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SUMMARY
In this work, we investigate a quaternion-based formulation of 3D Simultaneous Localization
and Mapping with Extended Kalman Filter (EKF-SLAM) using relative pose measurements. We
introduce a discrete-time derivation that avoids the normalization problem that often arises when
using unit quaternions in Kalman filter and we study its observability properties. The consistency
of the estimation errors with the corresponding covariance matrices is also evaluated. The approach
is further tested on real data from the Rawseeds dataset and it is applied within a delayed-state
EKF architecture for estimating a dense 3D map of an unknown environment. The contribution
is motivated by the possibility of abstracting multi-sensorial information in terms of relative pose
measurements and for its straightforward extensions to the multi robot case.

KEYWORDS: 3D EKF-SLAM; Unit quaternions; Observability; Relative pose measurements;
Delayed-state filters.

1. Introduction
Recent developments in robotic navigation are enabling autonomous operation of mobile platforms
acting in unknown, unstructured environments.56 In several application scenarios, ranging from
exploration to search and rescue, the construction of a world model and the concurrent estimation of
robot location are crucial for mission accomplishment, for enhancing motion planning effectiveness
and for attaining a desired level of situational awareness. This estimation problem is usually referred
to as Simultaneous Localization and Mapping (SLAM). SLAM has been extensively studied in planar
scenarios, since the publication of the pioneering papers.25, 57 Extended Kalman Filter (EKF) has been
demonstrated to provide an effective solution to the estimation problem: EKF is used as an observer
of a nonlinear dynamical system modeling robot motion and sensor perception. A general overview
on both theoretical and implementation aspects of SLAM can be found in the survey papers,23, 24 and
the references therein.

In the last decade, the diffusion of autonomous robots acting on uneven terrains and the widespread
applications of Unmanned Autonomous Vehicles (UAV) for surveillance and monitoring have stressed
the importance of extending the SLAM landscape to three-dimensional scenarios. The complexity,
in this setup, stems from the larger dimension of the state vectors and from the need of introducing
more complex representations of robot attitude. Moreover, the huge amount of data, gathered through
3D sensors, needs to be properly synthesized (information synthesis) in order to avoid cumbersome
costs in terms of computation and memory requirements.
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In classic EKF-SLAM implementations the state vector comprises robot pose at current time and
the position of landmarks in the environment. In this case, the information synthesis phase consists
in extracting the position of distinguishable landmarks (e.g., points, corners, positions of 3D bodies),
that has to be included in the state vector. Recent examples of this strategy are the articles.2, 9, 62

The complexity of the filter is quadratic in the number of landmarks, hence a naive implementation
prevents large scale mapping due to the overwhelming computational cost.23 A considerable research
effort has been devoted to the reduction of the complexity of the approach, see.26, 51 Moreover, several
authors proposed the use of the information form of the filter, to improve the computational effort
of the update phase.59 It is worth noticing that including the position of each landmark in the state
vectors requires to select few significative elements of the environment to be modeled, whereas it
may be desirable to have a dense representation of the environment, which can be a more reliable
basis for path planning and model-based navigation. Finally, we remark that the effects of partial
observability in standard EKF-SLAM implementation are not fully understood, this being witnessed
by recent results.34

Another interpretation of EKF-SLAM leads to include in the state vector (instead of the point
features) the vantage poses of the robot (observation poses), from which such features are detected.
This allows to make the state dimension independent on the number of features observed from a single
observation pose. The corresponding filter is usually referred to as delayed-state EKF-SLAM,19 view-
based EKF28 or pose-based SLAM.36

The contribution of this paper is threefold. First of all, we report a quaternion-based formulation of
EKF-SLAM; both prediction and update phase of our EKF are based on relative pose measurements,
and the complete derivation of the equations is reported in the paper. The derivation is not based on
heuristic solutions for preserving the unit norm of quaternions of rotation (e.g., normalization52), nor
based on the projection filter,47 which introduces spurious measurements to force the unitary norm
constraint. We devise filter equations in order to intrinsically preserve the unit norm and to keep the
orientation estimates on the manifold SO(3). The effectiveness of the quaternions of rotation lies
in their robustness (i.e., singularity-free), since no three-parameters representation for rotation (e.g.,
roll-pitch-yaw or Euler angles19) can be both global and non-singular.41 As a second contribution
we present an observability study of the proposed SLAM model. We show that the system is not
locally observable, although it is completely observable over a given interval of time, as long as
this interval includes an observation of the anchor, i.e., the landmark that was set at the origin of
the reference frame for mapping. Consistency of the estimation errors with the derived covariance
matrices is also investigated through a numerical analysis and confirms the observability findings.
The third contribution is an extensive testing of the proposed approach on both real and simulated
data. We discuss the use of the filter in real applications and we show that the approach is accurate in
practice; moreover, the proposed filter enables the construction of dense 3D maps of the scenario, as
well as sparse 3D landmark-based map models.

