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We discuss a variational model, given by a weighted sum of perimeter, bending and
Riesz interaction energies, that could be considered as a toy model for charged
elastic drops. The different contributions have competing preferences for strongly
localized and maximally dispersed structures. We investigate the energy landscape in
dependence of the size of the ‘charge’, that is, the weight of the Riesz interaction
energy.

In the two-dimensional case, we first prove that for simply connected sets of small
elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this
result, we show that for small charge the only minimizers of the full variational
model are either balls or centred annuli. We complement these statements by a
non-existence result for large charge. In three dimensions, we prove area and
diameter bounds for configurations with small Willmore energy and show that balls
are the unique minimizers of our variational model for sufficiently small charge.

Keywords: Geometric variational problems; competing interactions; non-local
perimeter perturbation; Willmore functional; bending energy; global
minimizers
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1. Introduction

In recent years there has been a strong interest in variational models involving a
competition between a perimeter type energy and a repulsive term of long-range
nature (see for instance the recent review papers [9,21] and the detailed discussion
below). The aim of this paper is to start investigating the effects for this class of
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132 M. Goldman, M. Novaga and M. Röger

problems of higher order interfacial energies such as the Euler elastica in dimen-
sion two or the Willmore energy in dimension three. We will consider the simplest
possible setting and study volume constrained minimization of functionals defined
for sets E ⊂ R

d with d = 2, 3 as

λP (E) + μW (E) +QVα(E), λ, μ,Q � 0. (1.1)

The different contributions are given by

• The perimeter P , defined as

P (E) = Hd−1(∂E),

• The elastica or Willmore energy W , defined as

W (E) =

⎧⎪⎪⎨⎪⎪⎩
∫
∂E

H2 dH1 for d = 2,

1
4

∫
∂E

H2 dH2 for d = 3,

where H denotes the mean curvature of ∂E that is, the curvature in dimension
two and the sum of the principal curvatures in dimension three1,

• The Riesz interaction energy Vα, defined for α ∈ (0, d) as

Vα(E) =
∫
E×E

1
|x− y|d−α dxdy.

For μ = 0 functional (1.1) is arguably the simplest example of an isoperimetric
type problem showing competition between a local attractive term with a non-local
repulsive term. In the case of Coulombic interactions, that is d = 3 and α = 2, this
model appears in a variety of contexts. It is for instance the celebrated Gamow liquid
drop model for atomic nuclei [20] or the sharp interface limit of the so-called Ohta-
Kawasaki model for diblock copolymers [3,43]. See also [44] for another application
of this model. Even though the picture is not complete, it has been shown that
minimizers are balls for small Q [11,16,26,28,29] (actually they are the only
stable critical sets [27]) and that no minimizers exist for large Q [28,29,38] (see
also [17] for a simple proof of non-existence in the three-dimensional case). Many
more questions related to pattern formation have been investigated for very closely
related models, see for instance [1,2,5,8,22,23,31,46] for a non-exhaustive list.
Other examples of functionals presenting this type of competition can be found for
instance in shape memory alloys [30,32], micromagnetics [14] or epitaxial growth
[4,36]. However, the closest model is probably the one for charged liquid drops
introduced in [45] where the Riesz interaction energy is replaced by a capacitary
term. Surprisingly, it has been shown in [24] that independently of the charge, no
minimizers exist for this model (see also [41,42]). It has been suggested in [21] that
a regularization by a Willmore type energy such as the one considered here might
restore well-posedness. This paper can be seen as the first step in this direction.

1We choose to keep the factor 1/4 in dimension three to stick with the traditional notation.
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Estimates for bending energies and non-local variational problems 133

The energy (1.1) could be seen as a toy model for charged elastic vesicles, where
the Willmore energy represents a prototype of more general bending energies for
fluid membranes and a Coulomb self-interactions refers to the energy of a uniformly
charged body. Associated with this interpretation, we refer to the parameter regimes
Q� 1 and Q� 1 by the terms small and large ‘charge’.

Our goal is to understand how the picture changes for (1.1) in the presence of
a bending energy that is, for μ > 0. For d = 2 and fixed volume, since an annulus
of large radius has arbitrary small elastica energy and also arbitrary small Riesz
interaction energy, one needs to either restrict the class of competitors to simply
connected sets or to include the perimeter penalization (that is, take λ > 0). In
contrast, for d = 3, the Willmore functional is scaling invariant and is globally min-
imized by balls [49]. It seems then natural to consider (1.1) for λ = 0 and study
the stability of the ball. Let us point out that compared to the planar case, config-
urations with catenoid type parts allow for a much larger variety of structures with
low energy. This makes the identification of optimal structures and the distinction
between existence and non-existence of minimizers even more challenging.

1.1. Setting and main results

Let us set some notation and give our main results. We will always assume that
the energy (1.1) contains the bending term and we set without loss of generality
μ = 1. For λ,Q � 0, we define

Fλ,Q = λP +W +QVα.

Regarding the volume constraint, as will be better explained later on, up to a
rescaling there is no loss of generality in assuming that |E| = |B1|. For d = 2, 3, we
define the following classes of admissible sets

M = {E ⊂ R
d bounded with W 2,2-regular boundary},

Msc = {E ∈ M : E simply connected},
M(|B1|) = {E ∈ M : |E| = |B1|},

Msc(|B1|) = {E ∈ Msc : |E| = |B1|},

and consider the variational problems

min
Msc(|B1|)

Fλ,Q(E) (1.2)

and

min
M(|B1|)

Fλ,Q(E). (1.3)

We start by considering the planar problem d = 2 and first focus on the uncharged
case Q = 0. For λ = 0 no global minimizer exists in M(|B1|), but it has been
recently shown in [7,15] that balls minimize the elastica energy under volume
constraint in the class of simply connected sets. Our first result is a quantitative
version of this fact in the spirit of the quantitative isoperimetric inequality [10,19].
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Theorem 1.1. There exists a universal constant c0 > 0 such that for every set
E ∈ Msc(|B1|),

W (E) −W (B1) � c0 min
x

|EΔB1(x)|2,
where EΔF denotes the symmetric difference of the sets E and F .
Furthermore, there exist δ0 > 0 and c1 > 0 such that if W (E) � W (B1) + δ0, then

W (E) −W (B1) � c1(P (E) − P (B1)).

The proof is based on the idea of [10] for the proof of the quantitative isoperimet-
ric inequality to reduce by a contradiction argument to the case of nearly spherical
sets and then compute a Taylor expansion along the lines of [18]. As opposed to
[10] which is based on an improved convergence theorem, we obtain the strong
convergence to the ball directly from the energy and a delicate refinement of [7]
(see lemma 2.5).

Still in the case Q = 0, we then remove the constraint on the sets to be simply
connected but consider the minimization problem (1.3) for λ > 0.

Theorem 1.2. Let Q = 0 and d = 2. There exists λ̄ > 0 such that for λ ∈ (0, λ̄),
minimizers of (1.3) are annuli while for λ > λ̄ they are balls.

Next, we turn to the stability estimates analogous to theorem 1.1.

Theorem 1.3. Let d = 2 and λ̄ be given by theorem 1.2. Then, there exists a
universal constant c2 > 0, such that for any E ∈ M(|B1|) and λ > λ̄

Fλ,0(E) −Fλ,0(B1) � c2(λ− λ̄)min
x

|EΔB1(x)|2,

while for any λ∗ > 0 there exists a constant c(λ∗) > 0 such that for any λ ∈ [λ∗, λ̄]

Fλ,0(E) − min
M(|B1|)

Fλ,0 � c(λ∗)min
Ω

|EΔΩ|2,

where the minimum is taken among all sets Ω minimizing Fλ,0 in M(|B1|) (which
are either balls or annuli depending on λ).

Then, we turn to the study of (1.2) and (1.3) for Q > 0. Regarding (1.2) we prove
the following.

Theorem 1.4. Let d = 2. There exists Q0 > 0 such that for Q < Q0 and all λ � 0,
balls are the only minimizers of (1.2).

The proof is a combination of theorem 1.1 and [28]. As for (1.3), we obtain a
good understanding of part of the phase diagram (see figure 1).

Theorem 1.5. Let d = 2.

• There exists Q1 > 0 such that for every λ > λ̄ and every Q � Q1(λ− λ̄), balls
are the only minimizers of (1.3).
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Figure 1. The phase diagram.

• There exists Q2 > 0 such that for every λ ∈ (0, λ̄] and every Q � Q2λ
(3+α)/2,

centred annuli are the only minimizers of (1.3).

• For every α ∈ (1, 2) there exists Q3(α) such that for every λ � 0 and every
Q � Q3(α)(λ+ λ(α−1)/2), no minimizer exists for (1.3).

The first part of the theorem is a direct consequence of the minimality of the
ball for Fλ̄,0 and for P +QVα for Q small enough. The second point regarding the
minimality of centred annuli is the most delicate part of the theorem. It requires first
to argue that sets of small energy are almost annuli and then to use the stability of
annuli. The last part of the theorem regarding non-existence is obtained by noticing
that if a minimizer exists then we can obtain a lower bound on the energy which is
not compatible for large Q with an upper bound obtained by constructing a suitable
competitor.

We conclude the paper by studying the three-dimensional case where a charac-
terization of the energy landscape is even more difficult. As already pointed out,
the Willmore energy is invariant under rescaling and is globally minimized by balls
[49,52]. We can thus focus on the case λ = 0 where we have competition between
the Willmore energy and the Riesz interaction energy. Stability estimates for the
Willmore energy have been obtained by De Lellis and Müller [13]. Building on
these, on the control of the isoperimetric deficit by the Willmore deficit obtained in
[47] and a bound on the perimeter (see proposition 4.3), we obtain that balls are
minimizers of (1.3) for small Q.

Theorem 1.6. For d = 3 and λ = 0, there exists Q4 > 0 such that for every
Q � Q4, the only minimizers of (1.3) are balls.

Of course, since balls are also minimizers of the isoperimetric problem, a direct
consequence of theorem 1.6 is the minimality of the balls for (1.3) for every λ � 0
and every Q � Q4. For the case λ = 0 we are not able to prove or disprove a
non-existence regime in the parameter space. Still, we show that if a minimizer
exists for every Q then its isoperimetric quotient must degenerate as Q→ ∞
(see proposition 4.10). This is somewhat reminiscent of earlier results obtained by
Schygulla [48].
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Finally, we obtain a non-existence result in the case λ > 0 and α ∈ (2, 3) in the
regime of sufficiently large charge.

Proposition 1.7. For every α ∈ (2, 3), there exists Q5(α) such that for every λ,Q
with Q � Q5(λ−((3−α)/2) + λ(3+α)/2), no minimizer of Fλ,Q in M(|B1|) exists.

1.2. Outline and notation

In § 2, we first consider the planar case d = 2 in the absence of charge (Q = 0)
before considering the case Q > 0 in § 3. In the last section, we finally consider
the three-dimensional case. For the reader’s convenience, the main theorems given
in the introduction are restated in the respective sections and some of them have
been extended by more detailed statements. Theorems 1.1, 1.2, and 1.4 correspond
to theorems 2.3, 2.7 and 2.10, respectively. The statements in theorem 1.4 are
collected from proposition 3.4, theorem 3.8, propositions 3.9 and 3.14. theorem 1.6
corresponds to theorem 4.6, and propositions 1.7 to 4.11.

