), Nul depends on Ti and the cold boundary layer thickness δc,l for which
additional expressions are required.

Conservation of heat demands that the surface and basal heat fluxes balance. At
high Rai the non-dimensional basal heat flux can be expressed as

Nul = a(Rai,l/Racr )
β, (4.3)

where the critical Rayleigh number Racr = 1000. Assuming Howard’s theory applies
on average, as suggested by our experiments (cf. §§ 3.1 and 3.2), heat transfer is
independent of the layer depth and the power law exponent β = 1/3. The geometric
constant a =0.23.

Under steady-state conditions and assuming that convection from the base of the lid
is approximately isoviscous, consistent with our results (and expectations for large-Bi

regimes) the full thickness of the cold boundary layer scales as hf /Nul and is given
by (Solomatov 1995)

δc,l ∼ hf Rai,l
−β. (4.4)

Equating (4.1) and (4.3) leads, in turn, to an implicit expression for the dimensional
internal temperature

a

(
ρ2Cgα(Th − Ti,l)H

3

Racμo exp(−ΛTm/ΔT )K

)β

=

(
HUl

Kf

)(
Ti,l − Tc

Th − Tc

)
. (4.5)

Solving for Ti,l numerically and equating the heat flux across the cold thermal
boundary layer with the surface heat flux out of the system provides an additional
useful result, which is the temperature at the interface between the rigid cold boundary
and convecting interior is

Tint,l = Ti,l −
(

Ulδc,l

Kf

)
(Ti,l − Tc). (4.6)

Turning to the lid-free case the dimensionless heat flux at the surface of the system

Nug =

(
HUg

Kf

)(
Ti,g − Tc

Th − Tc

)
, (4.7)
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Here, the subscript g refers to ‘gap side’ and, following from (4.2), the heat transfer
coefficient is

Ug =
[
δg
c /Kf + dg/Kg

]−1
. (4.8)

If convection is taken to be in the stagnant-lid regime (i.e. μ(Tint,g)/μ(Ti,g) � O(102))
(Thayalan et al. 2006) the full thickness of the the cold thermal boundary layer is
expected to scale as (Morris & Canright 1984; Solomatov 1995; Manga et al. 2001)

δg
c ∼

(
hf /Λ1+β

)
Ra−β

γ . (4.9)

Balancing the surface and basal heat fluxes on the gap side

Nug = b(Rai,g/Rac)
β (4.10)

leads to an expression for the dimensional interior temperature

b

(
ρgα(Th − Ti,g)H

3

μo exp(−ΛTm/ΔT )κ

)β

=

(
HUg

Kf

)(
Ti,g − Tc

Th − Tc

)
, (4.11)

where β = 1/3 and the constant b = 0.12. As before, applying Ti and equating the
heat flux across the cold thermal boundary layer with the surface heat flux leads to
the temperature at the interface between the rigid cold boundary and convecting fluid

Tint,g = Ti,g −
(

Ugδc,l

Kf

)(
Ti,g − Tc

)
. (4.12)

4.2. Partial lid case

In the partial lid case the average basal heat flux depends on the surface area weighted
contributions of the heat fluxes through the lid and gap sides as well as the resulting
flow in the interior. Under steady-state conditions the areally-weighted dimensionless
basal heat flux for the system as a function of L is

Nu= Nul(L) + Nug(1 − L). (4.13)

A useful feature of (4.13) is that the competing influences of the thermal resistance of
the system and surface area of the lid are apparent. In particular, the average basal
heat flux is governed by an explicit competition between the effect of a partial lid
on the internal temperature and thus viscosity and, by inference, the average flow
velocity in the system, and the surface area through which heat can be transferred to
the cold bath.

