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Numerical simulations were conducted to understand the different wave configurations
associated with the shock-wave reflections over double-concave cylindrical surfaces.
The reflectors were generated computationally by changing different geometrical
parameters, such as the radii of curvature and the initial wedge angles. The
incident-shock-wave Mach number was varied such as to cover subsonic, transonic
and supersonic regimes of the flows induced by the incident shock. The study
revealed a number of interesting wave features starting from the early stage of the
shock interaction and transition to transitioned regular reflection (TRR) over the first
concave surface, followed by complex shock reflections over the second one. Two
new shock bifurcations have been found over the second wedge reflector, depending
on the velocity of the additional wave that appears during the TRR over the first
wedge reflector. Unlike the first reflector, the transition from a single-triple-point
wave configuration (STP) to a double-triple-point wave configuration (DTP) and back
occurred several times on the second reflector, indicating that the flow was capable
of retaining the memory of the past events over the entire process.

Key words: compressible flows, shock waves

1. Introduction
The inherent properties of the complex flow features resulting from the shock-wave

reflections over various geometries are essential to solve real world problems, such
as those encountered in aerospace propulsion systems, combustion, detonation and
explosion, since these phenomena involve drastic changes both in pressure and
temperature. Thus, it has intrigued researchers to carry out in-depth investigations of
these flow features in the past several decades.

The shock reflection phenomenon dates back to the 19th century with the pioneering
work of Mach (1878), where he discovered the regular and Mach reflection structures.
However, no significant advancement was made until the eminent work of von
Neumann (1963) in the 1940s. Later, Smith (1945) and White (1951) discovered two
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new reflection structures, namely complex Mach reflection (CMR), which was later
renamed to transitional Mach reflection (TMR) and double Mach reflection (DMR),
extending the theory presented by von Neumann. Since then, a sizable amount of
work has been done strengthening the insight into the shock reflection phenomena
for steady, pseudo-steady and unsteady flows (Bryson & Gross 1961; Heilig 1969;
Henderson & Lozzi 1975; Ben-Dor & Glass 1979; Ben-Dor 1980; Ben-Dor, Takayama
& Kawauchi 1980; Hornung 1986; Ben-Dor 1987; Kaca 1988). Lately, pseudo-steady
and unsteady flows in particular have been the focus of several studies such as that of
a planar shock propagating over a reflector that exhibits various reflection patterns. In
pseudo-steady flows, the angle of incidence remains constant as the shock advances
over a reflector, thereby maintaining a linear trajectory of the triple point (TP) for
a typical single Mach reflection (SMR). In contrast, the shock encounters a constant
change of the angle of incidence in the case of unsteady flows. Hence, the transient
flows involve different transition processes from one reflection structure to the other
depending on the shape and size of the reflecting surface.

A comprehensive study on these flow features in steady, pseudo-steady and unsteady
configurations is detailed in Ben-Dor’s monograph (Ben-Dor 2007). In particular, the
shock reflection off cylindrical concave surfaces has been an area of intense research
(e.g. Itoh, Okazaki & Itaya (1981), Gvozdeva, Lagutov & Fokeev (1982), Takayama
& Ben-Dor (1983), Takayama & Sasaki (1983), Ben-Dor & Takayama (1985), Izumi,
Aso & Nishida (1994), Skews & Kleine (2007), Gruber (2012) and Shadloo, Hadjadj
& Chaudhuri (2014)). While the earlier of these studies focused on the phenomenology
of the reflection process, the later ones concentrated on shock focusing and the post-
shock flow characteristics. Additionally, the viscous effects on the shock reflection for
pseudo-steady flows have been examined experimentally by Hornung & Taylor (1982)
and computationally by Drikakis et al. (1997) for unsteady flows. Later, Kleine et al.
(2014) presented a careful analysis of the nonlinear behaviour of the irregular shock
reflection patterns with respect to the Reynolds number.

