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Abstract

The growth of a single-mode perturbation is described by a buoyancy–drag equation, which describes all instability
stages~linear, nonlinear and asymptotic! at time-dependent Atwood number and acceleration profile. The evolution of
a multimode spectrum of perturbations from a short wavelength random noise is described using a single characteristic
wavelength. The temporal evolution of this wavelength allows the description of both the linear stage and the late time
self-similar behavior. Model results are compared to full two-dimensional numerical simulations and shock-tube
experiments of random perturbations, studying the various stages of the evolution. Extensions to the model for more
complicated flows are suggested.
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1. INTRODUCTION

The Rayleigh–Taylor~RT! instability occurs on the inter-
face between two fluids when an acceleration is directed
from the heavy to the light, or, in general, when the pressure
gradient is in the opposite direction to the density gradient.
The Richtmyer–Meshkov~RM! instability occurs when a
shock wave passes through the interface between the two
fluids. Small perturbations on unstable interfaces grow with
time into a turbulent mixing zone. The evolution of a mixing
zone starts from a random perturbation present due to noise
and nonuniformities in the system. The multimode spectrum
of short-wavelength perturbations evolves into larger
structures through an inverse cascade process. Competition
and coalescence of large coherent structures drive this pro-
cess, because of the reduced drag per unit volume of large
structures.

It is customary to investigate the instability between two
semi-infinite fluids of densitiesr1 andr2 in a uniform ac-
celeration field perpendicular to the interface. The Atwood
number is then defined asA5 ~ r2 2 r1!0~ r2 1 r1!. Layzer
~1955! solved the problem of a single bubble rising in a
heavy fluid by means of a potential flow model, valid for all

instability stages from the linear stage through the early
nonlinear to the asymptotic, but limited toA51. This model
has been extended into a class of buoyancy–drag models
valid for everyA, but limited to the nonlinear stages of the
instability~Alon et al., 1995;Arazi, 2001; Oronet al., 2001!.
These models will be described in more detail in Section 4.
Goncharov~2002! has recently presented an extension of
the single-mode model to all density ratios.Alonet al.~1993!
used a statistical bubble merger model to investigate the
self-similar evolution of the mixing zone. Youngs~1984!,
Freedet al. ~1991! and Alon and Shvarts~1995! applied a
two-phase flow model for describing the interpenetration of
the two fluids. The evolution of a turbulent mixing zone
from a random initial perturbation has been studied experi-
mentally by Dimonte and Schneider~2000!. Shock-tube ex-
periments were conducted and compared to diffusion-like
turbulence models~Andronov et al., 1976; Brouillette &
Sturtevant, 1989; Gauthier & Bonnet, 1990!.

An effective mix model should describe the mixing based
on the one-dimensional~1D! flow. This description includes
the mix region boundaries, as well as its internal structure.
Turbulent mixing is coupled to the 1D flow and affects it.
Hence a good model should include a feedback to the sim-
ulation of the 1D flow. The description of the internal struc-
ture of the mixing zone includes spatial profiles of density,
temperature, and pressure of every material, as well as the
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degree of mixing. The feedback to the simulation of the 1D
flow is done by transferring mass, momentum, and energy
due to the mixing between the materials. The model should
describe all instability stages. General hydrodynamic insta-
bilities include many complicated effects, such as general
acceleration profiles, various geometries~planar, cylindri-
cal, and spherical!, compressibility, ablative flow, density
gradients, and heat conduction. Moreover the dimensional-
ity of the perturbations may be two-dimensional~2D! or
three-dimensional~3D!. This paper describes a model that
integrates most of these effects, and suggests means of treat-
ing some of the further effects.

Section 2 describes new shock-tube experiments, con-
ducted to measure the evolution of a mix region from a ran-
dom perturbation. Section 3 describes numerical simulations,
which attempt to reproduce the experimental results. In Sec-
tion 4, the buoyancy–drag model is described, its validity is
confirmed by comparison to the simulations, and its results
are compared to the shock-tube experimental results. Sec-
tion 5 summarizes the results and presents suggestions for
the modification of the model for more general problems.