For two real numbers A,B the notation A � B means that A � cB for some
c > 0 that is universal (unless dependencies are explicitly stated). Correspondingly,
we use the notation � and write A ∼ B if A � B and A � B.

2. The planar case: uncharged drops

We start by investigating the planar case d = 2 in the absence of charges that
is, Q = 0. Our aim is both to characterize the minimizers and to show that the
energy controls the distance to these minimizers.

2.1. Simply connected sets: controlling the asymmetry index by the
elastica deficit

We first restrict ourselves to simply connected sets. By [7,15] balls are the unique
minimizers of the elastica energy among simply connected sets with prescribed
volume. Since they also minimize the perimeter, balls are the unique minimizers
of Fλ = Fλ,0 in this class. Using the quantitative isoperimetric inequality [19],
one could directly obtain a quantitative inequality for Fλ which would, however,
degenerate as λ→ 0. Our aim here is to show that actually the elastica energy
W (E) itself controls the distance to balls. This is a quantitative version of [7,15]
which could be of independent interest.

Inspired by a strategy first used in [1,10] (see for instance also [6,12,24] for
a few other applications) which was building on ideas from [18], we first restrict
ourselves to nearly spherical sets. More precisely, we consider sets E such that ∂E
is a graph over ∂BR for some R > 0, that is,

∂E = {R(1 + φ(θ))eiθ : θ ∈ [0, 2π)}, (2.1)

with ‖φ‖W 2,2 � 1. We will need the following estimate on the elastica energy of
nearly spherical sets.
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Lemma 2.1. Let R > 0 and E be a nearly spherical set. Then,

W (E) −W (BR) = R−1

∫ 2π

0

(
φ̈2 + φ2 +

3
2
φ̇2 − φ+ 4φφ̈

)
+ o(‖φ‖2

W 2,2). (2.2)

Moreover, if |E| = |BR| and the barycenter of E is equal to zero, then

W (E) −W (BR) � R−1

∫ 2π

0

(
φ̈2 + φ̇2 + φ2

)
. (2.3)

Proof. By scaling, it is enough to prove (2.2), (2.3) for R = 1. The elastica energy
of E is given by ∫

∂E

H2 =
∫ 2π

0

(2φ̇2 + (1 + φ)2 − (1 + φ)φ̈)2

(φ̇2 + (1 + φ)2)5/2
.

Let us now compute the Taylor expansion of the integrand. Keeping only up to
quadratic terms, we get that on the one hand,

(2φ̇2 + (1 + φ)2 − (1 + φ)φ̈)2 = 1 + 4φ− 2φ̈+ 6φ2 + φ̈2 + 4φ̇2 − 6φφ̈

+ (φ2 + φ̇2 + φ̈2)O(|φ| + |φ̇|),

and on the other hand,

(φ̇2 + (1 + φ)2)−5/2 = 1 − 5φ− 5
2
φ̇2 + 15φ2 + o(φ2 + φ̇2),

so that

(2φ̇2 + (1 + φ)2 − (1 + φ)φ̈)2

(φ̇2 + (1 + φ)2)5/2
= 1 − φ− 2φ̈+ φ̈2 + φ2 +

3
2
φ̇2 + 4φφ̈

+ (φ2 + φ̇2 + φ̈2)O(|φ| + |φ̇|).

Using that
∫ 2π

0
φ̈ = 0, we obtain (2.2).

If now |E| = |B1|, using that 2|E| =
∫
∂E

x · ν(x) dH1(x), we have∫ 2π

0

(
φ+

φ2

2

)
= 0, (2.4)

while if the barycenter x̄ is zero, using that 3|E|x̄ =
∫
∂E

x · ν(x)xdH1(x),∫ 2π

0

[(1 + φ)3 − 1]eiθ = 0. (2.5)

Using (2.4) in (2.2), we get

W (E) −W (B1) =
∫ 2π

0

(
φ̈2 +

3
2
φ2 +

3
2
φ̇2 + 4φφ̈

)
+ o(‖φ‖2

W 2,2). (2.6)
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If φ =
∑
k∈Z

ake
ikθ is the Fourier representation of φ, then (2.4) and (2.5) imply

that

|a0| + |a±1| �
∑
|k|�2

|ak|2

and thus for every j ∈ N, ∥∥∥∥djφdθj
∥∥∥∥2

L2

� C
∑
|k|�2

|k|2j |ak|2.

Since by Parseval’s identity,∫ 2π

0

(
φ̈2 +

3
2
φ2 +

3
2
φ̇2 + 4φφ̈

)
= 2π

∑
k∈Z

(
|k|4 − 5

2
|k|2 +

3
2

)
|ak|2,

and since for k ∈ Z, the polynomial k4 − (5/2)k2 + (3/2) is always non-negative
and vanishes only for |k| = 1, we have for all φ with ‖φ‖W 2,2 sufficiently small

W (E) −W (B1) �
∑
|k|�2

(
|k|4 − 5

2
|k|2 +

3
2

)
|ak|2

�
∫ 2π

0

(
|φ̈|2 + |φ̇|2 + |φ|2

)
,

concluding the proof of (2.3). �

We also recall the following Taylor expansion of the perimeter for nearly spherical
sets (see [18]).

Lemma 2.2. Let R > 0 and let E be a nearly spherical set with ∂E represented as
in (2.1), then

P (E) − P (BR) = R

∫ 2π

0

(
φ+

φ̇2

2

)
+ o(‖φ‖2

W 1,2). (2.7)

We now combine estimate (2.3) and the work of Bucur-Henrot [7], to obtain a
quantitative estimate on the elastica deficit.

Theorem 2.3. There exists a universal constant c0 > 0 such that for every R > 0
and every set E ∈ Msc(|BR|),

R
(
W (E) −W (BR)

)
� c0

(
min
x∈R2

|EΔBR(x)|
|BR|

)2

. (2.8)

Furthermore, there exist δ0 > 0 and c1 > 0 such that if W (E) � R−1(W (B1) + δ0),
then

R
(
W (E) −W (BR)

)
� c1

P (E) − P (BR)
P (BR)

. (2.9)
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In order to prove this theorem, we will need some auxiliary results. Even for
simply connected sets, uniform bounds on the volume and the elastica energy are
in general not sufficient to obtain a perimeter or a diameter control (see e.g., [7,
figure 1]). However, this is the case for sets with elastica energy sufficiently small.

Lemma 2.4. There exist δ0 > 0 and C0 > 0 such that for every E ∈ Msc(|B1|) with
W (E) � W (B1) + δ0, there holds

P (E) � C0. (2.10)

Proof. We first prove, by contradiction, a corresponding bound for the diameter,
and then deduce the perimeter bound.

Step 1. Assume that there exists a sequence (En)n∈N in Msc(|B1|) with

W (En) →W (B1) and dn = diam(En) → ∞.

In the following steps, the implicit constants in � and � estimates may
depend on the fixed sequence (En)n but are independent of n ∈ N.
First, up to a rotation, we may assume that for every ξ ∈ (0, dn) the
vertical section Enξ = En ∩ ({ξ} × R) �= ∅ is not empty. By Fubini’s
Theorem, there exists ξn ∈ (dn/3, 2dn/3) such that |Enξn

| � d−1
n .

Then, there also exist xn ∈ ∂En ∩ Enξn
and yn ∈ ∂En ∩ Enξn

such that
(xn, yn) ⊂ En and |xn − yn| � d−1

n .

Step 2. Choose an oriented tangent field τ on ∂En. We claim that, for some
C1 > 0 independent of n, we have∣∣τ(xn)⊥ · τ(yn)

∣∣ � C1d
−1/3
n . (2.11)

Indeed, assume that (2.11) does not hold so that there exists Λn → ∞
with ∣∣τ(xn)⊥ · τ(yn)

∣∣ � Λnd−1/3
n . (2.12)

Without loss of generality, using another translation and rotation, we
can assume that xn = 0 and τ(xn) = e1 (see figure 2).
By the bound on the elastica energy we can locally write the part of
∂En containing 0 as a graph of the form {(ξ, f(ξ)) : |ξ| � d

−2/3
n } with

Figure 2. Geometry of ∂En around xn under assumption (2.12).
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f(0) = f ′(0) = 0 and uniformly bounded slope (see [7, lemma 2.1]).
Moreover, sup|ξ|�d−2/3

n
|f(ξ)| � Cd−1

n , since for 0 � ξ � d
−2/3
n

|f(ξ)| �
∫ ξ

0

(ξ − s)|f ′′(s)|ds

�
(∫ ξ

0

(f ′′)2

(1 + (f ′)2)5/2

)1/2 (∫ ξ

0

(ξ − s)2(1 + (f ′)2)5/2
)1/2

� C
√
W (En)

(
1 + sup

|ξ|�d−2/3
n

|f ′|5/2
)
ξ3/2,

and similarly for −d−2/3
n � ξ � 0. Let γn = (γn1 , γ

n
2 ) be an arclength

parametrization of ∂En. We may assume that yn = γn(0) with |γn(0)| �
d−1
n . By (2.12), |γ̇n2 (0)| =

∣∣τ(xn)⊥ · τ(yn)
∣∣ � Λnd

−1/3
n . Let us assume for

definiteness that γ̇n2 < 0 (the other case being analogous). We then have
by the bound on the elastica energy that for every |t| � d

−2/3
n ,

γ̇n2 (t) = γ̇n2 (0) +
∫ t

0

γ̈n2 ds � −Λnd−1/3
n + t1/2

(∫ t

0

(γ̈n2 )2
)1/2

ds

� −Λn
2
d−1/3
n .

Let η be a small constant chosen so that for t ∈ [−ηd−2/3
n , ηd

−2/3
n ],

|γn1 (t)| =
∣∣∣∣(yn)1 +

∫ t

0

γ̇n1 (s) ds
∣∣∣∣ � d−1

n + ηd−2/3
n � d−2/3

n .

This implies that for t ∈ [−ηd−2/3
n , ηd

−2/3
n ], γn(t) stays inside the

cylinder [−d−2/3
n , d

−2/3
n ] × R. Furthermore,

γn2 (−ηd−2/3
n ) = (yn)2 −

∫ 0

−ηd−2/3
n

γ̇n2 (s) ds � −d−1
n + Λnd−1

n

> sup
|ξ|�d−2/3

n

|f(ξ)|,

and

γn2 (ηd−2/3
n ) = (yn)2 +

∫ ηd−2/3
n

0

γ̇n2 (s) ds � d−1
n − Λnd−1

n

< − sup
|ξ|�d−2/3

n

|f(ξ)|.

Therefore, the graph {(ξ, f(ξ)) : |ξ| � d
−2/3
n } splits the cylinder

[−d−2/3
n , d

−2/3
n ] × R into two connected components with γn2 (−ηd−2/3

n )
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Figure 3. Construction of the deformed set.

in one of the components and γn2 (ηd−2/3
n ) in the other (see figure 2).

Hence, γn intersects the graph of f which contradicts the fact that ∂En
can be locally written as a graph. We have thus shown that (2.11) holds.

