
TLP 3 (3): 271–286, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S147106840200162X Printed in the United Kingdom

271

Learning in a compiler for MINSAT
algorithms

ANJA REMSHAGEN

Department of Computer Science, State University of West Georgia,

1600 Maple St, Carrollton, GA 30118, USA

(e-mail: anja@westga.edu)

KLAUS TRUEMPER

University of Texas at Dallas, Department of Computer Science,

EC31, Box 830688, Richardson, TX 75083-0688, USA

(e-mail: klaus@utdallas.edu)

Abstract

This paper describes learning in a compiler for algorithms solving classes of the logic

minimization problem MINSAT, where the underlying propositional formula is in conjunctive

normal form (CNF) and where costs are associated with the True/False values of the variables.

Each class consists of all instances that may be derived from a given propositional formula

and costs for True/False values by fixing or deleting variables, and by deleting clauses. The

learning step begins once the compiler has constructed a solution algorithm for a given class.

The step applies that algorithm to comparatively few instances of the class, analyses the

performance of the algorithm on these instances, and modifies the underlying propositional

formula, with the goal that the algorithm will perform much better on all instances of the

class.

KEYWORDS: logic minimization problem, propositional logic, learning lemmas, compiler for

logic

1 Introduction

This paper describes learning for algorithms solving classes of the logic minimization

problem MINSAT. Each class is defined by a propositional formula and costs that

apply when True/False values are assigned to the variables. The instances of the class

are derived from the formula by fixing or deleting variables and deleting clauses.

Such classes arise in expert systems or logic modules – for example, for natural

language processing, medical diagnosis, or traffic control.

Learning is done once a compiler has constructed a solution algorithm for a given

class. The learning step applies the solution algorithm to relatively few instances of

the class, analyses each case where the algorithm does not find a solution quickly,

and then modifies the underlying formula of the class so that future runs avoid such

poor performance. The modifications consist of the addition and deletion of clauses.

The added clauses are of two types: clauses that are always valid, and clauses that

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

272 A. Remshagen and K. Truemper

are valid only when the solution algorithm has already found a satisfying solution

with total cost below some threshold value. Clauses are deleted when they are

dominated by learned clauses. Later, we call the added clauses lemmas, in agreement

with the terminology of learning for the satisfiability problem SAT of propositional

logic.

The learning step has been implemented in an existing compiler. Test results have

shown a worst-case time reduction for a given class by a factor ranging from a not-

so-useful 1.5 to a desirable 60319. Total time for the learning step has ranged from

1 sec to almost 8 hr, with the majority of classes requiring less than 15 min. While

a learning time of 8 hr is long, even that time may be acceptable if an application

demands that worst-case solution times are below a critical bound that one is unable

to satisfy by other means.

2 Definitions

We define the problems SAT and MINSAT. An instance of SAT is a propositional

logic formula S in conjunctive normal form (CNF). Thus, S is a conjunction of

clauses. In turn, each clause is a disjunction of literals, which are instances of

possibly negated variables. A literal is negative (resp. positive) when it is an instance

of a negated (resp. nonnegated) variable. The SAT problem demands that one either

determines S to be unsatisfiable, i.e. there do not exist True/False for the variables so

that S evaluates to True, or produces a satisfying solution. An instance of MINSAT

consists of a CNF formula S and, for each variable x of S , a pair (c(x), d(x)) of

rational numbers. The number c(x) (resp. d(x)) is the cost incurred when x takes

on the value True (resp. False). The MINSAT problem demands that one either

determines S to be unsatisfiable or produces a satisfying solution whose total cost
∑

x�x=True c(x) +
∑

x�x=False d(x) is minimum. It is easy to see that the optimality of

a solution is not affected if one subtracts a constant from both c(x) and d(x), or

if one replaces a variable x by ¬y and ¬x by y, and for y defines the cost c(y)

of True to be d(x) and the cost d(y) of False to be c(x). Hence, we may suppose

that c(x) � 0 and d(x) = 0. Due to that reduction, we may represent any MINSAT

instance by a pair (S, c), where c is a nonnegative rational vector of costs that apply

when variables take on the value True. A subinstance of S or (S, c) is derived from S

or (S, c) by fixing some variables of S to True/False. A lemma obtained by learning

is a CNF clause. The length of the lemma or of a CNF clause is the number of

literals of the clause. Due to this definition, we can use qualitative terms such as

short or long in connection with lemmas or clauses.

We have two special forms of CNF formulas. A CNF formula has restricted

hidden Horn form if complementing of the literals of some variables whose cost of

True is 0 can turn the formula into one where each clause has at most one positive

literal. A CNF formula has network form if complementing of the literals of some

variables, followed by complementing of the literals of some clauses, can turn the

given formula into one where at least one of the following two conditions is satisfied.

The first condition demands that each clause has at most two literals; in the case of

two literals, exactly one must be negative. These CNF formulas with the network

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 273

property are special cases of 2SAT. The second condition requires that each variable

occurs in at most two clauses; in the case of two clauses, exactly one of the two

literals must be negative. Consider, for example, the CNF formula in network form

with the following clauses:

x1 ∨ ¬x2 ∨ x3 ∨ x4

¬x2 ∨ x3 ∨ x4 ∨ ¬x5

x1

After complementing the literals of the first clause, we obtain the CNF formula

¬x1 ∨ x2 ∨ ¬x3 ∨ ¬x4

¬x2 ∨ x3 ∨ x4 ∨ ¬x5

x1

where each variable occurs in at most two clauses. Each of the variables x1, x2, x3,

x4, which occurs in two clauses, occurs exactly once negatively. Presence of hidden

Horn or network form can be tested in linear time. Any MINSAT instance (S, c)

whose S has restricted hidden Horn form (resp. network form) can be solved in

linear (resp. low-order polynomial) time and thus very fast (Truemper, 1998).

