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Abstract

The growth of a single-mode perturbation is described by a buoyancy—drag equation, which describes all instability
stageqlinear, nonlinear and asymptotiat time-dependent Atwood number and acceleration profile. The evolution of

a multimode spectrum of perturbations from a short wavelength random noise is described using a single characteristic
wavelength. The temporal evolution of this wavelength allows the description of both the linear stage and the late time
self-similar behavior. Model results are compared to full two-dimensional numerical simulations and shock-tube
experiments of random perturbations, studying the various stages of the evolution. Extensions to the model for more
complicated flows are suggested.
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1. INTRODUCTION instability stages from the linear stage through the early
The Rayleigh—Taylo(RT) instability occurs on the inter- nonlinear to the asymptotlc, but limitedAo= 1. This model
. LT has been extended into a class of buoyancy—drag models
face between two fluids when an acceleration is directed " o .
. . valid for everyA, but limited to the nonlinear stages of the
from the heavy to the light, or, in general, when the pressure - ) : )
S LS . . Instability (Alon etal,, 1995; Arazi, 2001; Oroat al., 200J).
gradient is in the opposite direction to the density gradient

The Richtmyer—Meshko¢RM) instability occurs when a These models will be described in more detail in Sec_tlon 4,
: Goncharov(2002 has recently presented an extension of

shock wave passes through the interface between the tw . . :
) . . .. the single-mode model to all density ratios. Akdral. (1993
fluids. Small perturbations on unstable interfaces grow with

o . } .. ~used a statistical bubble merger model to investigate the
time into a turbulent mixing zone. The evolution of a mixing self-similar evolution of the mixing zone. Young984)

zone starts from a random perturbation present due to NOISE o det al (1997 and Alon and Shvart€1995 applied a

and nonuniformities in the system. The multimode spectru - . .
. . wo-phase flow model for describing the interpenetration of
of short-wavelength perturbations evolves into larger . . .
the two fluids. The evolution of a turbulent mixing zone

structures through an inverse cascade process. Competiti?r%m a random initial perturbation has been studied experi-

and coalescence of large coherent structures drive this prcr)ﬁentally by Dimonte and Schneidé000. Shock-tube ex-

cess, because of the reduced drag per unit volume of lar Seriments were conducted and compa.red to diffusion-like

struc;tures. . . . . turbulence modelgsAndronov et al,, 1976; Brouillette &

It is customary to investigate the instability between tWOSturtevant 1989; Gauthier & Bonnet, 1990

semi-infinite fluids of densitieg, andp, in a uniform ac- An effective mix model should describe the mixing based

celeration field perpendicular to the interface. The Atwood . : : S

number is then defined #s= ( p, — p)/( po + py). Layzer on the one-dimensionélD) flow. This description includes
p2= U/ P2 p). FAYZET 0 iy redion boundaries, as well as its internal structure.

(19595 solved the problem of a single bubble rising in a

heavy fluid by means of a potential flow model, valid for all Turbulent mixing is coupled to the 1D flow and affects it.
y y P ' Hence a good model should include a feedback to the sim-

. _ ulation of the 1D flow. The description of the internal struc-
Address correspondence and reprint requests to: Yair Srebro, Depar;

ment of Physics, Nuclear Research Center—Negev, P.O. Box 9001, 84195.’”6 of the mixing zone includes spatlal pr(_)flles of denS|ty,
Israel. E-mail: yair_srebro@hotmail.com temperature, and pressure of every material, as well as the
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degree of mixing. The feedback to the simulation of the 1D contact surface rarclaction wave
flow is done by transferring mass, momentum, and energy meident shoek
due to the mixing between the materials. The model shoulc - . S - ‘

describe all instability stages. General hydrodynamic insta-
bilities include many complicated effects, such as general
acceleration profiles, various geometrigganar, cylindri-
cal, and spherical compressibility, ablative flow, density
gradients, and heat conduction. Moreover the dimensional
ity of the perturbations may be two-dimensionaD) or
three-dimensional3D). This paper describes a model that
integrates most of these effects, and suggests means of tree
ing some of the further effects.

