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This paper deals with a new method to determine the dependence of the electrical conductivity

of metals or semiconductors on temperature. It is based on the fact that the current–voltage

relationship is easily measurable. This inverse problem is solved by the classical Abel integral

equation.

1 Introduction

The ratio between the electric conductivity σ and the thermal conductivity κ is the same

for all metals and depends linearly on the absolute temperature u:

κ

σ
= Lu, (1.1)

where L is the Lorenz number. This law, found experimentally by G. Wiedemann and

R. Franz [12], is only approximately true for semiconductors, ceramics and polymers for

which, however, a ‘generalised Wiedemann–Franz law’ holds:

κ

σ
= L(u)u, (1.2)

where L(u) is the Lorenz function (see e.g. [7]). On the other hand, the dependence on

the temperature of the electric and thermal conductivities is quite simple in metals; more

precisely we have [6]

σ(u) =
Cσ

u
, κ(u) = Cκ, (1.3)

where Cσ and Cκ are positive constants which depend on the metal, whereas in semicon-

ductors the electric and thermal conductivities laws are more complex.

If we assume σ(u) and κ(u) to be given functions of the temperature, the electric potential

ϕ(x), x = (x, y, z) and the temperature u(x) inside a three-dimensional conductor to which

a difference of potential V is applied are determined by the following boundary value

problem (P ) [6]:

∇ · (σ(u)∇v) = 0 in Ω, (1.4)

∇ · (κ(u)∇u) + σ(u)β(u)∇u · ∇v + σ(u)|∇v|2 = 0 in Ω, (1.5)
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v = 0 on Γ1, v = V on Γ2,
∂v

∂n
= 0 on Γ0, (1.6)

u = ū on Γ1 ∪ Γ2,
∂u

∂n
= 0 on Γ0, ū > 0. (1.7)

v is the effective potential, given by

v = ϕ+

∫ u

ū

α(t) dt, (1.8)

where α(u) (also a given function of the temperature) accounts for the Thomson effect

and

β(u) = uα′(u). (1.9)

In (1.5) and (1.5) Ω is an open and bounded subset of R3 with a regular boundary

Γ consisting of three parts Γi, i = 0, 1, 2. Γ1 and Γ2 are disjoint and represent the

electrodes to which the difference of potential V is applied, and Γ0 is the electrically and

thermally insulated part of the body. We note that, in view of the maximum principle,

we have u(x) � ū for any regular solution of problem (P ). Moreover, in problem (P ) the

temperature is assumed to be the constant ū on Γ1 ∪ Γ2. Thus the boundary conditions

are quite special; however, with this assumption, a nearly complete integration of this

boundary value problem is possible.

In Section 2, after explaining how problem (P ) can be integrated, we address the

following inverse problem: reconstruct σ(u) from the easily measured current–voltage

relation I = f(V ) and from the knowledge of the Lorenz function L(u) entering in (1.2).

I is the total current crossing the device and is given by

I =

∫
Γ2

J · n dS, (1.10)

where n is the exterior pointing unit vector normal to Γ1 ∪ Γ2 and

J = −σ(u)∇v (1.11)

is the current density. We prove that σ(u) is the solution of a generalised Abel integral

equation [11]

F(x) =

∫ x

0

G(x, z)σ(z) dz√
x− z

. (1.12)

If we neglect the Thompson effect, (1.12) reduces to the classical Abel equation [1]

F(x) =

∫ x

0

σ(z) dz√
x− z

, (1.13)

which has a simple explicit solution [9, 10]. In Sections 3 and 4 we deal with two special

cases. As pointed out by a referee, the integral solution of this paper could be useful in

the so-called ‘spot-welding problem’.
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2 Solution of the direct and of the inverse problems

Let us assume σ(u), κ(u) and β(u) to be given C1([ū,∞)) functions satisfying σ(u) > 0,

κ(u) > 0 for u � ū and

∫ ∞

ū

κ(t)

σ(t)
dt = ∞,

∣∣∣∣β(u)σ(u)

κ(u)

∣∣∣∣ � C1 for all u � ū. (2.1)

If (v(x), u(x)) is a solution of problem (P ), by (1.5) we have

∇ · (vσ(u)∇v) = σ(u)|∇v|2

and

∇ ·
[
σ(u)

(∫ u

ū

β(t) dt

)
∇v

]
= σ(u)β(u)∇u · ∇v.

