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Abstract
Isolation is a concept originally conceived in the context of clique enumeration in static networks, mostly
used to model communities that do not have much contact to the outside world. Herein, a clique is con-
sidered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on
enumerating cliques in temporal networks, we transform the isolation concept to the temporal setting. We
discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main
contribution is the development of parameterized enumeration algorithms for five of these six isolation
types for clique enumeration, employing the parameter “degree of isolation.” In a nutshell, this means that
the more isolated these cliques are, the faster we can find them. On the empirical side, we implemented
and tested these algorithms on (temporal) social network data, obtaining encouraging results.

Keywords: community detection; dense subgraphs; social network analysis; time-evolving data; enumeration algorithms;
fixed-parameter tractability

1. Introduction
“Isolation is the one sure way to human happiness.”

– Glenn Gould

Clique detection and enumeration is a fundamental primitive of complex network analysis. In
particular, there are numerous approaches (both from a more theory-based and from a more
heuristic side) for listing all maximal cliques (i.e. fully connected subgraphs) in a graph.1 It is well
known that finding a maximum-cardinality clique is computationally hard (NP-hard Karp, 1972),
hard in the polynomial-time approximation sense (Håstad, 1999) and hard in the parameterized
sense when parameterized by the clique cardinality (Downey & Fellows, 2013)). Hence, heuristic
approaches usually govern computational approaches to clique finding and enumeration. We
focus on the case of enumerating maximal cliques, that is, cliques that cannot be extended
by adding further vertices. There have been numerous efforts to provide both theoretical
guarantees and practically useful algorithms (Eppstein & Strash, 2013; Hüffner et al., 2009; Ito
& Iwama, 2009; Komusiewicz et al., 2009; Tomita et al., 2006). In particular, to simplify (in a
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computational sense) the task on the one hand and to enumerate more meaningful maximal
cliques (for specific application contexts) on the other hand, Ito & Iwama (2009) introduced and
investigated the enumeration of maximal cliques that are “isolated.” Roughly speaking, isolation
means that the connection of the maximal clique to the rest of the graph is limited, that is, there
are few edges with one endpoint in the clique and one endpoint outside the clique; indeed, the
degree of isolation can be controlled by choosing specific values of a corresponding isolation
parameter. For instance, think of social networks where one wants to spot more or less segregated
subcommunities with little interaction to the world outside but intensive interaction inside the
community. We mention in passing that, recently, there have been (only) theoretical studies
on the related concept of “secludedness” (van Bevern et al., 2018; Chechik et al., 2017; Fomin
et al., 2017; Golovach et al., 2020) which is somewhat similar to the isolation concept: whereas
for isolation one requests “few outgoing edges,” for secludedness one asks for “few outside neigh-
bors”; while finding isolated cliques becomes tractable (Ito & Iwama, 2009), finding secluded ones
remains computationally hard (van Bevern et al., 2018).

Ito & Iwama (2009) showed that in static networks, isolated cliques often can be enumerated
efficiently; the only exponential factor in the running time depends on the “isolation param-
eter,” and so fairly isolated cliques can be enumerated quite quickly. In follow-up work, the
isolation concept then was extended and more thorough experimental studies (also with finan-
cial networks) have been performed (Hüffner et al., 2009; Komusiewicz et al., 2009). However,
analyzing complex networks more and more means studying time-evolving networks. Hence,
computational problems known from static networks also need to be solved on temporal networks
(mathematically, these are graphs with fixed vertex set but an edge set that changes over discrete
time steps) (Holme & Saramäki, 2019; Latapy et al., 2018;Michail, 2016; Rossetti & Cazabet, 2018).
Thus, not surprisingly, the enumeration of maximal cliques has recently been studied in the tem-
poral setting (Bentert et al., 2019; Himmel et al., 2017; Viard et al., 2016, 2018). While getting
algorithmically more challenging than in the static network case, the empirical results that have
been achieved are encouraging. In this work, we now extend these studies by proposing to apply
the isolation concept to the problem of temporal clique enumeration.

Since we believe that enumerating isolated cliques has its most important applications in com-
munity detection scenarios, we focus on only two of three basic isolation concepts described by
Komusiewicz et al. (2009) for the static setting. More specifically, we only consider “maximal
isolation” (every vertex has small outdegree) and “average isolation” (vertices have small outde-
gree on average) but do not study “minimal isolation” (at least one vertex has small outdegree).
Nevertheless, we still face a richer modeling than in the static case since isolation can happen in
two “dimensions”: vertices and time; for both, we can consider maximum and average isolation.
For the time dimension, this corresponds to considering the maximum or average outdegree over
the time steps. Furthermore, we can switch the order in which vertices and time are considered.
With these distinctions, we end up with eight natural ways tomodel isolation, where two “pairs” of
isolation models turn out to be equivalent, finally leaving six different temporal isolation concepts
for further study.

Our main contributions are as follows: first, as indicated above, we do conceptual work by
identifying six mathematically formalized concepts of isolation for temporal networks. Second,
building on and extending the algorithmic framework of Komusiewicz et al. (2009) for static
networks, for small isolation values we provide efficient algorithms for five of our six isolated
clique enumeration models and prove worst-case performance bounds for them (Theorem 7).2
In this context, a main algorithmic contribution is the development of tailored subroutines (that
are only partially shared between different isolation concepts). We leave the sixth case open for
future research. Finally, on the empirical side, we contribute an encouraging experimental anal-
ysis (in the spirit of proof of concepts) of our algorithms based on real-world social network
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data. Our preliminary experiments indicate differences (mostly in terms of running time) but
also (sometimes surprising) accordances between the concepts.

2. Preliminaries
In this section, we first provide some basic notation and terminology. We then recall the isola-
tion concept for static graphs and transfer it to temporal graphs. Lastly, we give some motivating
examples that are tailored to the arising different temporal isolation concepts and try to give an
intuitive understanding of the differences between the various temporal isolation models.

Static graphs.Graphs in this paper are assumed to be undirected and simple. To clearly distin-
guish them from temporal graphs, they are sometimes referred to as static graphs. Let G= (V , E)
be a static graph. We denote the vertex set of G with V(G) and the edge set of G with E(G).
For v ∈V(G), we use NG(v) := {w | {v,w} ∈ E(G)} and NG[v] :=NG(v)∪ {v} for the open and
closed neighborhood and degG (v) := |NG(v)| for the number of edges ending at v. For v ∈A⊆V ,
outdegG (v,A) := |E∩ ({v} × (V \A))| denotes the number of edges connecting v to vertices in
V \A. Further, outdegG (A) :=∑

v∈A outdegG (v,A). We use δG(A) :=minv∈A degG (v) for the
minimum degree of the vertices in A. In all these notations, we omit the index G if there is no
ambiguity.

Temporal graphs and temporal cliques.A temporal graph is a tuple G = (V , E1, . . . , Eτ ) of a
vertex set V and τ edge sets Ei ⊆

(V
2
)
. The graphs Gi := (V , Ei) are called the layers of G . The time

edge set E (G ) (or E if G is clear from the context) is the disjoint union
⊎τ

t=1 Ei of the edge sets of
the layers of G . For any 1≤ a≤ b≤ τ , we define the (static) graphs

⋃b
t=a Gt :=

(
V ,

⋃b
t=a Et

)
and⋂b

t=a Gt :=
(
V ,

⋂b
t=a Et

)
.

