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Abstract
The hedgehog Ht is a 3-uniform hypergraph on vertices 1, . . . , t+ (t

2

)
such that, for any pair (i, j) with

1� i< j� t, there exists a unique vertex k> t such that {i, j, k} is an edge. Conlon, Fox and Rödl proved
that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices,
while the four-colour Ramsey number grows exponentially in the square root of the number of vertices.
They asked whether the two-colour Ramsey number of the hedgehog Ht is nearly linear in the number of
its vertices. We answer this question affirmatively, proving that r(Ht)=O(t2 ln t).

2010 MSC Codes: Primary 05C55; Secondary 05C65

1. Introduction
For a k-uniform hypergraph H, the Ramsey number r(H) is the smallest n such that any two-
colouring of K(k)

n , the complete k-uniform hypergraph on n vertices, contains a monochromatic
copy of H. Let r(H; q) denote the analogous Ramsey number for q-colourings, so that r(H)=
r(H; 2).

It is a major open problem to determine the growth of r(K(3)
t ), the Ramsey number of the

complete 3-uniform hypergraph on t vertices. It is known [6, 7] that there are constants c, c′ > 0
such that

2ct
2 � r(K(3)

t )� 22
c′t
.

Erdős conjectured that r(K(3)
t )= 22�(t) , that is, the upper bound is closer to the truth. Erdős and

Hajnal gave some evidence that this conjecture is true by showing that r3(K(3)
t ; 4)� 22ct , that is,

the four-colour Ramsey number of K(3)
t is double-exponential in t (see e.g. [9]).

Definition. The hedgehog Ht is a 3-uniform hypergraph on t+ (t
2
)
vertices 1, . . . , t+ (t

2
)
such

that, for each 1� i< j� t, there exists a unique vertex k> t such that {i, j, k} is an edge, and there
are no additional edges.
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102 J. Fox and R. Li

We sometimes refer to the first t vertices as the body of the hedgehog. For any k� 4, one can
also define a k-uniform hedgehog H(k)

t on t+ ( t
k−1

)
, with a body of size t and a unique hyperedge

for every k− 1-sized subset of the body. In this notation, we have Ht =H(3)
t .

Hedgehogs are interesting because their two-colour Ramsey number r(Ht ; 2) is polynomial in
t, while their four-colour Ramsey number r(Ht ; 4) is exponentially large in t [3, 10]. This sug-
gests that the bound r(K(3)

t ; 4)� 22ct by Erdős and Hajnal may not be such strong evidence that
r(K(3)

t )= 22�(t) .
Hedgehogs are also interesting because they are a natural family of hypergraphs with degener-

acy 1. Degeneracy is a notion of sparseness for graphs and hypergraphs. For graphs, the degeneracy
is defined as the minimum d such that every subgraph induced by a set of vertices has a vertex of
degree at most d. The Burr–Erdős conjecture [2] states that there exists a constant c(d) depend-
ing only on d such that the Ramsey number of any d-degenerate graph G on n vertices satisfies
r(G)� c(d) · n. Building on the work of Kostochka and Sudakov [11] and Fox and Sudakov [8],
Lee [12] recently proved this conjecture. We can similarly define the degeneracy of a hypergraph
as the minimum d such that every sub-hypergraph induced by a subset of vertices has a vertex of
degree at most d. Under this definition, Conlon, Fox and Rödl [3] observe that the 4-uniform ana-
logue of the Burr–Erdős conjecture is false: the 4-uniform hedgehog H(4)

t , which is 1-degenerate,
satisfies r(H(4)

t )� 2ct . They also observe that the 3-uniform analogue of the Burr–Erdős conjec-
ture is false for three or more colours: the 3-uniform hedgehog, which is 1-degenerate, satisfies
r(Ht ; 3)��(t3/ log6 t).

However, the analogue of the Burr–Erdős conjecture for 3-uniform hypergraphs and two
colours remains open. In particular, it was not known whether the Ramsey number of the hedge-
hog Ht is linear, or even near-linear, in the number of vertices, t+ (t

2
)
. Conlon, Fox and Rödl [3]

show r(Ht ; 2)� 4t3, and, with the above in mind, ask if r(Ht ; 2)= t2+o(1). We answer this question
affirmatively.

Theorem 1.1. If t� 10 and n� 200t2 ln t+ 400t2, then every two-colouring of the complete 3-
uniform hypergraph on vertices contains a monochromatic copy of the hedgehog Ht. That is,

r(Ht)< 200t2 ln t+ 400t2 + 1.