Step 3. We recall that we assume (without loss of generality) that xn = 0 and
τ(xn) = e1. By the bound on the elastica energy and (2.11), for η small
enough (but not depending on n), xn and yn belong to two differ-
ent connected components of ∂En ∩Qη, where Qη = (−η, η)2. Let Γ1,
respectively Γ2 be the connected component containing xn, respectively
yn. By [7, lemma 2.1] and (2.11), we have Γ1 ∩Qη = {(ξ, f(ξ)), |ξ| � η}
and Γ2 ∩Qη = {(ξ, g(ξ)), |ξ| � η} where without loss of generality, we
can assume that f(ξ) < g(ξ) for |ξ| � η (see figure 3). Let now φ ∈
C∞(−η, η) be a non-negative bump function with φ(0) = 1 and let
d−1
n � t > 0 be such that

max
[−η,η]

(
(f + tφ) − g

)
= 0.

If we replace in Qη the component Γ1 by Γ̃1 = {(ξ, f(ξ) + tφ(ξ)) :
|ξ| � η}, we obtain a new set Ẽn with |Ẽn| � |En| (since by construction
Ẽn ⊂ En) and

|W (Ẽn) −W (En)| �
∣∣∣∣∫ η

−η

(f ′′ + tφ′′)2

(1 + (f ′ + tφ′)2)5/2
− f ′′2

(1 + f ′2)5/2

∣∣∣∣
� t � d−1

n ,

where we have used that thanks to the energy estimate, f ′ is uniformly
small in (−η, η) to make the Taylor expansion. The set Ẽn is made of
two drops E1

n and E2
n with mass mn

1 = |E1
n| and mn

2 = |E2
n| satisfying

mn
1 +mn

2 � |En|. From [7, theorem 3.5], for every couple of drops E
and F , with |E| + |F | = |B2−1/3 |,

W (F ) +W (E) � (1 + δ∗)W (B2−1/3),

for some δ∗ > 0. By scaling, we deduce that if we choose a ball B such
that |B| = |mn

1 | + |mn
2 | � |E| = |B1|, then

W (Ẽn) = W (E1
n) +W (E2

n) � (1 + δ∗)W (B) � (1 + δ∗)W (B1),
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from which we obtain that

W (En) � W (Ẽn) − Cd−1
n �

(
1 +

δ∗
2

)
W (B1),

contradicting the fact that W (En) →W (B1).

Step 4. By the previous steps we know that there exists R > 0 such
that diam(E) � 2R for all E ∈ Msc(|B1|) with W (E) � W (B1) + δ0.
Therefore, after translation E ⊂ BR. We now choose an arclength
parametrization γ : [0, L] → R

2, L = P (E) and obtain as in [7,
lemma 2.5]

L =
∫ L

0

|γ̇|2 ds = −
∫ L

0

γ · γ̈ ds �
(∫ L

0

|γ|2 ds

)1/2 √
W (E)

� L1/2R(2π + δ0)1/2,

from which the perimeter bound follows. �

Lemma 2.5. Let (En)n be a sequence in Msc(|B1|) with W (En) →W (B1) as
n→ ∞. For every n ∈ N let γn : [0, 2π) → R

2 be a constant speed parametrization
of ∂En. Then, after translation γn converges strongly in W 2,2 to a (unit speed)
arclength parametrization of ∂B1.

Proof. Consider the sets Ẽn = 2−(1/3)En. It follows from [7] and our assumptions
that (Ẽn)n is a minimizing sequence of the functional E 
→ |E| + (1/2)W (E) on M.
Moreover, (Ẽn) has uniformly bounded perimeter by lemma 2.4. For such sequences
it is proved in [7, §4] that, after translation, Ẽn must converge to B2−(1/3) . Hence
En converges to B1. This gives first weak convergence in W 2,2 which combined with
the convergence of the energy gives the strong convergence. �

Proof of theorem 2.3. Without loss of generality, we may assume that R = 1 and
|E| = π.

1. Assume for the sake of contradiction that (2.8) does not hold. Then, there
exists a sequence (En)n such that

W (En) −W (B1)
minx |EnΔB1(x)|2 → 0. (2.13)

Since minx |EnΔB1(x)| is bounded, this implies that W (En) →W (B1) as
n→ ∞. We then obtain from lemma 2.4 that the diameter dn of En remains
bounded. Hence, by lemma 2.5 En must converge up to translation to B1

strongly in W 2,2 and thus by Sobolev embedding, also in C1,α for every
α � 1/2. Thus, for n large enough, ∂En is a graph over B1 and ∂En is nearly
spherical. Since the barycenter of En is converging to zero, En is also a graph
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over the ball centred in its barycenter. Up to a translation, this means that
we can apply (2.3) and obtain that

W (En) −W (B1) �
∫ 2π

0

φ2
n � |EnΔB1|2, (2.14)

which contradicts (2.13).

2. We now turn to (2.9). The additional assumption implies in the rescaled
setting that W (E) � 2π + δ0. If (2.9) does not hold there exists a sequence
(En)n such that

W (En) −W (B1)
P (En) − P (B1)

→ 0. (2.15)

In particular, since by lemma 2.4, P (En) is uniformly bounded, we have as
above that W (En) →W (B1) as n→ ∞. Using (2.4) and (2.7) we deduce as
in (2.14) that

W (En) −W (B1) �
∫ 2π

0

(
φ̇2
n + φ2

n

)
� P (En) − P (B1)

which is in contradiction with (2.15). �

2.2. Minimizers of Fλ

We move on and remove the constraint that sets are simply connected. Since
annuli of very large diameter have vanishing elastica energy, in order to have a
well-posed problem, we need to consider λ > 0. Let us recall that the energy is
given by

Fλ(E) = λP (E) +W (E) =
∫
∂E

(
λ+H2

)
dH1.

Up to a rescaling, we may restrict ourselves to the problem

min
M(|B1|)

Fλ(E). (2.16)

We will show below that depending on the value of λ, minimizers are either balls
or annuli. Before stating the precise result we compute the energy of an annulus.

Lemma 2.6. For every r > 0, the energy Fλ of an annulus with inner radius r > 0
and area equal to π is given by

fλ(r) = 2π
[
λ(r + (1 + r2)1/2) +

1
r

+
1

(1 + r2)1/2

]
. (2.17)

The function fλ : (0,∞) → R is strictly convex and f (3)
λ < 0. Its unique minimizer

rλ is the unique solution of

λ

(
1 +

r

(1 + r2)1/2

)
− 1
r2

− r

(1 + r2)3/2
= 0. (2.18)
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Proof. The strict convexity of fλ follows from[
r−1 + (1 + r2)−1/2

]′′
= 2r−3 + (1 + r2)−5/2(2r2 − 1) � 2r−3 − (1 + r2)−5/2 > 0,

which can be checked by considering separately the case r � 1 and the case r � 1.
Since fλ(r) → ∞ as r → 0 and r → ∞ it has a unique minimizer rλ > 0 which then
satisfies (2.18). We further compute that

f
(3)
λ (r) = − 3λr

(r2 + 1)5/2
− 15r3

(r2 + 1)7/2
+

9r

(r2 + 1)5/2
− 6
r4

� 3
−2r3 + 3r − 10

(r2 + 1)7/2
< 0.

�

We may now solve the minimization problem (2.16).

Theorem 2.7. There exists λ̄ > 0 such that for λ ∈ (0, λ̄), minimizers of (2.16)
are annuli of inner radius rλ (as defined in lemma 2.6) while for λ > λ̄ they are
balls of radius one. Moreover, for λ = λ̄ minimizers can be either a ball of radius
one or an annulus of inner radius rλ̄.

Proof. For an arbitrary set E ∈ M(|B1|), by translation invariance, we can in addi-
tion assume that the connected components of E are far apart from each other so
that in particular their convex envelopes do not intersect. In the first two steps we
prove that minimizers must be either balls or annuli. In the final step, we compare
the minimal energy of the optimal annuli with the energy of the ball to conclude
the proof.

1. Let E be an admissible set. We first show that the energy of each connected
component F of E can be strictly decreased by transforming it into a ball
or an annulus. If F is simply connected, by [7,15] and the isoperimetric
inequality

Fλ(F ) � Fλ(BR),

for R > 0 with |BR| = |F |. Equality holds if and only if F is a translate of
BR, proving the claim in this case.
If F is not simply connected, then F c is made of an unbounded connected
component and a finite union G1, . . . , Gn of bounded simply connected sets.
For i = 1, . . . n, let mi = |Gi|. By the discussion above, among all simply
connected sets of mass mi, Fλ is uniquely minimized by balls Bi of area mi.
For two balls Bi and Bj , if r > 0 is such that |Br| = |Bi| + |Bj |, then

Fλ(Bi) + Fλ(Bj) > Fλ(Br)
since the inequality is separately true for the perimeter and the elastica parts
of the energy. Letting thus r > 0 be such that |Br| =

∑n
i=1mi, we have

Fλ(∪iGi) =
∑
i

Fλ(Gi) �
∑
i

Fλ(Bi) � Fλ(Br)

with equality if and only if n = 1 and G1 is a translate of Br. The set F ∪
(∪ni=1Gi) given by filling the holes of F is simply connected and letting R > r
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be such that |BR| = |F | + |Br| = |F ⋃∪ni=1Gi|, we have as above that

Fλ(F
⋃

∪ni=1Gi) � Fλ(BR)

with equality if and only if F
⋃∪ni=1Gi is a translate of BR. Putting all this

together, we find that

Fλ(F ) = Fλ(F
⋃

∪ni=1Gi) + Fλ(∪iGi) � Fλ(BR) + Fλ(Br) = Fλ(BR\Br)

with equality if and only if F is a (not necessarily concentric) annulus of outer
radius R and inner radius r, which again proves our claim.

2. We are thus reduced to the class of competitors made of a finite union of
balls and annuli. Since the elastica energy (respectively the perimeter) blows
up when one of the radii goes to zero (respectively to infinity), existence of a
minimizer in this class is easily obtained. Let us prove that a minimizer must
be either a single ball or a single annulus. If one of the connected components
of E is a ball then E must be the ball. Indeed, by the first part of the proof,
it cannot contain two balls. Moreover, the union of a ball and an annulus
has energy higher than that of a ball of area the sum of the areas. Indeed,
by the isoperimetric inequality the perimeter is better for the ball and since
the elastica energy of a ball is a decreasing function of its area, the elastica
energy of a single ball is also better than the elastica energy of a ball and an
annulus.
We are left to prove that one annulus is better than two. For i = 1, 2, let ri
be the internal radii and Ri be the external radii so that mi = π(R2

i − r2i ) are
the area of the two annuli. We consider as a competitor the annulus BR\Br1
with

R2 = R2
1 + (R2

2 − r22).

Since the elastica part of the energy is smaller, we are left to prove that the
perimeter part is smaller, too. That is indeed the case since

R = (R2
1 +R2

2 − r22)
1/2 � R1 +R2 + r2.

