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Abstract

Weuse apatite fission track ages from sediments recovered by the International OceanDiscovery
Program in the Laxmi Basin, Arabian Sea, to constrain exhumation rates in the western
Himalaya and Karakoram since 15.5Ma. With the exception of a Triassic population in the
youngest 0.93Ma samples supplied from western Peninsular India, apatite fission track ages
are overwhelmingly Cenozoic, largely <25Ma, consistent with both a Himalaya–Karakoram
source and rapid erosion. Comparison of the minimum cooling age of each sample with
depositional age (lag time) indicates an acceleration in exhumation between 7.8 and 7.0Ma, with
lag times shortening from ∼6.0Myr at 8.5–7.8Ma to being within error of zero between 7.0 and
5.7Ma. Sediment supply at 7.0–5.7Mawas largely from theKarakoram, and to a lesser extent the
Himalaya, based on U–Pb zircon ages from the same samples. This time coincides with a period
of drying in theHimalayan foreland caused byweaker summermonsoons andWesterly winds. It
also correlates with a shift of erosion away from the Karakoram, Kohistan and the Tethyan
Himalaya towardsmore erosion of the Lesser andGreaterHimalaya andNanga Parbat, as shown
by zircon U–Pb provenance data, and especially after 5.7Ma based on Nd isotope data. Samples
younger than 5.7Ma have lag times of ∼4.5Myr, similar to Holocene Indus delta sediments.

1. Introduction

If we are to understand how the evolving climate of Asia has impacted the tectonic develop-
ment of the Himalaya and Tibetan Plateau, or vice versa, we must use the sedimentary records
in basins adjacent to these mountain ranges in order to reconstruct the long-term history of
exhumation caused by erosion. Thermochronology measurements on bedrock currently
exposed at the surface only provide constraints on the most recent stages of the cooling history
of those particular units. By definition, older bedrock has been removed, so the older erosional
history can only be reconstructed through study of the sedimentary record. However,
interpreting the sedimentary record can be complicated if burial of sediment resets sensitive
low-temperature thermochronometers, eliminating the cooling history of the source
bedrocks (Carter, 1999). Although higher temperature methods (e.g. muscovite Ar–Ar dating)
(White et al. 2002; Szulc et al. 2006) can be useful in examining past erosion and are resistant
to resetting, these have the disadvantage of being less sensitive to changes in the rates of
exhumation by erosion, because they require a greater amount of exhumation between
isotopic closure and exposure at the surface. Nonetheless, detrital apatite fission track
(AFT) thermochronology can also have resolution problems, because single grain ages are
often imprecise, especially for young grains with very low track counts.

A number of studies have examined the history of erosion in the Himalaya using the foreland
basin sediment record, in particular sedimentary rocks belonging to the Miocene–Pliocene
Siwalik Group (Cerveny et al. 1989; Ghosh & Kumar, 2000; Bernet et al. 2006; Najman,
2006; van der Beek et al. 2006; Chirouze et al. 2013; Baral et al. 2016; Chirouze et al. 2015).
Although this stratigraphic unit has provided useful information about past patterns and rates
of erosion, the quality of information from AFT thermochronology has been limited due
to resetting caused by post-deposition burial, especially in the lower parts of the section
(van der Beek et al. 2006). In addition, the foreland basin sequence at any one particular location
will typically reflect the rivers that are flowing from the Himalaya at that point, providing a
localized record. Although this may be very useful for examining single rivers, it is often hard
to judge how effective each sequence might be in reconstructing erosion at the regional scale.
For example, because the trunk Indus River lies on the western edge of the drainage, Siwalik
Group rocks in the eastern parts of the catchment provide no information about how its
sediment load may have evolved.
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In this study, we present AFT data from new scientific bore-
holes in the western Indian Ocean in order to derive a regional
image of changing erosion rates within the western Himalaya
since c. 15.5 Ma, and in particular after 9 Ma. Use of the
International Ocean Discovery Program (IODP) boreholes in
the Laxmi Basin (Fig. 1) (Pandey et al. 2016b) has the advantage
that the sediment thickness is low (<1.1 km) and the geothermal
gradient is 53 °C km−1 and 57 °C km−1 at sites U1456 and U1457,
respectively (Pandey et al. 2016b). Although these are high values,
the low thickness means that even the base of the section will
fall below temperatures required to cause significant annealing
or resetting of fission tracks in apatite, i.e. ∼60–110 °C (Green,
1989), and therefore the original cooling history of the bedrock
sources will be preserved. All but one of the samples were
recovered from depths shallower than 722 metres below seafloor
(mbsf), implying no more than 38 °C burial temperature at the

present maximum burial depth. The deepest sample (U1456E-
19R-3, 10–20 cm) was recovered from a depth of 1103 mbsf,
but the fission track ages are older than the depositional age,
indicating that this too is not reset.

Constraining rates of bedrock source cooling caused by
erosion driven by rock uplift can help identify locations of active
tectonics and the rates and patterns of mountain growth.
However, climate change may also play a role in relation to
variations in precipitation rate that are linked to the intensity
of the South Asian monsoon. This is known to have varied
significantly throughout the Cenozoic (Quade et al. 1989;
Kroon et al. 1991; Prell et al. 1992; Gupta et al. 2015; Betzler
et al. 2016). Debate continues concerning the history of
strengthening of the South Asianmonsoon, but increasingly there
is a consensus that the climate began to dry after 8 Ma
(Behrensmeyer et al. 2007; Singh et al. 2011; Clift, 2017),
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Fig. 1. Shaded bathymetric and topographic map of the Arabian Sea area showing the location of the drilling sites within the Laxmi Basin. Map also shows the primary source
ranges and the major tributary systems of the Indus River, as well as smaller peninsular Indian rivers that may have provided material to the drill sites. Magnetic anomalies are
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following a period of maximum intensity in Middle Miocene time
(Clift et al. 2008). It has been suggested that it was the strength of
the summer monsoon rains during Middle Miocene time that
resulted in rapid exhumation of the Greater Himalaya at that time
driven by strong erosion (Clift et al. 2008). If that is true, one
might predict that the rate of erosion since that time was also
coupled with monsoon intensity. However, work within the
foreland sedimentary rocks of the Siwalik Group in Nepal shows
that the rate of exhumation in the central Nepalese Himalaya
remained essentially constant after 8 Ma (van der Beek et al.
2006). In contrast, the same study argued that rates of erosion
had increased between 8 and 3 Ma in western Nepal, despite
the fact that both sections lie within the Ganges drainage system,
which is wetter than the Indus Basin considered here (Bookhagen
& Burbank, 2006). In contrast, AFT data from Ocean Drilling
Program (ODP) sites 717 and 718 on the Bengal Fan showed
that rapid rates of exhumation of the bedrock sediment sources
to the Ganges–Brahmaputra basin have been ongoing since
Middle Miocene time (Corrigan & Crowley, 1990). Reappraisal
of this data by van der Beek et al. (2006) indicated relatively
constant lag times (i.e. the difference between the depositional
age and the AFT cooling) since 9 Ma, suggestive of uniform
erosion rates.