An appropriate choice of internal temperature for the viscosity requires discussion
because it depends on the nature and extent of thermal mixing between the lid and
gap sides, which are not accounted for in the theory. From figures 2 and 5 it is
clear that flows driven by the lateral temperature gradients at the top of the fluid
layer have a dominant wavelength that varies between the widths of the lid, gap and
tank and thus this coupling is not straightforward, in detail. However, the regime
diagram in figure 2 suggests two endmember situations. For experiments in which
flows beneath the lid and the gap sides are essentially decoupled from one another
(i.e. the ‘no-mixing’ case) we take the viscosity for each heat transfer path to be based
on the mean temperature of the boundaries. The average basal heat flux is then a
linear combination of the two sides. In contrast, for experiments characterized by
a tank-filling flow and thorough thermal mixing (i.e. the ‘complete mixing’ case) we
take the viscosity for the gap side to be based on the horizontally averaged value of
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the whole convecting interior. In this case the average basal heat flux depends on a
nonlinear coupling of the heat transfer paths through the lid and gap sides through the
exponential temperature dependence of the viscosity (cf. (2.1)). An obvious limitation
of this approach is that it is ad hoc and there is no account for variations in the
mechanics and structure of the large-scale flow or the thermal boundary layers as a
function of lid extent L.

4.3. Comparison to experiments

Theoretical and experimental results for the interior and interfacial temperatures
at the lid and gap sides as a function of L are shown in figure 9 along with
the corresponding variation of basal heat flux. In figure 9(a) measurements of the
average internal temperature and the interfacial temperatures at the gap and lid
sides are well explained by the theory for L= 0 and L > 0.2. The theory overpredicts
the interfacial temperature at the lid side at L = 0.2. From examination of the flow
regimes in figure 2 the mismatch at L = 0.2 is not surprising because the theory does
not account for the observed large lateral variation in cold boundary layer thickness,
which occurs over the full lid extent in this regime. The good agreement for larger L
regimes is probably related to such variations in boundary layer thickness occurring
over horizontal length scales that are small in comparison to the lid extent. That is,
the assumption of an average thermal boundary layer thickness that was developed
for a homogeneous thermal boundary condition and given by (4.4) is better justified
for L > 0.2.

The two theories for the average basal heat flux are compared with heat flux
measurements in figure 9(b). The no-mixing theory predicts a linear decline in heat
flux with L, consistent with data for 0.6 � L < 1. In contrast, the complete-mixing
theory predicts a broad maximum centred around L= 0.2, qualitatively consistent in
location in Nu–L parameter space with our measurements. However, the amplitude of
the maximum is negligibly larger than the L = 0 case, which is much lower than the
basal heat flux that we measure experimentally. Moreover, the only way to recover a
comparable heat flux maximum with this theory is to increase γ by almost a factor
of 4 (i.e. γ = 0.8), which is both inconsistent with our measured viscosity law and
predicts the heat flux to be maximized at L ≈ 0.5, which is not observed.

In summary, the theory captures some but not all of the key physics governing the
heat transfer across the system. The predicted occurrence of a heat flux maximum at
L= 0.2 highlights a tradeoff between lid surface area and flow velocity similar to that
identified by Lenardic et al. (2005) for active-lid convection. The poor explanation of
the heat flux amplitude at L= 0.2, and the particularly large overestimate of the value
for the well-stirred L =0.6 regime suggest that the nature of the lateral temperature
gradients at the top of the fluid layer and the structure of resulting large-scale flow are
probably equally important properties governing the heat transfer properties of these
flows. A final remark is that the excellent theoretical agreement found for active-lid
convection in Lenardic et al. (2005) supports this speculation. Because of the two-
dimensional constant aspect ratio computational domain, as well as the nature of
convection driven by yielding in a viscoplastic mantle, the geometric structure of the
flows in Lenardic et al. (2005) is approximately fixed over the full range of parameter
space investigated. In particular, an important difference to our experiments is that
increasing L in Lenardic et al. (2005) leads to an enhanced rate of stirring without
altering the intrinsic structure and wavelength of the overturning motions.
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Figure 11. Snapshots from numerical simulations under statistically steady-state conditions
showing the effect of the extent of a square lid on the planform of convective motions. Whereas
quasi-two-dimensional rolls are observed for a lid covering 20 % of the top surface (i.e. L =0.2),
three-dimensional square cells emerge when the lid is increased to 40 % of the top surface area
(i.e. L = 0.4). Ra = 1 × 106.