Therefore, (1.5) can be rewritten in divergence form as follows:

∇ ·
{
σ(u)

[
v∇v +

κ(u)

σ(u)
∇u+

∫ u

ū

β(t) dt∇v
]}

= 0. (2.2)

In view of the special boundary conditions of problem (P ), we make the ‘ansatz’ of the

existence between u and v of a functional relation u = U(v) so that u(x) = U(v(x)). Define

θ =
v2

2
+

∫ u

ū

κ(t)

σ(t)
dt+

∫ v

0

[∫ U(ξ)

ū

β(t) dt

]
dξ. (2.3)

Thus (2.2) becomes

∇ · (σ(u)∇θ) = 0. (2.4)

Moreover, θ(x) satisfies the boundary conditions

θ = 0 on Γ1, θ = C̃ on Γ2,
∂θ

∂n
= 0 on Γ0, (2.5)

where

C̃ =
V 2

2
+

∫ V

0

[∫ U(ξ)

ū

β(t) dt

]
dξ.

Since the functional relation U(v) is not known, C̃ is an unknown constant. We claim

that θ and v are related by the functional relation

θ =
C̃

V
v. (2.6)

Indeed, we have

∇ · (σ(U(v))∇θ) = 0 in Ω, θ = 0 on Γ1, θ = C̃ on Γ2,
∂θ

∂n
= 0 on Γ0 (2.7)

and

∇ · (σ(U(v))∇v) = 0 in Ω, v = 0 on Γ1 v = V on Γ2,
∂v

∂n
= 0 on Γ0. (2.8)
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This system is uncoupled, and it is easy to see that the solution v(x) of (2.8) is unique as

follows. Define the Kirchhoff transformation

w = Q(v), Q(v) =

∫ v

0

σ(U(t)) dt.

Q maps [0, V ] one-to-one onto [0,Q(V )]. If w(x) is the solution of the mixed problem

Δw = 0 in Ω, w = 0 on Γ1, w = Q(V ) on Γ2,
∂w

∂n
= 0 on Γ0,

then v(x) = Q−1(w(x)) is the only solution of the problem (2.8). Thus we obtain (2.6) since

θ(x) = C̃
V
v(x) solves (2.7). From (2.3) we have, setting γ = C̃

V
,

γv =
v2

2
+

∫ u

ū

κ(t)

σ(t)
dt+

∫ v

0

[∫ U(ξ)

ū

β(t) dt

]
dξ. (2.9)

Taking the derivative with respect to v of (2.9) and defining

B(u) =

∫ u

ū

β(t) dt,

we obtain for U(v) the ordinary differential equation

κ(U)

σ(U)

dU

dv
= γ − v − B(U), (2.10)

which must be supplemented with the conditions

U(0) = ū, U(V ) = ū. (2.11)

In view of (2.1), the two-point boundary value problem (2.10), (2.11) has one and only

one solution U(v). We refer to [2] for the proof. Once U(v) is known, problem (P ) is easily

solved. Indeed, let us consider again the problem

∇ · (σ(U(v))∇v) = 0 in Ω, v = 0 on Γ1, v = V on Γ2,
∂v

∂n
= 0 on Γ0. (2.12)

Define

ψ = G(v), G(v) =

∫ v

0

σ(U(ξ)) dξ, ψ2 = G(V ). (2.13)

G maps [0, V ] one-to-one onto [0, ψ2]. If ψ(x) solves the problem

Δψ = 0 in Ω, ψ = 0 on Γ1, ψ = ψ2 on Γ2,
∂ψ

∂n
= 0 on Γ0, (2.14)

by the maximum principle we have

0 � ψ(x) � ψ2 in Ω̄. (2.15)

Defining

v(x) = G−1(ψ(x)) and u(x) = U(v(x)), (2.16)
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we obtain a solution to problem (P ). Let w(x) be the solution of the problem