We make no attempt to optimize the absolute constants here.

2. Ramsey number of hedgehogs
Throughout this section we assume t� 10, and that we have a fixed two-colouring of the edges of
a complete 3-uniform hypergraphH on vertex set V with n� 200t2 ln t+ 400t2 vertices. Let

mmax := 2t+
(
t
2

)
.

Let
(S
2
)
denote the set of pairs of elements of S. For integer a, let [a]= {1, 2, . . . , a}. For vertices u

and v ofH, we write uv as an abbreviation for the unordered pair {u, v}.
For u, v ∈V , let

d(r)uv := |{w : {u, v,w} red}|,
d(b)uv := |{w : {u, v,w} blue}|.
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For a set of pairs F⊂ (V
2
)
, let

N(b)(F) := {w : ∃uv ∈ F s.t. {u, v,w} blue},
N(r)(F) := {w : ∃uv ∈ F s.t. {u, v,w} red}.

Here, and throughout, we use b and r to refer to the colours blue and red, respectively. For a vertex
v and set X, let

U(b)
�m(v, X)= {u ∈ X : d(r)uv �m},

U(r)
�m(v, X)= {u ∈ X : d(b)uv �m}.

If X is omitted, take X=V . We defineU(b)
�m(v, X) to be sets of u such that d

(r)
uv is small, rather than

those such that d(b)uv is small, because we wish to think of the U(b) as sets helpful in finding a blue
hedgehog. Similarly, we think of the U(r) as sets helpful in finding a red hedgehog.

Lemma 2.1. For any 0�m< |V|/2− 1, and v ∈V,
min (|U(b)

�m(v)|, |U(r)
�m(v)|)� 2m.

Proof. Fixm and v. For convenience, let A=U(b)
�m(v) and B=U(r)

�m(v). Assume for contradiction
that |A|, |B|� 2m+ 1. For every u, we have d(r)uv + d(b)uv = |V| − 2> 2m, so A and B are disjoint.
Consider the set E′ of edges of H containing v, one element of A, and one element of B. On one
hand, |E′| = |A| · |B|. On the other hand, for every u ∈A, the pair uv is in at most m such red
triples, so the number of red triples of E′ is at most |A| ·m. Additionally, for every u ∈ B, the pair
uv is in at most m such blue triples, so the number of blue triples of E′ is at most |B| ·m. Hence,
(|A| + |B|) ·m� |E′| = |A| · |B|, a contradiction to |A|, |B|� 2m+ 1.

The following ‘matching condition’ for hedgehogs is useful.

Lemma 2.2. Let S⊂V be a set of t vertices. If, for all non-empty sets F⊂ (S
2
)
, we have |N(b)(F)|�

|F| + t, then there exists a blue hedgehog with body S. Similarly, if, for all non-empty sets F⊂ (S
2
)
,

we have |N(r)(F)|� |F| + t, then there exists a red hedgehog with body S.

Proof. By symmetry, it suffices to prove the first part. Consider the bipartite graph G between
pairs in

(S
2
)
and vertices of V \ S, where uv ∈ (S

2
)
is connected with w ∈V \ S if and only if triple

{u, v,w} is blue. If, for all non-empty F⊂ (S
2
)
, we have |N(b)(F)|� |F| + t, then any such F has at

least |F| + t− |S| = |F| neighbours in G. By Hall’s marriage lemma on G, there exists a matching
in G using every element of

(S
2
)
. Taking triples {u, v,w}, where uv ∈ (S

2
)
and w ∈V \ S is the vertex

matched with pair uv, gives a blue hedgehog with body S.

2.1 Special cases
We start by findingmonochromatic hedgehogs in two specific classes of colourings onH. We base
our proof of Theorem 1.1 on the argument for the first class of colourings, which we call simple
colourings. We use the result for the second class of colourings, which we call balanced colourings,
as a specific case in the general argument.
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104 J. Fox and R. Li

2.1.1 Simple colourings

Consider hypergraphs that are coloured in the following way.

(1) Start with a graph G on [n].
(2) Colour a complete hypergraphH on [n] by colouring the triple {u, v,w} blue if at least one

of uv, uw, vw is in G, and red otherwise.

Lemma 2.3. If n� t2 + t, any hypergraph coloured as above has a monochromatic Ht.

