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ABSTRACT

We establish a “top-down” approximation scheme to approximate loss distribu-
tions of reinsurance products and Insurance-Linked Securities based on three
input parameters, namely the Attachment Probability, Expected Loss and Ex-
haustion Probability. Our method is rigorously derived by utilizing a classical
result from Extreme-Value Theory, the Pickands–Balkema–de Haan theorem.
The robustness of the scheme is demonstrated by proving sharp error-bounds
for the approximated curves with respect to the supremum and L2 norms. The
practical implications of our findings are examined by applying it to Industry
LossWarranties: themethod performs very accurately for each transaction. Our
approach can be used in a variety of applications such as vendor model blend-
ing, portfolio optimization and premium calculation.
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1. INTRODUCTION

Modeling of natural catastrophes and other insurance risks has been sub-
stantially advanced in the last few decades, motivating the development of
specialized vendor models, which are now intensively used by the (re)insurance
industry and asset managers investing in Insurance-Linked Securities (ILS).
These models are constantly improving in terms of their ability to incorporate
realistic features, new scientific findings and provide multiple views on a risk.
Following a “bottom-up” approach, the models’ ambition is to estimate risk
through computation of a peril’s impact on underlying exposures endowed
with certain vulnerability profiles and insurance terms. The output is usually
a list of events conjugated with their frequency and severity characteristics, the
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so-called Event Loss Table. From this output, one can deduce risk parameters1

such as the Attachment Probability, Expected Loss, Exhaustion Probability
and, in essence, the entire Loss Distribution.

Due to a commercial rationale, the intellectual property associated with
these models is often kept secret or at least described only at a high-level, mak-
ing themodels regarded by some practitioners as “black boxes” (see for instance
Global [Re]Insurance, 2013). What we attempt to develop in this note is an el-
ementary approximation framework retrieving Loss Distributions by using as
input the preceding risk parameters2 extracted from vendor models. That is,
rather than relying on a holistic derivation of each point of the loss distribution
through a model, we adapt a “top-down” philosophy and reversely recover it
(Section 3.1) via a parametric curve fitting process. To accomplish our humble
efforts, we make use of a classical theorem from Extreme-Value Theory (EVT),
the Pickands–Balkema–de Haan theorem. So, while our method is relatively
straightforward, it still benefits from the rigor of a well-established mathemat-
ical theory. We further investigate the accuracy of this approach, aiming at an-
swering the question of how far can we deviate from the “correct” distribution
extracted from the model? It turns out, not too much, as shown by establishing
sharp bounds (Section 3.3) with respect to both the supremum and L2 norms.
Thereby proving the robustness of our methodology.

On the practical side, we study in Section 4, the performance of the method
for a set of Industry LossWarranties (ILWs), where we conclude that each fitted
distribution is impressively approximating the ones obtained from the model
(see Figure 1).

We now outline some related literature: first, the ILS-related ones. Em-
brechts and Meister (1997) study catastrophe futures and pricing aspects in-
cluding utility maximization. Lane (2000) sets a pricing paradigm incorporating
ideas from economics (The Cobb–Douglas production function). Wang (2004)
uses probability transforms to price catastrophe bonds. Zimbidis et al. (2007)
use maximum-likelihood to model earthquake risk with EVT and price hypo-
thetical catastrophe bonds. In a work incorporating seasonality patterns, Hain-
aut (2010) uses Esscher transforms to price catastrophe bonds. For a compre-
hensive exposition of EVT including applications, we refer to Embrechts et al.
(1997). Some other interesting EVT-related works include those of Rootzen and
Tajvidi (1997), Morales (2004) and Vandewalle and Beirlant (2006).

The structure of the paper is as follows. Section 2 deals with preliminaries,
introduces notations from reinsurance and ILS and presents a theorem from
EVT. Section 3 presents the approximation scheme, shows its well-posedness
and proves robustness by establishing sharp error-estimates. Last, Section 4
tests the approximation method and its accuracy for ILWs. We conclude the
paper in Section 5.
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FIGURE 1: Loss Exceedance Probability curves: EVT approximation versus software outputs for ILW I–V.