Following the definition of Viard et al. (2016), a �-clique (for some � ∈N) of G is a tuple
(C, [a, b]) with C⊆V and 1≤ a≤ b≤ τ such that C is a clique in

⋃t+�
i=t Gi for all t ∈ [a, b−�].

One easily observes that (C, [a, b]) is a �-clique in G if and only if (C, [a, b−�]) is a 0-clique
in G ′ = (

V , E′1, . . . , E′τ−�

)
where E′i :=

⋃i+�
t=i Et . Due to this, in our theoretical results, we will

only concern ourselves with �= 0 and simply refer to 0-cliques as temporal cliques.

Temporal isolation.We first introduce the isolation concepts for static graphs and then describe
how we transfer them to the temporal setting. In a (static) graph G, a clique C⊆V(G) is called
avg-c-isolated if outdegG (C)< c · |C| where c ∈Q is some positive number (Ito & Iwama, 2009).
Further, it is calledmax-c-isolated if maxv∈C outdegG (v, C)< cKomusiewicz et al. (2009). Clearly,
max-c-isolation implies avg-c-isolation.

Moving to temporal graphs, we aim at defining an isolation concept for temporal cliques. Recall
that a temporal clique consists of a vertex set and a time interval. We apply the isolation require-
ment both on a vertex and on a time level, meaning that for each dimension, we can either require
the average outdegree (as for static avg-c-isolation) or the maximum outdegree (as for static max-
c-isolation) to be small. Tomake this more clear, we next provide some examples. For instance, we
can require that, on average over all layers, the maximum outdegree in a layer is small. Or we can
require that the average outdegreemust be small in every single layer. Note that the ordering of the
requirements for the time dimension and the vertex dimension alsomatters. Requiring the average
outdegree to be small in every layer is different from requiring that, on average over all vertices,
the maximum degree over all time steps must be small. Having two isolation requirements (avg
and max) for two dimensions with two possible orderings, we arrive at eight canonical temporal
isolation types. However, it turns out that if we use the same requirement for both dimensions,
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they behave commutatively, so it boils down to six different temporal isolation types. In the fol-
lowing, we give a formal definition for each of the six temporal isolation types. Tomake the names
less confusing, we use “usually” to refer to the avg isolation requirement in the time dimension
and “alltime” to refer to the max isolation requirement in the time dimension.

Definition 1 (Temporal isolation). Let c ∈Q. A temporal clique (C, [a, b]) in a temporal graph
G = (V , E1, . . . , Eτ ) is called

• alltime-avg-c-isolated ifmaxi∈[a,b]
∑

v∈C outdegGi(v, C)< c · |C|,
• alltime-max-c-isolated ifmaxv∈C maxi∈[a,b] outdegGi(v, C)< c,
• avg-alltime-c-isolated if

∑
v∈C maxi∈[a,b] outdegGi(v, C)< c · |C|,

• max-usually-c-isolated ifmaxv∈C
∑b

i=a outdegGi(v, C)< c · (b+ 1− a),
• usually-avg-c-isolated if

∑b
i=a

∑
v∈C outdegGi(v, C)< c · |C| · (b+ 1− a), and

• usually-max-c-isolated if
∑b

i=a maxv∈C outdegGi(v, C)< c · (b+ 1− a).

We define the set of all six isolation types as I = {alltime-max, alltime-avg, max-usually,
usually-avg, avg-alltime, usually-max}.

For all isolation types I ∈I , an I-c-isolated temporal clique (C, [a, b]) is called time-maximal
if there is no other I-c-isolated clique (C′, [a′, b′]) with C′ ⊇ C and [a′, b′]⊃ [a, b]. If there is no
I-c-isolated temporal clique (C′, [a′, b′]) with C′ ⊃ C and [a′, b′]⊇ [a, b], then we call (C, [a, b])
vertex-maximal. We call (C, [a, b])maximal if it is time-maximal and vertex-maximal.

Subsequently, we give some intuition about the different isolation concepts. Note that for suf-
ficiently small c, they all converge to disallowing any outgoing edges. We start with the most
restrictive and perhaps also most straightforward isolation type, that is, alltime-max-isolation.
Here, all vertices are required to have little or no outside contact at all times – think of a quar-
antined group. Slightly, less restrictive is the notion of avg-alltime-isolation. Here, it would be
possible to have some distinguished “bridge” vertices inside the clique with relatively much out-
side contact, as long as most vertices never have many outgoing edges. If we reorder the terms,
then we obtain alltime-avg-isolation. In contrast to the previous case, now the set of “bridge” ver-
tices may be different at any point in time. A typical situation where this could occur is that there is
a low bandwidth connection between the clique and the rest of the graph, only allowing a limited
number of communications to occur at any given moment. The next isolation concept, usually-
max-isolation, can be seen as allowing short bursts of activity, in which some or even all vertices
have many outgoing edges, as long as the entire clique is isolated most of the time. Again, if we
reorder the terms, then we get a less restrictive concept (max-usually-isolation). Here, the bursts
of activity may happen at different times for different vertices. Finally, usually-avg-isolation is the
least restrictive of these notions, only limiting the total number of outside contacts over all vertices
and layers that are part of the temporal clique.

3. Basic facts
We now prove some important facts that we will make use of in the correctness proofs of our
algorithms. Our first observation concerns the relation between different types of isolation. It is
easily checked using Definition 1 since the maximum outdegree is at least the average outdegree
which is in turn at least the outdegree of the intersection graph

⋂b
t=a Gt .

Observation 1. Let G = (V , E1, . . . , Eτ ) be a temporal graph. The following nine implications hold
for any a≤ b, any clique C in

⋂b
t=a Gt, and any c> 0:
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(C, [a, b]) alltime-max-c-isolated (C, [a, b]) avg-alltime-c-isolated

(C, [a, b]) usually-max-c-isolated (C, [a, b]) alltime-avg-c-isolated

(C, [a, b])max-usually-c-isolated (C, [a, b]) usually-avg-c-isolated

C is max-c-isolated in
b⋂

i=a
Gi C is avg-c-isolated in

b⋂
i=a

Gi

Note that Observation 1 does not hold for maximal isolated temporal cliques, for example, a
maximal alltime-max-c-isolated clique (i.e. an alltime-max-c-isolated clique not contained in any
bigger alltime-max-c-isolated clique) is not necessarily a maximal usually-avg-c-isolated clique.

Next, we state two lemmata limiting the minimal size of isolated cliques, helping us to confine
the search space for our algorithms. They are inspired by the ideas employed by Komusiewicz
et al. (2009) in the static setting.

Lemma 2. Let G be a static graph and let C be a clique in G. Then, any avg-c-isolated subset C′ ⊆ C
has size |C′|> δ(C)− c+ 1.

Proof. Suppose |C′| ≤ δ(C)− c+ 1. Then any vertex w ∈ C′ has outdeg (w, C′)= deg (w)−
(|C′| − 1)≥ δ(C)− (|C′| − 1)≥ c. Thus, C′ is not avg-c-isolated.