2. SHOCK-TUBE EXPERIMENTS

The mixing front growth was investigated experimentally in
shock-tube experiments, following those published by Erez
et al. ~2000!. A 5.5-m-long horizontal double-diaphragm
shock tube with an 8 cm3 8 cm cross section was used to
generate a 1.2 Mach number shock wave passing from air to
SF6 ~A 5 0.7!. A thin membrane was placed to separate the
two gases initially. Upon the incidence of the shock wave,
the interface becomes RM unstable. An end wall placed at a
distance of 18 cm from the interface reflects the shock to hit
the interface again and to induce a second RM instability.
Later on, the interface becomes RT unstable when the rar-
efaction wave, returning from the end wall, starts accelerat-
ing the interface.

The evolution of the shock-wave-induced mixing zone
was measured by recording a series of Schlieren photo-
graphs using a Nd:YAG frequency doubled laser pulsed at
intervals of about 40ms and a shutterless rotating-prism
camera. The Schlieren system measures gradients in the
index of refraction in the gas. Therefore, material interfaces
as well as density discontinuities along shock waves appear
as dark lines. The 3D turbulent mixing zone is comprised of
complex structures of different sizes; hence the whole mix-
ing region appears as a dark region in the photographs as
well. The extent of the turbulent mixing zone was deduced
from the photographs using a computerized image analysis,
described by Erez et al.~2000!. Several experiments with
the same experimental setup have been repeated in order to
check the reproducibility of the mixing zone measurement.
These measurements are compared to the buoyancy–drag
model in Section 4~see Fig. 4!.

Figure 1 displays typical frames from the experiment.
The contact surface together with the mixing zone being

developed around it can clearly be seen as the dark region.
The various shock waves can also be seen as the thin black
lines. Behind the planar shock waves, a set of shock waves
reflected from the tube walls can be seen.

3. NUMERICAL SIMULATIONS

We have performed 2D numerical simulations of multimode
perturbations with LEEOR2D to describe the turbulent mix-
ing in the experiments. Hydrodynamic simulations without
further mixing models are only capable of reproducing phe-
nomena on a length scale larger than their mesh size. It is
impractical to describe all the turbulent length scales in such
a simulation. However, since large structures determine the
evolution of the mixing zone envelope, it is sufficient to
resolve them in the numerical simulation. The initial pertur-
bation in the simulations includes mode numbers 40–60
along the 8-cm width of the shock tube, leaving mode num-
bers lower than 40 vacant for creation from smaller struc-
tures through bubble coalescence. This initial perturbation
spectrum has an average wavelength of^l& 5 0.32 cm and a
root-mean-square total amplitude ofh 5 0.064 cm, which
corresponds toh0^l& 5 0.2. The results were found to be
insensitive to the numerical resolution by comparing a sim-
ulation with 320 cells in the lateral direction to one with 160.
These simulations describe the shortest wavelength using
roughly 10 and 5 cells, respectively.

The simulation results are displayed in Figure 2, where
features similar to those found experimentally may be ob-
served. Another feature observed in the simulations is the
coalescence of small bubbles into larger structures, which
will enable us to use the assumption of self-similarity for the
asymptotic stage. Moreover, the periodicity of bubbles and
spikes is similar, which will enable us to use the same typ-
ical wavelength,̂l&, for both bubbles and spikes.

Fig. 1. Frames from the experiment at various times. The initial shock
wave travels from the air on the left into the SF6 on the right. The end wall
is to the right of the right edge of the frames. The dark region around the
contact surface is the turbulent mixing zone.
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We analyze the simulations by averaging the volume frac-
tion of every one of the gases along the mixing region. The
bubble and spike locations are defined where the volume
fraction of the air reaches 1% and 99%, respectively. Their
heights are defined as the distance between these locations
and the instantaneous location of the unperturbed interface.
The resulting bubble and spike heights were not very sensi-
tive to cutting off the volume fraction distribution at differ-
ent percentages. A 3% reduction for the bubbles and a 7%
reduction for the spikes were attained when defining with
5% and 95% of the volume fraction. A 9% reduction for the
bubbles and a 19% reduction for the spikes were attained
when defining with 10% and 90% of the volume fraction.
Therefore, we may use the simulations’ results up to an
accuracy of a few percent.