2. SETUP

Throughout this paper, we will focus on Excess of Loss layers. These structures
occupy a prominent portion of the non-life reinsurance and ILS product space.
Nonetheless, our methods can be employed for more complex mechanisms and
other types of contracts such as quota-shares. We first introduce the necessary
notations from reinsurance and ILS (Section 2.1), and then present a result from
EVT (Section 2.2) that will be used in subsequent sections.

2.1. Notations from reinsurance and ILS

For a given Excess of Loss layer within a cedant’s reinsurance program, denote
by a and b the attachment and exhaustion level of the layer, respectively, and by
L̃ the monetary ground-up loss of the cedant during 1 year. Here, L̃ is a non-
negative random variable. Assuming the risk associated with the layer has been
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transferred to a reinsurer, a payout will be triggered if L̃ > a, in which case it will
be equal to min{L̃−a, b−a}. Otherwise (if L̃ ≤ a), there are no payments made
by the reinsurer to the cedant. We set below a normalized version3 (L ∈ [0, 1])
of the random variable L̃ defined by

L = min
{
max

{
L̃− a
b − a

, 0
}

, 1
}

.

There are three important metrics associated with Excess of Loss structures:
the probability of attachment (Pattachment), Expected Loss (EL) and probability
of exhaustion (Pexhaustion), which are defined as

Pattachment := P (L > 0) = P
(
L̃ > a

)
,

EL := E [L] = P
(
L̃ ≥ b

) + E
[
L̃I{a≤L̃<b}

] − aP
(
a ≤ L̃ < b

)
b − a

,

where IA denotes the indicator of the set A, and

Pexhaustion := P (L = 1) = P
(
L̃ ≥ b

)
.

Obviously, the inequality Pexhaustion ≤ EL ≤ Pattachment always holds true. The
Loss Exceedance Probability curve associated with the normalized loss random
variable is defined by

SL(x) = P (L > x) ,

for all x ∈ [0, 1]. For natural catastrophe risks, these three metrics (Pattachment,
EL and Pexhaustion) as well as the Loss Exceedance Probability curve are usually
obtained through specialized modeling software programs. For the Standard

Deviation SD(L) :=
√
E

[
L2

] − (EL)2, the following inequality holds true:√
EL (1 − EL) ≥ (1)

SD(L) ≥
√√√√max

{
0, Pexhaustion + (EL− Pexhaustion)2

Pattachment − Pexhaustion
− (EL)2

}
. (2)

The above inequality is important because it shows that for every normalized
loss variable L, the associated risk metrics (Attachment Probability, Expected
Loss and Exhaustion Probability) form a range of feasible values for its stan-
dard deviation. To our knowledge, such a result (though elementary) was not
published. We show now the validity of this inequality. The left-hand side of the
inequality is evidently satisfied since EL ≥ E

[
L2

]
. The right-hand side of the

inequality can be proved by considering the change of measure

dQ/dP = I{0<L<1}
Pattachment − Pexhaustion

,
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in case that Pattachment �= Pexhaustion, and then applying the inequality

EQ
[
L2] ≥ (

EQ [L]
)2

.

Moreover, the above inequality is sharp, i.e. no better lower and upper bounds
can be achieved. This is demonstrated in Appendix A.

2.2. Result from EVT: The Pickands–Balkema–de Haan theorem

We present the following theorem from EVT dealing with the limiting behavior
of distributions over large thresholds. This result is due to Balkema and De
Haan (1974) and Pickands (1975). In Section 3, we will link it to Excess of Loss
layers.

Theorem 2.1. (Pickands–Balkema–de Haan theorem) For a large class of distri-
butions, we can find a function σ(u) such that

lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x) − Gξ,σ (u)(x)(x)
∣∣ = 0, (3)

where

Fu(x) = P
(
X ≤ u + x

∣∣X > u
) = F(x+ u) − F(u)

1 − F(u)
is the excess distribution over threshold u of a random variable Xwith a cumulative
distribution function F, xF is the right endpoint of the distribution F, and here

Gξ,σ (x) = 1 −
(
1 + ξ

σ
x
)−1/ξ

,

for ξ �= 0, where σ > 0 and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ − σ
ξ
when ξ < 0, and

G0,σ (x) = 1 − exp (−x/σ) .