The paper extends the results presented in ref. [13] and is structured as follows. Section 2 reviews the
literature on 3D SLAM and observability analysis in SLAM. Section 3 reports an informal statement
of the problem, while Section 4 presents the equations of the proposed EKF-based approach. We
present our observability analysis in Section 5. Applications on real and simulated data are described
in Section 6; conclusions are drawn in Section 7. For reader’s convenience, Appendix A contains
some preliminary concepts on quaternions and rotations.

Notation. Matrices are represented as bold upper case, e.g., M, column vectors as bold lower case, e.g., x.
The symbol In denotes the n × n identity matrix, 0n,m denotes a matrix with all zero entries with n rows and
m columns. The cardinality of a generic set S is written as |S|. The symbols ⊕ are � denote the sum and the
subtraction in homogeneous coordinates, respectively. The estimate of a generic variable x is represented by
a hat variable, x̂, whereas a measured quantity is represented by a bar variable, x̄; estimation or measurement
errors are denoted by tilde variables, x̃. In particular, for Cartesian variables, the estimation error is defined as
t̃ = t − t̂ , whereas the error quaternion is defined as q̃ = q̂−1q. Measurement errors are defined accordingly.

2. Related Work
In the introduction we gave a general context for the proposed approach, while in this section we
discuss how the contribution extends the literature on 3D SLAM. We classify related work in three
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main categories, according to the main focus of the articles: observability, 3D SLAM, and delayed-
state filtering.

The consistency problem in SLAM has been mainly studied in planar setups. Julier and Uhlmann
first observed that using standard EKF-SLAM (i.e., state vector comprising robot pose and landmark
positions), leads to an artificial reduction of the absolute orientation variance when observing a
new landmark.37 Subsequent analysis by Castellanos et al.15, 16 and Huang et al.35 confirmed such
observation devising some causes of inconsistency in the observability properties of the SLAM
system. Bailey4 provided numerical evidence that the main cause of inconsistency in standard EKF-
SLAM is the uncertainty in robot orientation. The first comprehensive theoretical treatment of the
topic traces back to,34 in which the authors formally showed that the linearization in EKF-SLAM
has an observable subspace of higher dimension than the one of the original nonlinear system (the
nonlinear system has an unobservable subspace of dimension 3 in a planar case, due to the lack of
absolute information). Finally, in ref. [34], the authors presented a solution to address the mismatch
between the observability properties of the original system and the ones of the piecewise linear system
used in EKF-SLAM.

Observability analysis in 3D problems has been mainly studied in the aerospace literature. In
refs. [30, 31] the authors presented an observability study for vehicle navigation based in inertial
navigation systems. In ref. [39] it is studied observability in 3D SLAM, using Euler angles, concluding
that the system is only partially observable when including only landmark positions in the state
vector. The work1 reports an observability analysis of 3D SLAM based on IMU sensors within an
adaptive Kalman filter. In ref. [9], the authors started from the analysis of ref. [39], investigating the
unobservable states and how the observability properties are related to the vehicle motion. All the
mentioned works consider standard EKF-SLAM setup in which only the positions of landmarks are
estimated. In ref. [14] it is shown that considering the orientation of the features can be beneficial
for reducing estimation uncertainty. In this paper we provide an observability analysis for the case
in which the full pose of the landmarks is estimated, including the interesting case of delayed-state
EKF-SLAM.61 We notice that few other works within the robotics field discussed the use of unit
quaternions in 3D SLAM. In the recent paper,20 the authors investigated a similar problem with
application to cooperative navigation of Micro Aerial Vehicles (MAV). The authors proposed the use
of delayed-state filter expressed in information form to keep track of the trajectories of the agents
involved in the navigation process. However, the approach in ref. [20] updates the unit quaternions
as four dimensional vectors hence the unit norm is not preserved during filter update. Several authors
deal with this issue by normalizing quaternions (i.e., substituting the quaternion q̂ with q̂/‖q̂‖ after
update).45, 52 However, since normalization constitutes a further source of errors, Cristofaro et al.
proposed to use a projection filter.47 In this filter a spurious observation is included in filter update:
the robot includes an ideal measurements in the form ‖q̂‖ = 1. It is clear that this heuristic allows
to produce estimates that are closer to unit quaternions although this approach unavoidably leads
to inconsistency for the introduction of fictitious measurements in the estimation process. On the
other hand, our approach does not use heuristics for assuring the unit norm constraint on the rotation
quaternions: the norm constraint is intrinsically taken into account in the formulation and does not
need to be enforced after the update phase. We remark that our literature review is limited to EKF-
based approaches, although other estimation approaches are possible (e.g., using conformal geometric
algebra6, 7) or optimization-based techniques.18, 38