The typical class C of MINSAT that is treated here consists of a MINSAT

instance (S, c), plus all instances that may be derived from that instance by fixing

some variables of S to True/False and deleting the clauses that become satisfied by

these values, and by outright removal of some variables and clauses. In the typical

application, the candidate variables and clauses that possibly will be removed are

known a priori, and their removal is readily handled by the process of fixing

variables, as follows. First, the removal of a candidate variable x can be modeled

by the introduction of additional variables v, wt, and wf , where v = True represents

presence of x, and where v = False represents removal of x. For the new variables,

the cost of True and False is equal to 0. Each occurrence of x in S is replaced

by wt, each occurrence of ¬x in S is replaced by wf , and CNF clauses equivalent

to wt ⇔ (v ∧ x) and wf ⇔ (v ∧ ¬x) are added to S . Secondly, the removal of a

candidate clause can be effected by the addition of a variable w to the clause so

that w = True causes the clause to be satisfied, while w = False, by itself, does not.

Hence, it suffices that we consider the class C consisting of all instances derived from

the given MINSAT instance (S, c) by fixing of variables and deletion of satisfied

clauses, i.e. C consists of (S, c) and its subinstances.

Classes C of MINSAT arise from applications where one must find a least-cost

satisfying solution for a MINSAT instance (S, c) when some variables take on

specified True/False values. Uses in expert systems or logic modules abound. For

example in diagnosis, we can use costs to search for minimal sets of defects, or

we can realize priorities and penalties. For examples and references, see Eiter and

Gottlob (1995). Other examples, like natural language processing and traffic control,

produce MINSAT classes of the specified type. The problem of finding minimal

models can be solved by a MINSAT instance if a True-cost of 1 is assigned to each

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

274 A. Remshagen and K. Truemper

variable. Ben-Eliyahu and Dechter (1995), for example, investigate two classes of

the minimal model problem and present an effective algorithm for each of the two

classes.

3 Prior work

Much work has been done on learning in SAT algorithms. Early references are

Dechter (1990) and Prosser (1993). They enhance backtracking search algorithms for

CSP by a learning process as follows. Whenever an assignment of values to variables

violates a constraint, the reason for the violation is determined and added to the CSP

instance as a lemma which becomes a constraint of the CSP instance. The same ideas

are used by effective SAT algorithms such as GRASP (Marques-Silva and Sakallah,

1996), SATO3 (Zhang, 1997), or relsat(4) (Bayardo and Schrag, 1997). Since the

required space for learned lemmas can be exponential, Marques-Silva and Sakallah

(1996) and Zhang (197) keep only clauses of bounded length. The SAT solver

relsat(4) not only keeps short clauses, but also retains long clauses temporarily; see

Bayardo and Schrag (Bayardo and Schrag, 1997) for details. Algorithm learn-SAT by

Richards and Richards (2000) for CSP assigns values to the variables incrementally

so that no constraint is violated. If such an assignment cannot be extended without

violating a constraint, a lemma that invalidates the current partial assignment is

added to the CSP instance, and learn-SAT tries to find another assignment. Van

Gelder and Okushi (1999) use lemmas to prune refutation trees in the SAT solver

Modoc. Learning is also used in the SAT algorithm Satz (Li and Anbulagan, 1997),

where short clauses are computed by resolution before the solution process begins.

In the preprocessing step of Marques-Silva (2000), lemmas of at most length 2 are

inferred from small subsets of the CNF clauses with length 2 and 3 in the given

SAT instance.

A different learning technique makes a-priori predictions about an instance to

select and tune a SAT algorithm. Ó Nualláin, de Rijke, and van Benthem (2001) apply

a prediction based on Bayesian methods. Their systematic backtracking search pro-

cedure derives criteria for restart strategies. The backtracking search of Lagoudakis

and Littman (2001) uses a learning technique that selects a branching rule at each

node in the search tree.

Some compilation techniques that are applied to classes of SAT instances try to

obtain computationally more attractive logic formulations that preserve equivalence;

see, for example, del Val (1994). Kautz and Selman (1994) compute tractable formula-

tions that approximate the original SAT instance. For further references on compi-

lation techniques, see the survey of Cadoli and Donini (1997).

The logic minimization problem MINSAT so far has not attracted much attention.

Most work treats the special case of finding minimal models where all costs for True

are 1 and all costs for False are 0. Ben-Eliyahu and Dechter (1995), for example,

characterize formulas that have an efficient algorithm for computing minimal models.

Liberatore (2000) describes an algorithm for the problem of finding minimal models

of CNF formulas and for its extension MINSAT based on backtracking search. In

experiments, he investigates in which cases the problem is hard and in which cases it

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 275

is easy. A compiler for MINSAT is described in Truemper (1998) and is implemented

in the Leibniz System (2000). The compiler obtains a solution algorithm for a given

C and determines an upper bound on the solution time for the members of the class.