Section 2 describes new shock-tube experiments, con
ducted to measure the evolution of a mix region from a ran-
dom perturbation. Section 3 describes numerical simulations, _ _ _ o
-ig. 1. Frames from the experiment at various times. The initial shock

which attemptto repmduce the expenmental results. In Sec'{/:vave travels from the air on the left into the 3#h the right. The end wall

tion 41 the buoyancy__drag model !S desgrlbed, Its Ya“d'ty ISis to the right of the right edge of the frames. The dark region around the
confirmed by comparison to the simulations, and its resultgontact surface is the turbulent mixing zone.

are compared to the shock-tube experimental results. Sec-
tion 5 summarizes the results and presents suggestions for
the modification of the model for more general problems.

e

developed around it can clearly be seen as the dark region.
5 SHOCK-TUBE EXPERIMENTS T_he various shock waves can also be seen as the thin black
lines. Behind the planar shock waves, a set of shock waves

The mixing front growth was investigated experimentally in reflected from the tube walls can be seen.
shock-tube experiments, following those published by Erez
et al. (2000. A 5.5-m-long horizontal doyble-d|aphragm 3. NUMERICAL SIMULATIONS
shock tube with an 8 cnx 8 cm cross section was used to
generate a 1.2 Mach number shock wave passing from air td/e have performed 2D numerical simulations of multimode
SFs (A= 0.7). Athin membrane was placed to separate theperturbations with LEEOR2D to describe the turbulent mix-
two gases initially. Upon the incidence of the shock wave,ng in the experiments. Hydrodynamic simulations without
the interface becomes RM unstable. An end wall placed at &urther mixing models are only capable of reproducing phe-
distance of 18 cm from the interface reflects the shock to hinomena on a length scale larger than their mesh size. It is
the interface again and to induce a second RM instabilityimpractical to describe all the turbulent length scales in such
Later on, the interface becomes RT unstable when the raa simulation. However, since large structures determine the
efaction wave, returning from the end wall, starts acceleratevolution of the mixing zone envelope, it is sufficient to
ing the interface. resolve them in the numerical simulation. The initial pertur-

The evolution of the shock-wave-induced mixing zonebation in the simulations includes mode numbers 40—60
was measured by recording a series of Schlieren photalong the 8-cm width of the shock tube, leaving mode num-
graphs using a Nd:YAG frequency doubled laser pulsed abers lower than 40 vacant for creation from smaller struc-
intervals of about 4Qus and a shutterless rotating-prism tures through bubble coalescence. This initial perturbation
camera. The Schlieren system measures gradients in ttlspectrum has an average wavelengthwf= 0.32 cm and a
index of refraction in the gas. Therefore, material interfacesoot-mean-square total amplitude lof= 0.064 cm, which
as well as density discontinuities along shock waves appearorresponds td/(A) = 0.2. The results were found to be
as dark lines. The 3D turbulent mixing zone is comprised ofinsensitive to the numerical resolution by comparing a sim-
complex structures of different sizes; hence the whole mixulation with 320 cells in the lateral direction to one with 160.
ing region appears as a dark region in the photographs achese simulations describe the shortest wavelength using
well. The extent of the turbulent mixing zone was deducedoughly 10 and 5 cells, respectively.
from the photographs using a computerized image analysis, The simulation results are displayed in Figure 2, where
described by Erez et al2000. Several experiments with features similar to those found experimentally may be ob-
the same experimental setup have been repeated in orderderved. Another feature observed in the simulations is the
check the reproducibility of the mixing zone measurementcoalescence of small bubbles into larger structures, which
These measurements are compared to the buoyancy—dragl enable us to use the assumption of self-similarity for the
model in Section 4see Fig. 4. asymptotic stage. Moreover, the periodicity of bubbles and

