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We consider the problem of finding the optimal routing of a single vehicle that delivers
K different products to N customers that are served according to a particular order.
It is assumed that the demands of the customers for each product are discrete random
variables, and the total demand of each customer for all products cannot exceed the vehicle
capacity. The joint probability mass function of the demands of each customer is known.
It is assumed that all products are stored together in the vehicle’s single compartment.
The policy that serves all customers with the minimum total expected cost is found by
implementing a suitable dynamic programming algorithm. We prove that this policy has
a specific threshold-type structure. Furthermore, we study a corresponding infinite-time
horizon problem in which the service of the customers is not completed when the last
customer has been serviced but it continues periodically with the same customer order.
The demands of each customer for the products have the same distributions at different
periods. The discounted cost optimal policy and the average-cost optimal policy have the
same structure as the optimal policy in the finite-horizon problem. Numerical results are
given that illustrate the structural results.

1. INTRODUCTION

The problems concerning the optimal distribution of goods between depot and users
(customers) are generally known as vehicle routing problems (VRPs). The VRP is a
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combinatorial optimization problem and in many cases it can be solved using integer
programming algorithms. It is a very important problem in the fields of transportation,
distribution, and logistics. It can be considered as a generalization of the classical traveling
salesman problem that involves finding an optimal route for visiting n cities and returning
to the point of origin. Dantzig and Ramser [4] introduced a first version of the VRP and pro-
posed a mathematical programming formulation and algorithmic approach for its solution.
In that paper the authors described, as a real-world application, the problem concerning the
delivery of gasoline to gas stations. Clarke and Wright [2] improved the Dantzig–Ramser
approach by developing an effective greedy heuristic. Following these two seminal papers,
during the last 40 years a great number of mathematical models were introduced for var-
ious versions of the VRP, and many exact and heuristic algorithms were implemented for
their optimal and approximate solution. Surveys covering the most important results on the
VRPs were presented by Laporte [6,7], Toth and Vigo [17], Simchi-Levi, Chen, and Bramel
[13], Cordeau et al. [3], and Liong et al. [8].

The VRP refers to a fleet of vehicles that originate from one or several depots and
deliver or collect products from N geographically scattered customers. Each vehicle starts
its route from a depot, visits a subset of customers, delivers new products or collects expired
products from each customer, and finally returns to the depot. If the demand of a customer
for new products exceeds the amount of new products carried by the vehicle or the amount
of expired products of a customer exceeds the empty space of the vehicle, the vehicle must
interrupt its route and go to the depot for restocking new products or unloading expired
products. The cost structure includes the travel costs from one customer to another and the
travel costs from a customer back to the depot for replenishment or unloading. The objec-
tive is usually to minimize the total travel cost for the service of all customers. It is possible
to consider other optimization criteria as the minimization of the number of vehicles (or
drivers) required to serve all customers and the minimization of the penalties associated
with partial service of the customers. In addition, in many cases it is necessary to consider
stochastic versions of the VRP, that is, problems for which, a priori, there is only partial
knowledge of the number of the customers or the demands of the customers or the total
costs associated with the arcs of the road network. Two interesting variants of the VRP that
have been studied extensively in the literature are (i) the VRP with time windows in which
the delivering locations have time windows within which the deliveries or the collections
must be made, and (ii) the capacitated VRP (with or without time windows) in which the
vehicles have limited carrying capacity. Typical applications of the VRP are the delivery
of goods to supermarkets, the solid waste collection, cash collection from bank branches,
street cleaning, school bus routing, dial-a-ride systems, transportation of handicapped per-
sons, routing of salespeople, and routing of maintenance units. The VRPs are NP-hard
problems and, therefore, many heuristics and metaheuristics (tabu search, simulated anneal-
ing, genetic algorithms, and colony optimization) have been proposed that search for good
solutions. In addition, exact algorithms such as branch-and-bound, branch-and-cut, and
branch-and-cut-and-price methods that find the global minimum for the cost function have
been proposed.

In the present paper, we consider a simple and interesting capacitated VRP that was
introduced by Tatarakis and Minis [15]. In this problem it is assumed that a single vehicle
starts its route from a depot and delivers K different products to N customers according
to a predefined customer sequence 1 → 2 → · · · → N . The vehicle may carry any quantity
of product i ∈ {1, . . . , K} provided that the total capacity of the vehicle is not exceeded.
All product quantities are calculated using the same unit of measure, for example, m3 or
kg. The demands of the customers for each product are discrete random variables and the
total demand for all products of each customer cannot exceed the vehicle capacity. The
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vehicle is allowed to return to the depot for stock replenishment. It is assumed that the
travel costs between any two consecutive customers and between each customer and the
depot are known. The objective is to find the policy that minimizes the expected total cost
for the service of all customers. Tatarakis and Minis [15] selected as decision epochs for
this problem the epochs at which the service of each customer has been completed. They
presented a dynamic programming formulation for this problem for the case in which K = 2
and they state the following structural result that is proved in Chapter 6 of Tatarakis’s [14]
thesis: If zi, i = 1, 2, is the load of product i carried by the vehicle after the service of
customer j ∈ {1, . . . , N − 1} has been completed, there exists a critical number sj(z1) ≥ 0
such that the optimal decision is to proceed to customer j + 1 if z2 > sj(z1). If z2 ≤ sj(z1),
the optimal decision is to return to the depot to load θ ∈ {0, 1, . . . , Q} units of product
1 and Q − θ units of product 2, and then go to customer j + 1. Note that, if the second
decision is chosen, it is possible that a second return to the depot is needed if the demand
of customer j + 1 for product 1 or 2 is greater than θ or Q − θ, respectively. In the present
paper, we choose as decision epochs of the problem the epochs at which the vehicle visits for
the first time each customer and has satisfied as much of the customer’s demand as possible.
This enables us (i) to prove, in a much simpler way, for each customer j ∈ {1, . . . , N − 1}
a similar threshold-type structural result as the one presented in Tatarakis and Minis [15]
for any positive integer K and (ii) to prove for each customer j ∈ {1, . . . , N − 1} that it
is optimal for the vehicle to return twice to the depot if a very simple condition holds.
We also study a corresponding infinite time-horizon problem in which the service of the
customers does not stop when the demands of the last customer N are satisfied but it
continues periodically with the same customer order. It is assumed that at different periods
the demands of customers for each product are identically distributed. Using well-known
results of Markov decision theory we prove that the policy that minimizes the total expected
discounted cost and the policy that minimizes the long-run expected average cost per unit
time have the same threshold-type structure as the optimal policy in the initial finite-horizon
problem.

As mentioned by Tatarakis and Minis [15], a practical application of the considered
problem could be the so called ex-van sales. In ex-van sales the driver of the vehicle acts
as a salesman. He visits his customers (retail outlets, supermarkets, kiosks, etc.) typically
according to a predefined sequence. The demands of each customer for the products are
not known in advance but they are revealed upon arrival. If a customer’s demand for a
product exceeds the quantity that is loaded in the vehicle, the driver has to go to the depot
for replenishment. Another example could be the routing of a self-propelled vehicle in a
manufacturing shop that transfers discrete parts to workcenters in a predefined sequence
(see Rembold, Blume, and Dillmann [10]). Note that in addition to the main pathway
connecting the workcenters, there are spurs connecting each workcenter with the material
warehouse, allowing the return and the reloading of the vehicle. The demand for discrete
parts of each workcenter may be stochastic due to failures.