There are few constraints over how erosion rates might have
changed during the Pleistocene Epoch. While some have argued
that the onset of northern hemisphere glaciation (NHG) has
intensified rates of erosion during the last couple of million years
(Métivier et al. 1999; Zhang et al. 2001; Clift, 2006), other workers,
drawing on cosmogenic isotope data (Willenbring & von
Blanckenburg, 2010), suggested that continental weathering rates
have remained essentially steady-state during the Neogene and
especially the Plio-Pleistocene periods. Such an observation does
not require faster sediment delivery to the ocean, although this
was proposed from a global data compilation implying a steady-
state supply of sediment spanning tens of millions of years
(Sadler & Jerolmack, 2014). Here we provide the first detailed
AFT constraints on erosion rates in the western Himalaya, within
the Indus Basin, in order to see whether the temporal evolution
in that region mirrors that found in Nepal and in the Ganges–
Brahmaputra drainage basin.

Over the period since 15.5 Ma considered by this study, the
western Himalaya have experienced significant tectonic changes.
The Lesser Himalaya were brought to the surface because of
duplexing above the Main Boundary Thrust (MBT) (Mugnier
et al. 1994; Huyghe et al. 2001), coupled with focused erosion
since Late Miocene time. There is continued debate about when
unroofing of the Lesser Himalaya might have occurred. Early
studies suggested that the MBT initiated c. 10–11 Ma (Meigs
et al. 1995) allowing the Lesser Himalayan Duplex to form and
be uplifted and then eroded. Work from the Siwalik Group in
NW India points to an initial exposure of the Lesser Himalaya
at c. 9 Ma followed by more widespread exposure after 6 Ma
(Najman et al. 2009), although this may be only applicable to
the Beas River area (Fig. 1). Nd and zircon U–Pb data from
IODP sites U1456 and U1457 now suggest initial exposure after
8.3 Ma and widespread unroofing after 1.9 Ma (Clift et al. 2019b).
Other potentially important sources of sediment to the submarine
fan include the Nanga Parbat Massif that is located next to
the Indus River in the western syntaxis (Fig. 1). Provenance
studies from the Indus River downstream of Nanga Parbat
indicate that this massif has only limited sediment-generating
potential at the present time (Clift et al. 2002b; Lee et al. 2003;

Garzanti et al. 2005), despite the start of uplift c. 6 Ma
(Chirouze et al. 2015). In contrast, its eastern equivalent
(Namche Barwe) is believed to be a major source of sediment
to the Brahmaputra (Garzanti et al. 2004; Stewart et al. 2008).
Bedrock thermochronology measurements testify to Nanga
Parbat being very rapidly exhumed in the recent geologic past
(Zeitler et al. 1993), but this does not seem to generate much
of the sediment in the river downstream of that point (Alizai
et al. 2011). Zircon fission track (ZFT) and Nd isotope data in
the western part of the Siwalik ranges in Pakistan indicate that
this massif and other Himalayan units in the western syntaxis
may have become more important as a sediment source after c.
6 Ma (Chirouze et al. 2015). The sedimentary record in the
Indus Fan may have also been affected by large-scale drainage
capture. Nd isotope measurements on samples from an industrial
drill site on the Indus shelf, as well as limited ODP samples from
the upper fan, were used to argue that the eastern tributaries of the
Indus River were only captured into the modern system after
5 Ma (Clift & Blusztajn, 2005). However, this is contradicted
by combined ZFT and Nd isotope data that support relative
stability in drainage patterns but changing rates of erosion in
the Himalaya and Karakoram since Miocene time (Chirouze
et al. 2015).

2. Regional setting

IODP Expedition 355 sampled sediments from the Indus Fan
deposited within the Laxmi Basin offshore western India (Fig. 1).
Although the Laxmi Basin is separated from the main Arabian
Basin by the Laxmi Ridge, the bathymetry of the basin and the
orientation of active channels (Mishra et al. 2016) indicate that
the primary source of sediment to the coring locations would be
the Indus River, with lesser input from peninsular rivers such as
the Tapti and Narmada. Initial petrographic-based interpretations
of the sediments made shipboard during the expedition suggested
that there were limited amounts of sediment delivery from western
India, and it tended to be found only in the youngest parts of the
section (Pandey et al. 2016a).

The Laxmi Basin itself dates from the latest Cretaceous period
when India began to separate from the Seychelles (Bhattacharya
et al. 1994; Pandey et al. 1995). Following the onset of India–
Asia collision, c. 50–60Ma (Najman et al. 2010; DeCelles et al.
2014), the uplift and erosion of the Himalaya have resulted in a
huge flux of sediment into the Arabian Sea. Although the Indus
Fan is much smaller than the Bengal Fan, it is nonetheless the
second largest sediment body on Earth and is believed to have
accumulated sediment eroded from the mountains at least since
45Ma (Clift et al. 2001).

Drilling during Expedition 355 recovered a section that
penetrated to basement at Site U1457 (Fig. 2), but because of
large-scale mass wasting (Dailey et al. 2019), the most complete
erosional record only spans the last 10.8 Myr, with much of
the older sediment either missing, owing to erosion or non-
deposition, or not sampled. Coring was undertaken at two sites,
Site U1456 in the central part of the Laxmi Basin, as well as at
Site U1457 located on the flanks of the Laxmi Ridge (Fig. 1).
In general, the sediment at Site U1456 tended to be coarser
grained (Fig. 2). The entire sedimentary cover is also more
complete at Site U1456 than at Site U1457. The coarse-grained,
sandy sediment that forms the focus of this study was taken
from both sites and is the product of turbidity current flows.
Nonetheless, significant parts of the section are fine-grained
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muddy facies together with carbonate-rich intervals, and these
are interbedded with sandy turbidite material caused by sedimen-
tation on depositional lobes within the middle fan (Fig. 2). There
are also interbeds of calcareous-rich pelagic material that reflect
times when the main Indus-sourced depocentre was located to
the west of the Laxmi Ridge, so that the primary clastic flux from
the Indus River was not reaching the drilling area. Because the
drilling sites are located above the carbonate compensation depth
(CCD), it was possible to date the age of sedimentation using a

combination of nannofossil and foraminifera biostratigraphy
coupled with magnetostratigraphy that provides a relatively
robust age model (Pandey et al. 2016b). Drilling was able to
penetrate a thick mass transport deposit (MTD) deposited just
before 10.8 Ma (Calvès et al. 2015), but at Site U1456 coring
was able to recover a short interval below the MTD, providing
a single sample that is substantially older than any of the other
sediments recovered and which has been approximately dated
at 15.5 Ma (Pandey et al. 2016a). At Site U1457 all fan sediment
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pre-dating the mass wasting event had been removed, so our
studies are restricted to the section younger than 10.8 Ma at that
location.