5. Numerical simulations
The results from our laboratory experiments and scaling analyses show that partial

insulation of a cold boundary can enhance the steady-state heat transfer properties
of stagnant-lid convection in our working fluid. More generally, the magnitude of
this effect depends on the rate and style of stirring, which depends on L and Rah, but
is expected also to be a complicated function of Rae, Λ and lid shape. Whereas the
lid shape for a given L influences the nature of the lateral temperature gradients and
the wavelength of the large-scale overturning flow, Rae and Λ govern the thicknesses
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of the hot and cold thermal boundary layers (cf. (4.5) and (4.10)), thereby setting the
smallest scale of motion in the flow. To build some understanding of these effects we
carry out a modest suite of numerical simulations with two motivations, which are
to broaden the Rae–Λ parameter space explored and to investigate the effect of a
different lid shape for the same areal extent L. Our aim is to investigate the sensitivity
of the existence, shape and magnitude of maxima in Nu–L curves to these control
parameters. As with the experiments we consider only those cases in which the lateral
dimensions of the lid are much greater than the thickness of an unstable cold thermal
boundary layer.

5.1. Model formulation

Numerical simulations using the serial CITCOM finite element code solve the
equations of infinite Prandtl number thermal convection within a 1 × 1 × 1 cubic
modelling domain (Moresi & Solomatov 1995). Practical limitations related to
computational resources lead us to not investigate larger aspect ratio domains at
this time (subsequent to the undertaking of this study, a parallel version of the
code has become available, as have greater computing resources at our respective
institutions, and future work will explore larger aspect ratio domains). The accuracy
of the code was tested against standard benchmark solutions (Blackenbach et al.
1989). Extensive convergence testing was also performed to assure that simulations
are well resolved.

The non-dimensional system of equations solved are given by

∂mum = 0 (5.1)

∂n[2μ(T )εmn] = ∂mp + RaeT k (5.2)

∂tT + um∂mT = ∂2
mT (5.3)

ρ = [1 − α(T − T0)] (5.4)

where for convenience Rae = ρ0gαΔT D3/μ(Th)κ and ui is the velocity vector, εmn is
the rate of strain tensor, p is pressure and k is the vertical unit vector. Equations
(5.1)–(5.3) are balance equations indicating conservation of mass, momentum and
energy assuming no frictional or internal heating. Equation (5.4) is the linearized
equation of state.

The system base was set to a constant non-dimensional temperature value of unity.
The upper thermal boundary condition was laterally variable to mimic the effects
of an insulating lid. In the lid regions the vertical heat flux was fixed to a value of
zero (perfect insulation, Bi = ∞). We note that over a large number of simulation
variations in Nu–L are only weakly dependent on the thermal resistance of the lid
if Bi � O(10). Consequently, we fix Bi → ∞ for all simulations to simplify the
numerical implementation of this effect and conduct simulations under Bi conditions
comparable to our experiments. In lid-free regions the surface thermal boundary
condition is set to a constant non-dimensional temperature value of zero. Variable
mechanical boundary conditions at the system surface and base were explored as will
be discussed. Side boundary conditions are free slip for all cases.

Simulations are run to to a statistically steady state determined by monitoring time
series of Nu and and the r.m.s. velocity from each simulation. Simulation time series
are averaged after the initial start up phase using variable averaging windows. A
simulation is considered to enter a statistically steady state when averages determined
from increasing time duration windows differed by less than 2 %–3 %.
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5.2. Numerical results

Figure 10 shows the effect of changing the shape of the lid for a given L from
rectangular, as for our experiments, to square. We also compare results for no- and
free-slip boundaries. Dotted lines again show only the trend in the data. Figure 10(a)
shows that the qualitative influence of a partial lid on the average basal heat flux
carried by the flow Nu remains unchanged. However, quantitative differences emerge.
In particular, for identical conditions the amplitudes of heat flux peaks are greater
in the presence of free-slip boundaries than no-slip boundaries, which is expected as
a result of the reduced viscous resistance to flow. Furthermore, a square rather than
rectangular lid causes heat flux peaks to shift towards smaller L and to sharpen.
Although the heat flux is controlled predominantly by the lid surface area, it is clear
that lid shape and, by inference the structure of the longest wavelength motions,
influences the conditions for which Nu is maximized.