Figure 1 highlights the shock reflection patterns on a cylindrical concave reflector,
where the compression waves arising from the steepening of the concave wall angle
form a kink in the incident shock (I), which later develops into a direct Mach
reflection (DiMR) with a TP, i.e. a structure having three shock waves (incident
(I), reflected (r) and Mach stem (MS)) and a contact discontinuity (slipstream (SL))
meeting at the TP. As the shock progresses, the DiMR turns into an inverse Mach
reflection (InMR) in which the TP moves towards the reflecting surface. A transition
from an InMR to a transitioned regular reflection (TRR) takes place when the TP
collides with the reflecting surface. The TRR exhibits a new TP supported by an
additional shock d′ (see Ben-Dor & Elperin 1991).

The shock reflection process over irregular geometries has gained attention in recent
years, whereby Skews & Blitterswijk (2011) studied shock reflections off combined
surfaces of convex cylindrical reflectors and a flat surface. Recently, Geva, Ram
& Sadot (2013) and Ram, Geva & Sadot (2015) conducted an experimental study
of shock-wave reflections over double circular reflectors of cylindrical concave and
convex surfaces. In contrast, the shock reflection process over double straight wedges
was analysed experimentally by Ben-Dor, Dewey & Takayama (1987) with different
combinations of wedge angles and incident-shock-wave Mach numbers. Based on the
foregoing literature review, the desire to expand the knowledge of the shock reflection
phenomenon to the case of double-concave wedge reflectors, which to the best of
the authors’ knowledge has never been investigated before, becomes the motivation
of the present study.
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DiMR
TP

SL

SL
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FIGURE 1. Schematic portrayal of the evolution of the shock-wave configurations over a
concave cylindrical reflector. TP: triple point, I: incident shock, SL: slipstream, r: reflected
shock, MS: Mach stem, d′: additional shock, DiMR: direct Mach reflection, InMR: inverse
Mach reflection, TRR: transitioned regular reflection.

The shock reflection structures over single-concave reflectors are well known. The
present study aims to improve our understanding of both weak and strong shock-waves
reflection dynamics, specifically for the unsteady case of a propagating shock wave
moving along double-concave wedge reflecting surfaces. From a fundamental
viewpoint, having used the same concave cylindrical reflectors, it is believed that
similar shock-wave reflection structures as observed on the first reflector would endure
even on the second. However, the findings indicate that the reflection process over the
second reflector differs considerably vis-à-vis the first one; and that it relies not only
on the incident-shock-wave Mach number, but also on some of the other geometrical
parameters of the reflectors. Moreover, a new shock-wave configuration transition
cycle is discovered which passes as a single-triple point (STP) ↔ a double-triple
point (DTP) several times on the same reflector. For further understanding, a series of
numerical simulations have been performed with various incident-shock-wave Mach
numbers, radii of the concave cylindrical surfaces and initial wedge angles. From a
practical viewpoint, the usage of multiwedge reflectors may have several applications,
such as to help better design new devices for high-speed combustion or detonation
engines. One possible direct application for aeronautical and military industries is
the pulsed and/or the rotating detonation engines (PDE or RDE) in which faster and
well-controlled detonation ignition is highly desired.

2. Problem set-up
The computations were carried out using an in-house parallel compressible code

equipped with the adaptive multiresolution method, which accounts for the space
adaptivity for high CPU time and memory compression rates (Soni, Roussel &
Hadjadj 2016). The code uses an immersed boundary method (IBM) to handle
fluid–solid interaction problems (Chaudhuri, Hadjadj & Chinnayya 2011a). The solid
body was localized inside a Cartesian grid using a ray tracing technique. For realistic
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I

FIGURE 2. Schematic representation of a double-concave cylindrical reflector.

flow features, the Navier–Stokes equations coupled with the equation of state for an
ideal gas and Sutherland’s law were numerically solved. Here, the gas was considered
as air with the ratio of heat capacities, γ = 1.4. Inviscid and viscous fluxes were
computed using a fifth-order weighted essentially non-oscillatory (WENO) scheme and
a fourth-order central difference formula, respectively, while the time was advanced
using a third-order Runge–Kutta method (Chaudhuri et al. 2011b).

A schematic representation of the solid reflector is given in figure 2. As for the
computational specifications, the boundary conditions were set to inlet and outlet at
the left and the right of the computational domain, respectively, while a slip boundary
condition was applied at the top boundary. Owing to the very short duration of the
entire reflection process (240 µs for the slowest shock, Ms = 1.2 i.e. approximately
415 m s−1, to pass the reflector), thermal effects, which take place on a much larger
time scale, are negligibly small and can be ignored. Hence, the bottom surface
was considered adiabatic with a no-slip boundary condition. The grid convergence
studies were carried out by using different levels of grid refinement resulting in a
variation of the first grid spacing in wall units 1y+1 from 40 to 8. However, for the
phenomenological study of the shock-wave reflection structures, a good level of flow
detail was found to be preserved by keeping 1y+1 < 30.