Δw = 0 in Ω, w = 0 on Γ1, w = 1 on Γ2,
∂w

∂n
= 0 on Γ0, (2.17)

then

ψ(x) = ψ2w(x). (2.18)

Define

k =

∫
Γ2

∂w

∂n
dS. (2.19)

By (2.13) and (2.18), we have

∇ψ = ψ2∇w = σ(u(x))∇v. (2.20)

Hence, the total current crossing the conductor is

I = k

∫ V

0

σ(U(ξ)) dξ. (2.21)

As an example we apply the theory to the simple, but important case of metals in which

the Wiedemann–Franz law (1.1) holds, the Thomson effect is neglected, β(u) = 0 and

σ(u) =
Cσ

u
, κ(u) = Cκ, L =

Cκ

Cσ
, (2.22)

where Cσ and Cκ are constants typical of the metal. Problem (2.10), (2.11) becomes

LU
dU

dv
= γ − v, U(0) = ū, U(V ) = ū,

which is easily solved by separation of variables and has as the solution

U(v) =

√
Lū2 + Vv − v2

L
. (2.23)

Computing the total current with (2.21), we find

I = 2k
√
LCσ arctan

[
V

2
√
Lū2

]
. (2.24)

Thus the total current remains bounded as V → ∞ in sharp contrast with the total current

I = kσV , which we obtain if σ is a constant.

To treat the inverse problem of reconstructing σ(u) we shall use the two following

elementary lemmas.

Lemma 1 Let y = f(x) ∈ C3((−δ, δ)) be such that

f(0) = 0, f′(0) = 0, f′′(0) > 0. (2.25)
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Let H1(y) and H2(y) be the two branches of the local inverse function of y = f(x) for

0 � y � μ, 0 � x � η, and 0 � y � μ, −η � x � 0, respectively, μ > 0, η > 0. Then

lim
y→0+

H′
1(y)

√
y = (2f′′(0))−1/2, lim

y→0+
H′

2(y)
√
y = −(2f′′(0))−1/2. (2.26)

Proof We have

lim
y→0+

√
y

H1(y)
= lim

x→0

√
f(x)

x2
=

√
f′′(0)

2
. (2.27)

On the other hand,

√
yH′

1(y) =

√
y

f′′(0)H1(y) + λ(H1(y))
, (2.28)

for some function λ(x) satisfying

lim
y→0+

λ(H1(y))

H1(y)
= 0. (2.29)

Hence (2.26)1 follows from (2.27), (2.28) and (2.29). Similarly we obtain (2.26)2. �

Lemma 2 Let U(v) be the solution of problem (2.10), (2.11). Then

U(v) has only one point of maximum vM ∈ (0, V ), (2.30)

U ′(v) > 0 for v ∈ [0, vM), U ′(v) < 0 for v ∈ (vM, V ]. (2.31)

Proof From (2.10) it follows that

if v∗ ∈ (0, V ) and U ′(v∗) = 0 then U ′′(v∗) < 0. (2.32)

Let vm and vM be, respectively, the points of absolute minimum and maximum of U(v) in

[0, V ]; vm � (0, V ), since, if vm ∈ (0, V ) we have U ′(vm) = 0 and U ′′(vm) � 0 contradicting

(2.32). Hence vm ∈ {0, V }, U(v) > ū in (0, V ) and vM ∈ (0, V ). On the other hand, U(v)

cannot have points of relative maximum or minimum in (0, V ). Relative minima are

excluded by (2.32) and relative maxima vrM are also not possible since they would imply

the existence of a relative minimum between vrM and vM. �

Theorem 1 Let U(v, V ) be the solution to problem (2.10), (2.11). Then there exists a

continuous function G(x, z), 0 � z < x, such that

∫ V

0

σ(U(v, V )) dv =

∫ M(V )

0

G(M(V ), z)σ(z)√
M(V ) − z

dz (2.33)

with

M(V ) = U(vM(V ), V ). (2.34)

Moreover,

G(z, z)� 0. (2.35)
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Proof Let v = H1(z, V ), 0 � z < M(V ), 0 � v < vM and v = H2(z, V ), 0 � z < M(V ),

vM < v � V , be the two branches of the inverse function of U(v, V ). By (2.26)

lim
z→M(V )−

H′
i(z, V )