Note that the problem studied by Tatarakis and Minis [15] is a generalization of the
problem introduced by Yang, Mathur, and Ballou [19] in which it is assumed that the
vehicle delivers to the customers only one product, that is, K = 1. They proved that for each
customer j ∈ {1, . . . , N − 1} there exists a critical number sj such that the optimal decision,
after serving customer j, is to continue to customer j + 1 if the remaining quantity in the
vehicle is greater than or equal to sj , or return to the depot for replenishment if it is less than
sj . Kyriakidis and Dimitrakos [5] proved an analogous result if the demands of the customers
are continuous random variables and developed a suitable dynamic programming algorithm
for the determination of the critical numbers sj , j = 1, . . . , N − 1. Tatarakis and Minis [15]
also studied the case of multiple product deliveries when the demand of each customer for
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product i ∈ {1, . . . , K} is a discrete random variable and each product type is stored in its
dedicated compartment in the vehicle. They proved that the optimal policy has a specific
threshold-type structure for K = 2. Pandelis, Kyriakidis, and Dimitrakos [9] proved the
structure of the optimal policy for this problem for any positive K. Tsirimbas et al. [18]
studied the same problem when the demand of each customer for product i ∈ {1, . . . , K} is
not a random variable but a constant number. They also assumed that the vehicle visits each
customer only once and they designed for three versions of the problem (compartmentalized
load, unified load, and pickup and delivery) suitable dynamic programming algorithms for
the determination of the optimal policy. Finally, Secomandi and Margot [12] developed
a dynamic programming algorithm for the problem in which a single vehicle delivers one
product to N customers, the demands of the customers are discrete random variables and
the customers are not necessarily serviced according to a particular sequence.

The rest of the paper is organized as follows. In the next section we present the
finite-horizon unified load problem, we define the decision epochs and we give the corre-
sponding dynamic programming equations. We show that the optimal policy has a specific
threshold-type structure. In Section 3, the infinite-horizon problem is presented and it is
shown that the discounted cost optimal policy and the average-cost optimal policy have the
same structure as the finite-horizon optimal policy. The theoretical results of Sections 2 and
3 are illustrated by numerical results. The conclusions of the paper are summarized in the
last section.

2. THE FINITE-HORIZON PROBLEM

We consider a set of nodes V = {0, 1, . . . , N} with node 0 denoting the depot and nodes
1, . . . , N corresponding to customers. There are K different products to be delivered to
the customers. The items of all products are of the same size. It is assumed that the depot
contains enough items of all products to satisfy the demands of all customers. The customers
are serviced in the order 1, 2, . . . , N by a vehicle, which may carry any quantity of product
i ∈ {1, . . . , K} provided that its total capacity Q is not exceeded. The vehicle starts its
route from the depot with a total load of Q products of all kinds and after servicing all
customers it returns to the depot. The road network is depicted in Figure 1.

The demand of customer j, j = 1, . . . , N , for product i, i = 1, . . . , K, is a discrete
random variable ξj

i . We assume that the joint probability distribution of each customer’s
demands is known. We denote by cj,j+1, j = 1, 2, . . . , N − 1, the travel cost between cus-
tomers j and j + 1, and by cj0, c0j , j = 1, 2, . . . , N , the travel cost between customer j and
the depot and the cost between the depot and customer j, respectively. These costs can be
considered as the costs of the gasoline that the vehicle needs to cover the distances between
customers or the distances between customers and the depot. We naturally assume that
these costs are symmetric and satisfy the triangle inequality, that is,

ci0 = c0i, i = 1, . . . , N,

and

ci,i+1 ≤ ci0 + c0,i+1, i = 1, . . . , N − 1.

The actual demands of each customer become known upon the vehicle’s arrival at the
customer’s site. We assume that the total demand of each customer cannot exceed the
vehicle’s capacity, that is, max

j=1,2,...,N

∑K
i=1 ξj

i ≤ Q. When the vehicle visits customer j for

the first time it satisfies as much demand as possible. If part of the demand is not satisfied,
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Figure 1. The road network for the finite-horizon problem.

the vehicle goes to the depot, restocks, and returns to satisfy the demand. It is assumed that
there is no extra demand when the vehicle returns to the customer, that is, ξj

i , 1 ≤ i ≤ K,
remains unaltered.

Let zi, i = 1, 2, . . . , K, be the load of product i carried by the vehicle after the first visit
at a customer’s site; a negative value for zi denotes the unsatisfied demand for product i.
These quantities belong to the set S = {(z1, . . . , zK) :

∣∣∑
i∈J zi

∣∣ ≤ Q for all J ⊆ {1, . . . , K}}.
Let ζ =

∑K
i=1 z−i with z−i = min{0, zi}. When ζ = 0 (demand fully satisfied), the vehicle

either proceeds directly to the next customer or goes to the depot, restocks with loads θi,
i = 1, 2, . . . ,K, of products 1, 2, . . . ,K, and then visits the next customer. We assume that∑K

i=1 θi = Q since there is no advantage if the vehicle leaves some empty space when it
goes to the depot for restocking. When ζ < 0, the vehicle goes to the depot and restocks
the owed quantity −ζ. Then it has the following two choices: (i) it fills the remaining
space with quantities θi of products 1, 2, . . . ,K, where

∑K
i=1 θi = Q + ζ, returns to the

customer, satisfies demand, and then proceeds to the next customer, (ii) returns to the
customer, satisfies demand, makes a second trip to the depot where it restocks with loads
θi of products 1, 2, . . . , K, where

∑K
i=1 θi = Q, and proceeds to the next customer. Our

objective is to determine a vehicle routing and replenishment strategy that minimizes the
expected total cost during a visit cycle. Specifically, if after the first visit at a customer’s site
ζ = 0, we must find if it is optimal for the vehicle to proceed to the next customer or to go to
the depot for replenishment; if ζ < 0 we must find if it is optimal for the vehicle to make one
or two trips to the depot. In both cases we also have to determine the optimal quantities of
the products that are loaded in the vehicle when it goes to the depot for replenishment. We
define vectors z = [z1, z2, . . . , zK ], ξ

j
=
[
ξj
1, ξ

j
2, . . . , ξ

j
K

]
, θ = [θ1, θ2, . . . , θK ], and denote by

fj(z) the minimum expected future cost when the load of product i carried by the vehicle
after visiting customer j for the first time is equal to zi. Then, an optimal routing strategy
can be determined by the following dynamic programming equations (see e.g. Eq. (6.5) in
Bather [1]). For j = 1, 2, . . . , N − 1 we have two cases.
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Case 1: If z1, z2, . . . , zK ≥ 0, then

fj(z) = min {Hj(z), Aj} . (1)

Case 2: If
∑K

i=1 z−i < 0, then

fj(z) = 2cj0 + min

{
H̃j

(
K∑

i=1

z−i

)
, Aj

}
, (2)

where

Hj(z) = cj,j+1 + Efj+1(z − ξ
j+1

), z1, z2, . . . , zK ≥ 0, (3)

H̃j(ζ) = cj,j+1 + min
θ:
∑K

i=1 θi=Q+ζ
Efj+1(θ − ξ

j+1
), ζ < 0, (4)

Aj = cj0 + cj+1,0 + min
θ:
∑K

i=1 θi=Q
Efj+1(θ − ξ

j+1
). (5)

In the boundary, we have

fN (z) = cN0 + 2cN01

(
K∑

i=1

z−i < 0

)
. (6)

Finally, the minimum total expected cost is

f0 = c10 + min
θ:
∑K

i=1 θi=Q
Ef1(θ − ξ

1
). (7)

In (3)–(5), (7), the expected values are taken with respect to the random vectors ξ
j
, j =

1, . . . , N . The first term in the curly brackets in (1) corresponds to the action of proceeding
to the next customer and the second term corresponds to the action of going to the depot
for restocking before proceeding to the next customer. The first term in the curly brackets
in (2) corresponds to the action of returning to the depot once before proceeding to the next
customer and the second term corresponds to the action of returning to the depot twice
before proceeding to the next customer. The following theorem characterizes the optimal
vehicle routing strategy after it visits customer j ∈ {1, . . . , N − 1} for the first time.