The study was divided into two parts.

(i) Part I: analysis of the effect of the wedge angles of the cylindrical reflectors,
φw1 = φw2 on the shock reflection, when R1 = R2 = 50 mm, while ω1 = ω2 = 75◦
were kept constant.

(ii) Part II: analysis of the effect of the cylindrical surface radii, R1 = R2 on the
reflection, when φw1 = φw2 = 20◦, while ω1 = ω2 = 75◦ were kept constant, and
also the effect of the radius of the first cylindrical surface on the reflection, when
φw1 = φw2 = 0◦, R2 = 50 mm, while ω1 =ω2 = 75◦ were kept constant.

In all the simulations, the incident Mach number was varied in the range of
1.26Ms 6 2.5. Initially, the static pressure and temperature of the ambient conditions
were taken as 101 325 Pa and 300 K, respectively, and the shocked-flow states were
assigned using the Rankine–Hugoniot relations of a moving normal shock (Whitham
1999). As in Hadjadj & Kudryavtsev (2005), numerical schlieren pictures were used
to highlight the different shock-wave structures.
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FIGURE 3. (Colour online) Comparison of numerical and experimental data for InMR →
TRR transition angle on the first reflector using R1 = 50 mm and φw1 = 0◦ for various
incident-shock-wave Mach numbers.

3. Validation of the numerical methodology
The numerical results obtained using the existing solver are validated against the

experimental data to ensure the adequate reliability of the work. Since the numerical
investigation presented here is altogether new, it is difficult to compare the entire
flow configuration with a single experimental data set. Nevertheless, one of the
geometrical combinations of the obstacles used is partially similar to that found in
Takayama & Sasaki (1983). A comparison to the experimental data is made in terms
of the transition angle, which can be defined as the angle formed at the point on the
reflector, where the transition from the InMR to the TRR takes place. Numerically,
it can be readily found by first obtaining the transition point from the triple-point
trajectory, and then computing the slope of the line passing through it being tangential
to the circular reflector. Figure 3 depicts a comparison of the current numerical model
and the available experimental results (fitted with a second-order polynomial curve)
for InMR → TRR transition angles on the first reflector of R1= 50 mm and φw1= 0◦.
As can be seen, a quite good agreement has been found for the transition angles,
except for Ms = 2.5 which exhibits an overestimation that could arise from a need
for further local grid refinement near the critical points at high Mach numbers.
Nevertheless, based on the current and past authors’ results, one can consider that the
overall methodology used in this study is able to ensure confidence in the accuracy
of the simulations.

4. Results and discussion
4.1. Part I: effect of the wedge angles (φw1 = φw2)

Four different wedge angles are considered, φw1 = φw2 = 0◦, 10◦, 20◦ and 30◦ with
Ms= 1.2, 1.6, 1.9 and 2.5. In the case of φw1= φw2= 0◦, the shock reflection patterns
on the first concave reflector are similar to those reported in Ben-Dor (2007). Until the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.825


Shock-wave reflections 75

I I I I

TRR

(a) (b) (c) (d )

FIGURE 4. Numerical schlieren pictures for Ms = 1.2 and φw1 = φw2 = 0◦ for the second
concave surface. The origin of time is chosen such that the incident shock hits the inlet lip
of the first reflector. r′ and d′: reflected and additional shocks created on the first reflector
(TRR state), respectively, I: incident shock, TP: triple point.