It is important to stress that the above class of distributions for which the
limit (3) holds true includes all the well-known distributions encountered in ac-
tuarial and financial applications. More precisely, a distribution F satisfies the
limit (3) if and only if it belongs to the so-calledDomain of Attraction of a certain
non-degenerate distribution function. We refer to Chapters 7.1, 7.2 and 7.3 in
McNeil et al. (2010) for a comprehensive overview of the topic.

3. EVT APPROXIMATION

We concentrate now on developing an approximation method based on the
Pickands–Balkema–deHaan theorem for theLoss Exceedance Probability curve
SL(x). The approximation is based on a straightforward distribution fitting
scheme. We will then prove the well-posedness (Section 3.2) of the method and
examine its robustness (Section 3.3).
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3.1. The approximation method

In the spirit of the notations introduced in Section 2.1, we let the random vari-
ables ̂̃L and L̂ stand for the approximated monetary and normalized loss, re-
spectively, and denote accordingly by ŜL, F̂L̂ and F̂L̃ the associated Loss Ex-
ceedance Probability curve and Cumulative Distribution functions. Assuming
that the attachment level a is sufficiently large and following Theorem 2.1, we
assume that

F̂L̃(x+ a) − F̂L̃(a)

1 − F̂L̃(a)
= Gξ,σ (a)(x),

for x ≥ 0. Notice that the above is equivalent to

ŜL(x) = Pattachment
(
1 − Gξ,σ (a)((b − a)x)

)
,

for x ∈ [0, 1]. As expected, we get ŜL(0) = Pattachment, since Gξ,σ (a)(0) = 0. We
denote by σ := σ(a)

(b−a) and obtain

ŜL(x) = Pattachment

(
1 + ξ

σ
x
)−1/ξ

,

for all x ∈ [0, 1] and ξ �= 0. We proceed by fitting the parameters σ and ξ

through the values Pexhaustion and EL by imposing the following equations

Pexhaustion = ŜL(1),

and

EL =
∫ 1

0
ŜL(x)dx.

This yields the following two equations determining the values of ξ and σ :

σ = ξ(
Pattachment
Pexhaustion

)ξ

− 1
, (4)

and

EL
Pattachment

= ξ

(ξ − 1)
(
(Pattachment/Pexhaustion)ξ − 1

) ((
Pattachment

Pexhaustion

)ξ−1

− 1

)
.

(5)
We arrived at a non-linear equation, which generally does not have a closed-
form solution, but can be tackled numerically. It is interesting to note that the
values ξ and σ solely depend on the ratios EL

Pattachment
and Pexhaustion

Pattachment
that can be in-

terpreted as the conditional expected loss and conditional probability of total loss
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as seen through the following relations:

EL
Pattachment

= E
[
L
∣∣L > 0

]
,

and
Pexhaustion
Pattachment

= P
[
L = 1

∣∣L > 0
]
.

For the case ξ = 0, we have

S̃L(x) = Pattachment · exp
(
− x

σ

)
.

By imposing S̃L(1) = Pexhaustion as above, we obtain

σ = 1
log (Pattachment/Pexhaustion)

, (6)

and by requiring
∫ 1
0 S̃L(x)dx = EL, it is easy to check that the following relation

must hold as well

EL
Pattachment

= 1

log
(
Pattachment
Pexhaustion

) (
1 − Pexhaustion

Pattachment

)
.

Example 3.1. For ξ = 1, a closed-form expression is feasible. Note that Equation
(5) implies that

σ = 1
Pattachment
Pexhaustion

− 1
.

Moreover, by letting ξ tend to 1 in Equation (5), it is easy to check that ξ = 1 if
and only if the following holds true

EL
Pattachment

= Pexhaustion
Pattachment − Pexhaustion

log (Pattachment/Pexhaustion) .

3.2. Well-posedness: Existence and uniqueness

This section is concerned with proving that the approximation method is well-
posed, that is, the retrieved parameters σ and ξ are uniquely determined. This
boils down to proving that Equation (5) attains a unique solution, and, to this
end, we prove the following simple lemma.

Lemma 3.1. Denote
α = EL

Pattachment
,

and

β = Pexhaustion
Pattachment

.
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The following equation

α = x
(x− 1)(β−x − 1)

(
β1−x − 1

)
has a unique solution x ∈ (−∞, ∞).