Lemma 3. Let C be a clique in G∩ :=⋂t
i=1 Gi. Then any subset C′ ⊆ C for which (C′, [1, t]) is

usually-avg-c-isolated has size |C′|> δG∩(C)− c+ 1.

Proof. Suppose not. Then |C′| ≤ δG∩(C)− c+ 1≤ δGi(C)− c+ 1 for all i. By Lemma 2, C′ is not
avg-c-isolated in any Gi and thus certainly not usually-avg-c-isolated.

Next, we show that some vertices must always be contained in vertex-maximal (and thus also
in maximal) isolated cliques. This will allow us to refrain from searching for maximal isolated
cliques that do not contain these vertices. We start with a technical lemma that will simplify the
proof of the following result.

Lemma 4. Let C be a clique in G∩ :=⋂t
i=1 Gi and let C′ ⊆ C be such that (C′, [1, t]) is a vertex-

maximal usually-avg-c-isolated temporal clique. Then C′ contains all vertices v ∈ C that fulfill
t∑

i=1
degGi(v)≤ t(δG∩(C)+ |C′| + 1). (∗)

Proof. Weprove this statement by contraposition. Suppose ( ∗ ) holds for some v ∈ C \ C′. Let k :=
|C| and k′ := |C′|. Then, we have

t∑
i=1

outdegGi (v, C)=
t∑

i=1

(
degGi(v)− (k− 1)

)≤ t(δG∩(C)− k+ k′ + 2).
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Since v has k− k′ − 1 edges to C \ (C′ ∪ {v}) and k′ edges to C′ we obtain
t∑

i=1
outdegGi (C

′ ∪ {v})=
t∑

i=1

(
outdegGi (C

′)+ (k− k′ − 1)+ outdegGi (v, C)− k′
)

< t
(
ck′ + δG∩(C)− k′ + 1

)
= t

(
c(k′ + 1)+ δG∩(C)− c− k′ + 1

)
< ct(k′ + 1),

where the last inequality is due to Lemma 3. Thus, C′ ∪ {v} is usually-avg-c-isolated.
Using Lemma 4, we can now prove the following lemma, which is central for upper-bounding

our algorithm’s running time.

Lemma 5. Let C be a clique in G∩ :=⋂t
i=1 Gi and let C′ ⊆ C such that (C′, [1, t]) is a vertex-

maximal usually-avg-c-isolated temporal clique. Assume k̃ := δG∩(C)− c+ 2≥ 0 and let C̃⊆ C
consist of the k̃ vertices v with the lowest values of

∑t
i=1 degGi(v). Then C̃⊆ C′.

Proof. Let k′ := |C′|. Suppose for contradiction that there exists u ∈ C̃ \ C′. Then, for each v ∈
C′ \ C̃, we have

t∑
i=1

outdegGi (v, C
′)=

t∑
i=1

(
degGi(v)− k′ + 1

)≥
t∑

i=1

(
degGi(u)− k′ + 1

)
> t

(
δG∩(C)+ 2

)
,

where the last inequality is due to Lemma 4. Thus, we get
t∑

i=1
outdegGi (C

′)=
∑
v∈C′

t∑
i=1

outdegGi (v, C
′)> k′t

(
δG∩(C)+ 2

)≥ k′tc ,

contradicting the isolation of C′.
We explicitly formulate the following special case of Lemma 5, which will be used for alltime-

avg- and avg-alltime-isolation.

Lemma 6. Let C be a clique and let C′ ⊆ C be a maximal avg-c-isolated subset. Let C̃⊆ C be the
δ(C)− c+ 2 vertices of minimal degrees. Then C̃⊆ C′.

Proof. This is a special case of Lemma 5 for t= 1.

4. Enumerating maximal isolated temporal cliques
In this section, we present efficient algorithms to enumerate maximal isolated temporal cliques
for five out of the six introduced temporal isolation concepts (all except usually-max).3 These
algorithms have fixed-parameter tractable (FPT) running times for the isolation parameter c, that
is, for fixed c, the running time is a polynomial whose degree does not depend on c.4 Formally, we
show the following central result of this work; the proof will be given in Section 4.3.

Theorem 7. Let a temporal graph G with τ layers, an isolation type I ∈I \ {usually-max}, and
an isolation parameter c ∈Q be given. Then all maximal I-c-isolated temporal cliques in G can be
enumerated in FPT-time for the isolation parameter c. The specific running times depend on I and
are given in Table 1.
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Table 1. Asymptotic upper bounds for the running time of our maximal isolated temporal
clique enumeration algorithms for the different temporal isolation types

alltime-avg alltime-max avg-alltime max-usually usually-avg

ccτ 2 · |V| · |E | 2.89ccτ · |E | 5.78ccτ · |E | 2.89ccτ 3 · |E | 5.78ccτ 3 · |E |

Algorithm 1: Enumerating maximal I-c-isolated cliques for I ∈I \ {usually-max}
Input: A temporal graph G = (V , E1, . . . , Eτ ), a c ∈Q, and an isolation type

I ∈I \ {usually-max}.
Output: All maximal I-c-isolated cliques in G .

1 result←∅
2 foreach a= 1 . . . τ do
3 foreach b= a . . . τ do

/* Here we are looking for cliques with lifetime [a, b]. */
4 G∩ ←⋂b

i=a Gi
5 Sort the vertices by ascending degree in G∩
6 foreach vertex v do

/* Vertex v is the pivot vertex. */
7 Cv← candidate set for pivot v after trimming stage (in G∩), see Section 3 of Ito

& Iwama (2009)
8 k←�degG∩ (v)− c+ 2� /* By Lemma 2, all isolated cliques are at

least this large. */
9 C ← set of all maximal cliques of size at least k in Cv ⊆G∩

10 foreach C ∈C do
11 subsets← I-isolatedSubsets(C, [a, b], degG∩ (v))
12 result← result ∪ {(C, [a, b]) | C ∈ subsets}
13 end
14 end
15 end
16 end
17 foreach (C, [a, b]) ∈ result do
18 if I-isMaximal(C, [a, b]) then
19 output (C, [a, b])
20 end
21 end

Our algorithms build upon the fact that every maximal I-c-isolated temporal clique (C, [a, b])
is contained in some vertex-maximal c-isolated clique C′ of G∩ :=⋂b

t=a Gt (by Obervartion 1).
Thus, we may utilize some known results from the static case (Ito & Iwama, 2009; Komusiewicz
et al., 2009). Algorithm 1 constitutes the top-level algorithm. Here, we iterate over all possible time
windows [a, b] and apply the so-called trimming procedure developed by Ito & Iwama (2009) to
G∩ to obtain, for each so-called pivot vertex v, a set Cv ⊆N[v] containing all avg-c-isolated cliques
of G∩ that contain v. Subsequently, we enumerate all maximal cliques within Cv and test each of
them for maximal I-c-isolated subsets. For this step, we employ Lemmas 2, 5, and 6 to quickly skip
over irrelevant subsets. The details depend on the choice of I, as does the strategy for the last step,
that is, removing non-maximal elements from the result set. Remember that here we have to pay
attention to both, time- and vertex-maximality.
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Function 2: alltime-avg-isolatedSubsets(C, [a, b], δ)
1 d := �|C| − δ + c− 2� /* We may only remove the top d vertices by