Figure 10(b) shows results from a series of simulations in which we fix Rae = 106

and vary the magnitude of the temperature dependence of the viscosity Λ such that
the corresponding total viscosity ratio across the system λt is in the range of 100–105.
Simulations in which λt = 105 are under conditions comparable to our experiments
and give Nu –L results that are quantitatively similar to those shown in figure 9.
Decreasing λt , however, causes the peak in the heat flux curve to become increasingly
narrow and also to shift towards smaller L. At λt =1, the peak in the heat flux curve
disappears entirely and Nu is a monotonically declining function of L. As with the
laboratory experiments, the peak in r.m.s. velocity occurs at larger values of L than
the peak in heat flux. For the isoviscous case the r.m.s. velocity is a weak function
of L over the L range explored. Comparison of the two plots in figure 10 shows that
increasing Rae shifts peaks in Nu–L curves to lower L and causes them to narrow in
much the same way as observed with decreasing λt .

6. Concluding remarks
Our results support a number of general conclusions about the influence of a

partial insulating lid on stagnant-lid convection at high Rae. Consistent with the
analysis of active-lid convection by Lenardic et al. (2005) we find that the presence of
an insulating lid leads to a higher internal temperature, a reduced interior viscosity
and, in turn, to a more vigorous flow. Partial insulation introduces additional lateral
temperature- and viscosity-gradients near the cold boundary that drive a large-scale
overturning flow with a structure and wavelength that depends on the lid extent and
shape. The most remarkable consequence of partial insulation is that the combined
effects of an increased internal temperature and a lateral asymmetry in the thermal
structure of the flow lead to distinct optimal values for the rate of overturn, the
local gap heat flux and the global average basal heat flux. In addition, whereas flow
velocities and gap heat fluxes are maximized where lateral temperature gradients are
greatest, the global heat flux carried from the hot boundary across the system depends
crucially on a tradeoff with the gap surface area, and thus occurs at different values
for the lid extent L. Depending on the magnitude of the temperature dependence of
the viscosity Λ, the optimal global heat flux can significantly exceed that carried by
uninsulated stagnant-lid convection.

In more detail, with the exception of isoviscous flows (Λ = 0) a well-defined
maximum in the basal heat flux Nu occurs for all Rae–Λ conditions investigated. The
occurrence of such a maximum is insensitive to the mechanical boundary conditions
applied and is not strongly influenced by lid shape. The magnitude and location of
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this peak in Nu–L parameter space, however, depends in a complicated way on the lid
surface area and on the strength and wavelength of the overturning motions. Whereas
the rate of stirring for a given L is governed primarily by Λ through the nonlinear
coupling of internal temperature to viscosity the structure and ultimately the heat
transfer properties of the large-scale flow depend on the lid extent and shape and are
almost certainly influenced by the aspect ratio of the system and the depth of the
convecting layer. In our experiments, for example, dramatic variations in flow regime
occur as L is varied (figures 2 and 5). In our experiments there is a transition from
flow at the scale of the lid extent where L =0.2 and Nu is maximized, to flow at the
scale of the tank at L= 0.6 where the local gap heat flux is maximized, to flow at the
scale of the gap at L = 0.83, where Nu is less than the uninsulated case. The effect of
lid shape may be equally large. Figure 11 shows visualizations from simulations with
square lids corresponding to L = 0.2 and L = 0.4 (all other conditions are identical
between the calculations). The unsteady two-dimensional roll pattern apparent in the
small surface area case evolves to a time-dependent three-dimensional square cell
pattern when a larger lid is applied. In addition, our numerical simulations show
that for a given Rae where rectangular lids are replaced with square lids a qualitative
change in the largest-scale structure of the flow preserves the magnitude of the peak
in heat flux, but causes it to shift to larger L.

We have two final comments. First, the link between the structure of the flow
and the location of global heat transfer maxima in Nu–L parameter space is a key
issue and remains an open problem. Second, our results combined with the active-lid
study of Lenardic et al. (2005) suggest that a maximum in the basal heat flux is
a fundamental property of partially insulated active- and stagnant-lid convecting
systems. Moreover, it may be argued more generally on the basis of these robust
features that these classes of convection problem are novel examples highly nonlinear
systems with a well-defined minima in their global thermal resistance.

We thank N. H. Sleep, M. Manga and R. W. Griffiths for discussions and comments
as well as R.-B. Lenardic for support. We are grateful particularly for thorough
comments from several anonymous reviewers that improved this paper significantly.
M. Wenzel provided crucial help with some of the experiments and drafted an
earlier version of figure 1. This work was supported by funding from NSERC and
the Canadian Institute For Advanced Research to AMJ, by NSF CAREER Grant
EAR-0448871 to AL and by NSF EAR 0439766 to M. Manga.