The last category of related work includes contributions on delayed-state EKF-SLAM. Although
this interpretation of pose SLAM directly stems from early work on graph-based SLAM44 and on Rao-
Blackwellized Particle Filters SLAM,22 incremental approaches were later proposed within Kalman
filter framework. Leonard et al.43 investigated the delayed-state approach using sonar data in planar
scenarios. Cole and Newman19 addressed the problem of 3D mapping with laser rangefinder, using a
delayed-state architecture based on Euler-angles for rotation representation. Eustice et al.61 provided
the first comprehensive formulation, implementing the filter in information form and reporting a
useful numerical analysis on the accuracy and the computational effort of their approach. More
recently, Ila et al.36 provided a numerical study of the consistency properties of delayed-state SLAM
in a planar setup, providing useful heuristics for preventing overconfident covariance estimates by
selecting only most informative measurements for loop closing; moreover, the work provided a
strategy for selecting the poses to be included in the state vector, so to avoid redundant information
in the estimation process. Our contribution enriches the literature on delayed-state EKF-SLAM by
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proposing a quaternion-based formulation which is proved to be completely observable. Moreover,
in the following section we provide a numerical evaluation of the consistency and of the accuracy of
the approach, considering also examples of fully 3D problems that may occur in Unmanned Aerial
Vehicles navigation.

3. Problem Statement and Motivations
An agent (mobile robot, autonomous vehicle, UAV, etc.) moves in an unstructured non-planar
environment with the primary aim of building a consistent representation of the scenario while
estimating its own position. The agent is equipped with proprioceptive and exteroceptive sensors.
The formers allow to acquire information on the relative displacement of the agent between
consecutive sensor measurements (odometry); the latter provides measurements of the surrounding
scenario.

The odometric information may be provided, for instance, by wheel odometry in planar scenarios,58

by scan matching procedures,58 by Inertial Measurement Units,60 or by vision sensors.54 All previous
sensor data can be easily abstracted in terms of measurement of the relative pose change (roto-
translation) between two consecutive sensor measurements. The sensors that are typically used for
exteroceptive sensing in 3D robotic navigation are more commonly stereo or monocular cameras29

or 3D laser scanners.19, 49, 62 Such devices produce a large amount of data that are usually processed
by an information synthesis (preprocessing) block before being included in the SLAM estimation
process. The outcome of information synthesis, in common applications, can be roughly classified
according to the following categories:

1. position of 3D points corresponding to distinguishable point features;29

2. orientation of objects (e.g., normal to planes, direction of edges) or orientation of topological
places (for instance, the orientation of a corridor, which can be easily extracted from laser or
camera measurements);

3. bearing to landmarks (e.g., azimuth and elevation at which a far landmark is observed);
4. relative poses with respect to 3D objects (e.g., other vehicles, distinguishable rigid bodies).

Most part of the 3D SLAM literature considers the first type of information: distinguishable
elements (e.g., visual features) in the environment are modeled as independent landmarks and filtering
techniques (e.g., Extended Kalman Filter) are applied to perform estimation over an augmented state
space that includes both robot pose and landmark positions. As commented in the introduction, a naive
implementation of such technique quickly leads to huge state vectors (from a pair of stereo images
it is possible to extract hundreds of visual features29), making prohibitive the use of EKF-SLAM in
large-scale problems.

Instead we now want to point out that all the previous categories can be easily abstracted in terms
of relative pose measurements. For the last category in the list this abstraction is straightforward.
Regarding the first three categories we can notice that (1) positions of points, (2) objects orientations
and (3) bearings to far landmarks can be modeled by means of 3D vectors. In particular line directions,
normal to planes, and other examples falling in the second and third categories may be represented
as unit vectors (since they provide only a relative orientation information), whereas positions are
described by 3D vectors in the robot frame. Therefore, we can associate, to each observation
pose, a collection of 3D vectors that provides a compact representation of robot perception. Then,
registration techniques (see Appendix D and12) can be successfully employed for retrieving the
relative transformation (roto-translation) between two sets of 3D vectors, hence to estimate the
relative pose between two observation poses. Therefore, all the listed exteroceptive measurements can
be treated in terms of relative pose measurements. This motivates our investigation of a 3D SLAM
approach based on relative pose measurements. We remark that 3D vectors are also an effective
model for other exteroceptive perceptions such as star-trackers, sun sensors, or measurements of the
gravity vector by means of accelerometers, enforcing the generality of a relative pose-based SLAM
framework.
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4. EKF-SLAM from Relative Pose Measurements
We now present a discrete-time quaternion-based filter, which is tailored on SLAM with relative pose
measurements.