Proof. See Appendix B.

3.3. Robustness and error bounds

The objective of the current subsection is to derive error estimates for the fitted
result in terms of the input parameters (probability of attachment, expected loss
and probability of exhaustion) with respect to the supremum and L2 norms. That
is, we provide bounds for the difference between the approximated result and the
one derived from the vendor models with respect to the preceding norms. We
complement then those findings by exploring specific examples.

3.3.1. Error bounds with respect to the supremum norm. Let FC denote the set
of all non-increasing functions f : [0, 1] → [0, 1] satisfying:

(i) f (0) = 1,

(i i) f (1) = 0,

and

(i i i)
∫ 1

0
f (x)dx = C,

for some C ∈ (0, 1]. By || · ||∞, we denote the supremum norm defined as
|| f ||∞ := maxx∈[0,1] | f (x)| for every f ∈ FC. We begin with presenting the
following result formulated as a variational problem.

Lemma 3.2. For an arbitrary g0 ∈ FC, consider the following variational problem

V(go) = sup
f∈FC

|| f − g0||∞.

Then, the solution of this problem is given by

V(g0) = max
x∈[C,1]

{C/x− g0(x)}.

https://doi.org/10.1017/asb.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.10


EXTREME-VALUE THEORY APPROXIMATION SCHEME 1165

Moreover, a maximizer to the problem (not belonging to the setFC) is of the form

fmax(x) = 1{x≤x0}
C
x0

,

for some x0 ∈ [C, 1].

Proof. See Appendix C.

We turn now to examining the implications of Lemma 3.2 on our approxi-
mation scheme. Recall that

ŜL(x) = Pattachment

(
1 + ξ

σ
x
)−1/ξ

.

Consider the function

g0(x) = ŜL(x) − Pexhaustion
Pattachment − Pexhaustion

,

and note that g0 ∈ FC for

C :=
∫ 1

0
g0(x)dx = EL− Pexhaustion

Pattachment − Pexhaustion
.

Assuming that SL is a continuous function and applying Lemma 3.2 on the
function g0, we get∥∥ŜL − SL

∥∥
∞ ≤ (Pattachment − Pexhaustion) max

x∈[C,1]

(
C
x

− g0(x)
)

= Pexhaustion + max
x∈[C,1]

(
EL− Pexhaustion

x
− ŜL(x)

)

= Pexhaustion + max
x∈[C,1]

(
EL− Pexhaustion

x
− Pattachment

(
1 + ξ

σ
x
)−1/ξ

)
.

The above maxima cannot be calculated explicitly for all values of ξ and σ but
can be computed numerically. This provides a sharp error estimate for the sup-
distance between the fitted curve ŜL and an arbitrary software extracted Loss
Exceedance Probability curve SL.

Example 3.2. For the case ξ = σ = 1, a closed-form solution is feasible. In this
case, one easily checks that

Pexhaustion = 1/2 · Pattachment,

and
EL = log2 · Pattachment.
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Using the above notations, we obtain that

C = log 4 − 1,

and it follows from the above inequality that∥∥ŜL − SL
∥∥

∞ ≤ 1/2 · Pattachment + Pattachment max
x∈[C,1]

(
log 4 − 1

2x
− 1

1 + x

)
.

Some arithmetics yields∥∥ŜL − SL
∥∥

∞ ≤
(
2 − 2

log 4

)
(Pattachment − Pexhaustion) .

Note that this bound is better than the a-priori trivial estimate
∥∥ŜL − SL

∥∥
∞ ≤

Pattachment − Pexhaustion.