Theorem 1:
(i) For each z1, z2, . . . , zK−1 ≥ 0 there exists integer sj(z1, z2, . . . , zK−1) ∈ {0, 1, . . . , Q +
1 − z1 − · · · − zK−1} such that it is optimal for the vehicle to proceed to the next customer
iff zK ≥ sj(z1, z2, . . . , zK−1).
(ii) sj(z1, z2, . . . , zK−1) is non-increasing in each of its arguments.
(iii) There exists sj ≤ 0 such that it is optimal for the vehicle to make two trips to the depot
iff
∑K

i=1 z−i < sj .

Proof: For parts (i) and (ii) it suffices to show that Hj(z) is non-increasing in its arguments
and for part (iii) that H̃j(ζ) is non-increasing in ζ < 0. We will also need to prove that fj(z)
is non-increasing in its arguments. The proof is by induction on j. First, the induction base
is established by fN (z) being non-increasing (Eq. (6)). Then, assuming that fj+1(z) is
non-increasing, we will show that Hj(z), H̃j(ζ), and fj(z) are non-increasing.
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Function Hj(z) is non-increasing by the induction hypothesis and Eq. (3). Func-
tion H̃j(ζ) is non-increasing by Eq. (4) and the fact that min

θ:
∑K

i=1 θi=q
Efj+1(θ − ξ

j+1
) is

non-increasing in q. To see this, letting θ(K−1) and ξ
j

(K−1) be the vectors consisting of the

first K − 1 elements of θ and ξ
j
, we have for 0 ≤ q′ < q

min
θ:
∑K

i=1 θi=q
Efj+1(θ − ξ

j+1
)

= min
θ(K−1):

∑K−1
i=1 θi≤q

Efj+1

(
θ(K−1) − ξ

j+1

(K−1), q −
K−1∑
i=1

θi − ξj+1
K

)

≤ min
θ(K−1):

∑K−1
i=1 θi≤q′

Efj+1

(
θ(K−1) − ξ

j+1

(K−1), q −
K−1∑
i=1

θi − ξj+1
K

)

≤ min
θ(K−1):

∑K−1
i=1 θi≤q′

Efj+1

(
θ(K−1) − ξ

j+1

(K−1), q′ −
K−1∑
i=1

θi − ξj+1
K

)

= min
θ:
∑K

i=1 θi=q′
Efj+1(θ − ξ

j+1
), (8)

where the last inequality follows from the induction hypothesis. It remains to show that fj(z)
is non-increasing. Because of symmetry it suffices to show the monotonicity property with
respect to one of the arguments, say zK . For

∑K−1
i=1 z−i < 0 the result follows directly from

the monotonicity of H̃j(ζ) and Eq. (2). Consider now z1, z2, . . . , zK−1 ≥ 0. For 0 ≤ z′K < zK

and z′K < zK < 0 we get fj(z(K−1), zK) ≤ fj(z(K−1), z
′
K) by the monotonicity of Hj(z) and

H̃j(ζ), respectively (Eqs (1) and (2)). To complete the proof we still need to show that
fj(z(K−1), 0) ≤ fj(z(K−1),−1). From Eq. (1) and the triangle inequality we get

fj(z(K−1), 0) ≤ Aj = cj0 + cj+1,0 + min
θ:
∑K

i=1 θi=Q
Efj+1(θ − ξ

j+1
)

≤ 2cj0 + cj,j+1 + min
θ:
∑K

i=1 θi=Q
Efj+1(θ − ξ

j+1
) = Bj . (9)

From Eqs (4), (9), and (8) we get

Bj − 2cj0 − H̃j(−1) = min
θ:
∑K

i=1 θi=Q
Efj+1(θ − ξ

j+1
)

− min
θ:
∑K

i=1 θi=Q−1
Efj+1(θ − ξ

j+1
) ≤ 0. (10)

From (2) we have

fj(z(K−1),−1) = 2cj0 + min
{

H̃j(−1), Aj

}
. (11)

If Aj ≤ H̃j(−1), we get from Eqs (9) and (11)

fj(z(K−1), 0) ≤ Aj < 2cj0 + Aj = fj(z(K−1),−1).

If Aj > H̃j(−1), we get from Eqs (9)–(11)

fj(z(K−1), 0) ≤ Bj ≤ 2cj0 + H̃j(−1) = fj(z(K−1),−1),

which completes the proof. �
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Remark 1: If sj(z1, z2, . . . , zK−1) = Q + 1 − z1 − · · · − zK−1, it is optimal for the vehicle to
return to the depot for all zK ∈ {0, . . . , Q − z1 − · · · − zK−1}.

Remark 2: Tatarakis and Minis [15] chose as decision epochs for this problem the epochs
at which the vehicle has completed the service of each customer and presented part (i) of
the above theorem for K = 2. The proof is included in Tatarakis [14]. This proof involves
complicated algebraic expressions and cannot be extended for K > 2.

Remark 3: The computational complexity of the dynamic programming algorithm based
on Eqs (1)–(6) is O(NQK), for any value of K ≥ 1.

Remark 4: Consider a more general problem in which the total demand of each customer
for all products may exceed the vehicle capacity, that is, it is possible that

∑K
i=1 ξj

i is greater
than Q for j ∈ {1, . . . N}. In this case it is possible after the first visit at a customer’s site
that ζ < −Q. If this inequality holds, the vehicle must go to the depot to restock the owed
quantity more than once. It is assumed that there is no extra demand for products at the
2nd, 3rd,. . . visit to customer j, that is, ξj

i , 1 ≤ i ≤ K, remains unaltered. Let ζ ′ < 0 be the
amount owed before the last required trip to the depot. The possible decisions are the same
as in the original problem. Equations (1), (3)–(5) remain the same. Equation (2) becomes

fj(z) = 2cj0�−ζ/Q� + min
{

H̃j(ζ ′), Aj

}
,

where �−ζ/Q� is the smallest integer that it is not smaller than −ζ/Q. Equation (6) becomes

fN (z) = cN0 + 2cN0�−ζ/Q�.

Theorem 1 holds in this case. Its proof is similar but slightly more complicated than the proof
that we presented for the original problem. We point out that our dynamic programming
approach can be applied only if there is no extra demand for products at the 2nd, 3rd,
. . . visit to customer j ∈ {1, . . . , N − 1}. However, it seems that this assumption is quite
restrictive in many practical applications as those that we mentioned in Section 1.

Remark 5: Consider another modification of the problem in which the demand of customer
j, j = 1, . . . , N , for product i, i = 1, . . . , K, is a continuous random variable ξj

i and the
joint probability density function of (ξj

1, . . . , ξ
j
K), j = 1, . . . , N , is known. Equations (1)–

(6) remain valid in this case and the result of Theorem 1 can be proved in the same way
as in the case of discrete demands. However, the assumption that all products are stored
together in the vehicle seems to be questionable when the demands of the products are
continuous random variables. It would be more reasonable to assume that the vehicle is
divided into K compartments and each product is stored in its dedicated compartment.
Note that the problem with compartmentalized load and continuous stochastic demands
has been studied in Pandelis et al. [9]. A realistic example that fits to some extent in the
model with unified load and continuous demands could be the routing of a vehicle that
delivers building materials such as lime, sand, and pebble that are stored together in the
unique compartment of the vehicle but are not mixed up.