Proof. Set X=V(G). For i= t− 1, t− 2, . . . , 0, pick a vertex vi ∈ X whose degree in G is at least i
and let Û(vi)⊂ X be an arbitrary set of i neighbours of vi. Remove vi ∪ Û(vi) from X. We call this
the peeling step of vi. Figure 1 shows the first three peeling steps of this process for t= 5. If this
process succeeds, we have found a set S= {vt−1, . . . , v0} of t vertices and disjoint sets of vertices
Û(v0), . . . , Û(vt−1) also disjoint from S, from which we can greedily embed a blue hedgehog inH
with body {v0, . . . , vt−1}: for each vivj with i< j, pick an arbitrary unused element of Û(vj) for the
third vertex of the hedgehog’s edge containing vivj.

Now suppose this process finds vertices vt−1, vt−2, . . . , vi+1 but fails to find vi for some i�
t− 1. After picking vj, we remove vj and j of its neighbours from X, for a total of j+ 1 vertices.
Then we have removed exactly

t+ (t− 1)+ · · · + (i+ 2)=
(
t+ 1
2

)
−

(
i+ 2
2

)
vertices from X. Hence,

|X|� (t2 + t)−
(
t+ 1
2

)
+

(
i+ 2
2

)
=

(
t+ 1
2

)
+

(
i+ 2
2

)
>

t2 + i2

2
� ti,

and every vertex has degree at most i− 1 in the subgraph of G induced X. Thus, there exists an
independent set S⊂ X in G of size at least |X|/i� t. Furthermore, any vertex has at most i− 1
neighbours in X, so any two vertices u, v ∈ S share at least

|X| − 2i� t+
(
t
2

)
+

(
i+ 2
2

)
− 2i> t+

(
t
2

)
red triples in the sub-hypergraph ofH induced by X, so we can greedily find a red hedgehog with
body S.

2.1.2 Balanced colourings

In this section we consider the case where our colouring is ‘balanced’. Lemma 2.1 tells us that, for
every vertex v and every non-negative integerm less than |V|/2− 1, one of

|U(b)
�m(v)| = #{u : d(r)uv �m} and |U(r)

�m(v)| = #{u : d(b)uv �m}
is at most 2m. In ‘balanced’ colourings, we assume, for all v ∈V and all 2t�m�mmax := 2t+ (t

2
)
,

both of |U(b)
�m(v)| and |U(r)

�m(v)| areO(m). We show, in this case, there is a monochromatic hedge-
hog. The proof is by choosing a random subset of approximately 4t vertices, and showing that,
with positive probability, we can remove vertices so that the remaining set of t vertices is the body
of some red hedgehog.

Lemma 2.4. Let c� 1. Consider a two-coloured hypergraph H= (V , E) on n� 40ct2 vertices.
Suppose that, for all 2t�m�mmax and all v ∈V, we have

|U(b)
�m(v)|� cm. (2.1)

ThenH has a red hedgehog Ht.
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Figure 1. Peeling v4, v3, v2 in Lemma 2.3.

Proof. It suffices to prove for n= 40ct2, so assume without loss of generality that n= 40ct2. Pick
a random set S by including each vertex of V in S independently with probability 4t/n. By the
Chernoff bound, P[|S|� 3t]� e−t/8.

Fix m such that 2t�m�mmax and m is a multiple of t. Let e1, . . . , ep be the pairs such
that d(r)e� �m for all � ∈ [p], and let X1, . . . , Xp the indicator random variables for these pairs
being in

(S
2
)
. Let X= X1 + · · · + Xp. By (2.1), we have p� cmn/2. Each X� for � ∈ [p] is a

Bernoulli(16t2/n2) random variable. Consider a graph on [p] where � and �′ are adjacent (written
�∼ �′) if e� and e�′ share a vertex. This is a valid dependency graph for {X�} asX� is independent of
all X�′ such that e�′ is vertex-disjoint from e�. Furthermore, by the condition (2.1), each endpoint
of any pair e� is in at most cm pairs, so each � ∈ [p] has degree at most 2cm in the dependency
graph, and the total number of pairs (�, �′) such that �∼ �′ is at most 2cmp. We have

E[X]= 16t2p
n2
= 2p

5cn
� m

5
<

3m
4
− t, (2.2)

Var[X]=
∑
�,�′∈[p]

E[X�X�′]−E[X�]E[X�′]

=
∑
�∼�′

E[X�X�′]−E[X�]E[X�′]

� 2cmp ·
((

4t
n

)3
−

(
4t
n

)4)

<
128t3cmp

n3

� 64t3c2m2

n2

= m2

25t
.
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Hence,

P

[
#
{
uv ∈

(
S
2

)
: d(r)uv �m

}
>m− t

]
= P[X>m− t]

= P[X−E[X]�m− t−E[X]]
� P[X−E[X]�m/4]

� Var[X]
(m/4)2

<
16
25t

.