We apply the AFT thermochronology dating method to this
sediment in order to understand how the source rocks that
provided material to the Arabian Sea evolved in their cooling
and exhumation history sinceMiddle Miocene time. Fission track
studies are a well-established method for looking at bedrock
unroofing and potentially also sediment provenance if the source
regions themselves are sufficiently well defined and if cooling ages
are relatively constant in a source area (Laslett et al. 1987; Green
et al. 1989; Carter, 1999). In a complex area like the western
Himalaya, cooling ages vary across tectonic blocks and through
time, so the interpretation of the AFT ages is contingent on
supporting provenance data and cannot be used to constrain
provenance by themselves. In this study we draw on zircon
U–Pb age data from these same boreholes (Clift et al. 2019b).
Simple comparison of modern bedrock AFT ages and detrital
AFT ages in sediments more than around a million years old is
not justifiable, because the cooling rates of the bedrock will
change on such timescales.

3. Methodology

Low-temperature AFT central ages reflect cooling through
60–110 °C over time scales of 1–10 Myr (Green et al. 1989).
Fission tracks form continuously through time at an abundance
determined by the concentration of 238U in the host apatite grain
(Haack, 1977). The method has been widely used and is effective
for studying the exhumation history and provenance of shallow-
buried sediment (Gallagher et al. 1995; Carter, 2007). Samples
were taken where suitable sandy material was available at both
IODP sites, as shown in Figure 2 and Table 1. Some of the apatites
were extracted from the same samples analysed for detrital zircon
U–Pb dating by Clift et al. (2019b).

Following mineral separation, AFT analysis was performed at
the London Geochronology Centre based at University College
London, UK. Polished grain mounts of apatite were etched with
5N HNO3 at 20 °C for 20 seconds to reveal the spontaneous fission
tracks. Subsequently, the uranium content of each crystal was
determined by irradiation, which induced fission in a proportion
of the 235U. The induced tracks were registered in mica external
detectors. The samples for this study were irradiated in the

Table 1. List of the samples with their depths and calculated depositional ages. Samples also analysed for detrital U–Pb zircon dating by Clift et al.
(2019b) are highlighted

Lab No. IODP Sample Name
Depositional
Age (Ma)

Depth
(mbsf)

AFT Minimum
Age (Ma) 2σ (Ma)

Number
of grains

Zircon
U–Pb ages

134-1 U1456A-11H-6 60–69 cm 0.93 97.60 20.70 3.80 24 Yes

134-2 U1456A-26F-3 50–58 cm 1.32 185.91 3.60 0.85 62

134-3 U1456A-51F-3 100–110 cm 1.56 302.09 3.90 1.40 44 Yes

134-4 U1456A-61F-3 40–50 cm 1.92 345.32 6.50 1.10 45 Yes

177-1 U1456A-70F-2 10–16 cm 3.02 386.73 5.70 1.50 75 Yes

177-12 U1457C-31R-1 94–100 cm 3.17 474.25 5.10 1.80 52

177-13 U1457C-33R-3 10–17 cm 3.43 499.10 6.40 1.20 49 Yes

177-2 U1456C-45X-3 45–51 cm 3.57 459.09 8.48 0.75 65

134-6 U1456D-5R-1 12–20 cm 5.72 487.98 9.30 2.20 50 Yes

177-14 U1457C-41R-2 20–26 cm 5.78 572.16 5.91 0.83 46

177-15 U1457C-42R-1 80–88 cm 5.82 580.40 6.40 1.10 55

177-16 U1457C-43R-1 55–63 cm 5.87 590.53 9.00 1.20 57 Yes

177-3 U1456D-12R-1 30–36 cm 7.00 556.45 6.60 1.50 52

177-4 U1456D-13R-1 30–38 cm 7.07 566.35 13.20 7.30 30 Yes

177-5 U1456D-15R-1 55–61 cm 7.28 586.00 15.80 1.90 50

177-6 U1456D-19R-2 20–26 cm 7.66 625.73 11.90 1.80 40

177-17 U1457C-51R-4 80–88 cm 7.78 675.16 12.00 3.20 51

134-7 U1456D-22R-1 73–83 cm 7.84 653.50 15.48 0.97 69 Yes

134-10 U1457C-61R-1 8–18 cm 7.99 769.36 14.00 3.10 42

177-8 U1456D-26R-2 37–43 cm 8.09 693.78 14.90 1.60 55

177-9 U1456D-27R-2 100–106 cm 8.15 704.43 16.97 0.98 69

177-10 U1456D-28R-1 40–46 cm 8.20 711.98 14.20 1.80 72

134-8 U1456D-29R-2 24–34 cm 8.27 722.60 11.80 5.30 64 Yes

134-9 U1456E-19R-3 10–20 cm 15.58 1102.95 20.20 1.40 75 Yes
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FRM 11 thermal neutron facility at the University of Munich,
Germany. The neutron flux was monitored by including Corning
glass dosimeter CN-5, with a known uranium content of 11 ppm,
at either end of the sample stack. After irradiation, sample and
dosimeter mica detectors were etched in 40 % HF at 20 °C for
25 minutes. Only crystals with sections parallel to the c-crystallo-
graphic axis were counted, as these crystals have the lowest bulk etch
rate. To avoid biased results through preferred selection of apatite
crystals, the samples were systematically scanned and each crystal
encountered with the correct orientation was analysed, irrespective
of track density. The results of the fission track analysis are presented
in Table 2 and online SupplementaryMaterial Table S1. The chi test,
used to detect extra Poisson variation, does not show how much
over-dispersion is present in the dataset. Therefore, we include
the central age and its percentage relative error, because this
provides a measure of the extent of age dispersion. It is also useful
when there are low track counts (young ages), as the chi test is
unreliable under these conditions.