Let S+ be the set of (z1, z2, . . . , zK−1) such that z1, . . . , zK−1 ≥ 0,
∑K−1

i=1 zi ≤ Q, and let
M denote its cardinality. With the elements of S+ ordered in some arbitrary way, let Zm,
m = 1, . . . ,M , denote its mth element. Then, in view of Theorem 1 the optimal policy,
that is, the critical numbers sj and sj(z1, . . . , zK−1), z1, . . . , zK−1 ≥ 0,

∑K−1
i=1 zi ≤ Q, for
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each customer j ∈ {1, . . . , N − 1}, can be found by the following special-purpose dynamic
programming algorithm:

Algorithm
Determination of critical numbers sj and sj(z1, . . . , zK−1),
z1, . . . , zK−1 ≥ 0,

∑K−1
i=1 zi ≤ Q, for each customer j = 1, . . . , N − 1.

Step 0. Set fN (z1, z2, . . . , zK) = cN0 + 2cN01
(∑K

i=1 z−i < 0
)

, (z1, z2, . . . , zK) ∈ S, and
j = N − 1.

Step 1. Set ζ = −1.

Step 2. (Determination of critical number sj)

If H̃j(ζ) > Aj , do the following:
1. Set sj = ζ + 1.

2. For (z1, z2, . . . , zK) such that sj ≤∑K
i=1 z−i < 0 set fj(z) = 2cj0 + H̃j

(∑K
i=1 z−i

)
.

3. For (z1, z2, . . . , zK) such that
∑K

i=1 z−i < sj set fj(z) = 2cj0 + Aj .
4. Go to Step 3.

Otherwise, set ζ = ζ − 1.
If ζ = −Q − 1, do the following:

1. Set sj = −Q.

2. For (z1, z2, . . . , zK) such that
∑K

i=1 z−i < 0 set fj(z) = 2cj0 + H̃j

(∑K
i=1 z−i

)
.

3. Go to Step 3.
Otherwise, go to Step 2.

Step 3. Set m = 1.

Step 4. Set (z1, z2, . . . , zK−1) = Zm and zK = Q −∑K−1
i=1 zi.

Step 5. (Determination of sj(z1, z2, . . . , zK−1))

If Hj(z1, z2, . . . , zK) > Aj , do the following:
1. Set sj(z1, z2, . . . , zK−1) = zK + 1.
2. Set fj(z) = Aj for zK ∈ {0, . . . , sj(z1, z2, . . . , zK−1) − 1}.
3. Set fj(z) = Hj(z) for zK ∈ {sj(z1, z2, . . . , zK−1), . . . , Q −∑K−1

i=1 zi}.
4. Set m = m + 1. If m ≤ M , go to step 4. Otherwise, go to step 6.

Otherwise, set zK = zK − 1 .
If zK = −1, do the following:

1. Set sj(z1, z2, . . . , zK−1) = 0.

2. Set fj(z) = Hj(z) for zK ∈ {0, . . . , Q −∑K−1
i=1 zi}.

3. Set m = m + 1. If m ≤ M , go to Step 4. Otherwise, go to Step 6.
Otherwise, go to Step 5.

Step 6. Set j = j − 1. If j ≥ 1, go to Step 1. Otherwise, stop.

The above algorithm is faster than the initial dynamic programming algorithm based
on Eqs (1)–(6), since it does not calculate for j = 1, . . . , N − 1 the quantities H̃j(ζ) for
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Table 1. The Critical Numbers of the Optimal Policy

Customer j sj(0) sj(1) sj(2) sj(3) sj(4) sj(5) sj(6) sj

1 7,7 6,2 3,1 2,1 2,1 2,1 1,1 −2,−3
2 7,2 1,1 1,0 1,0 1,0 1,0 1,0 −4,−4
3 7,3 4,1 2,1 2,0 1,0 1,0 1,0 −2,−4
4 7,1 1,0 1,0 1,0 1,0 1,0 1,0 −4,−5
5 7,2 6,1 2,0 2,0 2,0 2,0 1,0 −2,−4
6 7,7 6,4 3,2 2,1 2,1 2,1 1,1 −1,−2
7 7,1 2,0 1,0 1,0 1,0 1,0 1,0 −3,−5
8 7,7 6,6 2,1 2,1 1,0 1,0 1,0 −2,−3
9 7,7 6,0 0,0 0,0 0,0 0,0 0,0 −4,−5

ζ = z−1 + z−2 + · · · + z−K < sj − 1 and the quantities Hj(z1, z2, . . . , zK), z1, . . . , zK−1 ≥ 0
such that 0 ≤∑K−1

i=1 zi ≤ Q, for zK ∈ {0, . . . , sj(z1, . . . , zK−1) − 1}. We point out that the
computational burden of the above algorithm increases rapidly as K increases or Q increases
since the critical number sj(z1, . . . , zK−1) is determined for all (z1, . . . , zK−1) in set S+

whose cardinality is equal to
∏K−1

i=1 (Q + i)/(K − 1)! As illustration we present the two
following examples for K = 2.

Example 1: Suppose that N = 10, Q = 6, K = 2. We give below the symmetric matrix
C = (cij), 0 ≤ i, j ≤ 10 whose non-zero elements are the travel costs cj,j+1 between customer
j ∈ {1, . . . , 9} and customer j + 1, and the travel costs cj0 between customer j ∈ {1, . . . , 10}
and the depot. We observe that these costs satisfy the triangle inequality.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 6 7 8 7 5 4 8 6 5 8
6 0 9 0 0 0 0 0 0 0 0
7 9 0 6 0 0 0 0 0 0 0
8 0 6 0 9 0 0 0 0 0 0
7 0 0 9 0 5 0 0 0 0 0
5 0 0 0 5 0 7 0 0 0 0
4 0 0 0 0 7 0 10 0 0 0
8 0 0 0 0 0 10 0 9 0 0
6 0 0 0 0 0 0 9 0 8 0
5 0 0 0 0 0 0 0 8 0 9
8 0 0 0 0 0 0 0 0 9 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We assume that the demands of customer j ∈ {1, . . . , 10} for products 1 and 2 are inde-
pendent and follow the binomial distribution B(3, 0.4), that is, Pr(ξj

1 = x) = Pr(ξj
2 = x) =(

3
x

)
0.4x0.63−x, x = 0, . . . , 3. This assumption implies that 0 ≤ ξj

1 + ξj
2 ≤ 6, j ∈ {1, . . . , 10},

as required. For each customer j = 1, . . . , 9 we present in each cell of Table 1 the critical num-
bers sj(z1), z1 = 0, . . . , Q, and sj of the optimal policy that we computed by implementing
the initial dynamic programming algorithm based on Equations (1)–(6) and our special pur-
pose dynamic programming algorithm. The first number in each cell is the critical number
if the travel costs are given by the symmetric matrix C while the second number is the crit-
ical number if the travel costs are given by the symmetric matrix C ′ = (c′ij), 0 ≤ i, j ≤ 10,
where c′ij = cij for 1 ≤ i, j ≤ 10, c′0j = 2c0j for 0 ≤ j ≤ 10, and c′i0 = 2ci0 for 0 ≤ i ≤ 10.
Note that Part (ii) of Theorem 1 is confirmed numerically since sj(z1) is non-increasing
in z1 ∈ {0, . . . , 6} for j ∈ {1, . . . , 9} if the travel costs are given by matrix C or C ′. Note
also that sj(0) = 7, j ∈ {1, . . . , 9}, if the travel costs are given by matrix C, meaning that,
according to Remark 1, if after the first visit to customer j ∈ {1, . . . , 9} the vehicle has no
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The load of product 1 carried by the vehicle after the first visit