3.3.2. Error bounds with respect to the L2-norm. By changing variables, note
that the second moment of the random variable L̂ is given by

E
[(
L̂
)2] =

∫ 1

0
P

[(
L̂
)2

> x
]
dx = 2

∫ 1

0
xP

[(
L̂
)2

> x2
]
dx

= 2
∫ 1

0
x · ŜL (x) dx = 2Pattachment

∫ 1

0
x

(
1 + ξ

σ
x
)−1/ξ

dx,

and cannot be calculated explicitly for arbitrary values of ξ and σ . By recalling
inequality (2), we arrive at the following error estimate∣∣∣E [(

L̂
)2 − L2

]∣∣∣ ≤ max
{∣∣∣∣2Pattachment

∫ 1

0
x

(
1 + ξ

σ
x
)−1/ξ

dx− EL

∣∣∣∣,
∣∣∣∣2Pattachment

∫ 1

0
x

(
1 + ξ

σ
x
)−1/ξ

dx− Pexhaustion − (EL− Pexhaustion)2

Pattachment − Pexhaustion

∣∣∣∣}.

Example 3.3. For the special case ξ = σ = 1, we obtain

E
[
(L̂)2

] = 2 (1 − log 2) Pattachment.

Recall that according to Example 3.2, we have Pexhaustion = 1/2 · Pattachment and
EL = log2 · Pattachment. Therefore, we get that∣∣∣E [(

L̂
)2 − L2

]∣∣∣ ≤ 2 (3 log 2 − 2) (Pattachment − Pexhaustion) ,

which is again better than the a-priori bound
∣∣∣E [(

L̂
)2 − L2

]∣∣∣ ≤ Pattachment −
Pexhaustion.
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4. CASE STUDY: INDUSTRY LOSS WARRANTIES (ILWS)

An ILW is a reinsurance or derivative contract providing protection to a cedant
seeking to make a recovery in the event of a pre-defined type and level of loss
caused to the insurance industry, rather than due to a loss caused to the cedant’s
own portfolio. Unlike a risk transfer based on indemnification, in the ILW case,
the protection buyer usually assumes a certain level of basis risk, whereas the
seller of the protection benefits from transparency and a lower level of moral
hazard. Prevalently traded both in ILS and traditional reinsurance markets,
we use our methodology to fit the loss distribution of various ILWs (Section
4.1). We examine the accuracy of our approximation method by comparing
the obtained results with the output from the modeling software. Throughout
this section, all the model extracted data and outputs are derived from AIR’s
CATRADER software.

4.1. EVT approximation for loss distribution of ILWs

We consider a set of five independent ILW transactions covering different
territories and perils:

ILW I: Hurricanes in Florida, USD 20 bn xs USD 30 bn.
ILW II: Earthquakes in Japan, USD 10 bn xs USD 20 bn.
ILW III: Earthquakes in Turkey, USD 3 bn xs USD 3 bn.
ILW IV: Cyclones in Australia, USD 4 bn xs USD 4 bn.
ILW V: Earthquakes in California, USD 15 bn xs USD 15 bn.

To illustrate the mechanics of an ILW, assume an investment of USD 5
mn in ILW I. Assume further that during the risk period of the transaction, a
hurricane has caused a loss to the insurance industry in Florida amounting to
USD 45 bn. Then, the associated loss is equal to the investment size (USD 5
mn) multiplied by the respective percentage of the eroded layer

( 45−30
50−30

)
, which

is USD 3.75 mn. The risk figures for the above ILWs as modeled through the
software are outlined in Table 1. Based on our technique, we provide a summary
of the fitted parameters and the fitted Loss Exceedance Probability curves for
each ILW contract in Table 3. A comparison between the approximated curves
versus the modeling output for each ILW is found in Table 2: the Standard
Deviation as well as the supremum-distance between the two is computed.
Further, we provide a visualization of the Loss Exceedance Probability curves
in Figure 1. As one can note, the EVT approximation scheme proves to be a
very accurate approximation of the modeled outputs.

5. CONCLUSION AND FURTHER RESEARCH

We developed a robust approximation scheme postulated on EVT to approx-
imate loss distributions of reinsurance and ILS products. The technique is
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TABLE 1

ILW CONTRACTS: RISK METRICS AS DERIVED VIA A MODELING SOFTWARE.

Attachment Expected Exhaustion
Transaction Probability Loss Probability

ILW I 0.0524 0.0393 0.0301
ILW II 0.0321 0.0271 0.0204
ILW III 0.0257 0.0191 0.0148
ILW IV 0.0124 0.0063 0.0033
ILW V 0.0295 0.0217 0.0167

TABLE 2

ILW CONTRACTS: EVT APPROXIMATION VERSUS SOFTWARE OUTPUTS.