It is difficult to compare quantitatively between the sim-
ulations and the experimental results; therefore we compare
the experimental results only to the buoyancy–drag model
that will be described in the following section. The experi-
ments are 3D, and the different behavior of the RM instabil-
ity in 2D versus 3D requires 3D simulations. Because the
spikes are narrower, high resolutions are required to de-

scribe their behavior. Moreover, the RM instability evolu-
tion depends on the initial conditions, and these should be
changed to achieve agreement with the experimental re-
sults. This will require performing many multimode simu-
lations. The multimode simulations do not include structures
smaller than the computational mesh; hence they have a
quite ordered perturbation that will exhibit a phase reversal
upon the reshocking of the interface. In reality, the mixing
zone includes complex structures of all sizes, down to the
molecular level, and demixing and phase reversal is not
expected to occur.

4. A BUOYANCY–DRAG MODEL

4.1. Existing models

In the case of a single-mode perturbation, we assume that a
periodic perturbation of wavelengthl is imposed on the
interface. The wave-vector is defined ask 5 2p0l. The
amplitude of the lighter fluid bubbles penetrating the heavier
fluid is defined ashB, and its derivative asuB 5 dhB0dt. The
amplitude of the heavier fluid spikes penetrating the lighter
fluid is defined ashS, and its derivative asuS 5 dhS0dt.

For an infinite density ratio~A 5 1! the perturbation
evolution may be described by a potential flow model. Fol-
lowing Layzer~1955! and Hechtet al. ~1994! we assume a
single-mode perturbation and expand the flow equations to
second order around the bubble tips, hence obtaining an
ordinary differential equation for the bubble velocity:

2D:
duB

dt
5 S 12 E

2 1 E
D{g~t ! 2 S 6p

2 1 E
D{

uB
2

l
, E 5 e23khB

3D:
duB

dt
5 S 12 E

11 E
D{g~t ! 2 S 2p

11 E
D{

uB
2

l
, E 5 e22khB, ~1!

whereg~t ! is the time-dependent interface acceleration.
The resulting model describes all instability stages—it is

correct for small amplitudes up to third order and in the
asymptotic stage. It is valid for a general acceleration pro-
file. However, it is limited toA 5 1 and to single-mode
perturbations.

At late times, whenkhB increases,E approaches zero and
the Layzer model equation may be written as

Ca r
duB

dt
5 rg~t ! 2 Cd r

uB
2

l
, ~2!

whereCa52 ~2D!, 1 ~3D!, andCd 56p ~2D!, 2p ~3D!. The
left-hand side of the equation describes the inertia of the
added mass—the mass of the heavy fluid, pushed by the
rising bubbles. The right-hand side of the equation includes
the buoyancy force and the drag force acting on the bubble.
This buoyancy–drag equation may now be generalized for
every density ratio. Following Alonet al. ~1995!, Dimonte
~2000!, Chenget al. ~2000!, Arazi ~2001!, and Oronet al.

Fig. 2. Density maps from the 2D multimode simulation of the experiment.
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~2001!, we add the bubble’s inertia to the added mass’s
inertia and change the buoyancy term to include the density
difference:

~ r1 1 Ca r2!
duB

dt
5 ~ r2 2 r1!g~t ! 2 Cd r2

uB
2

l
. ~3!

An equation for the spikes is obtained by substitutingr1 and
r2 in the inertia term and in the drag term:

~ r2 1 Ca r1!
duS

dt
5 ~ r2 2 r1!g~t ! 2 Cd r1

uS
2

l
. ~4!

These equations, withCa andCd taken from Layzer’s model
for A 5 1, describe correctly the asymptotic stage for a
general acceleration profile and for a general density ratio.