Figure 2. (Color online) The optimal decisions after the first visit to customer 3 if the
travel costs are given by matrix C.

items of product 1, then the optimal decision is to return to the depot for replenishment
even if it contains six items of product 2. We also observe from Table 1 that s9(z1) = 0,
1 ≤ z1 ≤ 6, if the travel costs are given by matrix C ′. This means that if after the first visit
to the ninth customer the vehicle contains at least one item of product 1, then the optimal
decision is to proceed directly to the tenth customer if there is no unsatisfied demand for
product 2. From Table 1 we also see that the first number in each cell is greater than or
equal to the second number. This is intuitively reasonable since it seems preferable for the
vehicle to avoid the trip to the depot if the travel costs between the customers and the depot
are doubled. In Figures 2 and 3, we present the optimal decision for each state (z1, z2) ∈ S
after the first visit to the third customer, if the travel costs are given by matrices C and
C ′, respectively. In these figures the action of proceeding to the next customer is denoted
by a blue dot, the action of returning to the depot once is denoted by a red square, and the
action of making two trips to the depot is denoted by a green rhomb.

We implemented the algorithms by running the corresponding Matlab programs on a
personal computer equipped with an Intel Core 2 Duo, 2.5 GHz processor and 4GB of RAM.
The computation time (0.316 or 0.378 s if the travel costs are given by C or C ′, respectively)
of the special purpose algorithm is considerably smaller than the computation time (0.421 or
0.521 s if the travel costs are given by C or C ′, respectively) of the initial dynamic program-
ming algorithm. The minimum expected total cost f0 = c10 + min

0≤θ≤6

∑3
x=0

∑3
y=0 Pr(ξ1

1 =

x) Pr(ξ1
2 = y)f1(θ − x, 6 − θ − y) is found to be approximately equal to 112.7 or 131.1, if

the travel costs are given by C or C ′, respectively. The dynamic programming algorithm
equations enable us to determine the optimal quantities of products 1 and 2 that are loaded
in the vehicle when it returns to the depot for replenishment. For example, if the travel
costs are given by matrix C and after the first visit of the vehicle to the third customer
the state is (−2, 0), then the optimal decision is to go to the depot to restock two items of
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Figure 3. (Color online) The optimal decisions after the first visit to customer 3 if the
travel costs are given by matrix C ′.

product 1 and four items of product 2, return to customer 3 to deliver two items of product
1 (owed quantity), and then proceed to customer 4. If the state is (3,−3), then the optimal
decision is to return to the depot to load three items (unsatisfied demand) of product 2,
return to customer 3 to satisfy the demand, make a second trip to the depot to load three
items of product 1 and three items of product 2, and then go to customer 4.

Consider now the same example with variable Q and travel costs given by matrix
C, where Q ∈ {6, 8, 10, . . . , 40} and Pr(ξj

1 = x) = Pr(ξj
2 = x) =

(
Q/2

x

)
0.4x 0.6Q/2−x, j =

1, . . . , 10. In Figure 4, we present graphs that show, as Q varies, the variation in the compu-
tation times (expressed in seconds) required by the initial dynamic programming algorithm
based on Eqs (1)–(6) and the special-purpose dynamic programming algorithm. We observe
that, as Q increases, the computation times for both algorithms increase non-linearly. The
computation time required by the special-purpose algorithm is considerably smaller than
the computation time required by our initial algorithm, especially for high values of Q.
In Figure 5, we present a graph that shows the variation in the minimum total expected
cost f0 as Q varies. We see that, as Q increases, the minimum total expected cost tends
to decrease. This is intuitively reasonable since an increase of the capacity of the vehicle
causes an increase of the probability that it satisfies the demands of the customers when
it visits them for the first time. In this case it not necessary to go to the depot for stock
replenishment.

Example 2: Suppose that N = 10, Q = 10, K = 2. The travel costs are given by matrix C
of the previous example. We assume that the demands of each customer j ∈ {1, . . . , 10}
for products 1 and 2 are independent and follow the binomial distribution B(5, p), that
is, Pr(ξj

1 = x) = Pr(ξj
2 = x) =

(
5
x

)
px (1 − p)5−x, x = 0, . . . , 5. This assumption implies that

0 ≤ ξj
1 + ξj

2 ≤ 10, j ∈ {1, . . . , 10}, as required. In Table 2 we present, for each customer

https://doi.org/10.1017/S0269964812000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964812000277


STOCHASTIC VEHICLE ROUTING WITH UNIFIED LOAD 13

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

The vehicle capacity Q

cp
ut

im
e(

se
co

nd
s)

Initial Algorithm
Special Purpose Algorithm

Figure 4. (Color online) The computation times of the algorithms as Q varies.
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Figure 5. (Color online) The minimum total expected cost as Q varies.

j = 1, . . . , 9 and for each value of p ∈ {0.2, 0.4, 0.6, 0.8}, the critical numbers sj(z1), z1 =
0, . . . , Q, and sj of the optimal policy that we computed by implementing the initial dynamic
programming algorithm based on (1)–(6) and the special-purpose dynamic programming
algorithm. In each cell of the table the first critical number corresponds to p = 0.2, the
second critical number corresponds to p = 0.4, the third critical number corresponds to
p = 0.6, and the fourth critical number corresponds to p = 0.8.
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Table 2. The Critical Numbers of the Optimal Policy for each Value of
p = {0.2, 0.4, 0.6, 0.8}
j sj(0) sj(1) sj(2) sj(3) sj(4) sj(5) sj(6) sj(7) sj(8) sj(9) sj(10) sj

1 11,11 10,10 9,9 4,4 3,4 3,3 3,3 3,3 3,3 1,2 1,1 −3,−2
11,11 10,10 10,10 4,8 4,5 3,4 3,4 3,4 3,3 2,2 1,1 −2,−1

2 11,11 2,2 1,2 1,2 1,2 1,2 1,2 1,2 2,2 1,2 1,1 −7,−6
11,11 10,10 4,9 3,8 2,4 2,4 2,4 2,4 2,3 2,2 1,1 −4,−2

3 11,11 10,10 2,4 2,3 2,3 2,2 2,2 2,2 2,2 2,2 1,1 −6,−4
11,11 10,10 4,9 3,8 3,4 2,4 2,4 2,4 2,3 2,2 1,1 −4,−4

4 11,11 1,3 1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 −8,−6
11,11 10,10 5,9 3,8 2,4 2,4 2,4 2,4 2,3 2,2 1,1 −4,−2

5 11,11 10,10 2,9 2,3 2,3 2,3 2,3 2,3 2,3 2,2 1,1 −6,−4
11,11 10,10 9,9 8,8 4,7 4,5 4,4 4,4 3,3 2,2 1,1 −2,0

6 11,11 10,10 9,9 5,8 4,4 3,4 3,4 3,4 1,2 2,2 1,1 −2,−2
11,11 10,10 9,9 8,8 4,7 4,5 4,4 4,4 3,3 2,2 1,1 −2,0

7 11,11 3,10 2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,1 −7,−5
11,11 10,10 9,9 4,8 4,8 3,4 3,4 3,4 3,3 2,2 1,1 −3,−1

8 11,11 10,10 9,9 2,8 1,3 1,3 1,2 1,2 1,2 1,2 1,1 −5,−3
11,11 10,10 9,9 8,8 3,5 3,4 3,4 3,3 3,3 2,2 1,1 −3,−1

9 11,11 10,10 0,9 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 −8,−7
11,11 10,10 10,10 9,9 7,7 0,0 0,0 0,0 0,0 0,0 0,0 −6,−5
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Figure 6. (Color online) The minimum total expected cost as p varies.