3. Let us now prove the existence of the threshold λ̄. Let us start by noticing
that if the ball is a minimizer of (2.16) for some λ then it is also a minimizer
of (2.16) for every λ′ > λ. Indeed, by the isoperimetric inequality, for every
set E ∈ M(|B1|),

Fλ′(E) = Fλ(E) + (λ′ − λ)P (E) � Fλ(B1) + (λ′ − λ)P (B1) = Fλ′(B1)

with equality if and only if E is a ball.
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The energy of an annulus of internal radius r and area equal to |B1| is larger
than the energy of the ball B1 if and only if

2π (λ+ 1) < min
r>0

fλ(r), (2.19)

for fλ as defined in (2.17). By taking as competitor r = λ−1/2, we get that

min
r
fλ(r) � 2πλ1/2

(
2 + (1 + λ)1/2 + (1 + λ)−1/2

)
,

so that for all λ > 0 sufficiently small (2.19) does not hold and minimizers
are annuli.
Using that λr + r−1 � 2λ1/2 and (1 + r2)1/2 � 1, we obtain the lower bound

min
r
fλ(r) � 2π(2λ1/2 + λ),

proving that (2.19) holds for λ �
√

2/2 and concluding the proof. �

Remark 2.8. Finding the explicit value of λ̄ is not straightforward. Indeed, this
entails first minimizing fλ(r) and then finding the range of λ such that (2.19) holds.
The unique minimizer rλ of fλ is determined by (2.18).

By (2.19) we deduce that the ball is the minimizer if and only if

g(λ) = 2π(λ+ 1) − fλ(rλ) < 0.

By minimality of fλ in rλ we find

g′(λ) = 2π − 2π
(
rλ + (1 + r2λ)

1/2
)
< 0.

Therefore, the threshold λ̄ is characterized by the condition

g(λ̄) = 0.

Letting U = (1 + r−2)1/2, we observe that finding rλ is equivalent to find the unique
solution U � 1 of

λU2(1 + U) = (U2 − 1)(1 + U3).

Dividing by 1 + U , we are left with finding a root larger than one of the fourth
order polynomial

U4 − U3 − λU2 + U − 1.

Nevertheless, a simple explicit formula for λ̄ seems not to be available.

2.3. Stability estimates

We now turn to stability estimates for the functional Fλ. As for the proof of
theorem 2.3, we will first need to know that sets with small energy are close (in a
non-quantitative way) to minimizers.
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Lemma 2.9. Consider a sequence of positive numbers (λn)n with λn → λ ∈ (0,∞]
and a sequence (En)n in M(|B1|) such that

Fλn
(En) − min

M(|B1|)
Fλn

→ 0 as n→ ∞. (2.20)

Then, up to translations and passing to a subsequence, En converges strongly in
W 2,2 to a minimizer of Fλ in M(|B1|).

In particular, for all n ∈ N sufficiently large En is connected and has topological
genus one if λ < λ̄, zero if λ > λ̄ and zero or one if λ = λ̄.

Proof. We may assume without loss of generality that 2λ � λn � λ/2 for all n ∈ N.
Let us first prove that for n large enough, En must be connected. For the sake of

contradiction, assume it is not. Arguing as in the proof of theorem 2.7, we see that
we can replace En by a set Ẽn made of two connected components each of which is
either a ball or an annulus with Fλn

(Ẽn) � Fλn
(En) so that (2.20) still holds for

Ẽn. Inspecting the proof of theorem 2.7 we see that we reach a contradiction since
the minimum of Fλn

in this class is larger than minM(|B1|) Fλn
by a constant not

depending on n. If λ < λ̄ we further obtain that for n large enough, En cannot be
simply connected since otherwise we would have by theorem 2.7 for some δ(λ)

Fλn
(En) � Fλn

(B1) � min
M(|B1|)

Fλn
+ δ,

contradicting again (2.20). Let us prove that for any λ, En is of genus at most
one. Otherwise, we can write En = Fn\ ∪Nn

i=1 Gi with Fn and Gi simply connected
and Nn � 2. Letting Vn = |Fn| and mn

i = |Gi|, we have Vn −∑
im

n
i = |B1| and by

[7,15] and the isoperimetric inequality, that

Fλn
(En) � 2π3/2

(
V −1/2
n +

∑
i

(mn
i )

−1/2

)
+ 2

√
πλn

(
V 1/2
n +

∑
i

(mn
i )

1/2

)
.

Since gn(x) = π3/2x−1/2 +
√
πλnx

1/2 is subadditive, and Nn � 2,

Fλn
(En) � 2 min

V−(m1+m2)=|B1|
gn(V ) + gn(m1) + gn(m2).

Notice that gn → ∞ as x tends to zero or infinity so that the minimum on the
right-hand side is attained for m1 and m2 uniformly bounded above and below by
a constant depending only on λ. Since for such values of mi

gn(m1) + gn(m2) � gn(m1 +m2) + δ(λ),

for some δ(λ) > 0, we have by the last two inequalities and theorem 2.7

Fλn
(En) � 2 min

V−m=|B1|
gn(V ) + gn(m) + δ(λ) � min

M(|B1|)
Fλn

+ δ(λ),

contradicting (2.20). Thus, for n large enough, En = Fn\Gn with Fn and Gn simply
connected (where Gn = ∅ is possible if and only if λ � λ̄).

Consider first the case Gn �= ∅ for all n sufficiently large (possibly up to a subse-
quence). This implies in particular that λ � λ̄. Let An = BRn

1
\BRn

2
be the centred
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annulus minimizing Fλn
in M(|B1|), hence Rn2 = rλn

, Rn1 =
√

1 + r2λn
, where rλn

is

the unique minimum of fλn
given in lemma 2.6. Choosing R̃n1 , R̃n2 with |BR̃n

1
| = |Fn|,

|BR̃n
2
| = |Gn| we deduce

Fλn
(En) −Fλn

(An) =
(
λnP (Fn) +W (Fn) + λnP (Gn) +W (Gn)

)
−
[
λnP (BRn

1
) +W (BRn

1
) + λnP (BRn

2
) +W (BRn

2
)
]

=
(
. . .

)
−
[
λnP (BR̃n

1
) +W (BR̃n

1
) + λnP (BR̃n

2
) +W (BR̃n

2
)
]

+ fλn
(R̃n2 ) − fλn

(Rn2 )

� λn

(
P (Fn) − P (BR̃n

1
) + P (Gn) − P (BR̃n

2
)
)

+
(
W (Fn) −W (BR̃n

1
) +W (Gn) −W (BR̃n

2
)
)

+
(
fλn

(R̃n2 ) − fλn
(Rn2 )

)
= Tn1 + Tn2 + Tn3 .

By (2.20) the left-hand side of the inequality vanishes as n→ ∞. Since Fn and Gn
are simply connected, all three terms on the right-hand side are non-negative and
must therefore converge to zero. Since 2λ � λn � λ/2 we have that Rn2 is uniformly
bounded from above and below. Since Tn3 → 0 and Rn2 minimizes fλn

we deduce by
strict convexity of fλn

and a Taylor expansion that

0 = lim
n→∞Tn3 � c(λ) lim sup

n→∞
(R̃n2 −Rn2 )2,

and by the mass constraint, also R̃n1 −Rn1 → 0. Since Tn2 → 0 we deduce that
W (Fn) −W (BRn

1
) → 0 and W (Gn) −W (BRn

2
) → 0. After rescaling we can apply

lemma 2.5 and the conclusion follows.
Let us finally consider the case that λ � λ̄ with En simply connected. Then,

Fλn
(En) − min

M(|B1|)
Fλn

= λn
(
P (En) − P (B1)

)
+W (En) −W (B1)

+
(
Fλn

(B1) − min
M(|B1|)

Fλn

)
,

and we obtain as in the previous case that W (En) →W (B1) concluding again by
lemma 2.5. �

We can now prove our stability estimate for Fλ.

Theorem 2.10. Let λ̄ be given by theorem 2.7 and consider an arbitrary set E ∈
M(|B1|). Then, there exists a universal constant c2 > 0, such that for λ > λ̄

Fλ(E) −Fλ(B1) � c2(λ− λ̄)min
x

|EΔB1(x)|2, (2.21)
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while for any λ∗ > 0 there exists a constant c(λ∗) > 0 such that for any λ ∈ [λ∗, λ̄]

Fλ(E) − min
M(|B1|)

Fλ � c(λ∗)min
Ω

|EΔΩ|2, (2.22)

where the minimum is taken among all sets Ω minimizing Fλ in M(|B1|).

Proof. Let us start by proving (2.21). Since λ− λ̄ > 0, using the minimality of B
for Fλ̄ and the quantitative isoperimetric inequality [19], we can write that

Fλ(E) −Fλ(B1) = Fλ̄(E) −Fλ̄(B1) + (λ− λ̄)
(
P (E) − P (B1)

)
� (λ− λ̄)

(
P (E) − P (B1)

)
� c2(λ− λ̄)min

x
|EΔB1(x)|2,

which proves (2.21).
We now turn to the proof of (2.22). As for the proof of (2.8), we assume by

contradiction that the inequality does not hold. We thus have sequences (λn)n in
[λ∗, λ̄] and (En)n in M(|B1|) with

lim
n→∞

Fλn
(En) − minM(|B1|) Fλn

minΩ |EnΔΩ|2 = 0. (2.23)

Again, implicit constants in � and � estimates may depend on the fixed sequence
(En)n but are independent of n ∈ N.
Since the denominator in (2.23) is uniformly bounded we have limn→∞ Fλn

(En) −
minM(|B1|) Fλn

= 0. Without loss of generality we can also assume λn → λ ∈ [λ∗, λ̄]
as n→ ∞.

By lemma 2.9 En converges strongly in W 2,2 to a minimizer of Fλ. For n large
enough, it is connected, and has either genus one or zero (the latter being possible
only if λ = λ̄).

Let us first consider the case where up to a translation and up to passing to a
subsequence, En converges to BR1\BR2(x2) so that for n large enough En = Fn\Gn
for some simply connected sets Gn ⊂ Fn. Up to a translation, we may assume that
−
∫
Fn
x = 0 so that by lemma 2.9, we can write Fn as a graph over the ball of radius

R̃n1 with |BR̃n
1
| = |Fn|, and such that R̃n1 → R1. At the same time Gn can be written

as a graph over BR̃n
2
(xn) with |BR̃n

2
| = |Gn|, −

∫
Gn

x = xn, R̃n2 → R2 and xn → x2 as
n→ ∞. Hence,

∂Fn = {R̃n1 (1 + φn)eiθ, θ ∈ [0, 2π)}, ∂Gn = {xn + R̃n2 (1 + ψn)eiθ, θ ∈ [0, 2π)}

for some functions φn, ψn with small W 2,2 norm that satisfy (2.4) and (2.5). Let
us point out that BR̃n

1
\BR̃n

2
is in general not an optimal annulus and is thus in

particular not admissible for the denominator of (2.23).
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By (2.3) and the Sobolev inequality, we obtain that

Fλn
(En) −Fλn

(BR̃n
1
\BR̃n

2
) � W (Fn) −W (BR̃n

1
) +W (Gn) −W (BR̃n

2
)

� sup |φn|2 + sup |ψn|2 + |FnΔBR̃n
1
|2

+ |GnΔBR̃n
2
(xn)|2. (2.24)

If BR̃n
2
(xn) �⊂ BR̃n

1
, we need to move xn inwards to obtain an annulus. To this aim,

let

δn = max(|xn| + R̃n2 − R̃n1 , 0) (2.25)

and define x̃n = xn − δn
xn

|xn| (notice that if δn > 0 then xn �= 0 so that taking as
a convention that x̃n = 0 if xn = 0, this quantity is well defined). We then have
BR̃n

2
(x̃n) ⊂ BR̃n

1
by (2.25). Since

BR̃n
2 (1−sup |ψn|)(xn) ⊂ Gn ⊂ Fn ⊂ BR̃n

1 (1+sup |φn|),

we must have |xn| + R̃n2 (1 − sup |ψn|) � R̃n1 (1 + sup |φn|) that is

δ2n �
(
R̃n1 sup |φn| + R̃n2 sup |ψn|

)2 (2.24)

� Fλn
(En) −Fλn

(BR̃n
1
\BR̃n

2
). (2.26)

From this we deduce that

|GnΔBR̃n
2
(x̃n)|2 � |GnΔBR̃n

2
(xn)|2 + δ2n

(2.24),(2.26)

� Fλn
(En) −Fλn

(BR̃n
1
\BR̃n

2
).