4.1. Filter structure
We will consider a situation in which the state vector at time k includes the robot pose
x0(k)

.= [ p0(k)� q0(k)�]� and the poses of n landmarks xj (k)
.= [ pj (k)� qj (k)�]�, j = 1, . . . , n. In

particular, the generic pose i = 0, 1, . . . , n includes a Cartesian position pi(k) ∈ R
4 (in homogeneous

coordinates) and a unit quaternion qi(k). Hence the overall state vector for SLAM is x(k)
.=

[x�
0 (k) . . . x�

n (k)]�. Sometimes we indicate with � the set including both robot and landmark poses
(|�| = n + 1).

As usual in Kalman Filter literature, the index (k|k − 1) labels quantities that incorporate
information of the process model (e.g., odometry), while the label (k|k) marks quantities that include
also the measurements acquired at time k. Therefore, the estimate of the state after the prediction
phase (prior) is x̂(k|k−1), and the corresponding covariance matrix is P(k|k−1); the estimate
of the state after the update phase (posterior) is instead x̂(k|k), and the corresponding covariance
matrix is P(k|k). The estimation error for a generic pose i ∈ � is further defined as x̃i(k|k)

.=
[ t̃i(k|k)� θ̃i(k|k)�]� ∈ R

6, where t̃i(k|k)� is the Cartesian error, i.e., p̃i(k|k) = [ t̃i(k|k)� 1]�, with
p̃i(k|k) = pi(k) � p̂i(k|k) (difference between actual and estimated position); moreover, given
the orientation error expressed (in quaternion form) as q̃i(k|k) = q̂i(k|k)−1qi(k), the orientation
error vector θ̃i(k|k)� is such that q̃i(k|k) ≈ [θ̃i(k|k)�/2 1]�, see (A2). Accordingly, the error
state vector is x̃(k|k)

.= [x̃0(k|k)� . . . x̃n(k|k)�]� ∈ R
6(n+1) and the corresponding covariance is

P(k|k) ∈ R
6(n+1)×6(n+1). It is worth noticing that the uncertainty associated with a unit quaternion is

represented by a 3 by 3 covariance matrix: this is a common choice in aerospace literature, since a 4
by 4 representation for the covariance is singular, due to the unit norm constraint.41

4.2. Prediction phase
The prediction phase is aimed at propagating the belief on robot pose according to the odometric
information u(k) = [ pu(k)�qu(k)�]�, being pu(k) and qu(k) the translation vector and the quaternion
describing the pose change between time k − 1 and time k, respectively. It is worth noticing that u(k)
is expressed in the local frame of the robot at time k − 1. As usual in EKF framework, we assume to
have a probabilistic description of the odometry information, i.e., the measured value, namely ū(k),
and a covariance matrix of measurement noise, Pu(k) ∈ R

6×6.
A general process model for robot motion, which describes the current robot pose x0(k), given the

previous pose x0(k − 1) and the odometric information u(k) can be written as follows:

{
p0(k) = p0(k − 1) ⊕ (

q0(k − 1) pu(k)q0(k − 1)−1
)

q0(k) = q0(k − 1)qu(k)
(1)

Therefore the prior for the pose of the robot is:

{
p̂0(k|k − 1) = p̂0(k − 1|k − 1) ⊕ (

q̂0(k − 1|k − 1) p̄u(k)q̂0(k − 1|k − 1)−1
)

q̂0(k|k − 1) = q̂0(k − 1|k − 1)q̄u(k)
(2)

Assuming that the pose of the landmarks does not change (static environment), for a generic
landmark j the prediction phase is simply:

{
p̂j (k|k − 1) = p̂j (k − 1|k − 1)
q̂j (k|k − 1) = q̂j (k − 1|k − 1)

In order to devise the covariance matrix after prediction we need to linearize the process model,
obtaining the error state process model,60 in which the prediction phase is expressed in terms of
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estimation errors. The complete derivation can be found in Appendix B, while we now report the
final result. The error state process model for robot motion is:

x̃0(k|k − 1) = Fk x̃0(k − 1|k − 1) + Gk ũ(k)

where x̃0(k − 1|k − 1) is the robot posterior error at time k − 1, x̃0(k|k − 1) is the robot prior error
at time k, ũ(k) is the odometric error. The matrices Fk and Gk are defined as follows:

Fk =
[

I3 −R̂k−1 Su,k

03,3 R�
u,k

]
, Gk =

[
R̂k−1 03,3

03,3 I3

]
(3)

with R̂k−1 = R(q̂0(k − 1|k − 1)), Su,k = S( p̄u(k)) (S is the skew symmetric matrix built as in
Eq. (A5), Appendix A), and Ru,k = R (q̄u(k)). The full error state process model can be then written
as:

x̃(k|k − 1) = F k x̃(k − 1|k − 1) + Gk ũ(k) (4)

with:

F k =

⎡
⎢⎢⎢⎣

Fk 06,6 . . . 06,6

06,6 I6
. . .

...
...

. . .
. . . 06,6

06,6 . . . 06,6 I6

⎤
⎥⎥⎥⎦ Gk =

⎡
⎢⎢⎣

Gk

06,6
...

06,6

⎤
⎥⎥⎦ (5)

The identity blocks in F k are connected with the hypothesis of static landmarks. From Eq. (4) it is
now easy to write a first-order expression for the covariance of the estimation error of the overall
SLAM state after prediction:

P(k|k − 1) = F k P(k − 1|k − 1)F�
k + Gk Pu(k)G�

k

4.3. Update phase
The update phase allows to include measurements information in the prior x̂(k|k − 1). In this context
we are interested in the case in which data from exteroceptive sensors are abstracted in the form of
relative pose measurements.

Let us define the set of available measurements M, such that, if j ∈ M, then the robot measured
the relative pose with respect to the j -th landmark, namely zj (k)

.= [ pzj
(k)� qzj

(k)�]�; then the
measurement model can be written as:{

pzj
(k) = q0(k)−1

(
pj (k) � p0(k)

)
q0(k)

qzj
(k) = q0(k)−1qj (k)

∀j ∈ M (6)

The previous expression describes the quantities that are observed in the system; however, because
of measurement noise the previous expression becomes:

{
p̄zj

(k) ⊕ p̃zj
(k) = q0(k)−1

(
pj (k) � p0(k)

)
q0(k)

q̄zj
(k)q̃zj

(k) = q0(k)−1qj (k)
∀j ∈ M (7)

where z̄j (k) = [ p̄zj
(k)� q̄zj

(k)�]� is the actual noisy measurement, while p̃zj
(k) = [ t̃zj

(k)� 1]� and
q̃zj

(k) ≈ [θ̃zj
(k)�/2 1]� are random variables describing measurement error. As in the prediction

phase, a probabilistic description of the measurement error z̃j = [ t̃zj
(k)� θ̃zj

(k)�]� is supposed to
be available, in the form of the covariance matrix Pzj

(k) ∈ R
6×6, j ∈ M.
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To devise the equations for the EKF-SLAM update we need to compute a first-order
expression for the measurement model, in terms of the involved errors. First of all, we recall
the definition of innovation for the j -th measurement, that represents the mismatch between
the expected and the actual measurement. Let us consider the j -th measurement in Eq. (6) and
substitute the estimated values for each variable: the expected Cartesian measurement is p̂zj

(k)
.=

q̂0(k|k − 1)−1
(

p̂j (k|k − 1) � p̂0(k|k − 1)
)

q̂0(k|k − 1); the expected orientation measurement is
instead q̂zj

(k|k − 1)
.= q̂0(k|k − 1)−1q̂j (k|k − 1). Then, the innovation for the Cartesian variables

is p̃rj
(k)

.= p̂zj
(k|k − 1) � p̄zj

(k) = [ t̃�
rj

1]� and the innovation for the orientation variables

is q̃rj
(k)

.= q̂zj
(k|k − 1)−1q̄zj

(k) ≈ [θ̃�
rj

/2 1]�. Finally we can write the innovation for the

j -th measurement as r̃j (k) = [ t̃rj
(k)� θ̃rj

(k)�]� ∈ R
6. Stacking the innovation vectors of all the

measurements in a single vector we obtain the overall innovation r̃(k).
According to the derivation reported in Appendix C, a first-order approximation of the innovation

for the j-th measurement r̃j can be written as:

r̃j (k) ≈ Hj x̃ − z̃j (8)

where:

Hj =
[[−R̂�

k Ŝk

03,3 −R̂�
�k

]
06,6 · · · 06,6

[
R̂�

k 03,3

03,3 I3

]
06,6 · · · 06,6

]

x̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t̃0(k|k − 1)
θ̃0(k|k − 1)