I I I I(a) (b) (c) (d )

FIGURE 5. Numerical schlieren pictures for Ms = 1.6 and φw1 = φw2 = 0◦ for the second
concave surface. For legend, see caption of figure 4.

formation of d′ on the first reflector, the shock reflection phenomenon is fairly similar
in all the considered cases with a slight variation in the computed InMR → TRR
transition wedge angle, θ tr

w . However, as the incident shock wave propagates further
and reaches the second concave reflector, the shock reflection pattern varies notably
with both Ms and φw1. The following points describe the distinctive features with the
different geometrical aspects over the second concave reflector:

Ms = 1.2, φw1 = φw2 = 0◦

Figure 4 shows the shock reflection process on the second reflector, which closely
resembles the one observed over the first reflector i.e. InMR → TRR (figure 4d).
Although an additional wave, d′, reflected off the first surface (TRR), reaches the
second reflector, it does not have enough velocity to catch up with the incident
shock. Its influence on the entire process remains negligible, which makes the wave
configurations similar to the ones observed over the first reflector i.e. an STP.

Ms = 1.6, φw1 = φw2 = 0◦

When Ms is increased to 1.6, before the additional shock wave, d′, reaches the incident
shock, I, the reflected shock, r′, of the TRR over the first reflector forms a triple point
(TP1 in figure 5a) on the incident shock over the second reflector. The overall wave
configuration is an STP. However, after being diffracted, d′ eventually catches up with
I (at its bottom) to form an additional TP (TP2 in figure 5a). This makes a transition
from a single-TP configuration to a double-TP configuration, which from here on will
be referred to as STP and DTP, respectively. As d′ moves further up, the two triple
points (TP1 and TP2) merge, and only TP2 persists. As I travels downstream, d′ starts
falling behind, creating TP3 (see figure 5c) followed by a transition to a TRR (not
seen in figure 5). To the best of the authors’ knowledge, this is the first time that the
STP → DTP → STP → DTP overall wave configuration process has been observed
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I I I I(a) (b) (c) (d )

FIGURE 6. Numerical schlieren pictures for Ms = 1.9 and φw1 = φw2 = 0◦ for the second
concave surface. For legend, see caption of figure 4.

I I I I(a) (b) (c) (d )

FIGURE 7. Numerical schlieren pictures for Ms = 2.5 and φw1 = φw2 = 0◦ for the second
concave surface. For legend, see caption of figure 4.

over the same reflector. This aspect is also highlighted by the triple-point trajectories
that are shown in figure 11(b).

Ms = 1.9, φw1 = φw2 = 0◦

When Ms is increased to 1.9, the shock reflection phenomenon on the second reflector
is similar to what has been observed in the case of Ms= 1.6. However, the length of
the Mach stem associated with TP2 (figure 6a) formed with the diffracted shock, d′,
is quite substantial. This can be explained by the fact that with larger Ms, d′ moves
vertically with higher velocity, which increases rapidly the height of the Mach stem
over the reflector. Furthermore, as I moves forward, the Mach stem starts to bend
inwards, until it develops a kink and a new TP (TP3 initiated between figure 6b,c) is
formed and the overall reflection is DTP. Further up the reflecting surface, the two TPs
merge to result in an STP wave configuration (figure 6c). Later on, the two TPs split
to from a DTP wave configuration (TP3 and TP4 in figure 6d). Hence, the overall
shock reflection cycle on the second reflector is STP ↔ DTP for three times (see
figure 11c).

Ms = 2.5, φw1 = φw2 = 0◦

Rather complex wave configurations occur when Ms is increased to 2.5 for which,
unlike the previous cases, the incident-shock-induced flow is supersonic (the critical
Mach number being Mcrit

s = 2.068). The diffracted shock wave, d′, catches up with the
incident shock right at the beginning of the second reflector. The SMR depicts a large
Mach stem with a TP2. As observed in the case of Ms = 1.9, it bends inward with
time. However, the Mach stem curvature becomes significantly sharp until a new TP3
(figure 7c) is developed, forming thereby an overall DTP wave configuration. This is
a similar shock reflection behaviour to that observed by Colella & Glaz (1984) in the
Mach stem of DMR for the hypersonic flow of Ms = 8 over an inclined ramp using
a polytropic gas. As the shock proceeds further, the distance between the two TPs
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III

r r

k
I(a) (b) (c) (d)

FIGURE 8. Numerical schlieren pictures for Ms = 1.6 and φw1 = φw2 = 20◦ for (a,b) the
first; and (c,d) the second concave surface. r: reflected shock on the first reflector (SMR
state), I: incident shock, TP: triple point, k: reversal of curvature or kink (TMR state),
d′: additional shock created on the first reflector (TRR state), r∗: reflected shock on the
second reflector (SMR state).