4. Results

Because all samples showed evidence of over-dispersion, we
examined the range of single grain AFT ages in each sample using
a combination of kernel density estimate (KDE) plots following
the method of Vermeesch (2012) and the radial diagrams of
Galbraith (1990) (Fig. 3). Plots that combine both types of data
presentation are known as abanico plots (Dietze et al. 2016). In
the radial plots, the single grain ages are plotted away from a
central point on the left side of each diagram, with higher accu-
racy measurements plotted closer to the right-hand curved y-axis
against which the ages are measured. This approach allows
populations of grains with similar ages but varying degrees of
uncertainty to be identified as arrays. In this particular study,
we focus on the identification of a minimum age population
extracted using the algorithm of Galbraith (2005) that clusters
in an array and trends towards the y-axis on the right-hand side
of each diagram. This avoids problems associated with a general
purpose, multi-component mixture model that can give a biased
estimate of the minimum age towards younger values with
increasing sample size. The radial plots show if there is a single
source (single array) or multiple sources, if there is more than
one array. Figure 3 and Table 2 show samples that have a second
age component (P2) as defined by ten or more grains. In all cases
the majority of analysed grains defines the minimum age and
represents the time at which the dominant bedrock sources
cooled through the AFT partial annealing zone (PAZ).

In each case, we also show the calculated depositional age
derived from the shipboard biostratigraphy and magnetic stratig-
raphy (Fig. 3). The minimum ages are older than or concordant
with the depositional age, as might be expected in a relatively
shallow borehole in which the temperatures are not elevated
above those known to reset fission tracks in apatite crystals.
All samples have minimum ages less than 20 Ma, and P2 AFT
ages are all less than 40 Ma (apart from the youngest sample),
post-dating the initial collision of India and Asia. There are
particularly noteworthy concentrations of grain ages between
3 and 20 Ma. Fifty per cent of samples have a minimum age
younger than 10 Ma. The minimum age gets younger with
decreasing depositional age, but not in a systematic way. The
age difference between the minimum age and depositional age
is <5 Myr for most samples, i.e. short lag times, but increases
for samples deposited between 7.84 and 8.2 Ma, as well as

7.07 and 7.28 Ma. The youngest sample (U1456A-11H-6,
60–69 cm) is unlike many of the others in showing significantly
older AFT ages (Fig. 3).

The youngest deposited sample is anomalous in having a
minimum age population of 20.7 Ma, despite only having been
deposited around 930 ka (Fig. 3a). This may be due to the sample
containing fewer apatites, with only 24 grains being countable,
which is the smallest number out of all samples analysed. This
is in strong contrast with the much younger minimum ages of
the directly underlying samples. It is only the very oldest sample
(∼15 Ma, U1456E-19R-3, 10–20 cm) that also has a minimum
age of that value, but that sample has a short lag time (Fig. 3x).
We can assess the possible impact of low grain numbers on the
critical minimum age result in Figure 4. This plot shows that there
is no correlation between the number of grains and the minimum
age, only reinforcing the fact that samples with low numbers of
grains have larger uncertainty in the result, but not causing short
lag times.

The core is not altered or veined, and the modern maximum
burial temperature of the samples with lag times close to zero is
far too cool to have affected the AFT ages. The ages are within
error of the depositional age, not resolvably younger, especially
considering uncertainties in the depositional age too, although
sample U1456D-12R-1 30–36 cm (Fig. 3m) has a minimum age
population slightly younger (6.6 ± 1.5 Ma) than the calculated
depositional age (7.0 Ma) but within error of that value and need
not be reset. Moreover, the young ages are also accompanied by
older age populations that are also consistent with the sediment
not being thermally reset, as well as with the modern borehole
temperatures being well below the apatite PAZ (556 mbsf
(29.4 °C) at Site U1456; 572–590 mbsf (32.6–33.6 °C) at
Site U1457).

5. Discussion

The fact that all of our AFT ages are relatively young and mostly
postdate the widely accepted times of India–Asia collision is a clear
indication that they are derived from Himalayan/Karakoram
sources supplied by the Indus River and, with the exception of
the youngest sample, not from Peninsular India. Ancient rocks
of the Indian peninsula have not been substantially deformed
and uplifted during Cenozoic time, and basement AFT ages are
mostly Jurassic–Cretaceous. Although they range as young as
54Ma (Kalaswad et al. 1993; Gunnell et al. 2003), 95 % of the ages
measured are older than 100Ma, averaging 228 Ma (Fig. 5h).
This is somewhat older than most of the grain ages in Sample
U1456A-11H-6, 60–69 cm (Fig. 3a), but does match the P2 older
population in that sample (Table 2). Nonetheless, the minimum
age population of 20.7 ± 3.8 Ma requires a Himalaya–Karakoram
provenance for 14 of the 24 grains measured. U–Pb zircon ages
from this same sample (Clift et al. 2019b) show that 8 % of the
grains date to <200Ma, requiring derivation from the Indus
River, because such zircon ages can only be generated by erosion
from Kohistan or Karakoram sources. Zircon grains older than
300Ma could be from the peninsula or the Tethyan/Greater
Himalaya. This youngest sample seems likely to be of mixed
provenance, with material from both the Indus and the peninsula.
For the other samples, the AFT data argue strongly for the sand at
these drilling sites being entirely derived from the Indus River,
because they are generally much younger than AFT ages from
the western margin of Peninsular India and broadly consistent
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Table 2. Summary of apatite fission track analytical data

Dep. Age Dosimeter Central Age Minimum Age P2 Age

Lab No Sample (Ma) No. of grains ρd Nd ρs Ns ρi Ni Pχ
2 RE

% (Ma) (Ma) (Ma)

A 134-1 U1456A-11H-6 60–69 cm 0.93 24 1.583 4388 0.798 218 3.858 1440 0 111 61.2±14.9 20.7±3.8 223±28

B 134-2 U1456A-26F-3 50–58 cm 1.32 62 1.583 4388 0.108 308 3.555 11836 0 79 7.3±0.9 3.6±0.9 13.4±1.3

C 134-3 U1456A-51F-3 100–110 cm 1.56 44 1.583 4388 0.191 298 6.856 12192 0 70 6.8±0.9 3.9±1.4 7.2±0.9