Figure 1 displays typical frames from the experiment.spikes is similar, which will enable us to use the same typ-
The contact surface together with the mixing zone beingcal wavelength{A), for both bubbles and spikes.
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scribe their behavior. Moreover, the RM instability evolu-
end tion depends on the initial conditions, and these should be
wall ™ changed to achieve agreement with the experimental re-

¥ shock sults. This will require performing many multimode simu-
Air & SF, o - lations. The multimode simulations do notinclude structures
&
g
=

smaller than the computational mesh; hence they have a
quite ordered perturbation that will exhibit a phase reversal
t=0.5ms j upon the reshocking of the interface. In reality, the mixing
zone includes complex structures of all sizes, down to the
molecular level, and demixing and phase reversal is not
expected to occur.

density
3
gricm” |

4. ABUOYANCY-DRAG MODEL

t=1.5ms

4.1. Existing models

v In the case of a single-mode perturbation, we assume that a

. periodic perturbation of wavelength is imposed on the
interface. The wave-vector is defined ks= 27/A. The
amplitude of the lighter fluid bubbles penetrating the heavier
fluid is defined asg, and its derivative asg = dhg/dt. The
amplitude of the heavier fluid spikes penetrating the lighter
fluid is defined ashg, and its derivative ass = dhg/dt.

For an infinite density ratid A = 1) the perturbation

evolution may be described by a potential flow model. Fol-
lowing Layzer(1955 and Hechet al. (1994 we assume a
single-mode perturbation and expand the flow equations to
second order around the bubble tips, hence obtaining an

(=2.2ms ordinary differential equation for the bubble velocity:

c

2
7T >'_B, E = g 3khs
A

du 1-E
Fig. 2. Density maps from the 2D multimode simulation of the experiment. 2D: 2 = ( )-g(t) - <2 T E

dt \2+E

c

o dus  (1-E 2 2 o

We analyze the simulations by averaging the volume frac-3P" 5~ = (m> -g(t) — (E)T E=e""%, (1)
tion of every one of the gases along the mixing region. The
bubble and spike locations are defined where the volumevhereg(t) is the time-dependent interface acceleration.
fraction of the air reaches 1% and 99%, respectively. Their The resulting model describes all instability stages—it is
heights are defined as the distance between these locatioosrrect for small amplitudes up to third order and in the
and the instantaneous location of the unperturbed interfac@symptotic stage. It is valid for a general acceleration pro-
The resulting bubble and spike heights were not very sensfile. However, it is limited toA = 1 and to single-mode
tive to cutting off the volume fraction distribution at differ- perturbations.
ent percentages. A 3% reduction for the bubbles and a 7% At late times, wherkhg increases: approaches zero and
reduction for the spikes were attained when defining withthe Layzer model equation may be written as
5% and 95% of the volume fraction. A 9% reduction for the

bubbles and a 19% reduction for the spikes were attained dug u3

when defining with 10% and 90% of the volume fraction. Cap 5 = P9 —Cap ., 2
Therefore, we may use the simulations’ results up to an

accuracy of a few percent. whereC, =2 (2D), 1(3D), andCy = 67 (2D), 27 (3D). The

It is difficult to compare quantitatively between the sim- left-hand side of the equation describes the inertia of the
ulations and the experimental results; therefore we comparadded mass—the mass of the heavy fluid, pushed by the
the experimental results only to the buoyancy—drag modelising bubbles. The right-hand side of the equation includes
that will be described in the following section. The experi- the buoyancy force and the drag force acting on the bubble.
ments are 3D, and the different behavior of the RM instabil-This buoyancy—drag equation may now be generalized for
ity in 2D versus 3D requires 3D simulations. Because theevery density ratio. Following Aloet al. (1995, Dimonte
spikes are narrower, high resolutions are required to de2000, Chenget al. (2000, Arazi (2001), and Oronet al.
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(2001, we add the bubble’s inertia to the added mass'peaked spectra. This is usually the case, because random
inertia and change the buoyancy term to include the densityioise initial perturbations do not have singular lines, and

difference: during the self-similar stage an asymptotic spectrum is
achieved. We identify the full spectrum of perturbations

dug u3 with an equivalent single-mode perturbation, which grows

WﬁcﬁpZ)E :(pz—pl)g(t)—CdeT. @) according to the single-mode model described above