Lemma 6. */
2 D ′ ← {∅} /* Set of candidate sets to remove from C */
3 result←∅
4 while D ′ �= ∅ do
5 D←D ′
6 D ′ ← ∅
7 foreach D ∈D do
8 C′ ← C \D /* Potential isolated clique */
9 if ∃i ∈ [a, b]:∑v∈C′ degGi(v)≥ |C′| · (|C′| − 1+ c) then

10 take i to be smallest possible
11 if |C′|> δ − c+ 2 then
12 E← the d vertices of C′ that have the highest degrees in Gi
13 D ′ ←D ′ ∪ {D∪ {e} | e ∈ E \D}
14 end
15 end
16 else
17 result← result∪ {C′}
18 end
19 end
20 end
21 return result

We proceed by describing the subroutines isolatedSubsets() (Line 11 of Algorithm 1) and
isMaximal() (Line 18 of Algorithm 1). Then, we prove correctness of our algorithms and, finally,
analyze their running times.

4.1 Enumerating isolated subsets
We now discuss the isolatedSubsets() subroutine of Algorithm 1 (Line 11). While the details
depend on the isolation type, there are two main flavors. For alltime-max-isolation (Function 3)
and max-usually-isolation (Function 5), it is possible to determine a single vertex that must be
removed in order to obtain an isolated subset. By repeatedly doing so, one either reaches an iso-
lated subset or the size threshold given by Lemma 2. In particular, each maximal clique contains
at most one maximal isolated subset.

For usually-avg-isolation (Function 6), avg-alltime-isolation (Function 4), and alltime-avg-
isolation (Function 2), multiple vertices are removal candidates. However, their number is
upper-bounded by Lemmas 5 and 6, respectively. We therefore build a search tree, iteratively
exploring removal sets of growing size. The case of alltime-avg-isolation (Function 2) is somewhat
special, as here the set of removal candidates is different for each layer.

4.2 Checking for maximality
We now discuss the isMaximal() subroutine of Algorithm 1 (Line 18), which in turn uses an
isVertexMaximal() subroutine. Note that, while each temporal clique (C, [a, b]) returned by
isolatedSubsets() is vertex-maximal within its respective setCv, it may be not vertex-maximal
with regard to the entire graph. Moreover, we need to check for maximality with regard to cliques
with a larger time window. The naive approach of pairwise comparing all elements of the result
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Function 3: alltime-max-isolatedSubsets(C, [a, b], δ)
1 ∀v ∈ C : sv :=maxi∈[a,b] degGi(v)
2 k := �δ − c+ 2� /* All isolated cliques have size at least k by

Lemma 2. */
3 while |C| ≥ k do

/* Remove offending vertices until we either succeed or fail. */
4 if ∃v ∈ C : sv ≥ |C| − 1+ c then
5 C← C \ {v}
6 end
7 else
8 return {C}
9 end

10 end
11 return ∅

Function 4: avg-alltime-isolatedSubsets(C, [a, b], δ)
1 ∀v ∈ C : sv :=maxi∈[a,b] degGi(v)
2 d := �|C| − δ + c− 2� /* We may only remove the top d vertices by

Lemma 6. */
3 {vi | 1≤ i≤ d} := the d vertices in C with the highest values of sv
4 D ′ ← {∅} /* Set of candidate sets to remove from C */
5 result←∅
6 while D ′ �= ∅ do
7 D←D ′
8 D ′ ← ∅
9 foreach D ∈D do

10 C′ ← C \D /* Potential isolated clique */
11 if

∑
v∈C′ sv ≥ |C′| · (|C′| − 1+ c) then

12 j :=max{0, i | vi ∈D}
13 D ′ ←D ′ ∪ {D∪ {vi} | j< i≤ d}
14 end
15 else
16 result← result∪ {C′}
17 end
18 end
19 end
20 return result

set is feasible but inefficient. Instead, for alltime-max-isolation, alltime-avg-isolation, and avg-
alltime-isolation, it is sufficient to only check whether the time window can be extended in either
direction (see Function 7), and whether a larger clique exists within the same time window (i.e.
checking vertex-maximality). Except for the case of alltime-avg-isolation (Function 9), the latter
can again be implemented more efficiently than using pairwise comparisons (Function 10). We
modify the maximality test developed by Komusiewicz et al. (2009) which searches for cliques
within the common neighborhood of C and then checks whether these can be used to build a
larger isolated clique.
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Function 5:max-usually-isolatedSubsets(C, [a, b], δ)
1 ∀v ∈ C : sv :=∑

i∈[a,b] degGi(v)
2 k := �δ − c+ 2� /* All isolated cliques have size at least k by

Lemma 2. */
3 while |C| ≥ k do

/* Remove offending vertices until we either succeed or fail. */
4 if ∃v ∈ C : sv ≥ (b− a+ 1)(|C| − 1+ c) then
5 C← C \ {v}
6 end
7 else
8 return {C}
9 end

10 end
11 return ∅

Function 6: usually-avg-isolatedSubsets(C, [a, b], δ)
1 ∀v ∈ C : sv :=∑

i∈[a,b] degGi(v)
2 d := �|C| − δ + c− 2� /* By Lemma 5, we can only remove the top d vertices.

*/
3 {vi | 1≤ i≤ d} := the d vertices in C with the highest values of sv
4 D ′ ← {∅} /* Set of candidate sets to remove from C */
5 result←∅
6 while D ′ �= ∅ do
7 D←D ′
8 D ′ ← ∅
9 foreach D ∈D do

10 C′ ← C \D /* Potential isolated clique */
11 if

∑
v∈C′ sv ≥ (b− a+ 1) · |C′| · (|C′| − 1+ c) then

12 j :=max{0, k | vk ∈D}
13 D ′ ←D ′ ∪ {D∪ {vk} | j< k≤ d}
14 end
15 else
16 result← result∪ {C′}
17 end
18 end
19 end
20 return result

This modified vertex-maximality test also works for the cases of max-usually-isolation and
usually-avg-isolation, but here we cannot avoid checking all time windows because isolation of
(C, [a, b]) does not imply isolation of, say, (C, [a, b− 1]) (Function 8).