We need a basic understanding of the compiler since the learning step uses some

information produced by that process.

4 Compiler actions and solution algorithm

The compiler employs several decompositions that break up the instance (S, c)

defining a class C into any number of components, each of which is a CNF

formula plus applicable costs. For the subinstances of each component, the compiler

determines a solution algorithm that is used as subroutine in the overall solution

algorithm for the instances of C. For a given instance of C, the overall algorithm

invokes the subroutines any number of times, each time solving some subinstance

of a component.

For the description of the typical subroutine, temporarily let (S, c) denote one

component. We obtain a partial instance by deleting from the clauses of S all literals

arising from a specified set of variables and by reducing c accordingly. The compiler

partitions the variables of (S, c) into two sets that induce two partial instances

(SE, cE) and (SN, cN). The partition is so done that the partial instance (SE, cE) has

one of two properties and, subject to that condition, has as many variables as

possible. The properties are restricted hidden Horn form and network form, defined

in section 2. Each of the two properties is maintained under the deletion of variables

or clauses, and permits fast solution of any instance derived from (SE, cE) by deletion

of variables and clauses.

Let XN be the set of variables of (SN, cN). Still consider (S, c) to be just one com-

ponent. The solution algorithm for (S, c) consists of two parts: an enumerative

subroutine that chooses values for the variables of XN , and the fast subroutine

for (SE, cE). Specifically, the enumerative subroutine implicitly tries out all possi-

ble True/False values for the variables of XN , evaluates which clauses of S become

satisfied by these values, and uses the fast subroutine for (SE, cE) to find a least-cost

solution for the remaining clauses or to decide that no such solution exists. The

growth of the search tree is controlled by the MOMS (Maximum Occurrences in

Minimum Size clauses) heuristic, which selects the next variable on which to branch.

We modified a version of the heuristic described in Böhm (1996). The original

selection rule of Böhm (1996) is part of a purely enumerative algorithm for SAT.

It aims at fixing variables in such a sequence that each branch of the search tree

quickly reaches provable unsatisfiability. The rule achieves this goal very well by,

roughly speaking, fixing variables that occur in a maximum number of the currently

shortest clauses. Computational results achieved by Böhm and Speckenmeyer (1996)

with the rule are excellent. We have found a modified version of the rule to be

just as effective for the case at hand, where (S, c) has been partitioned into (SE, cE)

and (SN, cN). Details of the rule are as follows. Let S ′ be the CNF formula that

results by resolving all unit clauses in S . We want to find a variable in XN with

maximum occurrences in minimum clauses. The variable should also satisfy at least

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

276 A. Remshagen and K. Truemper

one clause in SE so that SE might become satisfiable in a succeeding step. For each

variable x ∈ XN and not yet fixed in a previous step, define vectors gx and hx as

follows. The ith entry gx(i) of gx is the number of times the literal x occurs in a

clause of S ′ of length i that contains at most one literal of a variable not in XN .

The vector hx records in analogous fashion the occurrences of the literal ¬x. We

combine the vectors so that the resulting vector ex has large values ex(i) if hx(i)

and gx(i) are large and if the difference between hx(i) and gx(i) is small. We set

ex(i) = hx(i) + gx(i) − a · |hx(i) − gx(i)| for a suitable constant a. Experiments have

shown that a = 1
3

is a good choice (Böhm and Speckenmeyer, 1996). Therefore,

we use ex(i) = max(gx(i), hx(i)) + 2 · min(gx(i), hx(i)). Let x∗ be such that ex∗ is the

lexicographically largest vector of the ex vectors. The variable x∗ is to be fixed next.

To take advantage of learned lemmas, see section 5, we want to obtain a satisfying

assignment with low total cost at an early stage. Thus, we assign to x∗ the value

True, if
∑

i gx∗(i) >
∑

i hx∗(i), and if a satisfying solution has not yet been found or

the cost of True for x is 0. Otherwise, assign to x∗ the value False. Throughout the

paper, we refer to the modified rule as Böhm’s Rule.

The efficiency of the overall algorithm depends upon how many times subinstances

of the various components must be solved and how fast the subroutines solve those

instances. The first factor depends on the decomposition and is not addressed here.

The second factor can be influenced by learning for each component.

5 Learning process

The learning process treats one component at a time, using just the clauses of the

component that are clauses of S and that have no variable in common with any

other component. Due to these restrictions, the learned lemmas when added to the

component and to S do not invalidate the decomposition. This means that, for the

purposes of this section, we only need to consider the case of a component (S, c) that

has not been decomposed, and where learning for the class C is to be accomplished.

The learning is done in two steps. In the first step, we ignore the costs, treat C
as a class of SAT problems, and learn lemmas for S . In the second step, we learn

lemmas that are cost dependent. We use the two-step approach since learning from

the SAT cases tends to make learning easier for the MINSAT cases. In fact, for

some situations, learning from the MINSAT cases without prior learning from the

SAT cases requires a huge computational effort that makes the learning process

impractical. In addition, the first step can be applied to classes originally defined as

SAT cases as well.