(Eq. (5)). The multimode spectrum of perturbations is de-
An equation for the spikes is obtained by substituppp@nd  scribed by its characteristic wavelength). Initially (A) is

p»in the inertia term and in the drag term: set to be the wavelength of the most dominant mode in the
spectrum. During the linear stagg\) is not changed with

dug u3 time. In the asymptotic stage, the mixing fronts behave self-

(p2+Capr) i = (p2 = p)O() = Caps . @ similarly. As the amplitude grows, the wavelength charac-

terizing the perturbation grows, and the ratio between the
These equations, witi, andC, taken from Layzer’s model average amplitude and the average wavelength remains con-
for A = 1, describe correctly the asymptotic stage for astant:hgz/{A) = b(A). The dependend® A) has been inves-
general acceleration profile and for a general density ratictigated experimentally by Dimonte and Schneid2000
and theoretically by Arazi2001) and Ororet al. (2001). To
reproduce théng = agAgt? behavior withag = 0.05 for
constant acceleration RT instability we chobse 0.5/(1 +
For single-mode perturbations, we may use the Layzer mode) for 2D andb = 1.6/(1 + A) for 3D, similar to the Atwood-
for A= 1 and all instability stages, and the buoyancy—dragiependent functions given by Hansom et(4B90. Note
model for the asymptotic stage at evékyWe would now  that in order to reproduce the RM ~ t? behavior withd =
want to expand the validity of the buoyancy—drag model to0.4 in 2D and9 = 0.25 in 3D, different functions should be
all instability stages so that it will coincide with the Layzer used forb(A). We changéa) as
model asA approaches one. We add the amplitude depen-
dence through the paramet(t) = e k" whereC,=3 { 0 hg<{(A)b(A

4.2. Model description

(2D), 2 (3D). And we write the buoyancy—drag equations as ) Ug 7)
dt hg > (A)b(A)

b(A)

There is a sharp transition g = (A)-b(A) from the linear
stage, wherg\) is not changed, to the asymptotic stage,

dug
((CaE(t) + D)py + (Ca+ E(1)pa) 2

2

= (1—E®)(ps— p1)g(t) — Cqpo us where self-similarity is assumed. This differential equation
A for (A) is coupled to Eq(5), which describes the evolution
du of hg andhs. As pointed out by Aloret al. (1999, and as
((CaE(t) + 1) py + (Ca+ E(t) p1) — observed in the simulations presented in the previous sec-
dt tion, the spikes and bubbles have the same periodicity be-
u2 cause the dominant bubbles generate the dominant spikes.
=(1-EM)(p2—p1)9(t) = Capa % (5)  We assume the same periodicity for the bubbles and the

spikes, and hence may use a single wavelength for both of

It is evident that a approaches one, this model coincidest€ equations in Eq5). _
with the Layzer modelEq. (1)) for all instability stages, and ~_1he model we have built describes the growth of the
that for the asymptotic stage, whéhg is large ancE ap- mixing fronts for a multimode perturbation and for a general

proaches zero, it coincides with the buoyancy—drag modefcceleration profile. In the linear stage, it reproduces the
(Egs. (3) and (4)) for all Atwood numbers. In the linear theoretical behavior, because the equations are equivalent to

stage, when expanding E@) to first order inkhg, we attain (1) = Akgh(t). During the early nonlinear stage, it co-
the general acceleration linear stage solution for all Atwood"cides with the Layzer model #sapproaches one; hence it

numbers, which is symmetric for bubbles and spikes: is correct to third order. In the asymptotic stage, it coincides
with the buoyancy—drag equations for evékyHowever,

dug the model is limited to planar geometry and to incompress-
o Akhgg(t) ible flow.
The RT instability occurs only fogA > 0, whereas for