Appendix. Power spectral estimation and the horizontal velocity in the hot
thermal boundary layer

Power spectra from the data shown in figure 4 are estimated using both an adaptive
Thompson multitaper algorithm (Thompson 1982; Park, Lindberg & Vernon 1987)
and the method of Welch (1967). Periods for hot thermal formation at TC1 and TC2
are estimated from both techniques are compared in figure 13 and are quantitatively
similar. Characteristic periods identified with spectral analysis are further verified from
the periodic form of the autocorrealtion functions for the time series evaluated at large
time lags (Lathi 1965; Manga & Weeraratne 1999) and, where possible, from visual
inspection of the time series. To obtain a velocity for the L= 0.43, 0.6 and 0.83 regimes
we hypothesize that the period of hot thermal formation observed at the upstream
and downstream sensors are the same but shifted in time. We analyse the time shift
between the signals and estimate a velocity from the measured distance between the
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Figure 12. Spectral estimates for the periods of hot thermal formation determined using the
Welch (solid line) and adaptive multitaper (dashed line) methods as a function of lid extent L.

sensors. To verify that the period of hot thermal formation at TC1 can be resolved
at TC2 we cross-correlate the time series for TC2 with a synthetic monochromatic
sinusoid with the measured period of hot thermal formation. Conceptually, we adopt
the following approach. We define the average cross-correlation coefficient as the
inner product of the synthetic sinusoidal signal s(t) and the original time series f (t)

ϕxy(τ ) =
1

T

∫ ∞

−∞
f (t)s(t − τ ) dτ, (A 1)

where T is the temporal length of f (t) and τ is the time lag between the signals. If the
f (t) contains a component of the same period as s(t), then ϕxy(τ ) will be a periodic
function with the same period as s(t). In the alternative endmember situation that s(t)
and f (t) are orthogonal, ϕxy(τ ) will vanish. However, the power spectra in figure 5
show that whereas most power is primarily concentrated in two characteristic periods
associated with the flow, there is non-negligible power distributed over a large range
of frequency bands due to noise. Consequently, ϕxy(τ ) will never vanish but can be
characterized with a lower limit or ‘noise floor’ for each experiment that we estimate
partly through the results of this test.

To determine the time shift between the time series we perform and compare two
operations. First, we calculate discrete cross-correlations of the full time series from
TC1 and TC2, as is done in studies of turbulent flows (e.g. Niemala 2000). Time lags
associated with short period features such as thermals are shown in figure 14 as a
function of L. To improve our estimates of these time lags we Fourier transform the
cross-correlation function and obtain the complex cross-spectral density Φxy(iω) where
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Figure 13. Cross-correlations (left) and analysis of coherence (black) and phase (blue) as a
function of period (right) of the time series from thermocouples ‘TC1’ and ‘TC2’. Also shown
in the right panel are the estimated periods for hot thermal formation derived from the results
in figure 5. Uncertainties in the time lags from the cross-correlations are calculated using the
method of Saar & Manga (2004).
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the power Axy(ω)2 = Re(Φxy(ω))2 +Im(Φxy(ω))2. The coherence and phase spectra are,
in turn,

Γ (ω) =
Axy(ω)2

Φxx(ω)Φyy(ω)
, (A 2)

and

ϕ(ω) = tan−1

(
Im(Φxy(ω)

Re(Φxy(ω))

)
, (A 3)

where repeated indexes refer to autospectra. Taken together the coherence and phase
spectra include the same information as the cross-correlation function but have the
advantage of providing a measure of the correlation between signals as an explicit
function of component frequency. This feature is particularly useful when the time
series contain multiple periods that are similar. The main limitation of this technique,
and reason for also cross-correlating the time series, is that the accuracy depends
on the spectral resolution. The phase spectra are related to the time lag from the
cross-correlation τ

ϕ(ω) =
2πτ

τc

, (A 4)

where τc is the characteristic period identified. The coherence and phase for hot
periods are shown in figure A2 and are consistent with the cross-correlation analysis
at the time lags indicated.
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