We describe the first step, which ignores the cost vector c and considers C
to consist of SAT instances derived from S . Since Böhm’s Rule depends on the

currently shortest clauses, a different but equivalent CNF formula may lead to a

different selection of variables. For example, if the CNF formula S contains the

clauses ¬x ∨ y and ¬y ∨ z, but does not contain the implied clause ¬x ∨ z, then

Böhm’s Rule sees only the two explicit clauses and not the implied one, and therefore

may not detect that fixing x is an attractive choice. The learning process is designed

to discover lemmas that represent such useful implied clauses, which then guide

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 277

Böhm’s Rule toward good choices. Note that we want lemmas that are useful not

just for solving the single SAT instance S , but that are useful for solving all instances

of the class C, derived from S . For the moment let us ignore that aspect and see

how we can learn just to solve the instance S more efficiently. For this, we apply to

S the algorithm derived by the compiler for SN and SE as described above, using

Böhm’s Rule to select the variables of XN for enumeration.

If S is unsatisfiable, then, mathematically speaking, only one lemma, which is

the empty clause, needs to be learned; in applications, that situation signals a

formulation error. So let us assume that S is found to be satisfiable. When the

algorithm stops, the search tree has been pruned to a path Q whose end node has

led to a satisfying solution. Starting at the root node of Q, let us number the nodes

1, 2, . . . , m, for some m � 1. Suppose at node i the variable xi was fixed to True/False

value αi. At that node, one of two cases applies. Either the algorithm fixed xi to αi
without trying the opposite value ¬αi first, or the algorithm first tried the opposite

value ¬αi, discovered unsatisfiability, and then assigned αi. The latter case implies

that x1 = α1, x2 = α2, . . . , xi−1 = αi−1, xi = ¬αi produce unsatisfiability. Hence, we

may add to S a lemma that rules out that assignment. For example, if x1 = True,

x2 = False, and x3 = True produce unsatisfiability, then the lemma is ¬x1 ∨x2 ∨¬x3.

At this point, we begin a time-consuming process that is acceptable for learning in

a compiler but would not be reasonable at run time. That is, we sharpen the lemma

by removing from the lemma the literals corresponding to x1, x2, . . . , xi−1 one at a

time. For each such removal, we check whether the reduced clause L is still a logic

consequence of S . We test this by solving the SAT instance S ∧ ¬L. If S ∧ ¬L is

unsatisfiable, that is S ⇒ L is a tautology, the clause L is a valid lemma. Otherwise,

we add the previously removed literal again to L. We continue to remove literals

from the resulting clause. When that effort stops, we have a minimal lemma, i.e. a

lemma that becomes invalid if any literal is removed. We want these lemmas to steer

Böhm’s Rule so that good choices are made at or near the root of the search trees.

Since Böhm’s Rule selects variables based on short clauses, the desired effect can

only be achieved by short lemmas. Thus, we discard all minimal lemmas of length

greater than some constant. From our experiments, we determined that constant to

be 3. That is, we only retain the minimal lemmas of length 1, 2, or 3 and add them

to S . Observe that a learned lemma contains only variables of XN , and thus does

not violate the special property of SE .

Up to this point, we have considered learning of lemmas that help the solution

algorithm to solve S . We extend this now to instances of C different from S . Any

such instance is derived from S by fixing some variables. Correspondingly, we start

the enumerative search by first fixing these variables and then proceeding as before.

Effectively, the search tree begins with a path P representing the initial fixing instead

of just with the root node. The algorithm either finds a satisfying solution, or it

stops and declares S to be unsatisfiable. In the first case, we determine minimal

lemmas, if possible, discard the minimal lemmas that are too long, and adjoin the

remaining ones to S . Due to the path P , a lemma added to S may involve variables

of SE and thus may destroy the special property of SE . Nevertheless, these lemmas

do not have to be discarded. A lemma that destroys the special property of SE

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

278 A. Remshagen and K. Truemper

is a logical consequence of S . Hence, it can be ignored, whenever the satisfiability

of S is tested, and thus whenever, the instance SE is solved. For details, see

Remshagen (2001).

We have completed the discussion of learning lemmas for SAT and turn to the

second step of the learning process. Here we learn cost-dependent lemmas for the

MINSAT instance (S, c) and for all instances derived from (S, c) by fixing some

variables to True/False values in all possible ways. The solution algorithm for

MINSAT not only prunes unsatisfiable assignments as in the SAT case, but also

eliminates assignments resulting in nonoptimal total costs. Learning is possible for

both cases, as follows. At some point, the solution algorithm for MINSAT finds a

fixing of variables that eventually turns out to be part of an optimal solution. Say,

x1, x2, . . . , xn fixed to α1, α2, . . . , αn induce an optimal solution with total cost zmin.

When the algorithm terminates, we know the following for each k � n: The fixing of

x1, x2, . . . , xk to the values α1, α2, . . . , αk−1, ¬αk results into unsatisfiability, or that

fixing can be extended to a solution that at best has total cost zkmin � zmin. The first

case is treated exactly as before. That is, we define lemma L = l1 ∨ l2 ∨ · · · ∨ lk where,

for j = 1, 2, . . . , k − 1, lj = xj (resp. lj = ¬xj) if αj = False (resp. αj = True) and

where lk = xk (resp. lk = ¬xk) if αk = True (resp. αk = False). In the second case,

we define the same lemma L and combine it with zkmin to the pair (L, zkmin). In the

solution algorithm, the clause L of (L, zkmin) is activated if we have already a solution

with total cost not exceeding zkmin. Otherwise, the clause is ignored. In both cases,

we do not use L directly, but reduce it to a minimal lemma. In the first case, the

reduction is the same as for SAT. In the second case, L is reduced by the following

process: Except for lk , process the literals lj of L one by one and in decreasing order

of indices. Using decreasing order of indices, favors the retention of literals whose

corresponding variable has been selected first. These variables are generally more

likely to be selected early. Thus, the new lemma will more likely be used to prune

nonoptimal solutions. Derive L′ from L by removing lj , find an optimal solution for

the MINSAT instance (S ∧ ¬L′, c), and permanently remove lj from L if the total

cost of that solution is not less than zkmin. Using the final L, the pair (L, zkmin) is then

inserted into to the formula. As before, we retain only pairs (L, zkmin) where L has at

most length 3.