√
M(V ) − z� 0, i = 1, 2. (2.36)

We have ∫ V

0

σ(U(v, V )) dv =

∫ vM

0

σ(U(v, V )) dv +

∫ V

vM

σ(U(v, V )) dv. (2.37)

By (2.26) the functions H1(z, V ) and H2(z, V ) are absolutely continuous. Therefore, the

substitution z = U(v, V ) in (2.37) is admissible. This gives

∫ V

0

σ(U(v, V )) dv =

∫ M(V )

0

σ(z)

[
H′

1(z, V ) − H′
2(z, V )

]
dz. (2.38)

By Lemmas 1 and 2, there exists a continuous function G(x, z) such that

(
H′

1(z, V ) − H′
2(z, V )

)√
M(V ) − z = G(M(V ), z). (2.39)

Thus (2.33) and (2.35) follow. �

Let us assume that

x = M(V ) is globally invertible (2.40)

and define the function

F(x) =
1

k
f(M−1(x)). (2.41)

Using (2.33) the inverse problem of reconstructing σ(u) from the current–voltage charac-

teristic I = f(V ) is reduced to the search of a solution of the generalised Abel integral

equation

F(x) =

∫ x

0

G(x, z)σ(z)√
x− z

dz, (2.42)

which in turn can be transformed into a Volterra integral equation of the first kind (see

[11] p. 60) for which a fully developed theory exists [10]. In particular, in view of (2.35),

the integral equation (2.42) has one and only one solution. The condition (2.40), probably

true in general, is certainly satisfied in the following two important cases in which (2.10)

has an integrating factor.

3 Determination of the electric conductivity in the thermistor problem

In this section the generalised Wiedemann–Franz law (1.2) is assumed and the Thomson

effect neglected; thus we set β(u) = 0. In this case problem (P ) is known as the ‘thermistor

problem’ and has been thoroughly investigated in recent years. We refer in this connection

to the books [5] and [8]. In this case problem (2.10), (2.11) is reduced to

κ(U)

σ(U)

dU

dv
= γ − v, U(0) = ū, U(V ) = ū. (3.1)
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If we define a new scale for the temperature setting

ξ = F(U) =

∫ U

ū

κ(t)

σ(t)
dt, U � ū, (3.2)

problem (3.1) is easily solved and we find as solution

U(v, V ) = F−1

(
Vv

2
− v2

2

)
. (3.3)

We note that the constant γ disappears in (3.3) since it has been used to satisfy, together

with the constant of integration, the two boundary conditions of problem (3.1). To solve

the integral equation

1

k
f(V ) =

∫ V

0

σ

(
F−1

(
Vv

2
− v2

2

))
dv (3.4)

in the unknown σ(u) it is more convenient to proceed in a slightly different way from that

of Theorem 1. So, let us define

σ̃(u) = σ(F−1(u)). (3.5)

Thus (3.4) can be rewritten as

1

k
f(V ) =

∫ V

0

σ̃

(
Vv

2
− v2

2

)
dv.

With the change of variable of integration ζ = v − V
2

we obtain

1

k
f(V ) = 2

∫ V/2

0

σ̃

(
V 2

8
− ζ2

2

)
dζ. (3.6)

With the further change of variable

z =
V 2

8
− ζ2

2
, (3.7)

we have

1

k
f(V ) =

√
2

∫ V2

8

0

σ̃(z)√
V 2

8
− z

dz. (3.8)

Setting

x =
V 2

8
and F(x) =

1

k
√

2
f(2

√
2x), (3.9)

(3.8) transforms into

F(x) =

∫ x

0

σ̃(z)√
x− z

dz. (3.10)

In this case we arrive at the classical Abel equation. Assuming F(x) to be of class C1, we

have from [9], since F(0) = 0,

σ̃(x) =
1

π

∫ x

0

F′(t)√
x− t

dt (3.11)
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or, in terms of the original scale of temperature,

σ(u) =
1

π

∫ F(u)

0

F′(t)√
F(u) − t

dt. (3.12)

Remark. In (3.12) σ seems to depend on the constants ū and k. However, one has to

remember that f(u) is an experimental datum which in turn varies with ū and k. But if,

for example, we take I = f(V ) with f given by (2.24), from (3.12) we obtain σ(u) = Cσ/u,

which depends neither on ū nor on k.