4.3 Correctness
We now show the correctness of our algorithms. We first prove that the isolatedSubsets()
functions (Functions 2 to 6) behave as intended.
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Function 7: I-isMaximal(C, [a, b]) - version for I ∈ {alltime-avg, alltime-max, avg-alltime}
1 for (a′, b′) ∈ {(a− 1, b), (a, b+ 1)} do
2 if (C, [a′, b′]) is an isolated clique then
3 return false
4 end
5 end
6 return I-isVertexMaximal(C, [a, b])

Function 8: I-isMaximal(C, [a, b]) - version for I ∈ {max-usually, usually-avg}
1 for a′ = a...1 do
2 if C is not a clique in Ga′ then
3 break
4 end
5 for b′ = b...τ do
6 if C is not a clique in Gb′ then
7 break the inner loop
8 end
9 if (C, [a′, b′]) I-c-isolated and (a, b) �= (a′, b′) then

10 return false
11 end
12 if not I-isVertexMaximal(C, [a′, b′]) then
13 return false
14 end
15 end
16 end
17 return true

Function 9: alltime-avg-isVertexMaximal(C, [a, b])
1 if the result set contains any (C′, [a, b]) with C′ ⊃ C then
2 return false
3 end
4 return true

Lemma 8. Let G = (V , E1, . . . , Eτ ) be a temporal graph, c ∈Q, and I ∈I \ {usually-max}. Let C
be a clique in G∩ :=⋂b

i=a Gi and δ = δG∩(C). Then I-isolatedSubsets(C, [a, b], δ) returns all
maximal sets C̃⊆ C such that (C̃, [a, b]) is I-c-isolated.

Proof. For the sake of brevity, we will simply write that some setX⊆ C is, say, alltime-avg-isolated
to denote that (X, [a, b]) is alltime-avg-isolated.

Case 1: I = alltime-avg (Function 2). Let C̃⊆ C be any maximal subset which is alltime-avg-
c-isolated, and suppose the function is currently checking C′ with C̃⊂ C′ ⊆ C. Let i ∈ [a, b] be the
first layer in which C′ is not avg-c-isolated. By Lemma 2 we have that |C′| ≥ |C̃| + 1> δ(C)− c+
2, thus Lines 12 and 13 of Algorithm 2 are executed. Note that C̃ is avg-c-isolated in layer i, and
let C̃′ ⊇ C̃ be a maximal avg-c-isolated superset. Clearly, C̃⊆ C̃′ ⊂ C′. By Lemma 6, we have that
C′ \ C̃′ is a subset of the set E containing the d highest degree vertices ofC′ in layer i. Consequently,
the function will add some set C′′ ⊂ C′ with C′′ ⊇ C̃′ ⊇ C̃ to D ′. By recursively applying the same
argument to C′′, we deduce that the function will at some point find C̃.
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Function 10: I-isVertexMaximal(C, [a, b]) - version for I ∈ {alltime-max, avg-alltime,
max-usually, usually-avg}
1 G∩ :=⋂b

i=a Gi
2 w := arg minv∈C (degG∩(v)) /* w is the pivot of (C, [a, b]) */
3 S := {v ∈NG∩(w) \ C |NG∩(v)⊇ C}
4 D := set of all maximal cliques within S⊂G∩
5 for D ∈D do
6 while (C ∪D, [a, b]) not isolated do
7 if I ∈ {max− usually, usually− avg} then
8 d← arg maxv∈D (

∑b
i=a degGi(v))

9 end
10 else if I ∈ {alltime−max, avg− alltime} then
11 d← arg maxv∈D ( maxbi=a degGi(v))
12 end
13 D←D \ {d}
14 end
15 if D �= ∅ then
16 return false
17 end
18 end
19 return true

Case 2: I = alltime-max (Function 3). By Lemma 2 andObservation 1, we have that all alltime-
max-c-isolated subsets of C have at least size k. If C contains an alltime-max-c-isolated subset C̃,
then C̃ by definition does not contain any vertex v with sv ≥ |C̃| − 1+ c. Thus, by removing such
vertices, we either reach the unique maximal alltime-max-c-isolated subset C̃ of C, or, if we reach
size k, may conclude that no such subset exists.

Case 3: I = avg-alltime (Function 4). Let B := {vi | 1≤ i≤ d} and let C̃⊆ C be any max-
imal avg-alltime-c-isolated subset. Note that any subset of C is avg-alltime-c-isolated if and
only if the same set was avg-c-isolated in a static graph where the degree of each vertex was
maxi∈[a,b] degGi(v). By applying Lemma 6 to this auxiliary graph, we see that C̃must containC \ B.
Thus, we observe analogously to Case 1 that the function will at some point reach C̃.

Case 4: I =max-usually (Function 5).Works analogously to Case 2.
Case 5: I = usually-avg (Function 6). Let B := {vi | 1≤ i≤ d}. By Lemma 5, we have that any

maximal usually-avg-c-isolated subset of C must contain C \ B. Note that the loop generates all
possible sets D⊆ B except those, for which C \D′ has already found to be usually-avg-c-isolated
for some D′ ⊂D. Therefore, all maximal usually-avg-c-isolated subsets of C are added to the
result set.

Next, we prove that the function isVertexMaximal() (Functions 9 and 10) behaves as
intended.

Lemma 9. Let G = (V , E1, . . . , Eτ ) be a temporal graph, c ∈Q, and I ∈I \ {usually-max}. Let
(C, [a, b]) be an I-c-isolated clique in G . Then I-isVertexMaximal(C, [a, b]) returns true if and
only if (C, [a, b]) is a vertex-maximal I-c-isolated clique.

Proof.
Case 1: I = alltime-avg (Function 9). In this case, the function simply performs a pairwise

comparison of all cliques in this time window and is thus trivially correct.
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Case 2: I ∈ {alltime-max, avg-alltime, max-usually, usually-avg} (Function 10). If the func-
tion returns false, then it has found a larger I-c-isolated clique (C ∪D, [a, b]). So suppose
conversely that there is C′ ⊃ C for which (C′, [a, b]) is an I-c-isolated clique. Then clearly, C′ ⊆
C ∪ S and thus also C′ ⊆ C ∪D for some D ∈D . Let x := |D \ C′|< |D| and let X⊂D be the set
of the first x vertices that the function removes from D. Then, it is not difficult to check for each
of the four isolation types in question that (C ∪D \ X, [a, b]) is at least as I-isolated as (C′, [a, b]).
Thus, the function will not remove more than x vertices from D and instead return false.

Lastly, we show that the function isMaximal() (Functions 7 and 8) behaves as intended.

Lemma 10. Let G = (V , E1, . . . , Eτ ) be a temporal graph, let c ∈Q, and let I ∈I \ {usually-max}.
Let (C, [a, b]) be an I-c-isolated clique in G . Then, I-isMaximal(C, [a, b]) returns true if and only
if (C, [a, b]) is a maximal I-c-isolated clique.

Proof.
Case 1: I ∈ {alltime-max, alltime-avg, avg-alltime} (Function 7). By Theorem 9, it only

remains to show that the function returns false if there exists an I-c-isolated clique (C′, [a′, b′])
with a′ < a or b′ > b. Suppose without loss of generality that a′ < a. Then, [a− 1, b]⊆ [a′, b′] and
thus (C′, [a− 1, b]) is I-c-isolated.

Case 2: I ∈ {max-usually, usually-avg} (Function 8). Since the function systematically tries
all possible time windows [a′, b′]⊆ [a, b] for which C is a clique, the correctness follows from
Theorem 9.

Now we have all the necessary pieces to prove the correctness of Algorithm 1.

Proposition 11 (Correctness of Algorithm 1). Let G = (V , E1, . . . , Eτ ) be a temporal graph, let
c ∈Q, and let I ∈I \ {usually-max}. Then, Algorithm 1 outputs exactly all maximal I-c-isolated
temporal cliques.