(2.27)

We can now estimate

Fλn
(En) −Fλn

(An) = Fλn
(En) −Fλn

(BR̃n
1
\BR̃n

2
) + Fλn

(BR̃n
1
\BR̃n

2
) −Fλn

(An)

(2.24),(2.27)

� |FnΔBR̃n
1
|2 + |GnΔBR̃n

2 (x̃n)|2 + Fλn
(BR̃n

1
\BR̃n

2
)−Fλn

(An)

� |EnΔ(BR̃n
1
\BR̃n

2
(x̃n))|2 + Fλn

(BR̃n
1
\BR̃n

2
) −Fλn

(An).

By the minimality of fλn
at r = Rn2 and by strict convexity of fλn

(see lemma 2.6),
f ′′λn

(Rn2 ) > 0 and thus

Fλn
(BR̃n

1
\BR̃n

2
) −Fλn

(An) � c(λ)(R̃n2 −Rn2 )2.

We therefore conclude that

Fλn
(En) −Fλn

(An) � |EnΔ(BR̃n
1
\BR̃n

2
(x̃n))|2 + |R̃n2 −Rn2 |2. (2.28)

As pointed out above, this is not sufficient to obtain a contradiction with (2.23)
since BR̃n

1
\BR̃n

2
(x̃n) is not an optimal annulus for Fλn

. We thus need to prove that
there exists x̂n close to x̃n such that (2.28) holds with BRn

1
\BRn

2
(x̂n) instead of

BR̃n
1
\BR̃n

2
(x̃n).
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For εn � 0, we let x̂n = (1 − εn)x̃n. We want to choose εn so that BRn
2
(x̂n) ⊂

BRn
1
. If |x̃n| � 1, we set εn = 0 while for |x̃n| � 1, we claim that we can take

εn = C|R̃n2 −Rn2 | (2.29)

for some constant C � 1. Indeed, if εn satisfies (2.29), then using first that by
(2.25) |x̃n| + R̃n2 � R̃n1 and then that |R̃n1 −Rn1 | ∼ |R̃n2 −Rn2 | (since BR̃n

1
\BR̃n

2
and

BRn
1
\BRn

2
have equal mass) we obtain

|x̂n| +Rn2 = (1 − εn)|x̃n| + R̃n2 + (Rn2 − R̃n2 )

� R̃n1 − (C|x̃n| − 1)|R̃n2 −Rn2 |
= Rn1 + (R̃n1 −Rn1 ) − (C|x̃n| − 1)|R̃n2 −Rn2 |
� Rn1 − (C|x̃n| − c)|R̃n2 −Rn2 |
|x̃n|�1

� Rn1 ,

and therefore BRn
2
(x̂n) ⊂ BRn

1
. From (2.29) we conclude that

|(BR̃n
1
ΔBR̃n

2
(x̃n))Δ(BRn

1
\BRn

2
(x̂n))|2 � |R̃n1 −Rn1 |2 + |R̃n2 −Rn2 |2 + |x̃n − x̂n|2

� |R̃n2 −Rn2 |2

so that (2.28) and the fact that BRn
1
\BRn

2
(x̂n) is an optimal annulus for Fλn

, finally
yields

Fλn
(En) −Fλn

(An)

� |EnΔ(BR̃n
1
\BR̃n

2
(x̃n))|2 + |(BR̃n

1
\BR̃n

2
(x̃n))Δ(BRn

1
\BRn

2
(x̂n))|2

� |EnΔ(BRn
1
\BRn

2
(x̂n))|2 � min

Ω
|EnΔΩ|2,

which contradicts (2.23).
Let us finally consider the case λ = λ̄ with En simply connected. We then have

Fλn
(En) → infM(|B1|) Fλ̄ = Fλ̄(B1) and W (En) � W (B1) by [7,15] so that the

quantitative isoperimetric inequality [19] gives a contradiction to (2.23) (one could
also use (2.8)). �

3. The planar case: charged drops

Still considering the planar case d = 2, we now turn our attention to the variational
problem (1.3) for arbitrary positive parameters m, λ and Q. Our aim is to under-
stand as much as possible the phase diagram of Fλ,Q that is, identify regions of
existence/non-existence of minimizers and characterize minimizers when they exist.

By a simple rescaling we have

min
M(m)

Fλ,Q(E) =
√
π√
m

min
M(|B1|)

Fλ(m),Q(m)(E), (3.1)

with λ(m) = λ(m/π), Q(m) = Q(m/π)(3+α)/2 so that we may assume that m =
|B1|. Notice however that, for λ and Q fixed, λ(m) and Q(m) tend to zero as m
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goes to zero. Therefore, if we want to understand the shape of minimizers at small
volume, we need to carefully study the phase diagram of Fλ,Q close to (λ,Q) =
(0, 0).

3.1. Minimization in the class of simply connected sets

Let us start by investigating (1.2), that is, restricting ourselves to simply
connected sets.

Proposition 3.1. There exists Q0 > 0 such that for Q < Q0 and all λ � 0, balls
are the only solutions of the minimization problem

min
Msc(|B1|)

Fλ,Q(E).

Proof. Consider δ0, c1 > 0 from theorem 2.3. By [28, proposition 7.1] (see also [16,
theorem 1.3]) there exists Q1 such that

P (E) − P (B1) � Q1

(
Vα(B1) − Vα(E)

)
for all E ∈ M(|B1|). (3.2)

Consider now any E ∈ Msc(|B1|) with Fλ,Q(E) � Fλ,Q(B1) Hence

W (E) −W (B1) � Q
(
Vα(B1) − Vα(E)

)− λ
(
P (E) − P (B1)

)
(3.3)

� QVα(B1) < δ0

for all Q < δ0Vα(B1)−1. Therefore, if Q < δ0Vα(B1)−1, (2.9) applies and

c1
P (E) − P (B1)

P (B1)
� W (E) −W (B1).

Together with (3.3) we get that for all Q < δ0Vα(B1)−1

P (E) − P (B1) � Q

(
c1

P (B1)
+ λ

)−1 (
Vα(E) − Vα(B1)

)
,

which combined with (3.2) gives P (E) = P (B1) for Q < Q1((c1/P (B1)) + λ). This
implies that E = B1. Choosing Q0 := min{δ0Vα(B1)−1, Q1(c1/P (B1))} concludes
the proof of the proposition. �

Remark 3.2. Since for d = 2 a bound on the perimeter gives a bound on the
diameter for simply connected sets, existence of a minimizer for (1.2) holds for
every λ > 0 and Q > 0. For λ = 0, the existence of minimizers for large Q is less
clear.

As a direct consequence of (3.1) and proposition 3.1 we get

Corollary 3.3. Let Q0 be given by proposition 3.1. For any Q > 0, λ � 0 and
m � π (Q0/Q)2/(3+α) balls are the only minimizers of

min
Msc(m)

Fλ,Q(E).
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3.2. Minimization in the class M(|B1|).
We now drop the constraint that E is simply connected and study (1.3). We start

by focusing on the simplest part of the phase diagram, that is where minimizers
are balls. As above, let Q1 > 0 be given by [16,28] such that balls are the only
minimizers of

min
M(|B1|)

P (E) +QVα(E).

Proposition 3.4 (Global minimality of the ball for λ > λ̄). For every λ > λ̄ and
Q � Q1(λ− λ̄) balls are the unique minimizers of Fλ,Q in M(|B1|).
Proof. For λ > λ̄ and Q � Q1(λ− λ̄), we have

Fλ,Q(E) = (λ− λ̄)P (E) +QVα(E) + Fλ̄(E)

= (λ− λ̄)
(
P (E) +

Q

λ− λ̄
Vα(E)

)
+ Fλ̄(E).

By definition of Q1, balls are the only minimizers of P (E) + (Q/(λ− λ̄))Vα(E).
Since by theorem 2.7 they also minimize Fλ̄, balls are the only minimizers of Fλ,Q.

�

Remark 3.5. Notice that if balls are minimizers of Fλ,Q then by the isoperimetric
inequality they are also minimizers of Fλ′,Q for every λ′ � λ.

We now focus on the most interesting case and show that for λ � λ̄ and Q
sufficiently small centred annuli are optimal. Our first observation is that among
annuli of the form BR1\BR2(x2), the Riesz interaction energy is minimized for the
centred annulus that is, for x2 = 0.

Lemma 3.6. For every x2 ∈ R
2 such that BR2(x2) ⊂ BR1 , it holds

Vα(BR1\BR2(x2)) � Vα(BR1\BR2),

with equality if and only if x2 = 0. Moreover Vα(BR1\BR2(x2)) � Vα(B1).

Proof. Let X1 = XBR1
, X2 = XBR2

. By the Riesz rearrangement inequality we
deduce

Vα(BR1\BR2(x2)) =
∫

R2×R2

X1(x)X1(y)
|x− y|2−α +

∫
R2×R2

X2(x− x2)X2(y − x2)
|x− y|2−α

− 2
∫

R2×R2

X1(x)X2(y − x2)
|x− y|2−α

�
∫

R2×R2

X1(x)X1(y)
|x− y|2−α +

∫
R2×R2

X2(x)X2(y)
|x− y|2−α

− 2
∫

R2×R2

X1(x)X2(y)
|x− y|2−α

= Vα(BR1\BR2).
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By [37, theorem 3.9] equality holds if and only if X1,X2 coincide with their sym-
metric rearrangement, hence if and only if x2 = 0. The last statement is a direct
consequence of the Riesz rearrangement inequality. �

We will also need the following stability lemma.

Lemma 3.7. For any λ∗ ∈ (0, λ̄] there exists C(λ∗) > 0 such that for all λ ∈ [λ∗, λ̄]
and all Q > 0 the following property holds: Let E ∈ M(|B1|) satisfy

Fλ,Q(E) � Fλ,Q(Aλ), (3.4)

where Aλ is the centred annulus that minimizes Fλ in M(|B1|). Then, there exists
Ω that minimizes Fλ in M(|B1|), such that

|EΔΩ| + (
Vα(Ω) − Vα(Aλ)

)
� C(λ∗)Q. (3.5)

holds. In particular, for Q small enough Ω must be an annulus.

Proof. Let Ω ∈ argminM(|B1|) Fλ satisfy

|EΔΩ| � |EΔΩ′| for all Ω′ ∈ argminM(|B1|) Fλ.