4.2. Model description

For single-mode perturbations, we may use the Layzer model
for A 5 1 and all instability stages, and the buoyancy–drag
model for the asymptotic stage at everyA. We would now
want to expand the validity of the buoyancy–drag model to
all instability stages so that it will coincide with the Layzer
model asA approaches one. We add the amplitude depen-
dence through the parameterE~t ! 5 e2Ce{k{hB, whereCe5 3
~2D!, 2 ~3D!. And we write the buoyancy–drag equations as

~~Ca E~t ! 1 1!r1 1 ~Ca 1 E~t !!r2!
duB

dt

5 ~12 E~t !!~ r2 2 r1!g~t ! 2 Cd r2

uB
2

l

~~Ca E~t ! 1 1!r2 1 ~Ca 1 E~t !!r1!
duS

dt

5 ~12 E~t !!~ r2 2 r1!g~t ! 2 Cd r1

uS
2

l
. ~5!

It is evident that asA approaches one, this model coincides
with the Layzer model~Eq.~1!! for all instability stages, and
that for the asymptotic stage, whenkhB is large andE ap-
proaches zero, it coincides with the buoyancy–drag model
~Eqs. ~3! and ~4!! for all Atwood numbers. In the linear
stage, when expanding Eq.~5! to first order inkhB, we attain
the general acceleration linear stage solution for all Atwood
numbers, which is symmetric for bubbles and spikes:

duB

dt
5 AkhBg~t !

duS

dt
5 AkhSg~t !. ~6!

To describe the evolution of a multimode perturbation we
limit ourselves to perturbations that have smooth non-

peaked spectra. This is usually the case, because random
noise initial perturbations do not have singular lines, and
during the self-similar stage an asymptotic spectrum is
achieved. We identify the full spectrum of perturbations
with an equivalent single-mode perturbation, which grows
according to the single-mode model described above
~Eq. ~5!!. The multimode spectrum of perturbations is de-
scribed by its characteristic wavelength,^l&. Initially ^l& is
set to be the wavelength of the most dominant mode in the
spectrum. During the linear stage,^l& is not changed with
time. In the asymptotic stage, the mixing fronts behave self-
similarly. As the amplitude grows, the wavelength charac-
terizing the perturbation grows, and the ratio between the
average amplitude and the average wavelength remains con-
stant:hB0^l& 5 b~A!. The dependenceb~A! has been inves-
tigated experimentally by Dimonte and Schneider~2000!
and theoretically by Arazi~2001! and Oronet al. ~2001!. To
reproduce thehB 5 aBAgt2 behavior withaB 5 0.05 for
constant acceleration RT instability we chooseb5 0.50~11
A! for 2D andb51.60~11 A! for 3D, similar to the Atwood-
dependent functions given by Hansom et al.~1990!. Note
that in order to reproduce the RMhB; t u behavior withu 5
0.4 in 2D andu 5 0.25 in 3D, different functions should be
used forb~A!. We changêl& as

d^l&

dt *
mix

5 H 0 hB , ^l&b~A!

uB

b~A!
hB . ^l&b~A!

~7!

There is a sharp transition athB 5 ^l&{b~A! from the linear
stage, wherêl& is not changed, to the asymptotic stage,
where self-similarity is assumed. This differential equation
for ^l& is coupled to Eq.~5!, which describes the evolution
of hB andhS. As pointed out by Alonet al. ~1995!, and as
observed in the simulations presented in the previous sec-
tion, the spikes and bubbles have the same periodicity be-
cause the dominant bubbles generate the dominant spikes.
We assume the same periodicity for the bubbles and the
spikes, and hence may use a single wavelength for both of
the equations in Eq.~5!.

The model we have built describes the growth of the
mixing fronts for a multimode perturbation and for a general
acceleration profile. In the linear stage, it reproduces the
theoretical behavior, because the equations are equivalent to
\h~t ! 5 Akgh~t !. During the early nonlinear stage, it co-

incides with the Layzer model asA approaches one; hence it
is correct to third order. In the asymptotic stage, it coincides
with the buoyancy–drag equations for everyA. However,
the model is limited to planar geometry and to incompress-
ible flow.