D 134-4 U1456A-61F-3 40–50 cm 1.92 45 1.583 4388 0.178 349 5.498 11649 0 35.2 8.1±35.2 6.5±1.1

E 177-1 U1456A-70F-2 10–16 cm 3.02 75 1.215 3367 0.206 446 4.539 11389 0 54.2 8.2±0.7 5.7±1.5 15.5±2.3

F 177-12 U1457C-31R-1 94–100 cm 3.17 75 1.215 3367 0.171 326 4.710 10359 0 51.5 6.8±0.6 5.1±1.8 12.7±2.1

G 177-13 U1457C-33R-3 10–17 cm 3.43 49 1.215 3367 0.211 313 4.528 8601 0 50.8 7.7±0.8 6.4±1.2

H 177-2 U1456C-45X-3 45–51 cm 3.57 65 1.215 3367 0.349 474 4.737 9089 0 160 12.9±2.7 8.5±0.8

I 134-6 U1456D-5R-1 12–20 cm 5.72 50 1.583 4388 0.272 314 6.211 7830 0 42.4 11.2±1.0 9.3±2.2

J 177-14 U1457C-41R-2 20–26 cm 5.78 46 1.215 3367 0.186 236 3.801 6317 0 180 11.4±3.1 5.9±0.8

K 177-15 U1457C-42R-1 80–88 cm 5.82 55 1.215 3367 0.179 361 4.073 9719 0 160 7.8±0.8 6.4±1.1 15.9±2.6

L 177-16 U1457C-43R-1 55–63 cm 5.87 80 1.215 3367 0.389 528 5.048 8747 0 12.4 13.7±1.6 9.0±1.2 29.4±1.2

M 177-3 U1456D-12R-1 30–36 cm 7.00 52 1.215 3367 0.241 347 4.004 6997 0 53.8 10.7±1.0 6.6±1.7 17.7±1.7

N 177-4 U1456D-13R-1 30–38 cm 7.07 30 1.215 3367 0.297 124 5.000 2061 2.1 44.7 11.4±1.5 11.4±1.5

O 177-5 U1456D-15R-1 55–61 cm 7.28 50 1.215 3367 0.362 372 3.718 4683 0 39.2 16.5±1.3 15.8±1.9

P 177-6 U1456D-19R-2 20–26 cm 7.66 40 1.215 3367 0.546 457 4.714 4931 0 73.4 19.9±2.6 11.9±1.8 28.0±4.7

Q 177-17 U1457C-51R-4 80–88 cm 7.78 51 1.215 3367 0.326 430 4.140 5605 0 40 14.7±1.2 12.0±3.2 19.9±1.6

R 134-7 U1456D-22R-1 73–83 cm 7.84 80 1.583 4388 0.424 799 6.226 12387 0 44.6 18.6±1.2 15.5±0.9

S 134-10 U1457C-61R-1 8–18 cm 7.99 42 1.583 4388 0.353 468 5.490 7570 0 14.3 16.1±1.0 14.0±3.1

T 177-8 U1456D-26R-2 37–43 cm 8.09 55 1.215 3367 0.337 403 3.651 5056 0 48.9 18.4±1.7 14.9±1.6

U 177-9 U1456D-27R-2 100–106 cm 8.15 92 1.215 3367 0309 605 3.710 7958 0 41.8 16.0±1.0 16.9±0.9

V 177-10 U1456D-28R-1 40–46 cm 8.20 72 1.215 3367 0.499 639 5.203 7453 0 73.3 18.4±1.8 14.2±1.8 21.1±1.9

W 134-8 U1456D-29R-2 24–34 cm 8.27 72 1.583 4388 0.424 639 5.508 9347 0 48.6 19.3±1.4 11.8±5.3 38.8±3.8

X 134-9 U1456E-19R-3 10–20 cm 15.58 75 1.583 4388 0.462 873 4.957 9653 0 55.9 25.9±2.0 20.2±1.4

Track densities are (×106 tr cm−2) numbers of tracks counted (N) shown in brackets. Analyses by external detector method using 0.5 for the 4π/2 π geometry correction factor. Ages calculated using dosimeter glass CN-5; (apatite) ζCN5 = 338 ± 5; calibrated by
multiple analyses of IUGS apatite and zircon age standards (Hurford, 1990). Pχ2 is probability for obtaining χ2 value for v degrees of freedom, where v= no. crystals – 1. Central age is a modal age, weighted for different precisions of individual crystals (see
Galbraith, 1990). Minimum age model after Galbraith (2005). P2 used the peak fitting algorithm of Galbraith & Green (1990) where there are >10 grains.
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Fig. 3. (a–f) Radial plots and associated KDE spectra (abanico plots) showing the range of apatite fission track ages for each of the samples considered within the study
(Galbraith, 1990). Ns – number of spontaneous fission tracks; Ni – number of induced tracks. Single ages are plotted with standard errors according to their precision (1/σ
on the x-axis). The error attached to each plotted point is standardized on the y scale. The value of the age and the 2σ uncertainty can be read off the radial axis by extrapolating
lines from point 0,0 through the plotted age. (g–l) Radial plots and associated KDE spectra (abanico plots) showing the range of apatite fission track ages for each of
the samples considered within the study (Galbraith, 1990). (m–r) Radial plots and associated KDE spectra (abanico plots) showing the range of apatite fission track ages
for each of the samples considered within the study (Galbraith, 1990). (s–x) Radial plots and associated KDE spectra (abanico plots) showing the range of apatite fission track
ages for each of the samples considered within the study (Galbraith, 1990).
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with the AFT ages derived from sands that are definitely of Indus
derivation (Clift et al. 2004, 2010).

Some information can also be derived about where the sedi-
ments may be coming from within the possible source ranges if
we refer to the bedrock data that has been measured onshore, as
summarized in Figure 5. Comparison of these sources and detrital
data is only valid for the youngest sediments because young
bedrock AFT ages do not inform us about the cooling of these
sources in the older geologic past, only the cooling of the rocks
now exposed. We note that the different ranges within the
Indus Basin have a number of distinctive peaks and that some
of these are distinct in terms of their AFT age spectra. We note that
the Greater and Lesser Himalaya have relatively similar fission
track ages, clustering around 3–4Ma, but with some ranging to
c. 1 Ma, at least in the Sutlej Valley (Thiede et al. 2004), and that
these also overlap with ages known from the Karakoram, especially
the eastern Karakoram (Wallis et al. 2016) and the Yasil Dome
lying in the Karakoram immediately north of the Nanga Parbat
Massif (Poupeau et al. 1991). The Karakoram, however, also has
bedrock AFT ages that range to older values, suggestive of earlier
exhumation in at least parts of that block, most notably in the
west and their continuation into the Hindu Kush (Zhuang et al.
2018). The very youngest grains are measured around the
Nanga Parbat Massif (Zeitler, 1985), while the oldest are found
in the Transhimalayan Ladakh Batholith (Kirstein et al. 2009)
and Deosai Plateau (van der Beek et al. 2009). The Tethyan
Himalaya has also yielded older AFT ages in the central
Himalaya (Li et al. 2015) but has not been dated within the
Indus catchment. Uplift and erosion in the mountains around
the Indus Suture and to the north of the Greater Himalaya is widely
accepted to have initiated earlier and then mostly slowed as the
exhumation shifted into the Greater and Lesser Himalayan ranges
(Searle, 1996).