The first inequality is by (2.2) and the second is by Chebyshev’s inequality. By the union bound
over the multiples of t in [2t,mmax], of which there are less than t, the probability that there exists
somem ∈ [2t,mmax] a multiple of t with

#
{
uv ∈

(
S
2

)
: d(r)uv �m

}
�m− t (2.3)

is less than t · 16/(25t)= 16/25. Again by the union bound, with probability more than 1−
(16/25+ e−t/8)> 0 over the randomness of S, we have (i) |S|� 3t, and (ii) for all m a multiple
of t in [2t,mmax], (2.3) holds. Hence, there exists an S such that (i) and (ii) hold, so consider such
an S. Remove |S| − t� 2t vertices from S, at least one from each of the 2t pairs with smallest d(r)uv ,
to obtain a set of t vertices T such that, for allm a multiple of t in [2t,mmax], we have

#
{
uv ∈

(
T
2

)
: d(r)uv �m

}
�max

(
0, #

{
uv ∈

(
S
2

)
: d(r)uv �m

}
− 2t

)
�max (0,m− 3t).

Then, for all m with 2t�m�mmax − t, set m′ to be the smallest multiple of t larger than m, so
that

#
{
uv ∈

(
T
2

)
: d(r)uv �m

}
� #

{
uv ∈

(
T
2

)
: d(r)uv �m′

}
�max (0,m′ − 3t)�m− 2t. (2.4)

Now, we show that our matching condition holds. Setting m= 2t in (2.4), we have d(r)uv > 2t for
all uv ∈ (T

2
)
. Hence, for any non-empty subset F⊂ (T

2
)
of size at most t, any uv ∈ F satisfies d(r)uv >

t+ |F|. If F⊂ (T
2
)
has size greater than t, then, by setting m= t+ |F| in (2.4), we know that there

are at mostm− 2t= |F| − t pairs uv ∈ F such that d(r)uv � t+ |F|, so again there exists uv ∈ F such
that d(r)uv > t+ |F|. We conclude that, for all non-empty subsets of pairs F⊂ (T

2
)
, there exists uv ∈ F

such that |N(r)(F)|� d(r)uv � t+ |F|. By Lemma 2.2, there exists a red hedgehog with body T.

2.2 Proof of Theorem 1.1
2.2.1 Proof outline

To prove Theorem 1.1, we follow the proof of Lemma 2.3. First, ‘peel off ’ vertices v into a set S
to try to find a blue or red hedgehog.1 If we succeed, we are done. If we fail, we end up with an
induced two-coloured hypergraph that is ‘balanced’ in the sense of Lemma 2.4. In this case, we
simply apply Lemma 2.4.

In the proof of Lemma 2.3, we started with X=V and iteratively removed from X a vertex
v and a set Û(v) of size t such that, for all u ∈ Û(v), vertices u and v share many blue triples.

1 For technical reasons, we peel vertices to find both blue and red hedgehogs, as opposed to Lemma 2.3 where we only
peeled vertices to find a blue hedgehog.
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Figure 2. Peeling v with many blue-heavy neighbours. For every w ∈ X, edge {u, v,w} is blue for many u ∈ Û(b)(v). Vertices
w ∈ B(b)(v) are the exception. Ideally we simply delete vertex v, set Û(b)(v), and set B(b)(v) from X (depicted), but instead we
maintain fractional penalties α(χ )(·) and β (χ )(·). We have |Û(b)(v)| = 10m by definition, and |B(b)(v)|� 2m by Lemma 2.6.

This deletes O(t) vertices per round, which is small enough for the argument to succeed. For
general hypergraphs, we peel off vertices v with many ‘blue-heavy neighbours’, meaning there
exists some m such that |U(b)

�m(v, X)|� 10m.2 However, m can be �(t2), so if we simply deleted v
along with 10m of its blue-heavy neighbours Û(b)(v)⊂U(b)

�m(v, X), we could delete �(t2) vertices
for every v, which is toomany. Instead, when we peel off v, we delete v fromX, add a penalty of t/m
to each u ∈ Û(b)(v), accumulated as α(b)(u), and delete from X every vertex u with α(b)(u)� 1/2.
With these penalties, we guarantee that, on average, we delete O(t) vertices from X per peeled
vertex v.