...
t̃j (k|k − 1)
θ̃j (k|k − 1)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

z̃j =
[

t̃zj
(k)

θ̃zj
(k)

]
R̂k = R (q̂0(k|k − 1))
R̂�k

= R
(
q̂0(k|k − 1)−1q̂j (k|k − 1)

)
Ŝk = S

(
R� (q̂0(k|k − 1))

(
t̂j (k|k − 1) − t̂0(k|k − 1)

))

(9)

Stacking the matrices Hj in a single matrix Hk we obtain an expression for the overall innovation in
function of the estimation and measurement errors:

r̃(k) ≈ Hk x̃ − z̃ (10)

From Eq. (10), it is now possible to derive the covariance matrix for the innovation:

Pr (k) = Hk P(k|k − 1)H�
k + Pz(k)

with Pz(k) being the covariance matrix of all the available measurements z(k), i.e., Pz(k) =
diag(Pz1 (k), Pz2 (k), . . . , Pz|M|(k)). Hence, the Kalman gain can be computed as:5

Kk = P(k|k − 1)H�
k Pr (k)−1 (11)

Given the innovation r̃(k) and the gain (11) the correction term for the state can be written as
c(k) = Kk r̃(k). Now, if we separate the Cartesian and the orientation variables in c(k) for the generic
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pose i ∈ �, namely t̃ci
(k) and θ̃ci

(k) and we obtain the homogeneous coordinates corresponding to
t̃ci

(k), i.e., pci
(k), and the quaternion corresponding to θ̃ci

(k), i.e., qci
(k) = �

(
θ̃ci

(k)
)

(�(·) is the
exponential map that maps a rotation vector in R

3 to the corresponding unit quaternion, see Appendix
A), the update equations for the state vector can be written as:{

p̂i(k|k) = p̂i(k|k − 1) ⊕ pci
(k)

q̂i(k|k) = q̂i(k|k − 1)qci
(k) i = 0, . . . , n

Moreover the covariance matrix for the posterior is:

P(k|k) = (
I6(n+1) − KkHk

)
P(k|k − 1)

In the following section we use the expressions we derived so far to discuss the observability
properties of the proposed approach.

5. Observability Analysis
Without loss of generality we now consider a delayed-state architecture, in which the landmarks
included in the state vectors correspond to past observation poses assumed by the robot. The original
system is clearly nonlinear and, in this context, we employ the machinery introduced in ref. [30]
(and applied in a planar SLAM problem in ref. [34]) for evaluating the observability properties of the
piecewise linear model used in EKF-SLAM. According to the derivation of Section 4.2 and 4.3 the
system can be modeled through the following time-variant linear system:{

x̃(k) = F k x̃(k − 1) + Gk ũ(k)
r̃(k) = Hk x̃(k) − z̃(k) (12)

The subscript k of systems matrixes (F k, Gk, Hk) remarks their dependence on time, and for each
discrete-time segment, the system can be approximated by the previous linear model. Without loss of
generality let us assume that, at each pose, the robot initializes a new 3D landmark with the current
observation pose; moreover the robot, at time k, is able to measure the relative pose with respect to the
landmark initialized at time k − 1 (e.g., using the vector registration algorithm provided in Appendix
D). Under the assumptions considered so far, we can write F k as:

F k =

⎡
⎢⎢⎢⎢⎢⎣

[
I3 −R̂k−1 Su,k

03,3 R�
u,k

]
06,6 . . . 06,6

06,6
...

06,6

[I6] 06,6
. . .

[I6]

⎤
⎥⎥⎥⎥⎥⎦ (13)

where the upper left block contains the linearized motion model of the robot, used in the prediction
phase, and the lower-right identity blocks contains the landmark process model. Similarly, we can
rewrite the measurement Jacobian matrix as:

Hk =
[ [−R̂�

k Ŝk

03,3 −R̂�
�k

] [
R̂�

k 03,3

03,3 I3

]
06,6 . . . 06,6

]
(14)

where the previous expression is obtained from (8), assuming that the robot observes the pose of
the landmark initialized at time k − 1. Now we need to introduce few concepts for investigating the
observability properties of the system at hand. According to the results reported in ref. [9, 30] we
can study the local observability properties of the system with linear algebra tools. In particular the
system is said to be locally (instantaneously) observable at time k if the matrix