Note that Part (ii) of Theorem 1 is confirmed numerically since, for fixed p, sj(z1) is
non-increasing in z1 ∈ {0, . . . , 10} for j ∈ {1, . . . , 9}. We also observe that, for each customer
j ∈ {1, . . . , 9}, sj(z1) and sj are non-decreasing as p increases. This is intuitively reasonable
since, as p increases, the expected values of the demands for products 1 and 2 increase and,
therefore, the action of returning to the depot for restocking becomes more favourable. In
Figure 6, we present a graph that shows the variation in the minimum total expected cost
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f0 as p varies. We see that as p takes values in the set {0.1, . . . , 0.6} the minimum total
expected cost increases approximately linearly. When p takes values in the set {0.7, 0.8, 0.9}
the minimum total expected cost increases very slowly.

From a large number of examples that we tested there is strong evidence that the special-
purpose dynamic programming algorithm can handle problems with quite large values of N
and Q but small values of K (i.e., N = 100, Q = 40, and K = 3) or moderate values of N ,
Q, and K (i.e., N = 50, Q = 20, and K = 4). This is due to the fact that the computation
time required by the algorithm seems to increase linearly as N increases, polynomially with
degree K as Q increases, and exponentially as K increases.

3. THE INFINITE-HORIZON PROBLEM

We modify the problem that we introduced in the previous section by considering an
infinite-time horizon problem in which the service of the customers does not stop when
the last customer N has been serviced but it continues periodically with the same customer
order. This means that after the service of customer N has been completed, the vehicle ser-
vices again customer 1, customer 2, and so on. Let cN1 denote the travel cost from customer
N to customer 1. The road network is depicted in Figure 7.

We assume that the distribution of the random vector ξ
j

= (ξj
1, . . . , ξ

j
K) that represents

the demands of customer j ∈ {1, . . . , N} for products 1, . . . , K remains the same at each
cycle (period). We suppose that at each cycle the vehicle visits each customer, satisfies as
much demand as possible, and chooses one decision among some possible decisions that
coincide with the possible decisions in the finite-horizon problem. If the whole customer’s
demand is satisfied, there are two possible decisions: (i) to proceed directly to the next
customer, and (ii) to go to the depot for restocking and then go to the next customer. If
part of the customer’s demand is not satisfied, the possible options are: (i) to go to the

Figure 7. The road network for the infinite-horizon problem.
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depot for restocking the owed demand and for loading additional items of all products,
return to the customer to satisfy the owed demand and then go to the next customer,
and (ii) to go to the depot for restocking the owed quantity, return to the customer to
deliver the owed quantity, make a second trip to the depot for replenishment and then go
to the next customer. We assume that the decision epochs τ = 0, 1, . . . are equidistant time
epochs. It is also assumed that the time interval between two consecutive decision epochs
is greater than the required time for the trips of the vehicle if it follows any of the above
decisions. Although we impose these assumptions in order to apply well-known results from
the theory of Markov decision processes, there are situations in which these assumptions
may hold, as the practical applications that we mentioned in Section 1. Specifically, in the
first application (ex-van sales) suppose that the vehicle supplies the customers with products
(e.g., milk and fruits) that must be consumed in a short period. It seems reasonable that
the supply of the customers does not stop when the last customer has been serviced but is
continues with the same customer order for a long time horizon. In the second application
(self propelled vehicle in a manufacturing shop) it can be assumed that the supply of the
workcenters with discrete parts does not stop when the last workcenter has been supplied
but it continues with the same order for a long time without interruption. For these two
examples it can be assumed that the decisions are selected at equidistant time epochs (e.g.,
every hour).

The routing of the vehicle in the infinite-horizon setting is controlled by a policy π
that is a rule for choosing decisions at epochs τ = 0, 1, . . . . The decision that is chosen by
a policy at a decision epoch may depend on the history of the process or may be random-
ized in the sense that it is chosen by specific probabilities. An appealing class of policies
is the class of stationary policies. A stationary policy chooses at each decision epoch a
decision that depends only on the current state of the system. Thus, a stationary policy
can be specified by a mapping from the state space of the system to the set of possible
decisions.

We consider two different optimization criteria for the infinite-horizon problem. The
first criterion is the minimization of the expected total discounted cost and the second
criterion is the minimization of the expected long-run average cost per unit time. The
expected total discounted cost of a policy π is defined as the expected total cost during an
infinite-time horizon if the costs are discounted at a rate α ∈ (0, 1) per unit time given that
policy π is employed. The use of the discount factor α can be explained by the economic
idea that a cost to be incurred in the future is discounted in present value. The expected
long-run average cost per unit time of a policy π is defined as the limit as n → ∞ of the
expected cost incurred until the nth decision epoch divided by n, given that policy π is
employed. The discounted cost criterion becomes preferable to the average cost criterion
when the time intervals between two consecutive decision epochs are sufficiently long so
that the time value of money should be taken into account when adding costs in future
intervals to the cost in the current interval. This assumption does not seem to hold in
the two practical applications we have mentioned. Using well-known results of Markov
decision processes (see Chapter 6 in Ross [11]) we will see that, under either one of these
criteria, the optimal policy has the same structure as the optimal policy in the finite-horizon
problem.

The state space I of the system consists of all states (j, z), where j = 1, . . . , N is the
customer and z = (z1, . . . , zK) are all possible loads of products that remain in the vehicle
after it has visited customer j and has satisfied as much demand as possible. Let V α

n (j, z),
(j, z) ∈ I, 0 < α < 1, be the minimum n−step expected discounted cost if the initial state
is (j, z) ∈ I and α is the discount factor. This quantity satisfies the following dynamic
programming equations for n = 1, 2, . . . .
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If z1, . . . , zK ≥ 0, then

V α
n (j, z) = min

{
cj,j+1 + αEV α

n−1

(
j + 1, z − ξ

j+1
)

,

cj0 + c0,j+1 + α min
θ:
∑K

i=1 θi=Q
EV α

n−1

(
j + 1, θ − ξ

j+1
)}

,

and if ζ =
∑K

i=1 z−i < 0, then

V α
n (j, z) = 2cj0 + min

{
cj,j+1 + α min

θ:
∑K

i=1 θi=Q+ζ
EV α

n−1

(
j + 1, θ − ξ

j+1
)

,

cj0 + c0,j+1 + α min
θ:
∑K

i=1 θi=Q
EV α

n−1

(
j + 1, θ − ξ

j+1
)}

.

We also have that V α
0 (j, z) = 0, (j, z) ∈ I. In the above equations we assume that N + 1

is equal to 1 since the customer next to N is customer 1. It can be shown by induction
on n that V α

n (j, z) is non-increasing in zi, i = 1, . . . , K, in the same way we proved that
fj(z) is non-increasing in its arguments in Theorem 1. Let V α(j, z), (j, z) ∈ I, denote the
α−discounted total expected cost if the initial state is (j, z) ∈ I. This quantity is finite since
the state space I is finite. It satisfies the following optimality equations:
If z1, . . . , zK ≥ 0, then

V α(j, z) = min
{

cj,j+1 + αEV α
(
j + 1, z − ξ

j+1
)

,

cj0 + c0,j+1 + α min
θ:
∑K

i=1 θi=Q
EV α

(
j + 1, θ − ξ

j+1
)}

,

and if
∑K

i=1 z−i = ζ < 0, then

V α(j, z) = 2cj0 + min
{

cj,j+1 + α min
θ:
∑K

i=1 θi=Q+ζ
EV α

(
j + 1, θ − ξ

j+1
)

,

cj0 + c0,j+1 + α min
θ:
∑K

i=1 θi=Q
EV α

(
j + 1, θ − ξ

j+1
)}

.