Thanks to (3.4), (2.22), and the Lipschitz-continuity of the Riesz interaction energy

c(λ∗)|EΔΩ|2 � Fλ(E) −Fλ(Aλ)
� Q

(
Vα(Aλ) − Vα(Ω)

)
+Q

(
Vα(Ω) − Vα(E)

)
� Q

(
Vα(Aλ) − Vα(Ω)

)
+ CQ|EΔΩ|.

By lemma 3.6 the first term on the right-hand side is non-positive and we deduce
(3.5).
Since Vα(B1) − Vα(Aλ) � c(λ∗), we also conclude from (3.5) that for Q small
enough, Ω cannot be a ball. �

We can now prove the minimality of the centered annulus in this regime.

Theorem 3.8 (Global minimality of the annulus for λ � λ̄). For every 0 < λ∗ < λ̄
there exists Q(λ∗) such that for all Q < Q(λ∗) and all λ ∈ [λ∗, λ̄], the minimizers of
Fλ,Q in M(|B1|) are centred annuli Aλ,Q. Moreover, there exist positive constants
c(λ∗), C(λ∗) depending only on λ∗ such that the inner radius rλ,Q of Aλ,Q satisfies

c(λ∗)Q � |rλ,Q − rλ| � C(λ∗)Q, (3.6)

where rλ is the minimizer of fλ (see lemma 2.6).

Proof.

1. We minimize first Fλ,Q in the class of annuli. By (3.6), this minimum is
attained by centered annuli that is, annuli of the form Ar = BR\Br with
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R = R(r) =
√

1 + r2. We recall that fλ(r) = Fλ(Ar) and let g(r) = Vα(Ar).
Hence, we are left with minimizing

hλ,Q(r) = fλ(r) +Qg(r).

Since fλ is coercive and g is positive (and since both are continuous), there
exists at least one minimum rλ,Q of hλ,Q.

2. We claim that g′(r) < 0 for all r > 0. Let v be the potential created by the
annulus BR \Br, i.e. v(x) =

∫
BR\Br

|x− y|−2+α, then

g′(r) =
d
dr

∫
BR(r)\Br

∫
BR(r)\Br

|x− y|−2+α dy dx

= 2
(
R′(r)

∫
∂BR(r)

v(x) dH1(x) −
∫
∂Br

v(x) dH1(x)
)

= 2
∫
∂Br

v

(
R

r
x

)
− v(x) dH1(x).

For x ∈ ∂Br, let Sx = BR((1 +R/r)x) ∩Ar (see figure 4). By the symmetry
of Sx with respect to the line {x/r · y = (r +R)/2},∫

Sx

1
|x− y|2−α =

∫
Sx

1
|(R/r)x− y|2−α .

Moreover, since for y ∈ Ar ∩ S̄cx, |x− y| < |(R/r)x− y|, we have for x ∈ ∂Br

v

(
R

r
x

)
− v(x) =

∫
Ar

1
|(R/r)x− y|2−α −

∫
Ar

1
|x− y|2−α < 0

so that for every r > 0, g′(r) < 0.

3. We therefore have rλ,Q > rλ and that rλ,Q is increasing in Q and decreasing in
λ. Since hλ,Q(rλ) � hλ,Q(rλ,Q) and since fλ is strictly convex with f ′λ(rλ) = 0

Figure 4. The set Sx.
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and f ′′′λ < 0 we next deduce

Q(g(rλ) − g(rλ,Q)) � fλ(rλ,Q) − fλ(rλ) � 1
2
f ′′λ (rλ,Q)(rλ,Q − rλ)2.

On the one hand g(rλ) � Vα(B1) and on the other hand rλ,Q � C(λ∗) and
f ′′λ (rλ,Q) � c(λ∗) > 0 for all λ � λ∗, Q < 1. We infer that

(rλ,Q − rλ)2 � C(λ∗)Q.

Hence rλ,Q → rλ as Q→ 0 uniformly for all λ ∈ [λ∗, λ̄].

4. By the minimizing property of rλ,Q, we deduce

0 = f ′(rλ,Q) +Qg′(rλ,Q) = f ′′(r̃λ,Q)(rλ,Q − rλ) +Qg′(rλ,Q)

for some rλ � r̃λ,Q � rλ,Q. We have c(λ∗) � f ′′(r̃λ,Q) � C(λ∗) and since
c(λ∗) � rλ,Q � C(λ∗) also g′(rλ,Q) is uniformly bounded from above and
below from which (3.6) follows.

5. Assume for the sake of contradiction that we can find a sequence λn ∈ [λ∗, λ̄]
converging to λ ∈ [λ∗, λ̄] and sequences Qn → 0, (En)n in M(|B1|) which are
not annuli and such that

Fλn,Qn
(En) � Fλn,Qn

(An), (3.7)

where An = Arλn,Qn
is the optimal annulus (which is centered).

By (3.7) and the fact that rλn,Qn
→ rλ, we see that En satisfies (2.20) so that

lemma 2.9 together with lemma 3.7 imply that for n sufficiently large, up to a
translation En = Fn\Gn with Fn converging strongly in W 2,2 to BRλ

(where
Rλ =

√
1 + r2λ) and Gn converging strongly in W 2,2 to Brλ

. Let Rn → Rλ
and rn → rλ be such that

|BRn
| = |Fn| and |Brn

| = |Gn|.

Since An is optimal for Fλn,Qn
among annuli, we have Fλn,Qn

(An) �
Fλn,Qn

(BRn
\Brn

) so that (3.7) becomes

λnP (Fn) +W (Fn) + λnP (Gn) +W (Gn) +QnVα(Fn\Gn)
� λnP (BRn

) +W (BRn
) + λnP (Brn

) +W (Brn
) +QnVα(BRn

\Brn
).

Using that by [7,15], W (Fn) � W (BRn
) and W (Gn) � W (Brn

), this
simplifies to

λnP (Fn) + λnP (Gn) +QnVα(Fn\Gn)
� λnP (BRn

) + λnP (Brn
) +QnVα(BRn

\Brn
). (3.8)
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We now estimate (for simplicity we do not write the kernel in the integrals)

Vα(BRn
\Brn

) − Vα(Fn\Gn)

=
∫
BRn

∫
BRn

+
∫
Brn

∫
Brn

−2
∫
BRn

∫
Brn

−
∫
Gn

∫
Gn

−
∫
Fn

∫
Fn

+2
∫
Fn

∫
Gn

= Vα(BRn
) − Vα(Fn) + Vα(Brn

) − Vα(Gn) + 2

[∫
Fn

∫
Gn

−
∫
BRn

∫
Brn

]
By the Riesz rearrangement inequality,∫

Fn

∫
Gn

−
∫
BRn

∫
Brn

� 0

from which we obtain

Vα(BRn
\Brn

) � Vα(Fn\Gn) + Vα(BRn
) − Vα(Fn) + Vα(Brn

) − Vα(Gn).

Inserting this into (3.8) and dividing by λn, we obtain

P (Fn) +
Qn
λn

Vα(Fn) + P (Gn) +
Qn
λn

Vα(Gn)

� P (BRn
) +

Qn
λn

Vα(BRn
) + P (Brn

) +
Qn
λn

Vα(Brn
),

which implies by [28, proposition 7.1] that if Qn/λn is small enough
then Fn = BRn

and Gn = Brn
(xn) for some xn ∈ R

2. This contradicts our
assumption that En was not an annulus and concludes the proof. �

Having in mind the study of (3.1) for λ and Q fixed but m tending to zero, we
now focus on the behaviour of Q(λ∗) for λ∗ going to zero.

Proposition 3.9. There exist Q2 > 0 and λ0 > 0 such that if λ ∈ (0, λ0] and Q �
Q2λ

(3+α)/2 then every minimizer Eλ,Q of (3.1) is a centered annulus. If Eλ,Q =
BRλ,Q

\Brλ,Q
then λ1/2rλ,Q → 1 and λ1/2Rλ,Q → 1, as λ→ 0.

Proof. Consider sequences (λn)n, (Qn)n with

λn → 0, Qn → 0, lim sup
n→∞

Qnλ
−((3+α)/2)
n � Q2.

We start by making the rescaling E = λ
−1/2
n Ê so that

Fλn,Qn
(E) = λ1/2

n

(
P (Ê) +W (Ê) +Qnλ

−((3+α)/2)
n Vα(Ê)

)
= λ1/2

n F1,Q̃n
(Ê),

with Q̃n = Qnλ
−((3+α)/2)
n . We are thus left to study the minimization problem

min
M(λnπ)

F1,Q̃n
(E).

Let us prove that if (En)n is a sequence with F1,Q̃n
(En) � F1,Q̃n

(An), where An
is the optimal (centered) annulus, then for n large enough En = Fn\Gn with Fn
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and Gn simply connected and both converging to the unit ball strongly in W 2,2.
Indeed, if we choose Rn > 0 with R2

n − 1 = λn and write ∂En as a union of simple
closed curves Γn1 , . . . ,Γ

n
Nn

, we deduce that

Nn∑
i=1

(P +W )(Γni ) � F1,Q̃n
(En) � F1,Q̃n

(BRn
\B1) � 8π + C(1 + Q̃n)λn,

where in the last inequality we have used that for every set Ω, Vα(Ω) � |Ω|. Since
∂B1 minimizes P +W among all simple closed curves (by [7,15] and the isoperi-
metric inequality it is minimized by circles and then a simple optimization on the
radius gives the minimality of ∂B1), and since (1 + Q̃n)λn → 0 as n→ ∞ we deduce
that for all n sufficiently large we have Nn � 2. By [7, theorem 1.1] we also have
Nn > 1 since otherwise W (En) would blow up. Hence Nn = 2 for all n sufficiently
large and limn→∞W (Γni ) = 2π for i = 1, 2 so that the claim follows from lemma 2.5.

Arguing then exactly as in the proof of theorem 3.8 and using that Q̃n � Q2 we
obtain that for n sufficiently large En is an annulus if Q2 is sufficiently small. �

Remark 3.10. We do not expect that the condition Q � c0λ
(3+α)/2 is sharp.

Indeed, looking at the proofs of proposition 3.9 and theorem 3.8 we see that we
have argued separately that Fn and Gn should be balls without exploiting the fact
that the volume of En = Fn\Gn is small. One could hope to improve the result by
obtaining a better control on Vα(BRn

\Brn
) − Vα(En).

As a corollary, we obtain by (3.1) the minimality of annuli for small volumes.

Corollary 3.11. There exist λ1 and c1 such that for m � λ1/λ and Q2/(3+α) �
c1λ, minimizers of Fλ,Q in M(m) are centered annuli.

3.3. Non-existence of minimizers for large charge

We now prove a non-existence result for α ∈ (1, 2) and Q large enough (depending
on λ). The restriction α ∈ (1, 2) comes from the fact that contrarily to what happens
for the generalized Ohta-Kawasaki model ((1.1) with μ = 0), we cannot easily use
a cutting argument. That procedure has roughly the effect of replacing α by α+ 1
(see [17,28,29]) and thus allows to extend the non-existence result from α ∈ (1, 2)
to α ∈ (0, 2).
For any Q > 0 we first observe that if a minimizer exists then it must be connected.
The following lower bound will thus by useful to prove non-existence results.