EVT Software
Approximation Output

ILW I: Standard Deviation 0.1843 0.1848
ILW I: Real-max Error 8.7 × 10−4

ILW I: Sup-norm Distance 1.2 × 10−2

ILW II: Standard Deviation 0.1564 0.1570
ILW II: Real-max Error 10−3

ILW II: Sup-norm Distance 6 × 10−3

ILW III: Standard Deviation 0.1302 0.1305
ILW III: Real-max Error 3.9 × 10−4

ILW III: Sup-norm Distance 6 × 10−3

ILW IV: Standard Deviation 0.0699 0.0706
ILW IV: Real-max Error 5.1 × 10−4

ILW IV: Sup-norm Distance 5 × 10−3

ILW V: Standard Deviation 0.1383 0.1384
ILW V: Real-max Error 5.9 × 10−4

ILW V: Sup-norm Distance 7 × 10−3

elementary, provides a closed-form parameterization and uses only three input
parameters (Attachment Probability, Expected Loss and Exhaustion Probabil-
ity). We applied the method on ILWs showing very content results for each
transaction.

There are a number of applications and topics of further research that would
be interesting to investigate as highlighted below:
1. Model Blending and Risk Aggregation: For independent transactions, this pa-
per offers a simple method to aggregate risk and blend models. In case of corre-
lation, developing a “top-down”method to retrieve dependence structures from
various vendor models (e.g. by using Copulas) is of high interest.
2. The Dynamic Angle: This paper assumes a static risk-period. However, espe-
cially for ILS (and in particular, catastrophe bonds which are OTC traded on
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TABLE 3

ILW CONTRACTS: FITTED PARAMETERS.

Transaction ξ σ

ILW I 0.9105 1.3867
ILW II −2.9879 4.0272
ILW III 1.3262 1.2291
ILW IV 0.6052 0.4927
ILW V 1.3415 1.1713

daily basis), a setting of a rich time-dependent “top-down” framework would
be of value.
3. Portfolio Optimization: Developing portfolio optimization techniques with
tail constraints by assuming the EVT-approximated curves (and accounting for
correlation) in the spirit of Rockafellar and Uryasev (2000) and Chekhlov et al.
(2005) would be of high practical interest.
4. Premium Calculation: Some Premium Calculation principles make use of the
entire distribution (e.g.Utility Indifference Pricing or Probability Transform), in
which case our method offers a clear perspective and advantage compared to a
discrete distribution function.
5. Sub-layers: Investigating how the approximated EVT-based loss curve could
be further “disassembled” in order to approximate smaller sub-layers associ-
ated with the same underlying risk, would be a highly regarded application for
practitioners.
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NOTES

1. The mathematical definition of these metrics is given in Section 2.1.
2. Attachment Probability, Expected Loss and Exhaustion Probability.
3. This allows us for comparing various loss metrics of reinsurance contracts and ILS based

on different monetary units and structures.
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APPENDIX A. SHARPNESS OF THE
STANDARD DEVIATION BOUNDS

We will prove now the sharpness of the upper and lower bounds in inequality (2). First, con-
sider a random variable L(δ, ε) satisfying P(L(δ, ε) > x) = Pattachment (1 − x) , for x ∈ [0, δ),
P(L(δ, ε) > x) = Pexhaustion + (1 − x) , for x ∈ [ε, 1), and P(L(δ, ε) > x) = EL, for x ∈ [δ, ε]
for appropriate small δ, ε > 0 such that E [L(δ, ε)] = EL. One checks that in this case

lim
δ,ε→0

SD (L(δ, ε)) =
√
EL (1 − EL).
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Next, assume that

Pexhaustion + (EL− Pexhaustion)2

Pattachment − Pexhaustion
≤ (EL)2 .

As in the previous case, we consider a random variable L(δ, ε, ε′) such that P(L(δ, ε, ε′) >

x) = Pattachment (1 − x) , for x ∈ [0, δ), P(L(δ, ε, ε′) > x) = Pexhaustion+(1 − x) , for x ∈ [ε, 1),
and

P
(
L(δ, ε, ε′) > x

) = Pexhaustion + (EL− Pexhaustion)2

(EL)2 − Pexhaustion
− ε′,

for x ∈ (δ, ε). One can check that

lim
δ,ε,ε′→0

SD
(
L(δ, ε, ε′)

) = 0.