However, we need more care. In Lemma 2.3, we can find a hedgehog with body S because,
for any peeled vertices v, v′ ∈ S, the edges {u, v, v′} are blue for every u ∈ Û(v). However, in our
procedure, for a v chosen with corresponding Û(b)(v) of size 10m, there are some vertices w such
that {u, v,w} is blue for few (at most 4m) vertices u ∈ Û(b)(v).We denote this set of ‘bad’ vertices by
B(b)(v). As much as possible, we wish to avoid choosing both v and, at some later step, w ∈ B(b)(v)
for the body S(b) of our blue hedgehog. Ideally, we simply delete all vertices u ∈ B(b)(v) in the
step we peel off v. However, B(b)(v) can have �(m) vertices, which again could be too many if
m=�(t2). Instead, for each w ∈ B(b)(v) we add a penalty of t/d(b)wv , accumulated as β(b)(w), and
delete fromX every vertexwwith β(b)(w)� 1/4.We guarantee that, on average, we deleteO(t ln t)
vertices from X per peeled vertex v (Lemma 2.9). See Figure 2.

To finish the proof, we show that if our peeling produces a set S(b) = {v1, . . . , vt} (where vi
is chosen before vi+1), then, because we track the penalties α(b)(u) and β(b)(w) carefully, the
matching condition of Lemma 2.2 holds. On the other hand, if the peeling procedure fails, the
sub-hypergraph induced by X is large and balanced, in which case we apply Lemma 2.4.

2.2.2 The peeling procedure

We now describe the procedure formally. Start with S(b) = S(r) =∅, and X=V . For all u ∈V ,
initialize α(r)(u)= α(b)(u)= β(r)(u)= β(b)(u)= 0. If, at any point, S(b) or S(r) has t vertices, stop.

2 For technical reasons, we peel vertices v in increasing order of the correspondingm.
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Recall that mmax = 2t+ (t
2
)
. For m= 2t, 2t+ 1, . . . ,mmax, do the following, which we refer to

as Stage(m).
While there exists a vertex v ∈ X and a colour χ ∈ {b, r} such that |U(χ)

�m(v, X)|� 10m:

(a) let Û(χ)(v) be the set U(χ)
�m(v, X) truncated to 10m vertices arbitrarily,

(b) let B(χ)(v)= {w : |u ∈ Û(χ)(v) : {u, v,w} is colour χ |� 4m},
(c) add v to S(χ),
(d) for all u ∈ Û(χ)(v), add t/m to α(χ)(u),
(e) for all w ∈ B(χ)(v), add min (1/4, t/d(χ)vw ) to β(χ)(w),
(f) delete from X all vertices u with α(χ)(u)� 1/2 or β(χ)(u)� 1/4,
(g) delete v from X.

Note that B(χ)(v) and Û(χ)(v) are only defined for v ∈ S(χ). We refer to steps (a)–(g) as the
peeling step for v, denoted Peel(v). We let mv denote the value such that the peeling step for v
occurred during Stage(mv), and call mv the peeling parameter of v. Throughout the analysis, let
Xv denote the set X immediately before Peel(v). For any m ∈ [2t,mmax], let Xm denote the set X
immediately after Stage(m), so that Xmmax is the set X at the end of the peeling procedure.

The above process terminates in one of two ways. Either we ‘get stuck’, that is, we complete
Stage(mmax) and |S(b)|< t and |S(r)|< t, or we ‘finish’, that is, we terminate earlier with |S(b)| = t
or |S(r)| = t. We show there is a monochromatic hedgehog in each case. In Section 2.2.5 we handle
the case where we ‘get stuck’. In Section 2.2.6 we handle the case where we ‘finish’.

2.2.3 Basic facts about peeling

We first establish the following facts about the procedure.

Lemma 2.5. For any m such that 2t�m�mmax, for any time in the procedure after Stage(m), the
following holds: for all colours χ ∈ {b, r}, for all m′ with 2t�m′ �m, and for all vertices v ∈ X, we
have |U(χ)

�m′(v, X)|< 10m′.