The RT instability occurs only forgA . 0, whereas for
gA , 0 the interface is stable. Theoretically, stable inter-
faces exhibit oscillations in perturbation amplitudes. This is
probably the case only for ordered perturbations comprised
of a small number of mode numbers. For turbulent mixing
where an infinite number of modes is present, demixing is
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not expected to occur~Hansomet al., 1990!; hence we
increase the bubble’s and spike’s amplitudes according to
Eq. ~5! only whengA . 0 and do not decrease them when
gA , 0. The RM instability, on the other hand, occurs also
for gA, 0. When a shock wave passes from a heavy fluid to
a lighter one, the amplitude of an ordered perturbation will
decrease, but will then grow in an unstable manner after
reversing its phase. Since we assume there is no demixing
for the turbulent flows under consideration in this article,
we do not include this phase reversal phenomenon in the
model. For the model to describe all RM instability cases,
we take the absolute value ofgA. This is done only for
problems that have a RM-dominated acceleration temporal
history.

In compressible flow, the density may depend on location
and on time. This is taken into account by defining the
Atwood number by using the average densities of every one
of the materials in the mixing zone. If there is a 1D flow in
the proximity of the bubbles or spikes, the 1D flow velocity
should be added to the velocity at which the mixing zone
grows. Following Hansomet al. ~1990!, we changeuB to
uB 1 u1D~hB! anduS to uS 1 u1D~hS!, whereu1D~hB! and
u1D~hS! are the 1D velocities at the locations of the bubbles
and at the location of the spikes, respectively.

4.3. Comparison between model and simulations

The 2D version of the model~with Cd 5 6p, Ca5 2,Ce5 3,
andb 5 0.50~1 1 A!! was compared to the 2D multimode
simulation with the same initialhB, hS, and ^l&. A good
agreement for the bubbles’ location and a reasonable agree-
ment for the spikes’ location can be seen in Figure 3 after the
first shock, after the reshock, and for the acceleration at later
times. The difference between simulation and model for
the spikes’ location is probably due to limited ability of the

numerical simulation to describe the thin spikes. When the
simulation’s resolution was increased, the spikes’ envelope
approached the model result.

4.4. Comparison between model and experiments

Due to the 3D nature of the experiments, they are compared
to the 3D version of the model~with Cd 5 2p, Ca 51, Ce5
2, andb51.60~11 A!!. Due to the difficulty in defining the
unperturbed interface and due to the increased error in sub-
tracting two measured numbers, we compare the total width
of the mixing zone,hB 1 hS, which is easier and more
accurate to measure. We do not have information about the
initial perturbation; therefore we varied both^l& and h,
assuminghB 5 hS. For every value of̂ l&, various initial
amplitudes were checked until the model result agreed with
the RM evolution after the first shock. The result of this
fitting is displayed in Figure 4 for two initial wavelengths.
An initial value of ^l& 5 0.05 cm andh 5 0.06 cm best
matches the experimental results. For shorter wavelengths,
the amplitude required to fit the experimental results is very
large—much larger than the wavelength, which does not
seem reasonable to exist on the membrane. For longer wave-
lengths, small initial amplitudes are required and the growth
is dominated by the linear regime, resulting in a larger scal-
ing exponent, as can be observed in Figure 4.

The two separate experiments seem to behave similarly,
implying their initial conditions were similar. The model
reproduces the growth after the first shock as well as the
growth after the reshock; however, the details of the growth
after the reshock are different. This may be attributed to the
phase reversal of the perturbation when the reflected shock
hits the perturbed interface. The effect occurs in the exper-
iment and is included in the simulations, but is not taken into
account in the model.

Fig. 3. x–t diagram of the interface from a 1D simulation~dotted line! and
of the bubble and spike envelope from the 2D multimode simulation~solid
lines! and from the 2D mix model~dashed lines!.