I I I I

r
r

k

(a) (b) (c) (d)

FIGURE 9. Numerical schlieren pictures for Ms = 2.5 and φw1 = φw2 = 20◦ for (a,b) the
first; and (c,d) the second concave surface. For legend, see caption of figure 8.

decreases as d′ cannot reach I laterally. This leads to the momentary merger of the
TPs (the slipstreams and the reflected shocks meet at a single point frame). Once d′
falls behind I, a TP4 appears (figure 7d). Therefore, similar shock reflection behaviour
is observed on the second reflector as Ms = 1.9.

Ms = 1.6, φw1 = φw2 = 20◦

With an initial wedge angle of 20◦, the shock reflection structure becomes a clear
single Mach reflection over the first concave reflector from the very beginning
(figure 8a). A clear transitional Mach reflection appears with a slight reversal of
curvature, which could develop to a kink, k, visible on the reflected wave structure
(figure 8b). Upon the TP impingement on the reflector surface, the wave configuration
becomes a TRR, before I reaches the second reflector. But, as soon as I reaches it,
an SMR with TP1 appears. After getting diffracted, d′ penetrates the reflected wave,
r∗, of TP1 on the second reflector (figure 8c). This configuration resembles a typical
DMR without a visible second slipstream that should emanate from TP2. As I
propagates further, a transition to TRR takes place. One can see that as it merges
with d′, the curvature in r∗ of the TRR is enhanced. Note that this makes an STP
→ DTP → STP transition process.

Ms = 2.5, φw1 = φw2 = 20◦

As shown in figure 9(a,b), the shock reflection configurations are similar to the ones
reported on the first concave reflector for Ms= 1.6 (figure 8a,b). However, the reversal
of curvature or kink in TMR stands out distinctly in the current case (figure 9b). Over
the second concave reflector, d′ penetrates r∗ of SMR resembling a DMR without
a visible second slipstream at TP2. As I further progresses, interestingly, the DMR

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.825


78 V. Soni, A. Hadjadj, A. Chaudhuri and G. Ben-Dor

3010 200 3010 200
40

50

60

70

40

50

60

70

(a) (b)

FIGURE 10. InMR → TRR transition angle over (a) the first; and (b) the second
cylindrical concave reflector. By varying initial wedge angles φw1 = φw2 for different
incident-shock-wave Mach numbers,E- Ms = 2.5,@- Ms = 1.9,6- Ms = 1.6, ×-Ms = 1.2.

transitions back to a TMR (figure 9d) followed by a TRR at the end (not shown in
figure 9). In contrast to the past studies where the SMR → TMR → DMR transition
process has been observed, here an SMR → DMR → TMR transition process is
observed. To the best of the authors’ knowledge this transition process has never been
reported before.

Figure 10(a,b) shows the InMR → TRR transition angles, θ tr
w , over the first and

the second reflectors. As can be seen, θ tr
w increases for larger Ms. However, θ tr

w
decreases with the increase of the initial wedge angle φw over both reflectors. It is
also interesting to note that even though both reflectors are identical, θ tr

w is larger
on the second one. This behaviour can be perceived as resulting from the fact that
the flow regions behind the Mach stems are subsonic, hence the information can be
communicated through them.

4.1.1. Trajectories of the triple points
In order to track the triple points, the `2-norm of the pressure gradient is computed,

which translates to the analytical formula for the two-dimensional case at the nth time
step as,

TPn =
√(

∂p
∂x

)2

n

+
(
∂p
∂y

)2

n

. (4.1)

Applying max(TPn, TPn−1) for each time step would give the entire trajectories of
the triple points. Figure 11 depicts the TP trajectories obtained for φw1=φw2= 0◦ and
20◦. Red-dashed lines show the formation of a weak Mach reflection (wMR) with
the reflected shock wave carried forward from the TRR state over the first reflector.
Conversely, blue-dashed lines represent the wMR being the second TP of a DMR
developing from the diffracted shock. Notably, the shock-wave reflection phenomenon
over the second cylindrical concave reflector depends on the additional shock of TRR,
which is diffracted while leaving the first reflector. The velocity of the diffracted shock
changes the shock reflection structures depending on the initial wedge angle and the
incident-shock-wave Mach number.
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

FIGURE 11. (Colour online) Trajectories of the triple points: (a–d) with φw1=φw2= 0◦ for
Ms= 1.2, 1.6, 1.9 and 2.5 in ascending order from top to bottom; (e–h) with φw1= φw2=
20◦ for Ms = 1.2, 1.6, 1.9 and 2.5 in ascending order from top to bottom. The blue and
red solid lines correspond to TP trajectories on the first and second reflectors, respectively;
while the dashed line highlights the TP of the weak Mach reflection.