Last, assume that

Pexhaustion + (EL− Pexhaustion)2

Pattachment − Pexhaustion
> (EL)2 .

Define a random variable L with P(L = 1) = Pexhaustion and

P
(
L = EL− Pexhaustion

Pattachment − Pexhaustion

)
= Pattachment − Pexhaustion.

It is easy to check that in this case

E
[
L2

] = Pexhaustion + (EL− Pexhaustion)2

(EL)2 − Pexhaustion
.

This accomplishes the proof of the sharpness of the bounds.

APPENDIX B. PROOF OF LEMMA 3.1

Denote
g(x) = x

(x− 1)(β−x − 1)

(
β1−x − 1

)
.

Notice that

lim
x→0

g(x) = 1 − β

log (1/β)
, (7)

and

lim
x→1

g(x) = β

1 − β
log (1/β) . (8)

It is not hard to check that 1−β

log(1/β)
>

β

1−β
log (1/β) , for all β ∈ (0, 1). Moreover, it is easy to

note that
lim

x→−∞
g(x) = 1,

and
lim
x→∞

g(x) = β.
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Now, since α ∈ (β, 1) and g(x) is a continuous function, it follows that the equation admits
a solution. It is left to check now that this solution is unique. Consider the function f (x) =

x
β−x−1 , and note that g(x) = f (x)

f (x−1) . We will prove that g′(x) < 0, for all x ∈ (−∞,∞). First,
wewill prove that g′ never vanishes. Assume toward a contrary that there exists x0 ∈ (−∞, ∞)

such that g′(x0) = 0, or equivalently

d
dx

∣∣∣∣
x=x0

(log f (x) − log f (x− 1)) = 0. (9)

By definition, we have

(log f (x))′ = 1
x

+ β−x logβ

β−x − 1
,

yielding
β1−x0 − 1
x0 − 1

= log (β) (1 − β) β−x0 x0
(β−x0 − 1)

.

This implies that

g(x0) = log (β) (1 − β) β−x0 (x0)2

(β−x0 − 1)2
< 0,

which is a contradiction, as g(x) > 0 for all x ∈ (−∞,∞). Note that g′ is continuously
differentiable, and due to (7), (8) and the inequality thereafter, it follows that g′(x) < 0. This
accomplishes the proof of the Lemma.

APPENDIX C. PROOF OF LEMMA 3.2

First, for each x0 ∈ [C, 1), consider a suitable function f̂x0 ∈ F , which is close (with respect
to the sup-norm) to the step-function fx0(x) = 1{x≤x0}

C
x0

. One can check that

V(g0) ≥ max
x0∈(C,1)

max
x∈[0,1]

| f̂x0(x) − g0(x)| ≥ max
x∈[C,1]

{C/x− g0(x)}.

We turn now to proving the second part of the inequality. For an arbitrary ε > 0, let f0 ∈ F
be such that maxx∈[0,1] | f0(x) − g0(x)| = V(g0) − ε, and assume that (the alternative case can
be treated similarly to the below approach) maxx∈[0,1] ( f0(x) − g0(x)) = V(g0) − ε. Denote

y := maxz∈[0,1]{ f0(z) = V(g0) − ε + g0(z)}.

Assume that y ≤ C. Then, for arbitrary small δ > 0, one can find a function ĥ ∈ F close (in
the sup-norm sense) to the step-function h(x) = 1{x≤C} so that

ĥ(C) − g0(C) ≥ f0(y) − go(y) − δ = V(g0) − ε − δ.

This shows that in this case

V(g0) = sup
x∈[0,C]

(
1{x≤C} − g0(x)

) = 1 − g0(C).
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If y > C, then

C =
∫ 1

0
f0(x)dx ≥ y · f0(y) = y · (g0(y) + V(g0) − ε) ,

or equivalently
C
y

− g0(y) ≥ V(g0) − ε,

which in particular yields

max
x∈(C,1]

{C/x− g0(x)} ≥ V(g0) − ε.

This proves the result.
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