Lemma 3.12. There exists cα > 0 such that, for every λ,Q > 0 and every connected
set E ∈ M(|B1|), there holds

Fλ,Q(E) � cαλ
(2−α)/(3−α)Q1/(3−α). (3.9)

Proof. Let E be a connected set and let d = diam(E) � 2 be its diameter. If we
write E = F\ ∪ni=1 Gi with F and Gi simply connected then diam(E) = diam(F )
and W (E) � W (F ). By [7] we have diam(F )W (F ) � 4π so that dW (E) � 4π.
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Moreover, P (E) � 2d and Vα(E) � d−2+α|E|2 and therefore

Fλ,Q(E) � 2λd+
4π
d

+Qd−2+απ2.

Since

min
d�2

λd+Qd−2+α � cαλ
(2−α)/(3−α)Q1/(3−α),

we get (3.9). �

We will also need an estimate for the interaction energy of annuli. Since we will
also use it in § 4 in dimension 3, we state it in arbitrary dimension.

Lemma 3.13. Consider 0 < ε � 1/2 and α ∈ (0, d). There exists Cα > 0 (depending
implicitly also on the dimension d) such that

Vα(B1\B1−ε) � Cα

⎧⎪⎨⎪⎩
ε2 if 1 < α < d,

ε2| ln ε| if α = 1,
ε1+α if 0 < α < 1.

(3.10)

Proof. Let E = B1\B1−ε and consider for an arbitrary x ∈ E the potential

vα(x) =
∫
E

1
|x− y|d−α dy =

∫ ∞

0

Hd−1(∂B�(x) ∩ E)�−d+α d�.

For any 0 < � � ε we have Hd−1(∂B�(x) ∩ E) � �d−1, hence∫ ε

0

Hd−1(∂B�(x) ∩ E)�−d+α d� �
∫ ε

0

�α−1 = Cαε
α.

For ε � � � 1/2 we have Hd−1(∂B�(x) ∩ E) � Cερd−2, hence∫ 1/2

ε

Hd−1(∂B�(x) ∩ E)�−d+α d�

�Cε
∫ 1/2

ε

�−2+α d� � Cα

⎧⎪⎨⎪⎩
ε for 1 < α < d,

ε| ln ε| for α = 1,
εα for 0 < α < 1.

Finally, for 1/2 < � <∞ we obtain∫ ∞

1/2

Hd−1(∂B�(x) ∩ E)�−d+α d� � 2d−α
∫ ∞

1/2

Hd−1(∂B�(x) ∩ E) d�

� Cα|E| � Cαε.

From these inequalities and Vα(B1\B1−ε) =
∫
E
vα(x) dx the claim follows. �

We next state our main non-existence result.
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Proposition 3.14. For any α ∈ (1, 2), there exists Q3(α) > 0 such that, for
all λ,Q > 0 with Q � Q3(α)(λ+ λ(α−1)/2), the functional Fλ,Q does not admit
minimizers in M(|B1|).

Proof. Let us start by the case λ � 1. If a minimizer exists then by (3.9),

min
M(|B1|)

Fλ,Q(E) � cαλ
(2−α)/(3−α)Q1/(3−α). (3.11)

Consider as a competitor N � 2 identical annuli of outer diameter 2. We may
assume that they are so far apart that the interaction energy between different
annuli becomes negligible. The inner radius is given by rN = (1 − (1/N))1/2, and
the elastica energy of the competitor is not larger than 10πN � 4πλN so that the
perimeter is dominant. By lemma 3.13 the interaction energy of a single annulus is
estimated by a constant times N−2. Using this competitor in (3.11), we obtain

Cα

(
λN +

Q

N

)
� min

M(|B1|)
Fλ,Q(E) � cαλ

(2−α)/(3−α)Q1/(3−α).

Optimizing in N we find N ∼ Q1/2λ−1/2 and

λ1/2Q1/2 � cαλ
(2−α)/(3−α)Q1/(3−α),

which leads to a contradiction if Q � Q3(α)λ with Q3(α) chosen large enough.
We now consider the case λ � 1. As above, if a minimizer exists then (3.11) holds.

We now consider a competitor EN,R given by N � 2 identical annuli of outer radius
R � 2, to be optimized. We prescribe

R � λ−1/2, (3.12)

so that we are still in the regime where W (EN,R) � λP (EN,R). If R− ε is the inner
radius of the annulus, then ε � 1/RN and using lemma 3.13 we deduce that

Vα(BR\BR−ε) = R−2+αVα(B1\B1−ε/R) � CαR
−2+αN−2.

Using EN,R in (3.11) we get

Cα

(
NλR+

Q

N
R−2+α

)
� cαλ

(2−α)/(3−α)Q1/(3−α).

Optimizing the left-hand side in R yields R = Cα
(
Q/N2λ

)1/(3−α) and then

Q1/(3−α)N (1−α)/(3−α)λ(2−α)/(3−α) � cαλ
(2−α)/(3−α)Q1/(3−α),

which gives a contradiction for N � N∗(α) sufficiently large. It only remains
to check that such a choice is compatible with hypothesis (3.12). The latter is
equivalent to

Qλ−((α−1)/2) � N2
∗ (α),

which is satisfied if Q � Q3(α)λ(α−1)/2 for Q3(α) chosen sufficiently large. �
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As a consequence, we obtain the following non-existence result for large masses
from (3.1).

Proposition 3.15. For every α ∈ (1, 2), there exists Cα > 0 such that if m �
Cαλ

−1 and Qm(1+α)/2 � Cαλ, there are no minimizers of Fλ,Q in M(m).

4. The three-dimensional case

In the three-dimensional case, the Willmore energy is invariant under dilations.
Using Gauss-Bonnet formula it is easy to see that it is minimized by balls [52].
Moreover, sharp quantitative bounds have been obtained in [13], see also [35].
Since the Willmore energy in dimension three does not have the same degeneracy
as in dimension two and already exhibits a preference for balls, we mainly study
the minimization problem (1.3) without a perimeter penalization. We thus restrict
ourselves to the case λ = 0, that is, to the functional

FQ(E) = W (E) +QVα(E),

and consider the constrained minimization problem infM(m) FQ(E). By a rescaling,
the above minimization problem can be reduced to

inf
M(|B1|)

FQ(E). (4.1)

4.1. Upper bound on the energy

We start by proving a universal upper bound on the energy.

Proposition 4.1. For any Q > 0 we have

inf
M(|B1|)

FQ(E) � 8π.

Proof. We show that an annulus with a very big radius and volume |B1| has an
energy arbitrarily close to 8π. Since the Willmore energy of any annulus is 8π we
need to show that the Riesz interaction energy of the annulus vanishes as the radius
goes to infinity.

For an arbitrary R > 0 consider δ = δ(R) such that the annulus AR,R+δ =
BR+δ(0)\BR(0) has volume |B1|, that is, δ = (1/3R2) +O(R−5). Applying (3.10)
to ε = δ/(R+ δ) we deduce that for 0 < α < 1

Vα(AR,R+δ) = (R+ δ)3+αVα(B1\B1−ε)

� CαR
3+αε1+α � CαR

2δ1+α � CαR
−2α R→∞→ 0.

We conclude similarly in the case 1 � α < 3. �

Let us prove that the same upper bound can be reached in the class of topological
spheres.
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Proposition 4.2. For any Q > 0 we have

inf
{FQ(E) : E ∈ M(|B1|), genus(∂E) = 0

}
� 8π.

Proof. The construction in [40] provides a sequence of sets En ∈ M with ∂En
of genus zero and real numbers rn with rn ↗ 1 as n→ ∞, with the following
properties:

En ⊂ Arn,1, |En| > 1
2
|Arn,1| and W (En) → 8π.

Considering the rescaled sets Ẽn = ηnEn, η3
n = |B1|/|En| we observe that |Ẽn| =

|B1| and ηn → ∞, W (Ẽn) → 8π. Moreover, Ẽn ⊂ Aηnrn,ηn
with ηnrn → ∞ as

n→ ∞ and |Aηnrn,ηn
| � 2|B1|. Following the proof of proposition 4.1 we therefore

deduce that

Vα(Ẽn) � Vα(Aηnrn,ηn
) n→∞→ 0. �

4.2. Area and diameter bounds

In this section, we prove uniform area and diameter bounds in the class of sets
with Willmore energy strictly below 8π.

Proposition 4.3. Let E ∈ M(|B1|) be such that for some δ > 0, we have

W (E) � 8π − δ.

Then, ∂E is connected and there exists a constant Cδ such that

H2(∂E) + diam(E)2 � Cδ. (4.2)

If one restricts to boundaries of genus zero the proposition follows from [48]. We will
prove proposition 4.3 below and first prepare the compactness argument that we
will employ. Therefore, we need to characterize limits of boundaries of sets with van-
ishing volume and uniformly bounded perimeter and Willmore energy. One natural
approach to obtain suitable compactness properties uses the concept of varifolds,
which we now quickly introduce. We refer to [49] for a detailed exposition. Since in
the following lemma the dimension plays no role, we decided to give the statement
in arbitrary dimension d. We let G(d, d− 1) be the Grassmannian manifold of unori-
ented (d− 1) planes in R

d and say that a Radon measure μ on R
d ×G(d, d− 1)

is an integer rectifiable varifold2 if there exists a countably (d− 1)− rectifiable
set Σ, and a function θ : Σ → N such that μ = θHd−1 Σ ⊗ δTΣ, that is, for every
ψ ∈ C0

c (R
d ×G(d, d− 1)) there holds∫

Rd×G(d,d−1)

ψ dμ =
∫

Σ

ψ(x, TxΣ)θ(x) dHd−1.

By a slight abuse of notation, we will consider such a μ as a measure on R
d that

is, we identify it with θHd−1 Σ. We say that μ has a weak mean curvature vector

2More precisely a (d − 1)-integer rectifiable varifold, but here we restrict ourselves to the co-
dimension one case, and simplify the notation.
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H ∈ L1
loc(μ, R

d) if for all η ∈ C1
c (R

d, R
d) the classical first variation formula for

smooth surfaces generalizes to∫
Rd

divΣ η dμ = −
∫

Rd

H · η dμ.

We extend the Willmore functional to the set of integer rectifiable varifolds with
weak mean curvature H, by setting

W (μ) =
1
4

∫
Rd

|H|2 dμ.

We also recall the notion of oriented integral varifolds, introduced by Hutchinson
[25]. An oriented integral varifold V o is a Radon measure on the product R

d × Sd−1

which satisfies for every ψ ∈ C0
c (R

d × Sd−1)

V o(ψ) =
∫

Σ

(
θ+(x)ψ(x, ν(x)) + θ−(x)ψ(x,−ν(x)) dHd−1(x),

where Σ is a countably (d− 1)-rectifiable set and θ± : Σ → N are such that θ+ +
θ− > 0 almost everywhere on Σ, and where ν is a unit normal field on Σ. We can
naturally associate to V o the integral varifold μ = θHd−1 Σ with θ = (θ+ + θ−).

We may now prove the following compactness result (notice that the novel part
is the fact that in the limit, the density θ is even).