It is well known (see Corollary 6.6 in Ross [11]) that, as n → ∞, V α
n (j, z) → V α(j, z). This

implies that V α(j, z) is non-increasing in zi, i = 1, . . . ,K. Hence, the first terms in the curly
brackets in the above optimality equations are non-increasing in zi, i = 1, . . . , K, and ζ,
respectively. This implies that the α−discounted cost optimal policy has the threshold-type
structure described in Theorem 1.

We focus now on the minimization of the expected average cost. First we note that
the state (1, 0) ∈ I is accessible from any other state under any stationary policy. From
Corollary 6.20 in Ross [11] it follows that there exist numbers g and h(j, z), (j, z) ∈ I such
that the following equations hold.
If z1, . . . , zK ≥ 0, then

h(j, z) = min
{

cj,j+1 − g + Eh
(
j + 1, z − ξ

j+1
)

,

cj0 + c0,j+1 − g + min
θ:
∑K

i=1 θi=Q
Eh

(
j + 1, θ − ξ

j+1
)}

,
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and if
∑K

i=1 zi = ζ < 0, then

h(j, z) = 2cj0 + min
{

cj,j+1 − g + min
θ:
∑K

i=1 θi=Q+ζ
Eh

(
j + 1, θ − ξ

j+1
)

,

cj0 + c0,j+1 − g + min
θ:
∑K

i=1 θi=Q
Eh

(
j + 1, θ − ξ

j+1
)}

.

The above equations are known as the average-cost optimality equations. The number g is
the minimum average cost and does not depend on the initial state of the system. There
also exists a sequence αn → 1 (see Theorem 6.18 in Ross [11]) such that

h(j, z) = lim
n→∞

[
V αn(j, z) − V αn(1, 0)

]
, (j, z) ∈ I.

The monotonicity of V αn(j, z) with respect to zi, i = 1, . . . ,K, implies that the first terms
in the curly brackets in the above average-cost optimality equations are non-increasing with
respect to zi, i = 1, . . . ,K, and ζ, respectively. Hence the average cost optimal policy has
the same threshold-type structure as the finite-horizon optimal policy and the discounted
cost optimal policy.

The average-cost optimal policy can be found numerically by the value-iteration
algorithm, the policy-iteration algorithm, and the linear programming formulation. We refer
to Chapter 3 in Tijms [16] for a detailed description of these algorithms. To implement these
algorithms we must specify the one-step transition probabilities and the one-step expected
costs. For simplicity we suppose that K = 2. Let a ∈ {0, 1θ}, 0 ≤ θ ≤ Q, be the action that
is selected when the system at a decision epoch is at state (j, z1, z2) ∈ I with z1, z2 ≥ 0.
We assume that action a = 0 means that the vehicle goes directly to the next customer,
while action 1θ means that the vehicle goes to the depot to load θ items of product 1 and
Q − θ items of product 2 and then it goes to the next customer j + 1. Let a ∈ {2θ, 3θ′},
0 ≤ θ ≤ Q + ζ, 0 ≤ θ′ ≤ Q, be the action that is selected when the system at a decision
epoch is at state (j, z1, z2) ∈ I with ζ = z−1 + z−2 < 0. We assume that action 2θ means
that the vehicle goes to the depot to load the owed quantity −ζ, θ items of product 1 and
Q + ζ − θ items of product 2, returns to customer j to satisfy the demand −ζ, and then
proceeds to the next customer j + 1. Action 3θ′ means that the vehicle goes to the depot to
load the owed quantity −ζ, returns to customer j to satisfy the demand −ζ, makes a second
trip to the depot where it loads θ′ items of product 1 and Q − θ′ items of product 2, and
then proceeds to the next customer j + 1. Let p(j,z1,z2)(j+1,z′

1,z′
2)

(a) be the probability that
the state at the next decision epoch will be (j + 1, z′1, z

′
2) if the present state is (j, z1, z2)

and the action a ∈ {0, 1θ, 2θ, 3θ′} is selected, and let C((j, z1, z2), a) be the corresponding
one-step expected cost. We give these quantities below.

If z1, z2 ≥ 0, (z1, z2) ∈ S, then

p(j,z1,z2)(j+1,z′
1,z′

2)
(0) = Pr(ξj+1

1 = z1 − z′1, ξj+1
2 = z2 − z′2),

where z′1 = z1, z1 − 1, . . . , z1 − Q, z′2 = z2, z2 − 1, . . . , z2 − Q, and (z1 + z2) − (z′1 + z′2) ≤ Q.
If z1, z2 ≥ 0, (z1, z2) ∈ S, 0 ≤ θ ≤ Q, then

p(j,z1,z2)(j+1,z′
1,z′

2)
(1θ) = Pr(ξj+1

1 = θ − z′1, ξj+1
2 = Q − θ − z′2),

where z′1 = θ, θ − 1, . . . , θ − Q, z′2 = Q − θ,Q − θ − 1, . . . ,−θ, and z′1 + z′2 ≥ 0.
If ζ = z−1 + z−2 < 0, (z1, z2) ∈ S, 0 ≤ θ ≤ Q + ζ, then

p(j,z1,z2)(j+1,z′
1,z′

2)
(2θ) = Pr(ξj+1

1 = θ − z′1, ξj+1
2 = Q + ζ − θ − z′2),

where z′1 = θ, θ − 1, . . . , θ − Q, z′2 = Q + ζ − θ,Q + ζ − θ − 1, . . . , ζ − θ, and z′1 + z′2 ≥ ζ.
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If ζ = z−1 + z−2 < 0, (z1, z2) ∈ S, 0 ≤ θ′ ≤ Q, then

p(j,z1,z2)(j+1,z′
1,z′

2)
(3θ′) = Pr(ξj+1

1 = θ′ − z′1, ξj+1
2 = Q − θ′ − z′2),

where z′1 = θ′, θ′ − 1, . . . , θ′ − Q, z′2 = Q − θ′, Q − θ′ − 1, . . . ,−θ′, and z′1 + z′2 ≥ 0.
If z1, z2 ≥ 0, (z1, z2) ∈ S,

C((j, z1, z2), 0) = cj,j+1,

C((j, z1, z2), 1θ) = cj0 + c0,j+1, 0 ≤ θ ≤ Q.

If ζ = z−1 + z−2 < 0, (z1, z2) ∈ S,

C((j, z1, z2), 2θ) = 2cj0 + cj,j+1, 0 ≤ θ ≤ Q + ζ,

C((j, z1, z2), 3θ′) = 3cj0 + c0,j+1, 0 ≤ θ′ ≤ Q.

As illustration we present the following example.

Example 3: Suppose that N = 7, Q = 10, K = 2. We give below the symmetric matrix
C = (cij), 0 ≤ i, j ≤ 7, whose non-zero elements are the travel costs cj,j+1 between customer
j ∈ {1, . . . , 7} and customer j + 1 and the travel costs cj0 between customer j ∈ {1, . . . , 7}
and the depot. We observe that these costs satisfy the triangle inequality.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 20 15 21 15 20 19 20
20 0 15 0 0 0 0 31
15 15 0 17 0 0 0 0
21 0 17 0 15 0 0 0
15 0 0 15 0 18 0 0
20 0 0 0 18 0 17 0
19 0 0 0 0 17 0 21
20 31 0 0 0 0 21 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We assume that at each cycle the probabilities Pr(ξj

1 = x, ξj
2 = y), x, y = 0, . . . , 10, for each

customer j ∈ {1, . . . , 7} are the elements of the following 11 × 11 matrix P .