We want to add minimal lemmas to S that improve the effectiveness of Böhm’s

Rule when that rule, unassisted by lemmas, would perform badly. Moreover, we

want to achieve this across the full range of instances of C. A simple idea to

achieve this goal is as follows. We select an instance of C and solve it. If the

enumerative effort is large, we determine minimal lemmas as described earlier and

add them to S . We repeat this process for other instances until we get a fast

solution time no matter which instance of C is selected. How much learning might

be required? We do not have a complete answer for that question. One can show

that, if one could achieve that goal reliably by learning from a number of instances

that is bounded by a polynomial in the size of S , then ΠP
2 = ΣP

2 for the polynomial

hierarchy; see Remshagen (2001). For details of that hierarchy see, for example,

Chapter 17 of Papadimitriou (1994). This negative result makes it unlikely that in

general we can learn enough from a polynomial subset of C. On the other hand,

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 279

we may be able to carry out such learning for specific classes C. In the next section,

we demonstrate experimentally that this is indeed possible for nontrivial classes,

provided the instances of C to which the learning process is applied are selected

according to a certain rule. In the rest of this section, we develop that rule. It is

based on the reasonable argument that one should focus on instances of C that are

difficult prior to learning, in the hope that the learned lemmas not only help in the

solution of the difficult cases, but also do not worsen the performance for the easy

cases.

We begin with a conceptual process for the selection of difficult cases. We say

‘conceptual’, since the process is computationally inefficient and later is replaced

by a more effective scheme. For i = 1, 2, . . . , let Ci be the subset of C where each

instance is obtained by fixing i arbitrarily selected variables in S . Let qi be the

average time required to solve an instance of Ci. (A method to compute the average

time will be discussed shortly.) Since the algorithm produced by the compiler solves

instances of C very rapidly if all or almost all variables of XN have been fixed,

the values qi are small when i is close to or equal to |XN |. Correspondingly, there

is no need to learn lemmas from those easy instances. On the other hand, large qi
values point to sets Ci with instances where learning of lemmas would be useful.

Accordingly, the conceptual process is as follows. For i = 1, 2, . . . , we randomly

select a certain number of instances, say 100, from Ci, solve them, and estimate qi by

the average q̂i of the solution times. When the q̂i values are plotted, they produce a

curve that typically starts high and gradually decreases, or that rises quickly, reaches

a plateau, and then gradually decreases. In both cases, we stop the computation

when consecutive q̂i values become consistently small. Let k be the index of the

largest q̂i. In case of a tie, pick k as the largest index satisfying the condition. By

experimentation we found that significant learning took place when we used all Ci

with i � k + 1. In contrast, learning from any Ci with i > k + 1 did not improve

performance.

Appealing as the conceptual selection process may seem, it suffers from a serious

shortcoming. Computational effort for obtaining the index k is large, yet nothing of

that effort is utilized for learning lemmas save for the termination criterion based on

k. Indeed, in initial tests, sometimes more than 95% of the computational effort for

learning was spent on the determination of k. We eliminate such waste as follows.

While learning lemmas, we determine indirectly when the index k has been exceeded

by estimating the index where learning stops to improve performance. Whenever the

solution algorithm solves an instance during learning, it records the required time.

Let vi be the largest solution time for all processed instances derived by fixing of

i variables. As soon as an index i is reached where vi exceeds vi−1, we know that

learning no longer improves performance. Accordingly, we estimate that i is k+1 of

the conceptual process and terminate learning. We have tested whether the estimate

is correct. It turned out that, except for cases of early termination (see the next

paragraph), the termination decisions made via k + 1 of the conceptual process and

the largest solution time vi were identical.

There are two cases in which the learning process for MINSAT stops early. In

the first case, learning is stopped since the worst-case time bound becomes so low

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

280 A. Remshagen and K. Truemper

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 10 20 30

se
co

nd
s

i

performance curve before learning
performance curve after learning

Fig. 1. Performance curve before and after learning for sat200-4 0.

that further improvement is not needed. In our implementation, we determine a new

decomposition of the CNF formula whenever new lemmas are added. If the resulting

set XN of each component contains at most five variables, then each component can

be solved in polynomial time, and learning terminates. In the second case, learning

is stopped since the number of learned clauses becomes too large and processing of

those clauses becomes too time-consuming. We terminate when the total number of

clauses and lemmas has become triple the number of clauses of the original CNF

formula. Indeed, the overhead of processing a significantly increased CNF formula

can become so large that the solution algorithm is slowed down even though fewer

backtracking steps are needed.

6 Computational results

We have added the learning process for SAT and MINSAT classes to logic pro-

gramming software (Leibniz System, 2000) that is based on Truemper (1998). The

computational results described below were obtained on a Sun UltraSPARC IIi

(333 MHz) workstation.