Proof. By Lemmas 8 and 10, every element of the output is in fact a maximal I-c-isolated clique. So
it remains to show that all such cliques are in fact found by the algorithm. To this end, let (C, [a, b])
be any maximal I-c-isolated clique. Then, C is an avg-c-isolated clique in G∩ =⋂

a≤i≤b Gi by
Observation 1. Ito & Iwama (2009) showed that we then have C⊆ Cv where v ∈ C is of mini-
mum degree. Further |C| ≥ |Cv| − k by Theorem 2. Thus, C⊆ C′ for some C′ ∈ C , so (C, [a, b])
is added to the result set by Theorem 8. Finally, (C, [a, b]) is also included in the output by
Theorem 10.

4.4 Running time analysis
We will now estimate the time complexity of the different algorithms in terms of the numbers of
layers τ , vertices |V|, and time edges |E |, and the isolation parameter c.

We start estimating the running time of Algorithm 1 in terms of T(I)
isolatedSubsets() and

T(I)
isMaximal(), which shall denote the running times of the I-isolatedSubsets() and I-

isMaximal() subroutines, respectively, since they are the parts of the running time that depend
on the isolation type.

Lemma 12. Let G = (V , E1, . . . , Eτ ) be a temporal graph, let c ∈Q, and let I ∈I \ {usually-max}.
Algorithm 1 runs in O

(
2cc2τ · |E | + T(I)

isolatedSubsets() + T(I)
isMaximal()

)
time.

Proof. We first investigate the running time of the first part of Algorithm 1 (the part up until Line
16). When iterating over all time windows [a, b], each iteration of the inner loop extends the time
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window by one layer only. Because of this, we can compute the intersection graphs in O(τ · |E |)
time overall using incremental updates.

All sorting steps of the algorithm can be done by bucketsort using constant time per time
window and pivot vertex. Computing Cv for all vertices of G∩ takes O(c3 · |E∩|) time Ito
& Iwama (2009). Computing C from Cv takes O(|E(Cv)| + c · |Cv| + 2cc2) time Komusiewicz
et al. (2009). The overall number of steps (not counting isolatedSubsets() and isMaximal())
is thus in

O

(
τ · |E | +

∑
a

∑
b

(
c3 · |E∩| +

∑
pivot v

(|E(Cv)| + c · |Cv| + 2cc2
) ))

.

Note that
∑

a|E∩| ≤
∑

a|Ea| ≤ |E |. Further, we assume that the algorithm is implemented to
disregard vertices that have degree zero in Ga and thus also in

⋂b
t=a Gt . Because of this assump-

tion, we can also record the following observation. If we sum degGa (v)+ 1 over all time windows
[a, b] and pivot vertices v, then the result is at most

∑
a

∑
b

∑
pivot v

(degGa(v)+ 1) ∈O

( ∑
b

∑
a
|Ea|

)
⊆O (τ · |E |)

by the handshake lemma. Of course, the same estimation is valid when summing over any of the
following: 1≤ |C| ≤ |Cv| ≤ degG∩ (v)+ 1≤ degGa (v)+ 1.

Another key observation is that
∑

v|E(Cv)| ∈O(c3 · |E∩|) (Ito & Iwama, 2009). Using this, if we
sum |E(Cv)| over all time windows and pivot vertices, we obtain

∑
a

∑
b

∑
pivot v
|E(Cv)| ∈O

(
τ

∑
a

c3 · |E∩|
)
⊆O

(
c3τ · |E |).

Again, this also applies to |E(C)| ≤ |E(Cv)|.
Employing these observations, the above running time can be upper-bounded by

O
(
τ · |E | + c3τ · |E | + cτ · |E | + 2cc2τ · |E |)⊆O

(
2cc2τ · |E |).

Now we analyze the running time T(I)
isolatedSubsets() of the I-isolatedSubsets() subrou-

tine (Functions 2 to 6) depending on the isolation type I.

Lemma 13. T(I)
isolatedSubsets() ∈

⎧⎪⎪⎨
⎪⎪⎩

O(2ccτ · |E |) if I ∈ {alltime-max,max-usually},
O(2cc2τ · |E |) if I ∈ {usually-avg, avg-alltime},
O(ccτ 2 · |E |) if I ∈ {alltime-avg}.

Proof. Keep in mind the observations made in the proof of Lemma 12, which are also useful here.
Additionally, note that within any iteration of Algorithm 1, C contains at most 2|Cv|−s elements
of size s for each k≤ s≤ |Cv| and at most 2|Cv|−k ≤ 2c elements overall.

Case 1: I ∈ {alltime-max,max-usually}. Computing sv takes O(τ · |E |) overall (again, using
incremental updating between time windows).

For each call, the loop runs at most |C| − k≤ |C| − (δ + 1)+ c≤ c times, each needing O(|C|)
time. Since there are |C | calls per time window and pivot, the overall time is in O(τ · |E | + 2ccτ ·
|E |)⊆O(2ccτ · |E |).

Case 2: I = alltime-avg. There are dd possible options for D, each tested in O(τ ) time. Of each
size s, there are 2Cv−s elements of that size within C . Note that d≤ |C| + c− |Cv| − 1≤ c− 1.
Thus, the loop needs
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O

( ∑
s

2Cv−sddτ
)
⊆O

( ∑
s

2Cv−scs+c−Cv−1
)
⊆O

( ∑
s

cc−1τ
)
⊆O

(
ccτ

)

time per time window and pivot, giving O(ccτ 2 · |E |) time overall.
Case 3: I ∈ {usually-avg, avg-alltime}. Computing sv again takes O(τ · |E |) time overall.
Here, there are 2d possible options for D, each tested in constant time. Thus, the loop needs

O

( ∑
s

2Cv−s2d
)
⊆O

( ∑
s

2Cv−s2s+c−Cv−1
)
⊆O

( ∑
s

2c−1
)
⊆O

(
2cc

)

time per time window and pivot (again s= |C|). In total, this gives O(2cc2τ · |E |) time.

Finally, we analyze the running timeT(I)
isMaximal() of the isMaximal() subroutine (Functions 7

and 8) depending on the isolation type.

Lemma 14. T(I)
isMaximal() ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O(2.89ccτ · |E |) if I = alltime-max,
O(2.89ccτ 3 · |E |) if I =max-usually,
O(22cτ · |V| · |E|) if I = alltime-avg,
O(5.78ccτ · |E|) if I = avg-alltime,
O(5.78ccτ 3 · |E|) if I = usually-avg.

Proof.
Case 1: I = alltime-max. Each call to isolatedSubsets() returns at most one clique, thus for
each time window and pivot v there are at most |C | ≤ 2c cliques to be checked. Each call to
isMaximal() takes O(|C|) time, in addition to one call to isVertexMaximal().

Regarding isVertexMaximal(), the size of S⊆N(v) \ C is at most deg (v)+ 1− |C|< c and
finding it takes c · |C| time. Computing the set of cliquesD takesO(3c/3) time (Tomita et al., 2006)
and D has size at most 3c/3. For each D ∈D , we need O(|D|)⊆O(c) time.

Altogether, each call to isMaximal takes O(c · |C| + 3c/3c) time, giving an overall running
time of

O
(
2ccτ · |E | + 2c3c/3cτ · |E |)⊆O

(
2.89ccτ · |E |).