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0171 0.0255 0.0193 0.0287 0.0024 0.0178 0.0097 0.0216 0.0048 0.0033 0.0026

0.0043 0.0076 0.0148 0.0089 0.0017 0.0147 0.0165 0.0234 0.0258 0.0301 0

0.0125 0.0047 0.0291 0.0110 0.0237 0.0166 0.0004 0.0052 0.0141 0 0

0.0168 0.0001 0.0081 0.0081 0.0109 0.0260 0.0236 0.0244 0 0 0

0.0105 0.0188 0.0026 0.0311 0.0242 0.0250 0.0263 0 0 0 0

0.0061 0.0183 0.0119 0.0292 0.0051 0.0082 0 0 0 0 0

0.0072 0.0024 0.0256 0.0135 0.0080 0 0 0 0 0 0

0.0079 0.0172 0.0178 0.0041 0 0 0 0 0 0 0

0.0248 0.0205 0.0286 0 0 0 0 0 0 0 0

0.0138 0.0272 0 0 0 0 0 0 0 0 0

0.0282 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It can be seen that, as expected, the sum of the elements of matrix P is equal to 1. Note
also that Pr(ξj

1 + ξj
2 > 10) = 0, as expected. The standard value-iteration algorithm does

not converge. This is due to the periodicity (with period N) of all states of the system under
any stationary policy. This problem can be circumvented by a perturbation of the one-step
transition probabilities so that a transition from a state to itself with non-zero probability
is allowed. Specifically, we take the following new one-step probabilities:

p̃(j,z1,z2)(j+1,z′
1,z′

2)
(a) = τp(j,z1,z2)(j+1,z′

1,z′
2)

(a), p̃(j,z1,z2)(j,z1,z2)(a) = 1 − τ,

where τ is a constant such that 0 < τ < 1. A reasonable choice for the value of τ is 0.5. The
perturbed model has the same average-cost optimal policy as the original model (see Tijms
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Table 3. The Critical Numbers of the Average-Cost Optimal Policy

j sj(0) sj(1) sj(2) sj(3) sj(4) sj(5) sj(6) sj(7) sj(8) sj(9) sj(10) sj

1 1,11 0,10 0,8 0,6 0,5 0,5 0,4 0,3 0,3 0,2 0,1 −9,−1
2 6,11 3,10 2,9 2,8 1,6 1,6 1,5 0,4 0,3 0,2 0,1 −6,0
3 0,11 0,10 0,7 0,5 0,4 0,3 0,3 0,3 0,2 0,2 0,1 −2,−2
4 7,11 4,10 3,9 2,8 2,7 1,6 1,5 1,4 1,3 0,2 0,1 −5,0
5 2,11 1,10 0,9 0,7 0,5 0,4 0,3 0,3 0,3 0,2 0,1 −8,−1
6 4,11 3,10 2,9 1,8 1,7 1,6 1,5 0,4 0,3 0,2 0,1 −6,0
7 11,11 10,10 7,9 5,8 4,7 3,6 3,5 2,4 2,3 2,2 1,1 −3,0

[16], p. 209). We implemented the value-iteration algorithm in the perturbed model, which,
as expected, converges to the optimal policy after 56 iterations. The average cost of the
optimal policy is found to be 47.35. We also implemented the value-iteration algorithm in
the perturbed model if the travel costs are given by the symmetric matrix C ′ = (c′ij), 0 ≤
i, j ≤ 7, where c′ij = cij for i, j ∈ {1, . . . , 7}, c′0j = 0.5c0j for j ∈ {0, . . . , 7} and c′i0 = 0.5ci0

for i ∈ {0, . . . , 7}. Note that the costs c′ij , i, j ∈ {1, . . . , 7} satisfy the triangle inequality. In
this case the algorithm converges to the optimal policy after 58 iterations and the minimum
average cost is found to be 40.85. In each cell of Table 3 we present, for each customer
j = 1, . . . , 7, the critical numbers sj(z1), z1 = 0, . . . , Q, and sj of the optimal policy. The
first number in each cell is the critical number if the travel costs are given by the symmetric
matrix C, while the second number is the critical number if the travel costs are given by
the symmetric matrix C ′. Note that Part (ii) of Theorem 1 is confirmed numerically since
sj(z1) is non-increasing in z1 ∈ {0, . . . , 10} for j ∈ {1, . . . , 7}, if the travel costs are given by
the elements of C or C ′. In Table 3, we observe that the first number in each cell is smaller
or equal to the second number. This is intuitively plausible since it seems preferable for the
vehicle to return to the depot for replenishment if the travel costs between the customers
and the depot are halved. In Figures 8 and 9, we present the optimal decision for each state
(z1, z2) ∈ S after the first visit to customer 4 and to customer 6 if the travel costs are the
elements of matrix C.

The value-iteration algorithm also enables us to determine the optimal quantities of
products 1 and 2 that are loaded in the vehicle when it returns to the depot for replenish-
ment. For example, if the travel costs are the elements of matrix C, at state (2, 0, 5) the
optimal decision is to return to the depot to load five items of product 1 and five items of
product 2. At state (2,−6, 0), the optimal decision is to return to the depot to load eight
items of product 1 and two items of product 2, to return to customer 2 to deliver the owed
six items of product 1, and then proceed to customer 3.

4. CONCLUSIONS

In this paper, we proposed a different approach for the solution of a special capacitated
VRP studied by Tatarakis and Minis [15]. In this problem, it is assumed that a single vehicle
starts its route from a depot and delivers K different products to N customers according
to a particular order. The demands of the customers for the products are stochastic and
each customer’s total demand for all products is less than or equal to the vehicle capacity.
The vehicle has only one compartment in which all products are stored. We selected as
decision epochs the epochs at which the vehicle visits for the first time each customer
and has satisfied as much of the customer’s demand as possible. We proposed a suitable
dynamic programming algorithm for the determination of the policy that minimizes the total
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Figure 8. (Color online) The optimal decisions after the first visit to customer 4 if the
travel costs are given by C.
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Figure 9. (Color online) The optimal decisions after the first visit to customer 6 if the
travel costs are given by C.

expected cost for the service of all customers. It was proved that the optimal policy divides
the set of all possible loads carried by the vehicle after the first visit to each customer into
four disjoint subsets. If the load of the vehicle belongs to the first subset, then the optimal
decision is to proceed to the next customer. If it belongs to the second subset, then it is
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optimal to go to the depot for restocking, and then to proceed to the next customer. If it
belongs to the third subset, then it is optimal to go to the depot for restocking, to return
to the customer to satisfy the owed quantity, and then to proceed to the next customer. If
it belongs to the fourth subset, then it is optimal to go to the depot to restock the owed
quantity, to return to the customer to deliver the owed quantity, to make a second trip to the
depot for restocking, and then go to the next customer. Taking into account the structure
of the optimal policy, we developed a special-purpose dynamic programming algorithm that
finds the optimal policy. Numerical examples provide strong evidence that this algorithm is
faster than the initial algorithm.

We also considered a corresponding infinite-horizon problem in which the vehicle after
the service of the last customer continues to serve the customers periodically with the
same customer order. The demands of the customers for each product are renewed in each
cycle and follow the same distributions. The decision epochs are again the epochs at which
the vehicle arrives at a customer and has satisfied as much of the customer’s demand as
possible. The times between decision epochs are assumed to be constant. It is proved that the
discounted cost optimal policy and the average-cost optimal policy have the same structure
as the finite-horizon optimal policy.

A subject for future research could be to investigate the structure of the optimal policy
for a more general problem in which customers are not served according to a particular
sequence.
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