4 The inverse problem with the Thomson effect

A second case of integrability of (2.10) occurs when

κ(u)

σ(u)
= Lu and β(u) = Cu. (4.1)

Setting τ = C/L, we have

β(u) = τ
κ(u)

σ(u)
. (4.2)

Under these assumptions, (2.10) has the integrating factor eτv and the first integral

F(u) +
1

τ
v − 1

τ2
− γ

τ
= C1 e

−τv, (4.3)

where, by (4.1)1,

F(u) =

∫ u

ū

κ(t)

σ(t)
dt =

L

2
(u2 − ū2), u � ū. (4.4)

Computing in (4.3) γ and C1, with the help of (2.11) we obtain, as solution of problem

(2.10), (2.11),

U(v, V ) = F−1(H(v, V )), (4.5)

where

H(v, V ) =
V

τ

1 − e−τv

1 − e−τV − v

τ
. (4.6)

Set

σ̃(ξ) = σ(F−1(ξ)), ξ � 0. (4.7)

The integral equation to be solved is now

1

k
f(V ) =

∫ V

0

σ̃(H(v, V )) dv (4.8)

in the unknown σ̃(ξ). Let vM be the unique point of maximum of H(v, V ) in (0, V ) and

M(V ) = H(vM, V ). Let

v = H1(z, V ), 0 � z � M(V ), 0 � v � vM, (4.9)

v = H2(z, V ), 0 � z � M(V ), vM � v � V (4.10)
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be the two branches of the inverse function of H(v, V ). H1(z, V ) and H2(z, V ) can be

explicitly computed in terms of the Lambert functions W0(z), W−1(z). For the properties

of the Lambert function we refer to [3]. For a short but clearly written description we

suggest visiting Wikipedia. Setting

A(z, V ) =
τV e

τ(V−τz+zτe−τv )
e−τv−1

e−τV − 1

we have

H1(z, V ) =

[
W0(A(z, V )) e−τV −W0(A(z, V )) + τV − zτ2 + zτ2 e−τV

]

τ(e−τV − 1)

and

H2(z, V ) =

[
W−1(A(z, V )) e−τV −W−1(A(z, V )) + τV − zτ2 + zτ2 e−τV

]

τ(e−τV − 1)
.

Using (4.9) and (4.10) we obtain

∫ V

0

σ̃(H(v, V )) dv =

∫ vM

0

σ̃(H(v, V )) dv +

∫ V

vM

σ̃(H(v, V )) dv (4.11)

=

∫ M(V )

0

σ̃(z)

[
H′

1(z, V ) − H′
2(z, V )

]
dz.

On the other hand,

lim
z→M(V )

[
H′

1(z, V ) − H′
2(z, V )

]√
M(V ) − z =

1√
2
.

Thus there exists a continuous function G(x, z) in 0 � z � x such that we have

H′
1(z, V ) − H′

2(z, V ) =
G(M(v), z)√

M(V ) − z
.

In this way the integral equation (4.8) becomes

1

k
f(V ) =

∫ M(V )

0

G(M(V ), z)σ̃(z)√
M(V ) − z

dz. (4.12)

Since the function x = M(V ) is globally invertible, we can define

F(x) =
1

k
f(M−1(x)),

obtaining finally from (4.12) the Abel equation

F(x) =

∫ x

0

G(x, z)σ̃(z)√
x− z

dz.
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5 Conclusion

The solution given by N. H. Abel to the integral equation which bears his name dates back

to the beginning of the 19th century; however, this result is still capable of applications

in fields as diverse as stereology and spectroscopy, to quote only a few (see [4]). The

possibility of reconstructing the temperature–conductivity dependence in a thermistor

from the current–voltage characteristic is yet another confirmation of the permanency of

Abel’s result.
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