Althoughmany of the measured fission tracks at Nanga Parbat
have ages of less than 1 Ma (Zeitler et al. 1989), clearly this could
not have been the case before 1 Ma, when the fastest cooled grains
must have had ages within error of or older than 1 Ma. Lag times
could, however, have been short prior to 1 Ma. Consequently,

direct comparison of the modern bedrock with the detrital ages
in old sediments is not appropriate for most of our samples.
Because the cooling rates of bedrock sources change on timescale
of >106 yr, source lag times need not have been constant in the
geologic past. Different, higher temperature thermochronome-
ters can constrain exhumation rates during those earlier times
and provide clues about lag times. We can, however, deduce that
because many of the grains’ AFT ages are relatively young
(<15 Ma) and their lag times are short, they were probably
derived from fast-exhuming sources in the Himalaya, Nanga
Parbat or Karakoram (Zeitler et al. 1993; Zhuang et al. 2018),
rather than in Kohistan, the Transhimalaya or Tethyan
Himalaya where uplift and exhumation were mostly older. The
cooling histories of these latter sources imply that their AFT
lag times would be mostly long during Late Miocene–Present
times (Fig. 5) (Krol et al. 1996; Searle, 1996; Kirstein et al.
2009). Although some young AFT ages <6.3 Ma have been
recorded in the Ladakh Transhimalayan Batholith along the
Shyok Suture (Kirstein et al. 2009), these represent quite a small
part of that tectonic block. ZirconU–Pb ages from the same IODP
sites imply that the Transhimalaya has not been a dominant
source during the period targeted by this study (maximum of
28 % at 15.5 Ma, and this is likely a large overestimate because
the Karakoram and Transhimlaya overlap in zircon U–Pb ages)
(Clift et al. 2019b).

The prevalence of short AFT lag times implies rapid exhuma-
tion in the dominant sediment-producing sources close to the
time of sedimentation. The AFT data require that little sediment
was stored for significant periods of geologic time between ero-
sion in the mountain sources and sedimentation on the Indus
submarine fan because the difference/lag between minimum ages
and deposition is typically <4 Myr (75 % of samples), represent-
ing an upper limit to the storage time. The lag time of a grain
largely represents the time between cooling and erosion. While
the lag time also includes time spent during sediment transport,
study of the Quaternary Indus system indicates transport times
of no more than ∼105 yr for the bulk of the sediment delivered
to the deep basin (Clift & Giosan, 2014). Some of the sediment
may be recycled from foreland basin sedimentary rocks of the
Siwalik Group, and this would introduce an additional lag into
the sediment transport history. Secondary AFT age populations
between 15 and 38 Ma (Table 2) would fit with this type of
recycling. We can discount that these older ages are coming from
direct erosion of the slower cooled Ladakh Batholith or Tethyan
Himalaya because heavy mineral studies (Garzanti et al. 2005),
trace-element characteristics of detrital amphiboles (Lee et al.
2003) and zircon U–Pb ages (Alizai et al. 2011) from the trunk
Indus River close to the Himalayan front show dominance
by the Karakoram (especially the Southern Karakoram
Metamorphic Belt) over other sources in the modern upstream
basin. That the AFT ages in Siwalik Group sedimentary rocks
themselves have not been entirely reset during burial is known
from studies in central Nepal (van der Beek et al. 2006), and these
ranges could thus be a source of the older AFT ages measured.
Quantifying the amount of recycling out of the Siwalik Ranges
is impossible for our data, because older grains could come from
slow cooling sources or the Siwalik Group. However, the high
abundance of short lag time grains suggests that the degree of this
recycling cannot be too large. Rates of incision in modern gorges
cutting the Siwalik Group in Nepal have been used to estimate
that they account for no more than 15 % of the total flux
(Laveé & Avouac, 2001), while an isotope-based mass balance
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Fig. 4. Cross-plot of numbers of grains compared to minimum ages with 2σ uncer-
tainties displayed. There is no correspondence between the numbers of grains and the
minimum age that might bias the result of the lag time analysis.
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for the Ganges basin indicates <10 % of the mass flux in that
drainage is from the Siwalik Group (Wasson, 2003). A contribu-
tion of that order to the Indus Basin would be consistent with
the AFT data presented here. The AFT data by themselves
cannot resolve erosion from the Siwaliks, as they share older
AFT ages with sources in the Tethyan Himalaya, Kohistan and
Transhimalaya.

On shorter timescales if sediment was being buffered on the
floodplains, in the delta or on the continental shelf, then this is
expected to have occurred only for a short amount of time,
essentially tens of thousands of years (Li et al. 2019). Storage
and recycling on million-year timescales would have resulted
in longer lag times. When the lag times of our samples are 3–4
Myr some of this time must have been spent during transport.
With the exception of the storage and recycling via Siwalik
Group foreland sequences discussed above, the assumption is that
most of this time would have been spent undergoing rock uplift

prior to exposure and erosion, because estimates of transport time
in the Quaternary Indus are just 105 yr for the bulk of the sediment
delivered to the deep basin (Clift &Giosan, 2014).Modern bedrock
AFT data from the Greater and Lesser Himalaya and Karakoram
indicate this order of lag time at the present day (Fig. 5), without
factoring in much additional transport time. Our data are broadly
consistent with the idea of rapidly uplifting mountains being
strongly eroded and so supplying most of the sediment into the
Indus River during the period of study since 15.5 Ma.