Proof. Fixm with 2t�m�mmax. We have |U(χ)
�m(v, Xm)|< 10m for all v ∈ Xm. If not, then there

exists a vertex v ∈ Xm with |U(χ)
�m(v, Xm)|� 10m, in which case we would have peeled vertex v

during Stage(m), and we would have deleted v from Xm during Peel(v), which is a contradic-
tion. Throughout the procedure, X is non-increasing. Thus, at any point in the procedure after
Stage(m), we have X⊂ Xm, so for all v ∈ X, we have v ∈ Xm and

|U(χ)
�m(v, X)|� |U(χ)

�m(v, Xm)|< 10m.

Lemma 2.6. For all colours χ ∈ {b, r} and all vertices v ∈ S(χ), we have |B(χ)(v)|� 2mv.

Proof. We prove this for χ = b, and the case χ = r follows from symmetry. We double-count
the number Z of red triples {u, v,w} such that u ∈ Û(b)(v) and w ∈ B(b)(v). On one hand, every
u ∈ Û(b)(v) is in at most mv red triples because we chose Û(b)(v) as a subset of U(b)

�mv
(v, Xv), so

the total number of red triples is at most mv · |Û(b)(v)| = 10m2
v . On the other hand, by definition

of B(b)(v), each w ∈ B(b)(v) is in at least |Û(b)(v)| − 4mv = 6mv such red triples. Thus, the number
of such triples is at least |B(b)(v)| · 6mv. Hence, 10m2

v � Z� 6mv|B(b)(v)|, so |B(b)(v)|� 2mv as
desired.
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Lemma 2.7. For all colours χ ∈ {b, r} and all vertices v, v′ ∈ S(χ), we have d(χ)vv′ � 4t.

Proof. Assume for the sake of contradiction that d(χ)vv′ < 4t. Without loss of generality, vwas added
to S(χ) before v′. We have d(χ)vv′ < 4t< 4mv, so during Peel(v), vertex v′ is included in B(χ)(v).
Hence, min (1/4, t/d(χ)vv′ )= 1/4 is added to β(χ)(v′) during step (e) of Peel(v), so during step (f)
of Peel(v), vertex v′ is deleted from X if it has not been deleted already. Thus, we could not have
added v′ to S(χ) after Peel(v), which is a contradiction, so d(χ)vv′ � 4t, as desired.

2.2.4 Bounding the number of deleted vertices

Lemma 2.8. For all colours χ ∈ {b, r} and all vertices v ∈ S(χ), during Peel(v), the total increase in
α(χ)(u) over all u ∈V is exactly 10t.

Proof. Fix v ∈ S(χ). We have |Û(χ)(v)| = 10mv by definition, and, for u ∈ Û(χ)(v), each α(χ)(u)
increases by exactly t/mv, for a total increase of 10mv · (t/mv)= 10t.

Lemma 2.9. For all colours χ ∈ {b, r} and all vertices v ∈ S(χ), during Peel(v), the total increase in
β(χ)(w) over all w ∈V is at most 20t ln t.

Proof. By symmetry, it suffices to prove the lemma for χ = b. Let v ∈ S(b). Form= 0, . . . , 4mv, let

am := #{w ∈ Xv : d(b)vw =m},
a�m := a0 + a1 + · · · + am = |U(r)

�m(v, Xv)|.
Peel(v) is after Stage(mv − 1). Hence, by Lemma 2.5, for 2t�m�mv − 1, we have a�m � 10m.
We know

|U(b)
�4mv

(v, Xv)|� |U(b)
�mv

(v, Xv)|� 10mv > 8mv,

where the second inequality holds because v was chosen to be peeled in Stage(mv). Hence, by
Lemma 2.1,

a�4mv = |U(r)
�4mv

(v, Xv)|� |U(r)
�4mv

(v)|� 8mv.

As a�m is non-decreasing inm, we conclude a�m � 10m for 2t�m� 4mv.
For m= 0, . . . , 4mv, for any w with d(b)vw =m, the peeling of v increases β(b)(w) by

exactly min (1/4, t/m). Thus, for am many w, the penalty β(b)(w) increases by min (1/4, t/m).
Furthermore, β(b)(w) increases only forw ∈ B(b)(v), which has at most 2mv vertices by Lemma 2.6.
For 2mv − a�4mv verticesw, β(b)(w) increases by less than t/4mv, giving a total increase in β(b)(w)
of less than t from those vertices. The total increase in β(b)(w) is thus less than

1
4
(a0 + a1 + · · · + a4t)+ a4t+1t

4t+ 1
+ · · · + a4mvt

4mv
+ t. (2.5)