Us gA < 0 the interface is stable. Theoretically, stable inter-

dat Akhsg(t). 6) faces exhibit oscillations in perturbation amplitudes. This is
probably the case only for ordered perturbations comprised

To describe the evolution of a multimode perturbation weof a small number of mode numbers. For turbulent mixing
limit ourselves to perturbations that have smooth non-where an infinite number of modes is present, demixing is
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not expected to occufHansomet al, 1990; hence we numerical simulation to describe the thin spikes. When the
increase the bubble’s and spike’s amplitudes according teimulation’s resolution was increased, the spikes’ envelope
Eq. (5) only whengA > 0 and do not decrease them when approached the model result.

gA < 0. The RM instability, on the other hand, occurs also
for_gA< 0.Whena sho_ckwave passes froma heavy_flmd 1% 4. Comparison between model and experiments

a lighter one, the amplitude of an ordered perturbation will

decrease, but will then grow in an unstable manner aftePue to the 3D nature of the experiments, they are compared
reversing its phase. Since we assume there is no demixirtg the 3D version of the modélith Cy = 27, C;=1,C. =

for the turbulent flows under consideration in this article, 2, andb = 1.6/(1 + A)). Due to the difficulty in defining the

we do not include this phase reversal phenomenon in thenperturbed interface and due to the increased error in sub-
model. For the model to describe all RM instability cases tracting two measured numbers, we compare the total width
we take the absolute value gfA. This is done only for of the mixing zonehg + hs, which is easier and more
problems that have a RM-dominated acceleration temporaiccurate to measure. We do not have information about the
history. initial perturbation; therefore we varied botiA) and h,

In compressible flow, the density may depend on locatiorassuminghg = hs. For every value of A), various initial
and on time. This is taken into account by defining theamplitudes were checked until the model result agreed with
Atwood number by using the average densities of every onghe RM evolution after the first shock. The result of this
of the materials in the mixing zone. If there is a 1D flow in fitting is displayed in Figure 4 for two initial wavelengths.
the proximity of the bubbles or spikes, the 1D flow velocity An initial value of (A) = 0.05 cm anch = 0.06 cm best
should be added to the velocity at which the mixing zonematches the experimental results. For shorter wavelengths,
grows. Following Hansonet al. (1990, we changalg to  the amplitude required to fit the experimental results is very
Ug + U;p(hg) andus to us + u;p(hs), whereu;p(hg) and  large—much larger than the wavelength, which does not
u;p(hs) are the 1D velocities at the locations of the bubblesseem reasonable to exist on the membrane. For longer wave-
and at the location of the spikes, respectively. lengths, small initial amplitudes are required and the growth
is dominated by the linear regime, resulting in a larger scal-
ing exponent, as can be observed in Figure 4.

The two separate experiments seem to behave similarly,
The 2D version of the modelith Cy = 67,C,=2,C.=3, implying their initial conditions were similar. The model
andb = 0.5/(1 + A)) was compared to the 2D multimode reproduces the growth after the first shock as well as the
simulation with the same initidhg, hs, and(A). A good  growth after the reshock; however, the details of the growth
agreement for the bubbles’location and a reasonable agreafter the reshock are different. This may be attributed to the
ment for the spikes’location can be seen in Figure 3 after th@hase reversal of the perturbation when the reflected shock
first shock, after the reshock, and for the acceleration at latehnits the perturbed interface. The effect occurs in the exper-
times. The difference between simulation and model foimentandisincluded inthe simulations, but is not taken into
the spikes’ location is probably due to limited ability of the account in the model.