4.1.2. Reflector junction effect
The effect of the junction between the two reflectors over the shock reflection

patterns on the second reflector is investigated by replacing the sharp corner with
a continuous smooth radius of R = 6 mm. The models generated by doing so are
presented in figure 12. The model A is created by adding a small cylindrical convex
part, such that the convex surface begins at ω1 = 75◦ and ends at φw1 = 0◦, while
the model B has a fillet curve of cylindrical convex, thereby reducing ω1 by δ and
similarly increasing φw2 by the same value.

Model A: Ms = 2.5, φw1 = φw2 = 0◦
Since the first reflector is unchanged, the associated reflection remains exactly

the same as reported previously. Figure 13(a,b) depicts the shock reflection in the
vicinity of the corner. Unlike in the sharp corner case, no wMR is found on the
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(a) (b) (c)

R
R

FIGURE 12. (Colour online) Schematic illustration of the three cases of the reflector
junction: (a) sharp edge junction for ω1 = 75◦ and φw2 = 0◦; (b) model A where the
geometrical parameters of the original geometry is preserved; and (c) model B in which
the junction is replaced by a fillet curve of radius, R= 6 mm, and δ = 5.49◦.
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FIGURE 13. Numerical schlieren pictures for Ms = 2.5 and φw1 = φw2 = 0◦ for model A
showing the time evolution of the shock reflection (a,b) on/near the junction; and (c,d) on
second concave surface. r: reflected shock on the first reflector (DiMR state), I: incident
shock, TP: triple point, r′: reflected shock created on the first reflector (TRR state).

second reflector, as a result of a possible transition to MR (TP1 and r′) over the
convex surface. The reflection structure of DTP (with TP0 and TP1 in figure 13b)
is transitioned to STP (with TP1 see figure 13c). This Mach stem bends inwards
and develops a kink emanating a slipstream (TP2) from it, which merges with TP1
(see figure 13d). Hence, from figure 13(c) onwards the shock reflection patterns are
identical to those of the sharp corner case (see figure 7b).

Model B: Ms = 2.5, φw1 = 0◦ φw2 = 0◦ + δ
Figure 14(a,b) highlights the reflection process in the proximity of the corner. As

it can be seen, there is no clear transition from InMR → TRR, but rather InMR →
RR → DiMR over the corner. This can be explained by the fact that by the time the
TP reaches the reflecting wall, it falls on the cylindrical convex surface as a result of
the reduction in ω1. Noticeably, since there is no TRR, there is no additional shock
d′ which could involve in the shock reflections on the second reflector. Nevertheless,
STP (with TP1 see figure 14c) on the second reflector has a large Mach stem, which,
as it bends inwards, forms TP2 (see figure 14d); and hence, the overall transition
follows STP → DTP → STP → DTP. As it can be noticed, the shock reflection
is substantially different compared to the model A. However, it is observed that for
smaller Mach numbers, the shock reflection is identical to that observed for model A
with a little change in InMR → TRR transition angle due to the additional distance
added between the two reflectors in model A.
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r
r r r

I(a) (b) (c) (d)I I I

FIGURE 14. Numerical schlieren pictures for Ms = 2.5 and φw1 = 0◦, φw2 = 0◦ + δ for
model B showing the time evolution of the shock reflection (a,b) on/near the junction;
and (c,d) on second concave surface. For legend, see caption of figure 13.

25 75 125 17550 100 150

(a) (b)

45

55

65

40

50

60

75

70

25 75 125 17550 100 150

45

55

65

40

50

60

75

70

FIGURE 15. InMR → TRR transition angle over (a) the first; and (b) the second
cylindrical concave reflector. By varying reflector radii, R1 = R2 for different incident-
shock-wave Mach numbers,E- Ms = 2.5,@- Ms = 1.9,6- Ms = 1.6, ×-Ms = 1.2.