Let q̂i (resp. q̂′
i) be the average time estimate for Ci before (resp. after) the

learning process. Let us call the curve of the plotted q̂i (resp. q̂′
i) the performance

curve before learning (resp. performance curve after learning). When C contains

difficult-to-solve instances, the performance curve before learning typically starts

high and gradually decreases, or rises quickly, reaches a plateau, and then gradually

decreases. In the ideal situation, learning eliminates the high portion of that curve

so that the values of the performance curve after learning are uniformly small. We

illustrate this notion using a SAT instance called sat200-4 0 with 200 variables and

800 clauses. Each clause contains exactly three literals. The corresponding class C
consists of all instances derived from sat200-4 0 by fixing of some variables. Learning

increases the number of clauses to 1600. Figure 1 shows the performance curves of

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 281

Table 1. Test instances

No. of clauses after learning

No. of No. of clauses

Instance variables before learning SAT case MINSAT case

sat100-4 3 100 430 397 366

sat200-4 3 200 860 1075 2583

sat100-4 0 100 400 800 1202

sat200-4 0 200 800 1600 2404

jnh201 100 800 794 2403

par8-3-c 75 298 259 216

par16-1-c 317 1264 1001 1001

medium 116 953 734 696

bw large.a 459 4675 4629 4629

ochem 154 233 233 700

sat200-4 0 before and after learning. Before learning, C0 produces the peak q̂0 =

14.28 sec. After learning, the high portion of the curve is eliminated, and the curve

has values that are uniformly close to 0. Even more desirable than a uniform learning

of the average solution times of the Ci is reduction of the worst-case run time for

each Ci so that the solution time of each instance becomes uniformly small. For our

purposes, it suffices that we estimate the worst-case run time for Ci using the highest

run time of the 100 instances that are randomly selected for each Ci when the q̂i
and q̂′

i are calculated. In the case of sat200-4 0, the high values of the worst-case

run times before learning, which range up to 53 sec, are uniformly reduced to values

not exceeding 0.16 sec.

For the tests, we selected problems that previously had proved to be difficult for the

software. We give a short description of the problems in the order in which they are

listed in Table 1. The first four instances in Table 1, sat100-4 3 through sat200-4 0,

are randomly generated to contain exactly three literals in each clause. We want to

point out that these and some of the following problems are artificial. Nevertheless,

we consider them useful for the evaluation of the learning process as they have

well-known properties. Since the ratio between the number of clauses and variables

is 4.3, the instances sat100-4 3 and sat200-4 3 have a small solution space. Thus,

we expect that many unit clauses can be learned and that significant improvement

is achieved. The situation is different for instances with the clause/variable ratio

4.0. Here, we cannot hope to learn so many unit clauses. As we shall see, even for

these problems very good results are obtained. The next instances, jnh201, par8-3-c,

and par16-1-c, in Table 1 are taken from the benchmark collection of the Second

DIMACS Challenge (Trick, 1996). Problem jnh201 of the DIMACS benchmark

collection is a random instance generated to be difficult by rejecting unit clauses and

setting the clause/variable ratio to a hard value. The last two problems taken from

the DIMACS benchmark collection are par8-3-c and par16-1-c. They arise from

a problem in learning the parity function. Instances medium and bw large.a are

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

282 A. Remshagen and K. Truemper

Table 2. Results of learning for the SAT case

Learning Guaranteed Guaranteed Worst-case Worst-case

time time bound time bound time before time after

Instance (min) before (sec) after (sec) (sec) (sec)

sat100-4 3 0.04 >1000 0.0020 0.5249 0.0016

sat200-4 3 14.11 >1000 >1000 50.0838 0.0540

sat100-4 0 5.26 >1000 >1000 0.3765 0.0354

sat200-4 0 28.33 >1000 >1000 52.7058 0.1561

jnh201 1.99 >1000 >1000 0.1772 0.1169

par8-3-c 0.01 >1000 0.0014 0.0216 0.0010

par16-1-c 8.88 >1000 0.0050 179.5371 0.0038

medium 0.34 >1000 0.0260 0.0146 0.0043

bw large.a 0.57 >1000 0.0232 0.9368 0.0162

ochem 0.15 35.6000 35.6000 0.0046 0.0046

block-world planning problems (Kautz and Selman, 1996). For the above CNF

formulas, we introduced for each variable a cost of 1 for True and a cost of 0

for False. The last instance, ochem, is already a MINSAT problem arising from

industrial chemical exposure management (Straach and Truemper, 1999). We also

tested the instances where we assigned randomly a cost between 1 and 10 and

between 1 and 100 to each variable. However, we do not include these tests since the

resulting MINSAT instances showed similar time bounds before and after learning

compared to the case with costs 1.

Table 1 displays for each instance the number of variables and the original number

of clauses as well as the number of clauses after learning for both the first learning

step for SAT and the second step for MINSAT. Observe that for several instances

the number of clauses has been reduced by learning due to the replacement of some

of the original clauses by learned lemmas.

We first discuss intermediate results obtained by the first learning step since that

step can be used as an independent learning process for classes of SAT. Table 2

summarizes the timing results. The second column displays the time used for the

first learning step. The third and fourth columns show the guaranteed solution time

bounds computed by the compiler before and after learning. The last two columns

display the estimated worst-case run times of all Ci before and after learning. The

learning times range from 1 sec to almost 30 min. The worst-case times after learning,

in the last column of Table 2, indicate that the learning effort does pay dividends.