Fig. 4. Size of the mixing zone versus time from two experiments~trian-
gles and circles! compared to the result of the 2D and 3D mix models for
different initial values of̂ l&.
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The agreement with the experimental results is quantified
by the parameteru in theh ; t u asymptotic RM behavior.
Experimentally,u50.24 for the growth after the first shock,
and the model withl 5 0.05 cm results inu 5 0.29, while
when starting withl 5 0.5 cm,u 5 0.77. After the reshock,
the mixing zone evolves from an existing mixing zone and
not from a negligible perturbation like in the case of the first
shock; therefore its growth is fitted to~t 2 t0!u. After the
reshock, the experimental mixing zone grows withu50.93,
while the model predictsu50.77 for all initial wavelengths.
This growth is faster than the initial growth, both for the
experiment and the model. Even though a self-similar mix-
ing zone has already been established during the RM insta-
bility after the first shock, the post reshock growth begins
with an existing velocity and not only with a perturbation
amplitude. Shortly after the reshock, the instability grows
faster than the self-similar scaling law. The experiment prob-
ably does not allow enough time for the mixing zone to
return to its self-similar behavior.

The difference between the 3D model and the 2D model
may be seen in Figure 4. In 2D forl 5 0.05 cm,u 5 0.32
after the first shock andu 5 0.8 after the reshock. Due to the
lack of information about the initial conditions in the exper-
iment and due to the degree of agreement with the experi-
mental results, it is difficult to distinguish between 3D
behavior and 2D behavior. We suggest using the 3D model
because of the 3D nature of the experimental setup and not
because of a better agreement with the experimental results.

4.5. Extensions to the model

The model is valid for general acceleration profiles, for
compressible flows, and for both 2D and 3D perturbations.
The model may simply be extended to more complicated
flows. Nonplanar geometry introduces two effects, which
have been pointed out by Bell~1951! and by Plesset~1954!.
When the radius of the system changes, all length scales
change as well. When the radius is reduced, the radial length
scales increase and the azimuthal length scales decrease.
The change of length scales in the radial direction~ampli-
tudes! is included in the 1D coupling to the Lagrangian flow.
The change of length scales in the azimuthal direction~wave-
length! may be described by modifying the equation gov-
erning^l& ~Eq. ~7!!. A geometric term is then added to this
equation:

d^l&

dt
5

d^l&

dt *
mix

1 ^l&
u1D

R1D

, ~8!

whereR1D is the radius of the interface between the two
materials.

An automatic discrimination between RT and RM for
gA, 0 may be added to the model, according to the criterion
of Shvarts et al.~1995!: Accelerations changing faster than
g; t22 are RM-like and accelerations changing slower are
RT-like. This is important for problems with combined RT

and RM, such as agA , 0 shock wave during agA , 0
continuous acceleration.

The influence of further effects, such as ablation, density
gradients, and heat conduction on the linear growth rates is
known. Oron et al.~1998! found that the influence on the
asymptotic single-mode evolution is similar and can be ap-
proximately derived from it. Knowing this, it is simple to
incorporate these effects into the buoyancy–drag model in a
phenomenological manner.

5. CONCLUSIONS

A model based on considerations of buoyancy and drag,
valid only for the asymptotic stage, has been extended to all
instability stages. The evolution of a multimode spectrum of
perturbations from a short wavelength random noise is de-
scribed using a single characteristic wavelength. The tem-
poral evolution of this wavelength allows the description of
both the linear stage and the late time self-similar behavior.
The model is coupled to the 1D Lagrangian flow in the
proximity of the bubbles and the spikes. Good agreement
was found in comparing the 2D model to 2D multimode
numerical simulations. When comparing the 3D model to
shock-tube experiments of random perturbations, the initial
perturbation had to be selected for the result to fit the exper-
imental result. Similar scaling laws were found after the first
shock; however the experimental mixing zone grew faster
than the theoretical prediction.

The model is valid for general acceleration profiles, for
compressible flows, and for both 2D and 3D perturbations.
Extensions of the model for more complicated flows, includ-
ing spherical or cylindrical geometries, ablation, density
gradients, and heat conduction have been suggested.
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