4.2. Part II: effect of the cylindrical surface radii
In order to better understand the effect of radius on the shock reflection phenomenon
over the second cylindrical concave reflector, numerical tests are conducted by varying
the radius of both reflectors as R1 = R2 = 25, 50, 100 and 175 mm, while the initial
wedge angles are kept constant as φw1 = φw2 = 20◦ and ω1 = ω2 = 75◦. It is found
that for different incident-shock-wave Mach numbers, Ms= 1.2, 1.6, 1.9 and 2.5, apart
from the change in the transition angle, no significant difference in the shock reflection
patterns is observed.

The measured InMR → TRR transition angles on the first and on the second
cylindrical reflectors are given in figures 15(a) and 15(b), respectively. The results
show that the transition is delayed as Ms increases. The same trend is observed when
increasing the radius of curvature. Moreover, the difference between the transition
angles on the first and second reflector gets bigger with larger Ms.

The effect of radius of the first cylindrical concave reflector is also investigated by
varying R1= 25, 50, 100 and 175 mm for different Ms, while keeping R2= 50 mm and
φw1 = φw2 = 0◦. Although no new shock structures other than those reported in Part
I are found, the radius of the first surface has a very dramatic effect on the shock
reflection phenomenon over the second reflector. For the smaller radius, R1 = 25 mm
with Ms= 1.2, the shock reflection pattern on the second cylindrical concave reflector
is very similar to that observed for higher Mach number, Ms = 1.6 with zero initial
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FIGURE 16. InMR → TRR transition angle over (a) the first; and (b) the second
cylindrical concave reflector. By varying the radius, R1 while keeping R2 = 50 mm for
different incident-shock-wave Mach numbers, E- Ms = 2.5, @- Ms = 1.9, 6- Ms = 1.6,
×-Ms = 1.2.

wedge angle and R1=R2= 50 mm. This is noticed consistently for all other Ms with
R1 = 25 mm. This behaviour indicates that the additional shock formed during the
TRR state on the first reflector reaches quickly the second one, as it has less distance
to travel due to the smaller radius.

As R1 increases, the shock reflection structures become closer to those found for
φw1 = φw2 = 0◦ and R1 = R2 = 50 mm. Interestingly, for Ms = 1.2, the shock reflection
structure on the second cylindrical reflector is similar to that reported in Part I with
Ms = 1.6, 1.9 and 2.5, and zero initial wedge angle, if the radius, R1 is maintained
constant and ω1 is reduced, or if R1 is reduced while keeping ω1 constant. Hence, it
can be concluded that for various Ms, the shock-wave reflection primarily depends on
φw1, R1 and ω1.

Figure 16(a,b) shows the transition angles over both reflectors. As can be seen, the
transition on the first one is delayed as R1 is increased. The current results are in
contrast with the previous findings of Takayama & Sasaki (1983), in which the InMR
→ TRR transition angle was found to decrease with the increase in the radius of
curvature. However, unlike the first reflector, the transition on the second reflector
takes place early as the radius is increased.

5. Summary

Shock-wave reflections over double-concave cylindrical reflectors have been
investigated. Numerical simulations were carried out to study the changes in the
reflected wave structure with regards to the geometrical parameters of the reflectors as
well as the incident-shock-wave Mach number. The results reveal several interesting
shock reflection behaviours starting from the conventional irregular reflection to
regular reflection transitions on the first cylindrical reflector to the TP merging of on
the second. For the first time, a single-TP → double-TP → single-TP → double-TP
transition has been observed on the same reflector. Moreover, for the same wedge
reflector, the flow features exhibit strong differences in shock-wave reflection patterns
over the first and the second reflectors. Additionally, it is noticed that the shock
reflection over the second reflector varies considerably depending on how quickly
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the diffracted shock reaches the incident wave. The geometrical factors essentially
responsible for this behaviour are φw1, R1 and ω1, and the combination of the latter
parameters determines the distance travelled by the diffracted shock wave, d′. In
addition, contrary to past studies where SMR → TMR → DMR transition process
has been observed, an SMR → DMR → TMR transition process is observed in the
present study for the first time.
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