Indeed, these times are uniformly small when compared with the worst times before

learning. To assess the reduction factor, we focus on the problems that originally

were difficult, say with solution time greater than 0.02 sec. The problems are sat100-

4 3, sat200-4 3, sat100-4 0, sat200-4 0, jnh201, par8-3-c, par16-1-c, and bw large.a.

For these problems, the ratios of worst time before learning divided by worst time

after learning range from 1.5 to 47247. If we focus on the subset of these problems

that model some practical application (par8-3-c, par16-1-c, bw large.a), we have

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 283

Table 3. Results of learning for the MINSAT case

Learning Guaranteed Guaranteed Worst-case Worst-case

time time bound time bound time before time after

Instance (min) before (sec) after (sec) (sec) (sec)

sat100-4 3 0.07 >1000 0.0040 0.5006 0.0019

sat200-4 3 135.98 >1000 >1000 117.1800 0.5507

sat100-4 0 8.63 >1000 >1000 1.4682 0.2040

sat200-4 0 102.32 >1000 >1000 210.2571 5.0776

jnh201 477.47 >1000 >1000 21.7862 4.8142

par8-3-c 0.01 >1000 0.0012 0.0408 0.0009

par16-1-c 14.56 >1000 0.0050 247.3071 0.0041

medium 0.47 >1000 0.6008 0.0199 0.0052

bw large.a 0.44 >1000 0.0232 0.9197 0.0164

ochem 39.52 >1000 >1000 6.5255 4.3697

reduction factors 22, 47247, and 58. No improvement took place for ochem. The

reason is that ochem has a large solution space so that the satisfiability problem is

very easy. The problem becomes difficult only when it is solved as a minimization

problem as originally defined. There are large subclasses of MINSAT having the

same characteristics. For example, the CNF formula of the set covering problem

consists only of positive literals, that is, each variable is monotone with preferred

value True. Thus, any SAT instance derived from a set covering problem is trivial.

However, set covering becomes NP-hard if the number of True assignments has to

be minimized. Because of the monotonicity of the variables, no new minimal clauses

exist, and hence learning of new minimal lemmas is not possible.

We discuss the results for the entire MINSAT learning process. For all problems

except ochem, the learning process terminates early since either a low worst-case

time bound is determined, or the number of clauses becomes too large. Table 3

displays the computational results. The interpretation is as for Table 2. The times

for the learning process range from 1 sec to almost 8 hrs. The majority of the cases

requires less than 15 min. To evaluate the effect of the learning, we apply the same

evaluation criteria as for Table 2. That is, we look at the problems that have worst

time before learning greater than 0.02 sec. The problems are sat100-4 3, sat200-4 3,

sat100-4 0, sat200-4 0, jnh201, par8-3-c, par16-1-c, bw large.a, and ochem.

No instance guarantees a solution time below 1000 sec before learning. After

learning, the classes derived from sat100-4 3, par8-3-c, par16-1-c, and bw large.a,

obtain a guaranteed low time bound. For bw large.a, the time bound is 0.0232 sec.

For the other instances, the time bounds do not exceed 0.0050 sec. The reduction

factor of these problems for the worst time ranges from 45 to 60319.

The reduction factors of sat200-4 3 and sat200-4 0 are 213 and 41. If the learning

process is already terminated after the first step, the worst time of sat200-4 0 is

reduced by a factor of 20 and the worst time of sat200-4 3 by a factor of 110. Thus,

the pairs (L, z) inserted in the second step halve the run time at most, and the overall

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

284 A. Remshagen and K. Truemper

improvement is primarily due to the lemmas inserted in the first learning step. The

strong effect of the lemmas inserted in the first step declines for instance sat100-4 0.

Learning of lemmas results in a reduction factor of 2.5, further learning of lemmas

and pairs in the second step improves the worst-case time by another factor of 3.

The worst-case times before learning show that jnh201 and ochem are much more

difficult as optimization problems than as satisfiability problems. These problems

have a very large solution space, and hence the computational effort to prune

nonoptimal solutions by Tree Search increases. The effect of the first learning step

is small for jnh201 and is zero for ochem. The first learning step for jnh201 reduces

the worst-case time from 21.79 sec to 16.51 sec. The entire learning process achieves

worst-case time 4.81 sec by insertion of pairs (L, z). That is a reduction factor of

4.5. For instance ochem, no lemmas are inserted in the first learning step, and

thus only pairs (L, z) cause the speedup. However, the improvement for ochem is

not significant. The worst-case time decreases only from 6.53 sec to 4.37 sec, which

is a reduction factor of 1.5. Enforcing learning of more lemmas and pairs (L, z)

for ochem reduced the worst-case time further to 3.33 sec, which gives a reduction

factor of 2. Compared with lemmas, the disadvantage of pairs (L, z) is that during

execution of Tree Search only those pairs (L, z) are enforced whose cost value z does

not exceed the cost of the currently best solution. One may alleviate that problem

by computing heuristically a starting solution with low cost z′. Then, all pairs (L, z)

with z � z′ can be activated before Tree Search starts. We used the heuristic of the

Leibniz System, which uses linear programming and rounding of fractional values,

to determine a good solution. That solution speeded up Tree Search, but due to

the computational effort for the heuristic, the total solution time was only slightly

reduced.