Combined Nd isotope and detrital zircon U–Pb age data
from bulk sediment samples from sites U1456 and U1457 show
that there was a change in provenance starting at c. 5.7 Ma
(Clift et al. 2019b). This analysis indicates more material coming
from the Greater and Lesser Himalaya and relatively less from the
Karakoram after this time. The range of lag times in sediments
younger than 7.0 Ma is similar to that found in the Indus delta
during the phase of strong summer monsoon in early Holocene
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Fig. 5. KDE plots for the apatite fission track central ages of potential bedrock sources within the headwaters of the Indus Basin. Nanga Parbat data are from Warner (1993) and
Zeitler (1985). Greater Himalaya data are from Kumar et al. (1995), Jain et al. (2000) and Thiede et al. (2004). Lesser Himalaya data are from Thiede et al. (2004) and Vannay et al.
(2004). Karakoram data are from Foster et al. (1994), Zeitler (1985), Wallis et al. (2016) and Poupeau et al. (1991). Kohistan data are from Zeitler (1985) and Zeilinger et al. (2001).
Transhimalaya data are from Kirstein et al. (2009, 2006) and Clift et al. (2002a). Tethyan Himalaya data are from Li et al. (2015) and A. Carter (unpub. data, UCL, 2017). Indian
Peninsula data are from Gunnell et al. (2003) and Kalaswad et al. (1993).
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time, i.e. 2–5Myr (Fig. 6), when the provenance constraints indi-
cate that these sediments were preferentially derived from Greater
and Lesser Himalayan sources (Clift et al. 2019b). In
contrast, sediments older than 7.0 Ma have longer lag times
(3.5–8.8 Myr, average 6.0 Myr) and are inferred to be more derived
from the Karakoram, based on their zircon U–Pb age spectra
(Fig. 6) (Clift et al. 2019b). The fact that lag times of pre-7.0 Ma
samples are longer, such as Indus delta Last Glacial Maximum
(LGM) sediments that have an AFT central age of 9 ± 1Ma
(Clift et al. 2010), is consistent with a dominant Karakoram source.

That the Nd isotope provenance data change at around the
same time as the AFT lag times (after 5.7 Ma; Fig. 6) supports
the idea that a change in provenance may account for at least part
of the changing AFT lag times at that time. The absence of
the very short lag time samples does mean that after 5.7 Ma there
are no longer any significant fast-eroding ranges in the catch-
ment. As noted above, the Crystalline Inner Lesser Himalaya is
known to be experiencing unroofing after ∼6 Ma, at least in
the vicinity of the Beas River catchment (Najman et al. 2009),
and the shift in the general character of the AFT age populations
after 5.7 Ma may in large part simply reflect more sediment
delivery from the Greater and Lesser Himalaya, potentially
related to tectonic imbrication and rock uplift (Bollinger et al.
2004; Huyghe et al. 2001; Webb, 2013). Such a shift is consistent
with the evolving provenance data in the Laxmi Basin (Clift et al.
2019b). The structural reconstructions of Webb (2013) for the
western Himalaya propose that both the Greater and Lesser
Himalaya remained buried under the Tethyan Himalaya until
after 5.4 Ma. This would imply that the source of rapidly cooled
grains before that time would be from the Karakoram and
Tethyan Himalaya.

The AFT ages can be used to constrain changing rates of
exhumation in the bedrock sources. Comparing depositional age
against the AFT minimum age populations allows us to assess

the lag time between cooling of bedrock sources as they passed
through the 60–110 °C PAZ and their final deposition in the
deep water of the Indian Ocean (Fig. 6). In our analysis we further
compare our results with those similar-aged fluvial sedimentary
rocks from the Siwalik Group in western and central Nepal
(van der Beek et al. 2006), as well as from the Bengal Fan collected
by ODP Leg 116 (Corrigan & Crowley, 1990). It is clear that many
of these minimum age groups have relatively short lag times, which
indicates fast cooling and exhumation of bedrock sources. We note
that both the oldest (15.5 Ma) sample from the Laxmi Basin and a
slightly younger sample from the Bengal Fan show lag times close
to 4Myr in Middle Miocene time. This would imply exhumation
rates of 1.1–1.4 kmMyr−1 assuming 25–35 °C km−1 geothermal
gradients.

Unfortunately, we have little information between that time
and ∼8.5 Ma when the next youngest dateable sandy sediment
was deposited and preserved at the drilling sites. Although one
of the minimum age groups still lags by ∼4.2 Myr, we note that
there is some scatter to longer lag times of up to 8.8 Myr between
8.5 and 7.0 Ma and with large uncertainties. Combined zircon
U–Pb (40–70 and 70–120 Ma grains) and bulk sediment Nd
isotope (ϵNd values > −10) provenance data indicate that much
of the sediment at that time was derived from the Karakoram
(Clift et al. 2019b). The zircon U–Pb budget over-represents
the net flux from the Himalaya because these bedrocks are
>2.2 times more fertile with regard to zircon than the
Karakoram and Transhimalaya.

After 7.0Ma, lag times shortened significantly. Three samples
from the Laxmi Basin drilling sites are within error of the depositio-
nal age between 7.0 and 5.7Ma, requiring exhumation rates that
were so rapid that we are unable to constrain the duration between
cooling through the PAZ (60–110 °C) and sedimentation, i.e. lag
times close to zero. This implies a maximum rate of cooling in
the sources at that time. All three of the fast-cooling samples have
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accompanying zircon U–Pb ages that show that they continue a
trend towards more Himalayan erosion but that there is not a
sharp contrast with the sediment deposited before 7.0Ma. After
5.7Ma, the change in Nd isotopes is especially marked and implies
that a change in provenance may be responsible for the slowing
of exhumation rates. Nonetheless, one sample, U1457C-43R-1
55–63 cm, deposited at 5.87Ma, has a minimum age lag time of
3.13Myr, longer than the others. This implies that not all sources
were supplying large volumes of sediment at all times and that
not all bedrock sources were exhuming so quickly.