Ok = [
(Hk)� (HkF k)� (HkF2

k)� . . . (HkFη−1
k )�

]�
(15)
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Fig. 1. Simplified (planar) example of delayed-state SLAM with 2 landmarks. The landmark poses, x1 and x2
(respectively initialized at time k = 1 and k = 0), are denoted with two reference frames, whereas x0 is the
pose of the robot at time k = 2. The plot also contains the absolute frame with respect to which the poses are
estimated, denoted with (0, 0, 0). The sub-figure (a) is referred to the case in which the observability analysis
only considers the last measurement (in red) neglecting the other relative pose measurements (in blue). The
robot pose is not observable since it is not possible to infer the absolute pose x0 with respect to the frame
(0, 0, 0) using only the last relative measurement. In (b) instead, both segments are considered (in red): also in
this case the absolute poses are not observable because we still need to introduce the relationship (grounding)
between one node and the absolute frame (0, 0, 0) in which localization is performed.

is full rank (i.e., the rank is equal to the dimension of the state space, namely η). The matrix Ok

is usually referred to as local observability matrix (LOM). Roughly speaking the concept of local
observability is connected to the possibility of instantaneously distinguishing the state x̃k from other
vectors in the state space using the current observation. Tailoring this concept to the problem at hand,
the piecewise linear system describing our SLAM problem is instantaneously observable at time k if
the measurements acquired at time k allows to estimate the absolute poses of robot and landmarks.
For the study of local observability let us write the LOM in explicit form for the system with F k and
Hk described as in (13) and (14), respectively:

Ok =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−R̂�
k Ŝk

03,3 −R̂�
�k

] [
R̂�

k 03,3

03,3 I3

]
06,6 . . . 06,6[−R̂�

k M1
k,k−1

03,3 N1
k,k−1

] [
R̂�

k 03,3

03,3 I3

]
06,6 . . . 06,6

...
...

...[
−R̂�

k Mη−1
k,k−1

03,3 Nη−1
k,k−1

] [
R̂�

k 03,3

03,3 I3

]
06,6 . . . 06,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where M i
k,k−1 = R̂�

k R̂k−1 Su,k

∑i−1
j=0

(
R�

u,k

)j + Ŝk

(
R�

u,k

)i
and N i

k,k−1 = −R̂�
�k

(
R�

u,k

)i
. In this case

the (column) rank of the LOM can be easily seen to be less than η, since the last columns of the matrix
contain only zeros. The case under consideration is depicted in Fig. 1(a): it is clear that the absolute
pose of the robot is not observable using only the current observation and for this reason the LOM is
not full rank.

We can now introduce a milder definition of observability that allows to take into consideration
all the measurements collected in a given interval of time, say [1, k]: in this case we are interested
in studying if all the observations acquired by the robot since the initial time are sufficient for the
estimation of the absolute poses included in the state vector. For studying the observability over the
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interval [1, k], we introduce the total observability matrix (TOM):

O[1:k] =

⎡
⎢⎢⎢⎢⎢⎣

O1

O2Fη−1
1

O3Fη−1
2 Fη−1

1
...
OkFη−1

k−1F
η−1
k−2 . . .Fη−1

1

⎤
⎥⎥⎥⎥⎥⎦ (16)

Then the following result holds true.30

Proposition 1. The discrete piecewise linear system defined in (12) is completely observable if
and only if the total observability matrix (16) has rank equal to η (dimension of the state space). �

For sake of simplicity let us consider a scenario with two landmarks, in which the size of the
error state vector is η = 6(n + 1) = 18 (6 variables for each landmark plus 6 for the current robot
pose). This simplification is made without loss of generality and the general case can be easily
derived from the proposed analysis. In this simplified example there are only two time segments:
the first corresponds to the time needed for traveling from the landmark 1 to landmark 2, the second
corresponding to the time for reaching the current pose, see Fig. 1(b). Therefore, in this case, the TOM
assumes the form O[1:2] = [(O1)� (O2Fη−1

1 )�]�, since k = 2. The matrix O2 corresponds to (15)
with k = 2, whereas the matrix F1 has the following form:

F1 =

⎡
⎢⎢⎣

[I6] 06,6 06,6

06,6

[
I3 −R̂0Su,1

03,3 R�
u,1

]
06,6

06,6 06,6 [I6]

⎤
⎥⎥⎦ (17)

In order to avoid the complexity of the landmark initialization process, i.e., the state augmentation
deriving from the inclusion of a new pose in the state vector, we are considering a state vector of
constant dimension (η = 18 in our case) in which they are already included all the landmarks that
will be initialized by the robot. In practice the augmentation will take place after time k = 1, hence
the matrix F1 of a real implementation will be only constituted only by the 12 × 12 lower-right block
of (17), according to the general structure reported in (13). For building the TOM we need to compute
O1 and O2Fη−1

1 . The former can be easily obtained from (15) substituting k = 1 and with a suitable
ordering of the columns:

O1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06,6

[−R̂�
1 Ŝ1

03,3 −R̂�
�1

] [
R̂�

1 03,3

03,3 I3

]

06,6

[−R̂�
1 M1

1,0
03,3 N1

1,0

] [
R̂�

1 03,3

03,3 I3

]
...