7 Summary

We have introduced a solution algorithm for classes of MINSAT instances. The

solution algorithm is based on backtracking search. The search takes place for a

subset of the variables only. The subset containing the remaining variables induces

a CNF formula that can be solved efficiently. A compiler is used to determine the

partition of the variables into the two subsets. In addition, a learning process within

the compiler determines lemmas. Lemmas are logical consequences of the given

CNF formula or clauses that prune nonoptimal satisfying truth assignments. The

number and kind of learned lemmas is crucial for effective learning. The learning

process computes useful lemmas and measures current execution times within the

compiler to terminate before the number of learned lemmas becomes too large. The

compiler does not need human interaction or manual setting of parameters. In most

test cases, the learned lemmas improve the solution process significantly.

Acknowledgments

This research was supported in part by the Office of Naval Research under Grant

N00014-93-1-0096.

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

Learning in a compiler for MINSAT algorithms 285

References

Bayardo, Jr., R. J. and Schrag, R. (1997) Using CSP look-back techniques to solve real-world

SAT instances. Proceedings 14th National Conference on Artificial Intelligence, pp. 203–208.

Ben-Eliyahu, R. and Dechter, R. (1996) On computing minimal models. Annals of Mathematics

and Artificial Intelligence, 18, 3–27.

Böhm, M. (1996) Verteilte Lösung harter Pobleme: Schneller Lastenausgleich. PhD thesis,

Universität zu Köln.

Böhm, M. and Speckenmeyer, E. (1996) A fast parallel SAT-solver – efficient workload

balancing. Annals of Mathematics and Artificial Intelligence, 9, 1–20.

Cadoli, M. and Donini, F. M. (1997) A survey on knowledge compilation. AI Communications –

The European Journal for Artificial Intelligence, 10, 137–150.

Dechter, R. (1990) Enhancement schemes for constraint processing: backjumping, learning,

and cutset decomposition. Artificial Intelligence, 41, 273–312.

del Val, A. (1994) Tractable databases: how to make propositional unit resolution complete

through compilation. Proceedings Fourth International Conference on Principles of Knowl-

edge Representation and Reasoning (KR-94), pp. 551–561.

Eiter, T. and Gottlob, G. (1995) The complexity of logic-based abduction. Journal of the

Association for Computing Machinery, 42, 3–42.

Kautz, H. and Selman, B. (1994) An empirical evaluation of knowledge compilation by theory

approximation. Proceedings of AAAI-94, pp. 155–161.

Kautz, H. and Selman, B. (1996) Pushing the envelope: planning, propositional logic, and

stochastic search. Proceedings of AAAI-96, pp. 1194–1201.

Lagoudakis, M. G. and Littman, M. L. (2001) Learning to select branching rules in the DPLL

procedure for satisfiability. Electronic Notes in Discrete Mathematics 9, Elsevier Science.

Leibniz System (2000) Version 5.0, Leibniz, Plano, Texas.

Li, C. M. and Anbulagan (1997) Look-ahead versus look-back for satisfiability problems.

Proceedings Third International Conference on Principles and Practice of Constraint Pro-

gramming, pp. 342–356.

Liberatore, P. (2000) Algorithms and experiments on finding minimal models. Technical

Report 009-99, Università di Roma “La Sapienza.”

Marques-Silva, J. P. (2000) Algebraic simplification techniques for propositional satis-

fiability. Proceedings 6th International Conference on Principles and Practice of Constraint

Programming, pp. 537–542.

Marques Silva, J. P. and Sakallah, K. A. (1996) GRASP – a new search algorithm for

satisfiability. International Conference on Computer-Aided Design (ICCAD 96), pp. 220–227.

Ó Nualláin, B., de Rijke, M. and van Benthem, J. (2001) Ensemble-based prediction of SAT

search behaviour. Electronic Notes in Discrete Mathematics 9, Elsevier Science.

Papadimitriou, C. H. (1994) Computational Complexity. Addison-Wesley.

Prosser, P. (1993) Hybrid algorithms for the constraint satisfaction problem. Computational

Intelligence, 9(3), 268–299.

Remshagen, A. (2001) Learning for SAT and MINSAT, and Algorithms for Quantified SAT

and MINSAT. PhD thesis, University of Texas at Dallas.

Richards, E. T. and Richards, B. (2000) Nonsystematic search and no-good learning. Journal

of Automated Reasoning, 24, 483–533.

Straach, J. and Truemper, K. (1999) Learning to ask relevant questions. Artificial Intelligence,

111, 301–327.

Trick, M. A. (1996) Second DIMACS challenge test problems. In: Johnson, D. S. and

Trick, M. A. (eds.), Cliques, Coloring and Satisfiability: Second DIMACS implementation

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

286 A. Remshagen and K. Truemper

challenge: DIMACS series in Discrete Mathematics and Computer Science 26. American

Mathematical Society, pp. 653–657.

Truemper, K. (1998) Effective Logic Computation. Wiley.

Van Gelder, A. and Okushi, F. (1999) Lemma and cut strategies for propositional model

elimination. Annals of Mathematics and Artificial Intelligence, 26, 113–132.

Zhang, H. (1997) SATO: an efficient propositional prover. Proceedings of the International

Conference on Automated Deduction, pp. 272–275.

https://doi.org/10.1017/S147106840200162X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840200162X