The coefficients of a0, . . . , a4mv in (2.5) are non-increasing, so (2.5) is t plus a positive lin-
ear combination of a�4t , a�4t+1, . . . , a�4mv . Subject to a�m � 10m for 2t�m� 4mv, all of
a�4t , a�4t+1, . . . , a�4mv are simultaneouslymaximized if a0 = 0 and am = 10 form= 1, . . . , 4mv,
so (2.5) is maximized there as well. Hence,

total increase in β(b)(w)<
1
4
(a0 + a1 + · · · + a4t)+ a4t+1t

4t+ 1
+ · · · + a4mvt

4mv
+ t

� t+ 1
4
· 40t+ 10t

4t+ 1
+ 10t

4t+ 2
+ · · · + 10t

4mv
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� 11t+ 10t ln (4mv/4t)
< 20t ln t,

where, for the last inequality, we usedmv � t2 and t� 10. This is what we wanted to show.

Lemma 2.10. The total number of vertices deleted from X in the peeling procedure is at most
200t2 ln t.

Proof. A vertex is deleted either for being added to S(b) or S(r), having α(b)(·) or α(r)(·) at least
1/2, or having β(b)(·) or β(r)(·) at least 1/4. At the end of the procedure, we have the following
inequalities. For all χ ∈ {b, r} and all u ∈V , we have that α(χ)(u) and b(χ)(u) are initially 0 and
increase only during the peeling step of some vertex v ∈ S(χ). Hence, by Lemma 2.8, for χ ∈ {b, r},∑

u∈V
α(χ)(u)= 10t · |S(χ)|� 10t2.

Furthermore, by Lemma 2.9, for χ ∈ {b, r},∑
u∈V

β(χ)(u)� 20t ln t · |S(χ)|� 20t2 ln t.

We conclude that, at the end of the procedure,

#{deleted u}� |S(b)| + |S(r)| + #{u : α(b)(u)� 1/2} + #{u : α(r)(u)� 1/2}
+ #{u : β(b)(u)� 1/4} + #{u : β(r)(u)� 1/4}

< 2t+
∑
u∈V

(2α(b)(u)+ 2α(r)(u)+ 4β(b)(u)+ 4β(r)(u))

� 2t+ 2 · 10t2 + 2 · 10t2 + 4 · 20t2 ln t+ 4 · 20t2 ln t
< 200t2 ln t.

2.2.5 Case 1: Peeling procedure gets stuck

By Lemma 2.10, the number of vertices deleted in the peeling process is at most 200t2 ln t, so, at
the end of the peeling procedure, |X|� (200t2 ln t+ 400t2)− 200t2 ln t= 400t2.

Consider the complete two-coloured sub-hypergraph H′ of H induced by the vertex set X. By
Lemma 2.5, at the end of the procedure, for allm= 2t, 2t+ 1, . . . ,mmax and all v ∈ X,

|U(b)
�m(v, X)|< 10m, |U(r)

�m(v, X)|< 10m.

Applying Lemma 2.4 toH′ with c= 10, we concludeH′ (and henceH) has a red hedgehog Ht .3

2.2.6 Case 2: Peeling procedure finishes

Suppose we finish with |S(b)| = t. The analysis for |S(r)| = t is symmetrical. We try to find a blue
hedgehog. For brevity, in the rest of this section, let S= S(b). Let S= {v1, . . . , vt}, where the vi were
chosen in the order v1, . . . , vt . For i= 1, . . . , t, letmi =mvi be the peeling parameter for vi, so that
m1 �m2 � · · ·�mt .

Definition. Call a pair vivj ∈
(S
2
)
with i< j bad if vj ∈ B(b)(vi). Otherwise, call vivj ∈

(S
2
)
good. Let

Ebad ⊂
(S
2
)
be the set of all bad pairs and let Egood ⊂

(S
2
)
be the set of all good pairs, so that

(S
2
)=

Ebad ∪ Egood is a partition.
3By the same reasoning,H′ also has a blue hedgehog.
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Lemma 2.11. ∑
vivj∈Ebad

1
d(b)vivj

<
1
4
.

Proof. Fix 2� j� t. Consider all bad pairs vivj with i< j. At the peeling of vj, β(vj)< 1/4, other-
wise vj would have been deleted from X and we could not have peeled vj. Hence, at the peeling of
vj,

1
4
>β(b)(vj)=

∑
i : i<j,

vj∈B(b)(vi)

min
(
1
4
,

t
d(b)vivj

)
=

∑
i : i<j,

vivj∈Ebad

min
(
1
4
,

t
d(b)vivj

)
=

∑
i : i<j,

vivj∈Ebad

t
d(b)vivj

.