Case 2: I =max-usually. Again at most 2c cliques need to be checked for each time window
and pivot v.

For each call, we need O(τ · |E(C)|) to determine the layers where C is a clique and O(τ 2 · |C|)
for the isolation check. Further, there are τ 2 calls to isVertexMaximal(). Of these, each takes
O(3c/3c) time as for alltime-max-isolation.

Thus, the total time per call is O(τ |E(C)| + τ 2|C| + 3c/3cτ 2), giving an overall time bound of

O
(
2cc3τ 2 · |E | + 2cτ 3 · |E | + 2c3c/3cτ 3 · |E |)⊆O

(
2.89ccτ 3 · |E |).

Case 3: I = alltime-avg. Each call to isolatedSubsets() returns at most 2d ≤ 2c cliques,
therefore there are at most 2c · |C | ≤ 22c cliques to be checked per time window and pivot. Each
call to isMaximal() takes O(|C|) time, in addition to one call to isVertexMaximal().

Within isVertexMaximal(), we only need to check against cliques for the same time window,
of these there are at most

∑
v|C |many, each of size at most |Cv|. The time needed to check a clique

for maximality is linear in the total size of this set, that is, O(
∑

v|C | · |Cv|)⊆O(|C | · |E∩|).
In total, each call to isMaximal() takes O(|C | · |E∩|) time, and the total time taken is thus

O(22cτ · |V| · |E |).
Case 4: I = usually-avg. Each call to isolatedSubsets() returns at most 2d ≤ 2c cliques.

Apart from this extra factor, the analysis is identical to the max-usually-isolation case. Thus, the
total time is O(2.89c2ccτ 3 · |E |)⊆O(5.78ccτ 3 · |E |).
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Case 5: I = avg-alltime. Each call to isolatedSubsets() returns at most 2d ≤ 2c cliques.
Apart from this extra factor, the analysis is identical to the alltime-max-isolation case. Thus, the
total time is O(2.89c2ccτ · |E |)⊆O(5.78ccτ · |E |).

Now, it is straightforward to check that Lemmas 13 and 14 together with Lemma 12 imply
the running times given in Table 1. This together with Proposition 11 completes the proof of
Theorem 7.

We remark that we can derive a running time lower bound from a lower bound on the number
of avg-c-isolated cliques in a graph by Ito & Iwama (2009).When investigating their proof, one can
see that their lower bound actually holds also for the number of max-c-isolated maximal cliques
in a graph. Note that this is also a lower bound on the number of maximal avg-c-isolated cliques
and the number of maximal max-c-isolated cliques in a graph. Ito & Iwama (2009) showed that
for every n ∈N and c ∈ω( log n), there is a graph with n vertices for which the number of avg-c-
isolated maximal cliques is superpolynomial in n. From this, we get the following running time
lower bound for all considered temporally isolated clique enumeration variants where log∗ is the
extremely slow-growing iterated logarithm.

Proposition 15. For all I ∈I , there exists no algorithm that enumerates all maximal I-c-isolated
cliques in a given temporal graph G in 2O( c

log∗ c ) · |G |O(1) time for given c ∈Q.

Proof. Ito & Iwama (2009) (Theorem 2.3) showed that for every n ∈N and c ∈ω( log n), there is a
graph Gn,c = (V , E) on |V| = n vertices for which the number of max-c-isolated maximal cliques
is superpolynomial in n. Let c= log n · log∗ n ∈ω( log n) for some n ∈N and let the graph Gn,c be
the one and only layer of temporal graph G . Then the number of maximal I-c-isolated cliques in
G is superpolynomial in n for all I ∈I .

Assume now for contradiction that there is an algorithm enumerating all maximal I-c-isolated
cliques in G in 2O(c/ log∗ c) · |G |O(1) time for some I ∈I . Note that this implies that there are at
most 2ac/ log∗ c · |G |b many I-c-isolated cliques in G for some constants a, b ∈N. If we now plug in
our choice of c we get

2a
c

log∗ c · |G |b = 2a
log n·log∗ n

log∗ ( log n·log∗ n) · |G |b ≤ 2a
log n·log∗ n
log∗ ( log n) · |G |b = 2a log n

log∗ n
( log∗ n)−1 · |G |b.

For sufficiently large n, the fraction log∗ n
( log∗ n)−1 approaches 1. This implies that the number of

maximal I-c-isolated cliques in G is polynomial in n, contradicting the above.

Proposition 15 implies that our running times for I ∈I \ {alltime-max, usually-max} cannot
be improved significantly (see Table 1).

5. Experimental evaluation
In this section, we empirically evaluate the running times of our enumeration algorithms for max-
imal isolated �-cliques (Algorithm 1) on several real-world temporal networks. In particular, we
investigate the effect of different isolation concepts as well as different values for isolation param-
eter c and � (see the definition of �-cliques in Section 2) on the running time and on the number
of cliques that are enumerated. We also draw some comparisons concerning running times to a
state-of-the-art algorithm to enumerate maximal (non-isolated)�-cliques by Bentert et al. (2019).

5.1 Setup and statistics
We implemented our algorithms5 in Python 3.6.8 and carried out experiments on an Intel Xeon
E5-1620 computer clocked at 3.6GHz and with 64GB RAM running Debian GNU/Linux 6.0.
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Table 2. Statistics for the data sets used in our experiments. The lifetime L of a graph is the difference
between the largest and smallest time stamp on an edge in the graph. The resolution r is the time between
subsequent layers

Data Set # Vertices |V| # Edges |E | Resolution r (in s) Lifetime L (in s)

highschool-2011 126 28,560 20 272,330
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

highschool-2012 180 45,047 20 729,500
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

highschool-2013 327 188,508 20 363,560
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tij_pres_LH10 73 150,126 20 259,180

Figure 1. Plot for the data set “highschool-2011” showing the number of cliques (top) and the computation time per clique
(bottom) for the different temporal isolation types and different values of c and�. The different�-values are visualized by
the different markers, with circles, triangles and squares denoting�-values of 0, 53, and 55, respectively.

The given times refer to single-threaded computation. Bentert et al. (2019) implemented their
algorithm in Python 2.7.12.

For the sake of comparability we tested our implementation on four freely available data sets,
the first three of which were also used by Bentert et al. (2019):

• Face-to-face contacts between high school students (“highschool-2011”, “highschool-2012”,
“highschool-2013” (Gemmetto et al., 2014; Stehlé et al., 2011; Fournet & Barrat, 2014)),

• Spatial proximity between persons in a hospital (“tij_pres_LH10” (Génois & Barrat, 2018)).

We list the most important statistics of the data set in Table 2. We chose five roughly exponen-
tially increasing values ε, 1, 5, 25, 125 for the isolation parameter c, where ε := 0.001 effectively
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Figure 2. Plot for the data set “highschool-2012” (see also description of Figure 1).

requires complete isolation and 125≈ |V| imposes little or no restriction. We chose our �-values
in the same fashion as Bentert et al. (2019). In order to limit the influence of time scales in the data
and to make running times comparable between instances, the chosen �-values of 0, 53, and 55
were scaled by L/(5 · |E |), where L is the temporal graph’s lifetime in seconds Himmel et al. (2017).