Although provenance data indicate mostly Karakoram
sources, these rapidly cooled grains could also be derived from
the Himalayan tectonic units. Zircon U–Pb ages allow us to
discriminate between erosion of Karakoram (40–120 Ma) and
Himalayan (>300 Ma) sources, the largest sources at that time.
However, the zircon ages only apply to these minerals and the
provenance cannot be transferred to the apatites. Therefore, we
only know that there were rapidly cooling areas between
7.0 and 5.7 Ma, but not which range they are located in.
However, because there are large numbers of grains in the
minimum age group, it might reasonably be expected that these
are derived from bedrock sources that also supply large volumes
of other mineral types. Between 7.0 and 5.7Ma the longest lag time
was 3.13Myr in the sediment deposited at 5.87Ma. This indicates an
average cooling rate of at least 35.1± 9.7 °CMyr−1, faster than the
cooling rates of 12.5 to 26.1 °CMyr−1 between 8.2 and 7.0Ma. These
are faster rates than those recorded in the Siwalik Group from
Nepal (van der Beek et al. 2006), as well as sparse data from the
Bengal Fan (Corrigan & Crowley, 1990), although they are within
the uncertainties of the peak rates in Nepal at that time.
However, in Nepal the sources must have been Himalayan, not
Karakoram. In the youngest part of the section (<4Ma), which is
more dominated by Himalaya erosion (Clift et al. 2019b), these very
short lag times are not visible and are always more than 1.93Myr,
equivalent to approximate exhumation rates of∼2.3–1.6 kmMyr−1.
The moderate exhumation rates after 4Ma compare with data from
both the Bengal Fan and from the Nepalese part of the Himalayan
foreland. Both these sediment sequences are dominated by
Himalayan erosion (Bouquillon et al. 1990). Slowing of exhumation
in the Indus Basin after 5.7Ma is consistent with data from western
Nepal (Karnali), but the slowing from peak rates at 7.0 to 5.7Ma is
in contrast to conclusions of work from central Nepal (Surai and
Tinau Khola) that argued for relatively steady-state cooling in that
part of the mountain range (van der Beek et al. 2006). The very
youngest sample deposited at 930 ka stands out as having by
far the largest lag time and is inferred to have a unique source,
likely a mixture of sediment from the Indus River and
Peninsular India.

We can compare this pattern of accelerating exhumation
before 7.0 Ma and then slowing after 5.7 Ma with the climatic
history (Fig. 6), while recognizing the shift in provenance that
is occurring at the same time. One of the most popular long-term
proxies for monsoon intensity in the Arabian Sea is the relative
abundance of Globigerina bulloides offshore the margin of
Arabia. The abundance of G. bulloides is largely a function of
the availability of nutrients derived from upwelling caused by
the summer monsoon rains (Curry et al. 1992). There is little
evidence for such strong upwelling prior to c. 13 Ma (Betzler
et al. 2016). A general intensification of upwelling is noted after
5.3 and 3.0 Ma (Gupta et al. 2015; Huang et al. 2007) (Fig. 6).
However, upwelling is not a direct proxy of rainfall, and this
apparent intensification does not reflect the delivery of summer

rains to the mountain front, because this proxy does not correlate
with other climatically sensitive indicators (Clift, 2017).

Stable oxygen isotope data from the foreland basin instead
agree with chemical weathering data from the South China and
Arabian Seas in arguing for relatively wet conditions in Middle
Miocene time between 10 and 12 Ma (Dettman et al. 2001)
followed by a decrease in humidity, particularly after c. 6–8 Ma
(Clift, 2017; Singh et al. 2011). Moisture delivery to this area from
the winter Westerlies is also reconstructed to reduce c. 7 Ma
(Vögeli et al. 2017). The increasing lag time seen in the minimum
age populations after 5.7 Ma would be consistent with slower ero-
sion and could be linked to weaker monsoon rainfall. Weaker
monsoon and Westerly rains would also reduce discharge and
potentially slow the transport of sediment across the flood
plains. Increased aridity is consistent with decreasing strength
of chemical weathering seen in Indus Marine A-1 located on
the Indus shelf (Clift et al. 2008), as well as Site U1456 (Clift
et al. 2019a), but largely postdates the carbon isotope transition
from 8 to 6 Ma in the foreland basin (Quade et al. 1989).

The acceleration in exhumation rates from 7.8 to 7.0 Ma
generally coincides with the climatic drying, which may seem
counterintuitive. However, this also assumes that stronger rains,
sometimes modulated through glaciation, always increase
erosion. There is evidence that drier conditions, especially when
this involves heightened seasonality, can increase erosion
provided the drying is not too extreme but sufficient to reduce
vegetation cover that reduces soil erosion (Giosan et al. 2017).
There is no evidence that the period of fast erosion at
5.7–7.0 Ma was caused by faster India and Asia convergence.
Indeed, convergence rates appear to have slowed gradually during
the Cenozoic period (Clark, 2012).

6. Conclusions

Apatite fission track ages derived from turbidite sediments
from IODP sites U1456 and U1457 in the Laxmi Basin, eastern
Arabian Sea, provide an opportunity to reconstruct changing
exhumation rates in the western Himalaya and Karakoram since
15.5 Ma, and especially since 9 Ma. AFT ages are mostly <50 Ma
and demonstrate that the sediment is derived from the Indus
River, not Peninsular India, except in the case of the youngest
sample, deposited at 0.93 Ma. Moreover, most samples show
minimum age populations that are only slightly older than the dep-
ositional age, implying fast rates of exhumation in the sources and
rapid transport through this time. Lag times of ∼4Myr in Middle
Miocene time imply exhumation rates of 1.1–1.4 kmMyr−1. After
a period of longer lag times (∼6Myr) between 8.5 and 7.8Ma, these
reach a minimum from 7.0 to 5.7Ma, when lag times were
within error of zero. Provenance U–Pb zircon and Nd isotope data
indicate erosion dominantly in the Karakoram, but the AFT ages
could have also come from Himalayan sources, which were also
important contributors at this time. The AFT data alone do not
allow us to discriminate which of the two ranges contained the
fast-exhuming sources. After 5.7Ma, lag times lengthened to
∼4.5Ma, and exhumation rates slowed to 2.3–1.6 kmMyr−1 at
the same time that sediment supply came progressively more from
the Himalaya and relatively less from the Karakoram.

The time of peak exhumation correlates with the transition to
a drier climate in the foreland basin and of a weakening Westerly
Jet. Erosion rates since 5.7 Ma are comparable or slightly faster
than those seen in the Nepalese parts of the Himalaya and the
Bengal Fan. Slowing exhumation rates after 5.7 Ma correlate with
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a drying climate and weaker summer monsoon rains in Late
Miocene time. There is a general shift in the AFT age populations
from longer lag times, more similar to the glacial era Indus River
and associated with dominant erosion in the Karakoram prior to
7 Ma, to shorter lag times and more erosion of the Himalaya,
similar to the Holocene Indus River after 5.7 Ma. The acceleration
of exhumation as the climate dried between 7.8 and 7.0 Ma seems
to imply a dominant tectonic control of erosion. The AFT data
support models that imply a non-linear relationship between
summer monsoon rain strength and the erosion of the western
Himalaya.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S001675681900092X
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