Lemma 4.4. Consider a sequence (En)n of open, bounded subsets of R
d with W 2,2-

regular boundaries and inner unit normal field νn : ∂En → Sd−1. Assume that
|En| → 0, supnHd−1(∂En) <∞ and supnW (∂En) <∞.
Then, there exists a subsequence and an integer rectifiable varifold μ on R

d with
even density θ such that Hd−1 ∂En ⇀ μ as Radon measures. Moreover, μ has
weak mean curvature H ∈ L2(μ) and satisfies

W (μ) � lim inf
n→∞ W (∂En). (4.3)

Proof. Consider the associated integer rectifiable varifolds μn = Hd−1 ∂En, and
the oriented varifolds V on , defined for ψ ∈ C0

c (R
d × Sd−1) as

V on (ψ) =
∫
∂En

ψ(x, νn(x)) dHd−1(x).

By the bounds on Hd−1(∂En) and W (En) we know from Allard’s compactness
theorem [49] and [25, theorem 3.1] that up to a subsequence, μn and V on con-
verge respectively to an integer rectifiable varifold μ with weak mean curvature in
L2(μ) and to an oriented integral varifold V 0. Moreover, (4.3) is satisfied. If V o is
represented by (Σ, θ±, ν), then for any ψ ∈ C0

c (R
d)

μ(ψ) = lim
n→∞μn(ψ) = lim

n→∞V on (ψ)

=
∫

Rd×Sd−1

ψ(x) dV o(x, p) =
∫

Σ

(θ+ + θ−)(x)ψ(x) dHd−1(x).

We therefore conclude that μ = (θ+ + θ−)Hd−1 Σ.
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Now, by definition we have for any η ∈ C1
c (R

d,Rd)∫
Rd×Sd−1

p · η(x) dV on (x, p) =
∫
∂En

νn · η dHd−1 = −
∫
En

∇ · η dx.

Since |En| → 0, passing to the limit in the previous equality yields for η ∈
C1
c (R

d,Rd) ∫
Rd×Sd−1

p · η(x) dV o(x, p) = 0,

from which we conclude that θ+ = θ− and therefore that θ = θ+ + θ−is even. �

Proof of proposition 4.3. Since the Willmore energy of any compact surface without
boundary is at least 4π we deduce that ∂E is connected. It remains to prove the
required bounds on the perimeter and diameter. We first prove the uniform area
bound. Arguing by contradiction we assume that there exists a sequence (En)n in
M(|B1|) such that

lim
n→∞H2(∂En) = ∞, and W (En) � 8π − δ for all n ∈ N.

Set Ẽn = H2(∂Ẽn)−(1/2)En, to obtain a sequence (Ẽn)n such that

H2(∂Ẽn) = 1, W (Ẽn) � 8π − δ for every n ∈ N, and lim
n→∞ |Ẽn| = 0.

Applying lemma 4.4 we deduce that there is a non-trivial (since μ(R3) = 1) limit
integer rectifiable varifold μ with even density θ and such that W (μ) < 8π. This
contradicts Li-Yau inequality (see [33, (A.17)]) and proves the uniform area bound.
Finally, by [50, lemma 1.1] (see [51] for the optimal constant) we obtain the
diameter estimates

H2(∂E)1/2W (E)−(1/2) � diam(E) � 2
π
H2(∂E)1/2W (E)1/2, (4.4)

and (4.2) follows. �

Remark 4.5. Let (En)n be a minimizing sequence in M(|B1|) with FQ(En) �
8π − δ. By proposition 4.3 we obtain that (En)n has uniformly bounded surface
area, volume, Willmore energy, and diameter. After possibly shifting En we obtain
a subsequence and a bounded set E ∈ R

3 of finite perimeter such that |E| = |B1|,
with |∇XE |(R3) � Cδ and such that XEn

→ XE in L1(R3), which in particular
implies Vα(En) → Vα(E). Moreover, building on ideas of [50], one can show as in
[48, p. 905, p. 907] (in particular exploiting the monotonicity formula [48, theorem
3], see also [34, §2.1]) that μ = |∇XE | is an integer rectifiable varifold with mean
curvature in L2 and generalized Willmore energy

W (μ) � lim inf
k→∞

W (En).

In order to obtain existence of a minimizer in M(|B1|) it remains to prove further
regularity properties of ∂E (for example by adapting the arguments in [48]). This
goes however beyond the scope of this work.
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4.3. Minimality of the ball for small charge

We now prove that for α ∈ (1, 3), minimizers of (4.1) are balls for small Q.

Theorem 4.6. For any α ∈ (1, 3) there exists Q4 > 0 such that for every 0 < Q <
Q4 the only minimizers of FQ in M(|B1|) are balls.

Proof. For the energy of the unit ball we compute

FQ(B1) = 4π + CαQ � 6π for Q � Q4 =
2π
Cα

.

Let E ∈ M(|B1|) be such that

FQ(E) � FQ(B1).

This implies in particular that

W (E) −W (B1) � Q
(
Vα(B1) − Vα(E)

)
. (4.5)

Since W (E) � FQ(B1) � 6π < 2π2 by [39, theorem A], ∂E is of sphere type.
By proposition 4.3 the diameter of E and the surface area of ∂E are bounded
independently of Q. Furthermore, by [13], up to a translation there exists a W 2,2-
parametrization Ψ : ∂Br → R

3 of ∂E over ∂Br, where r � 1 is chosen such that
H2(∂Br) = H2(∂E). Thanks to the uniform bound on H2(∂E), [13] yields

‖Ψ − Id ‖W 2,2 �
(
W (E) − 4π

)1/2 (4.5)

�
√
Q
(
Vα(B1) − Vα(E)

)1/2
.

By Sobolev embedding we also have that

ω = ‖Ψ − Id ‖C0 �
√
Q
(
Vα(B1) − Vα(E)

)1/2 (4.6)

becomes arbitrarily small as Q tends to zero. Furthermore, by [47] and |E| = |B1|,
H2(∂E) − 4π �

(
W (E) − 4π

)
,

which implies

r − 1 �
(
W (E) − 4π

)
� Q

(
Vα(B1) − Vα(E)

)
. (4.7)

Let vα(x) =
∫
B1

(dy/(|x− y|3−α)) denotes the potential of the unit ball. Applying
[29, lemma 4.5] we get that for every c ∈ R,

Vα(B1) − Vα(E) � 2
∫
B1\E

(vα − c) − 2
∫
E\B1

(vα − c)

= 2
∫

R3
(XB1 −XE)(x)(vα − c).

Using that vα is radially symmetric, we can choose c = vα (x/|x|), which by
Lipschitz continuity of vα (see [29, lemma 4.4]) gives

Vα(B1) − Vα(E) � Cα

∫
EΔB1

||x| − 1| � Cα

∫
Br+ω\B1−ω

∣∣|x| − 1
∣∣,
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where we have used that since r � 1, B1−ω ⊂ E ⊂ Br+ω. Using (4.6) and (4.7), this
yields for Q small

Vα(B1) − Vα(E) � Cα(r − 1 + ω)2 � CαQ
(
Vα(B1) − Vα(E)

)
,

which implies that if Q is small enough then Vα(E) = Vα(B1) and therefore E = B1.
�

Remark 4.7. In light of [16, theorem 1.3], we expect this result to hold also for
α ∈ (0, 1]. However, since our proof relies on the rigidity estimate [13, theorem 1.1]
we must work with sets which are parameterized by a small W 2,2 function on the
sphere rather than with nearly spherical sets. For such sets it is unclear how to
obtain a Taylor expansion of Vα analogous to [16, lemma 5.3]. To overcome this
issue, we used that for α ∈ (1, 3) the potential vα is Lipschitz continuous. This is not
the case for α ∈ (0, 1] (see [29]). Of course, this problem would be solved if one could
prove an improved convergence theorem for minimizers (or almost minimizers) of
(4.1).

Remark 4.8. As a consequence of theorem 4.6 and the isoperimetric inequality,
balls are the only minimizers of Fλ,Q in M(|B1|) for any 0 < Q < Q4 and any
λ > 0.

Remark 4.9. By rescaling it follows from theorem 4.6 that for Qm(3+α)/3 < Q4,
the only minimizers of FQ in M(m) are balls.

4.4. Properties of minimizers for large charge

For large charge, we are not able to prove or disprove that minimizers of FQ exist.
In the following proposition we just point out that if minimizers exist, they must
have more and more degenerate isoperimetric quotient as the charge increases. This
is somewhat reminiscent of [48, theorem 1].

Proposition 4.10. Assume that there exists a sequence Qn → ∞ such that for
every n ∈ N there exists a set En ∈ M(|B1|) with FQn

(En) < 8π. Then,

lim
n→∞H2(∂En) = ∞ and lim

n→∞W (En) = 8π.

Proof. We have by the minimality of En

8π −W (En) > QnVα(En)

� Qn|B1|2 diam(En)−3+α

(4.4)

� Qn

(
H2(∂En)1/2W (En)1/2

)−3+α

� QnH2(∂En)(−3+α)/2W (En)(−3+α)/2

This yields,

8π > W (En) + CQnH2(∂En)(−3+α)/2W (En)(−3+α)/2

� CαQ
2/(5−α)
n H2(∂En)(−3+α)/(5−α),
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where we have optimized in W (En) in the second line. This gives H2(∂En) >
CαQ

2/(3−α)
n → ∞. We then conclude by (4.2) that W (En) → 8π. �

4.5. A non-existence result

For the full functional Fλ,Q, λ > 0 we can prove non-existence for α ∈ (2, 3) and
Q large enough.

Proposition 4.11. For every α ∈ (2, 3), there exists Q5(α) such that for every λ,Q
with Q � Q5(λ−((3−α)/2) + λ(3+α)/2), there is no minimizer of Fλ,Q in M(|B1|).

Proof. Assume that Q� λ−((3−α)/2) + λ(3+α)/2. If a minimizer E of (1.3) exists
then it must be connected. Therefore, there exists one connected component Σ of
∂E such that diam(Σ) = diam(E). By (4.4), we have

diam(E) = diam(Σ) �
√

H2(Σ)W (Σ) �
√
P (E)W (E).

Therefore,

Fλ,Q(E) = λP (E) +W (E) +QVα(E) �
√
λ
√
P (E)W (E) +

Q

diam(E)3−α

�
√
λdiam(E) +

Q

diam(E)3−α
� λ(3−α)/(2(4−α))Q1/(4−α). (4.8)

For N � 1 and R to be chosen below, consider a competitor FN,R made of N
identical annuli of inner radius R and outer radius R+ h with h such that each
volume is equal to N−1. As long as N−1 � R3, we have h � R−2N−1 and h� R.
By (3.10), we have

Fλ,Q(FN,R) � NλR2 +N +
Q

NR3−α .

We now choose

R = λ−(1/2), N = λ(3−α)/4Q1/2

and observe that N � 1 since by hypothesis Q� λ−((3−α)/2) and that N−1 � R3

since Q� λ(3+α)/2. We then obtain

Fλ,Q(FN,R) �
(
λ3−αQ2

Nα−1

)1/(5−α)

+N � λ(3−α)/4Q1/2

which gives a contradiction to (4.8) and the fact that Fλ,Q(FQ,R) � Fλ,Q(E) since
by hypothesis Q� λ−((3−α)/2) and α > 2. �
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