4.3. Comparison between model and simulations

(W]

3D: 2=0.5¢m

: : : . :
: - [ #723D: A=0.05¢m

X [cm]
S

B

h_+h_ [cm]

o 05 1 15 2 25 3 35 %

L [ms]

Fig. 3. x-t diagram of the interface from a 1D simulatitdotted ling and Fig. 4. Size of the mixing zone versus time from two experimeirigin-
of the bubble and spike envelope from the 2D multimode simulgsohd gles and circlescompared to the result of the 2D and 3D mix models for
lines) and from the 2D mix modegldashed lines different initial values of A).
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The agreement with the experimental results is quantifieditnd RM, such as gA < 0 shock wave during gA < 0
by the parametef in theh ~ t asymptotic RM behavior. continuous acceleration.
Experimentallyp = 0.24 for the growth after the firstshock,  The influence of further effects, such as ablation, density
and the model with\ = 0.05 cm results i@ = 0.29, while  gradients, and heat conduction on the linear growth rates is
when starting withh = 0.5 cm,§ = 0.77. After the reshock, known. Oron et al(1998 found that the influence on the
the mixing zone evolves from an existing mixing zone andasymptotic single-mode evolution is similar and can be ap-
not from a negligible perturbation like in the case of the firstproximately derived from it. Knowing this, it is simple to
shock; therefore its growth is fitted i@ — t)?. After the  incorporate these effects into the buoyancy—drag model in a
reshock, the experimental mixing zone grows with 0.93,  phenomenological manner.
while the model predict®¢ = 0.77 for all initial wavelengths.
This growth is faster than the initial growth, both for the
experiment and the model. Even though a self-similar mix-2- CONCLUSIONS

ing zone has already been established during the RM instax model based on considerations of buoyancy and drag,
bility after the first shock, the post reshock growth begins,gjig only for the asymptotic stage, has been extended to all
with an existing velocity and not only with a perturbation jnstapility stages. The evolution of a multimode spectrum of
amplitude. Shortly after the reshock, the instability growSpertyurbations from a short wavelength random noise is de-
faster than the self-similar scaling law. The experiment probxcriped using a single characteristic wavelength. The tem-
ably does not allow enough time for the mixing zone 10 yora| evolution of this wavelength allows the description of
return to its self-similar behavior. both the linear stage and the late time self-similar behavior.
The difference between the 3D model and the 2D modefrne model is coupled to the 1D Lagrangian flow in the

may be seen in Figure 4. In 2D far=0.05cm,6 = 0.32  roximity of the bubbles and the spikes. Good agreement
after the first shock anéd = 0.8 after the reshock. Due to the \y35 found in comparing the 2D model to 2D multimode
lack of information about the initial conditions in the exper- numerical simulations. When comparing the 3D model to
iment and due to the degree of agreement with the experishock-tube experiments of random perturbations, the initial
mental results, it is difficult to distinguish between 3D pertyrbation had to be selected for the result to fit the exper-
behavior and 2D behavior. We suggest using the 3D modgnental result. Similar scaling laws were found after the first
because of the 3D nature of the experimental setup and n@hock: however the experimental mixing zone grew faster
because of a better agreement with the experimental resultg,5y the theoretical prediction.
The model is valid for general acceleration profiles, for

4.5. Extensions to the model compressible flows, and for both 2D and 3D perturbations.

] ) ) ) Extensions of the model for more complicated flows, includ-
The model is valid for general acceleration profiles, for

: - 'YYing spherical or cylindrical geometries, ablation, density
compressible flows, and for both 2D and 3D perturbations radients, and heat conduction have been suggested.
The model may simply be extended to more complicateag
flows. Nonplanar geometry introduces two effects, which
have been pointed out by B&l1951) and by Plessdtl954).
When the radius of the system changes, all length scales The authors would like to thank D. Oron for his helpful remarks
change as well. When the radius is reduced, the radial lengtturing the preparation of this article.
scales increase and the azimuthal length scales decrease.

The change of length scales in the radial direciiampli-
tudegisincludedinthe 1D coupling to the Lagrangian flow.
The change of length scales in the azimuthal diredticave- ALON, U., SHVARTS, D. & MUKAMEL, D. (1993. Scale invariant

length may be described by modifying the equation gov-  regime in Rayleigh-Taylor bubble-front dynamihys. Rev.
erning(A) (Eq.(7)). Ageometric term is then added to this  E 48 1008-1014.
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