5.2 Experimental results
In Figures 1, 2, 3 and 4 the number of maximal isolated �-cliques and the running time are plot-
ted for each of the five isolation types and a range of isolation values c. Missing values indicate
that the respective instance exceeded the time limit of 1 hour. In general, the different isolation
types produce surprisingly similar outputs. This suggests that the degrees of the vertices form-
ing an isolated �-clique are typically rather similar and remain constant over the lifetime of the
clique. Unsurprisingly, raising the value of c increases the number of maximal cliques as the iso-
lation restriction is weakened. However, this effect ceases roughly at c= 5. Increasing c further
does not produce additional cliques, suggesting that the vertices in�-cliques we found in the data
sets mostly have out-degree at most five. Furthermore, we can generally observe that the num-
ber of maximal cliques decreases with increasing values of �, which might seem unexpected at
first glance, but is a consequence from finding many small cliques (with few vertices as well as
short time intervals) for small �-values that “merge together” for larger �-values. This behavior
is consistent across all data sets we investigated.
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Figure 3. Plot for the data set “highschool-2013” (see also description of Figure 1).

Regarding running time, our algorithm is generally slower than the non-isolated clique enu-
meration algorithm by Bentert et al. (2019), even for small values of c. For comparison, the
algorithm by Bentert et al. (2019) solved the instances “highschool-2011”, “highschool-2012”,
and “highschool-2013” for the same values for � that we considered in less than 17 seconds per
instance. We believe that the two main reasons for our algorithm to be slower are the following.
On the one hand, the maximality check we perform is muchmore complicated than the one of the
algorithm of Bentert et al. (2019), which is an issue that also occurs in the static case (Komusiewicz
et al., 2009; Hüffner et al., 2009). On the other hand, we have to explicitly interate through more
or less all possible intervals in which we could find an isolated �-clique, which seems unavoid-
able in our setting. A particular consequence of this is that our algorithm is not output-sensitive,
that is, the running time can be much larger than the number of maximal isolated �-cliques in
the input graph. In the case of (non-isolated) �-clique enumeration, there are ways to circum-
vent these issues and in particular, the algorithm of Bentert et al. (2019) is output-sensitive. Our
algorithm and the algorithm of Bentert et al. (2019) have a similar running time behavior with
respect to �, that is, the running time increases with �, once � reaches moderately large values.
Since higher values of � create a more dense graph after the preprocessing step, this behavior
is expected. The algorithm of Bentert et al. (2019) is slow for near-zero values of � (compared
to itself for larger values of �). We do not observe this phenomenon in most of our algorithms.
In the variants for max-usually and usually-avg, however, we experience a similar issue for small
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Figure 4. Plot for the data set “tij_pres_LH10” (see also description of Figure 1).

values of c, especially visible in the “tij_pres_LH10” data set (Figure 4), where the running time
is surprisingly high for �= 0 and c= ε. A possible explanation is that the “usually-variants” use
a different maximality check than the “alltime-variants”. Interestingly, no universal trend can be
observed for the running time taken per resulting clique with respect to c, which stands in contrast
to our theoretical worst-case running time analysis.

In terms of the number of cliques found, the number of maximal isolated cliques is generally
lower than the number of maximal cliques, which is unsurprising but not obvious. For the �-
values of 0 and 53, the number of maximal isolated cliques is about 1/3 of the number of maximal
cliques, whereas the results for �= 55 suggest that the ratio is roughly 1/10. Especially for these
larger �-values it seems plausible that the isolated cliques are more significant than non-isolated
cliques as they are much less likely to be the result of noise or data artifacts.

To get a more fine-grained picture with regard to �, we tested intermediate values for � and
c representatively on the “tij_pres_LH10” data for avg-alltime-isolation. The results are shown
in Figures 5 and 6. For increasing values of �, the number of cliques drops while the run-
ning time per clique rises. For fixed � and increasing c, the situation is very different. Here,
both number of cliques and running time per clique quickly rise and subsequently level off
around c= 5.
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Figure 5. Number of cliques and running time for avg-
alltime-isolation on the data set “tij_pres_LH10” with
�= 53.

Figure 6. Number of cliques and running time for avg-alltime-
isolation on the data set “tij_pres_LH10” with c= 5.

6. Conclusion
We have brought the concept of isolation from the static to the temporal graph setting, intro-
ducing six different types of temporal isolation. For five out of those we developed algorithms
and showed that enumerating maximal temporally isolated cliques is fixed-parameter tractable
with respect to the isolation parameter. This leaves one case (usually-max-isolation) open for
future research on computational complexity classification. In this case, the main difficulty in
adapting our algorithm is that we found no way to limit the running time required by the
isolatedSubsets() subroutine significantly below �(2|V|).

As a rule of thumb, if there are no specific requests from the use case, we recommend to choose
the alltime-max concept as a default, since overall it allowed for the fastest running times without
huge differences in terms of enumerated maximal cliques.

From an algorithm engineering perspective there is still room for improvement. So far the
running times make it hard to analyze larger data sets as done for example by Bentert et al. (2019)
in the “non-isolated” setting. Another possibility to approach this issue it to shift focus from the
enumeration of all maximal temporally isolated cliques to the “detection” problem, that is, to
“only” search for one large temporally isolated clique (if one exists). Depending on the application,
this might still be a task worth investigating. It could allow for better heuristic improvement such
as pruning rules that remove parts of the input in which large cliques can be ruled out and would
make the maximality check unnecessary.

Finally, as in the static case, it would be natural to apply the isolation concepts to fur-
ther community models (dense subgraphs) such as for example temporal k-plexes6 (Bentert
et al., 2019; Komusiewicz et al., 2009). However, a major obstacle in this task is that the last row
of implications from Observation 1 does not transfer to k-plexes and thus we cannot use the
intersection graph of a temporal graph to search for candidate sets. This is due to the fact that the
intersection of two k-plexes in not necessarily a k-plex. Hence, a fundamentally different approach
is probably necessary to efficiently enumerate isolated temporal k-plexes.
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Notes
1 Network and graph are used interchangeably.
2 In terms of the language of parameterized algorithmics (Cygan et al., 2015; Downey & Fellows, 2013; Flum &
Grohe, 2006; Niedermeier, 2006), we show that these cases are fixed-parameter tractable when parameterized by isolation
value.
3 Usually-max-isolation was dropped here since, even though the same approach as for the other isolation concepts also
works for usually-max-isolation, we found no way to limit the work that would be required in the isolatedSubsets()
subroutine significantly below �(2|V|).
4 The isolation parameter c only influences the constant factor of the polynomial running time but not the degree of the
polynomial, that is, the running time is f (c) · poly (|G |) for some computable function f .
5 The code of our implementation is freely available at https://www.akt.tu-berlin.de/menue/software/
6 A k-plex is a vertex set C such that each vertex in C is connected to all but at most k other vertices in C. In particular, a 1-plex
is a clique. A temporal k-plex is a tuple (C, [a, b]) such that C is a k-plex in every layer Gi with i ∈ [a, b].
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