The first equality is by definition of β(b)(vj), the second is by definition of Ebad, and the last is
because d(b)vivj � 4t for all i< j by Lemma 2.7. Thus,

∑
vivj∈Ebad

1
d(b)vivj
=

t∑
j=2

∑
i : i<j,

vivj∈Ebad

1
d(b)vivj

�
t∑

j=2

1
4t
<

1
4
.

We prove that there is a blue hedgehog with body S, by showing that the matching condition of
Lemma 2.2 holds. Consider an arbitrary F⊂ (S

2
)
. Partition F= Fbad ∪ Fgood, where Fbad = F ∩ Ebad

and Fgood = F ∩ Egood. We wish to show that N(b)(F)� |F| + t.

Subcase 1.

|Fbad|� |Fgood|. By Lemma 2.11,
|Fbad|

maxvivj∈Fbad d
(b)
vivj

�
∑

vivj∈Fbad

1
d(b)vivj

�
∑

vivj∈Ebad

1
d(b)vivj

<
1
4
.

Thus, there exists some vivj ∈ Fbad such that d(b)vivj > 4|Fbad|. Furthermore, this vivj satisfies d(b)vivj �
4t by Lemma 2.7, so d(b)vivj � 2|Fbad| + 2t. Hence,

|N(b)(F)|� d(b)vivj � 2|Fbad| + 2t� |Fbad| + |Fgood| + 2t> |F| + t,

as desired. The first inequality is because the blue edges containing vivj are all elements ofN(b)(F).
The second inequality is because d(b)vivj is at least 4|Fbad| and at least 4t by above. The third inequality
is by the assumption |Fbad|� |Fgood|. The fourth inequality is because |F| = |Fbad| + |Fgood| and
2t> t.

Subcase 2.

|Fbad|< |Fgood|. In particular, |Fgood|> 0, so |F| has some good pair vivj with i< j. This pair is in
at least 4mi � 8t blue triples, so |N(b)(F)|� 8t.

Let I be the set of all indices i such that there exists j with i< j� t with vivj ∈ Fgood. For each i,
there are less than t indices j such that i< j� t, so

|I| · t> |Fgood|. (2.6)
For each i ∈ I, arbitrarily fix ji > i such that vivji is good. For i ∈ I, define

U∗i :=N(b)({vivji})∩ Û(b)(vi), U∗I :=
⋃
i∈I

U∗i ,
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so that U∗I ⊂N(b)(F). For all i ∈ I, the pair vivji is good, so vji /∈ B(b)(vi). Hence, by the definition
of B(b)(vi), there are more than 4mi vertices u ∈ Û(b)(vi) such that {u, vi, vji} is blue. Thus, for all
i ∈ I, the set U∗i has at least 4mi vertices. In the peeling of vi, the penalty α(b)(u) increases by t/mi
for each u ∈U∗i . Hence, in peeling vi, the sum of penalties

∑
u∈U∗I α

(b)(u), increases by at least
4mi · t/mi = 4t. Thus,

4t · |I|�
∑
u∈U∗I

α(b)(u). (2.7)

On the other hand, the vertex u is deleted from X whenever α(b)(u)� 1/2, the penalty α(b)(u)
increases by at most t/2t= 1/2 in any peeling step, and the penalty α(b)(u) never changes after u
is deleted from X. Thus, for all vertices u ∈V , we have

α(b)(u)� 1. (2.8)
We conclude that

2|F|� 4|Fgood|� 4t|I|�
∑
u∈U∗I

α(b)(u)�
∑
u∈U∗I

1= |U∗I |� |N(b)(Fgood)|� |N(b)(F)|.

The first inequality is by the assumption |Fbad|< |Fgood|, the second is by (2.6), the third is by (2.7),
the fourth is by (2.8), the fifth is by U∗I ⊂N(b)(Fgood), and the sixth is by Fgood ⊂ F. Combining
with |N(b)(F)|� 8t, we conclude |N(b)(F)|� |F| + t, as desired.

This covers all subcases, so we have proved that, for any non-empty subset F⊂ (S
2
)
, we have

N(b)(F)� |F| + t. Hence, the matching condition of Lemma 2.2 holds, so there is a blue hedgehog
with body S, as desired. This completes the proof of Theorem 1.1.
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