...
...

06,6

[
−R̂�

1 Mη−1
1,0

03,3 Nη−1
1,0

] [
R̂�

1 03,3

03,3 I3

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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The matrix O2Fη−1
1 is instead:

O2Fη−1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[−R̂�
2 Ŝ2

03,3 −R̂�
�2

] [
R̂�

2 T2,0

03,3 Q1

]
06,6[−R̂�

2 M1
2,1

03,3 N1
2,1

] [
R̂�

2 T2,0

03,3 Q1

]
06,6

...
...

...[
−R̂�

2 Mη−1
2,1

03,3 Nη−1
2,1

] [
R̂�

2 T2,0

03,3 Q1

]
06,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

with T2,0 = −R̂�
2 R̂0 Su,1

∑η−2
j=0(R�

u,1)j and Q1 = (R�
u,1)η−1. Stacking the matrices (18) and (19) in

the TOM we obtain:

1︷︸︸︷ 2︷︸︸︷ 3︷︸︸︷ 4︷︸︸︷ 5︷︸︸︷ 6︷︸︸︷

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06,6

[−R̂�
1 Ŝ1

03,3 −R̂�
�1

] [
R̂�

1 03,3

03,3 I3

]

06,6

[−R̂�
1 M1

1,0
03,3 N1

1,0

] [
R̂�

1 03,3

03,3 I3

]
...

...
...

06,6

[
−R̂�

1 Mη−1
1,0

03,3 Nη−1
1,0

] [
R̂�

1 03,3

03,3 I3

]
[−R̂�

2 Ŝ2

03,3 −R̂�
�2

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6[−R̂�

2 M1
2,1

03,3 N1
2,1

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6

...
...

...[
−R̂�

2 Mη−1
2,1

03,3 Nη−1
2,1

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now study the observability property of our model by analyzing the column rank of O.
We can identify six block-columns, each one containing three columns. It is then possible to see that
the third block column can be obtained as linear combination of the first and the fifth block-columns,
hence the matrix is rank deficient, and the system is not completely observable. This is quite an
intuitive result since we do not expect to be able to estimate absolute poses using only relative
measurements: without imposing a reference frame only the relative poses can be observable. In
delayed-state EKF-SLAM it is common to assume the initial pose of the robot to be the reference
frame for the mapping process. This assumption will be lately referred to as grounding, and the
pose that is assumed to be known will be called anchor. The observability study can include the
grounding process in two different ways: (i) including an absolute measurement of the initial pose, or
(ii) marginalizing the sub-set of the state vector corresponding to the initial pose (i.e., the initial pose
is assumed to be known and needs not be estimated by the EKF). We follow the first way, whereas
the second approach can be easily seen to provide analogous results. An absolute measurement of
pose at initial time corresponds to the following measurement matrix:

H0 = [
06,6 06,6 I6,6

]
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Considering this measurement, the TOM becomes:

Ō =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06,6 06,6 I6,6
...

...
...

06,6

[−R̂�
1 Ŝ1

03,3 −R̂�
�1

] [
R̂�

1 03,3

03,3 I3

]

06,6

[−R̂�
1 M1

1,0
03,3 N1

1,0

] [
R̂�

1 03,3

03,3 I3

]
...

...
...

06,6

[
−R̂�

1 Mη−1
1,0

03,3 Nη−1
1,0

] [
R̂�

1 03,3

03,3 I3

]
[−R̂�

2 Ŝ2

03,3 −R̂�
�2

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6[−R̂�

2 M1
2,1

03,3 N1
2,1

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6

...
...

...[
−R̂�

2 Mη−1
2,1

03,3 Nη−1
2,1

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In order to study the rank of the previous matrix let us consider the following matrix Õ, obtained by
selecting η rows from Ō:

Õ =

⎡
⎢⎢⎢⎢⎢⎣

[−R̂�
2 Ŝ2

03,3 −R̂�
�2

] [
R̂�

2 T2,0

03,3 Q2,0

]
06,6

06,6

[−R̂�
1 Ŝ1

03,3 −R̂�
�1

] [
R̂�

1 03,3

03,3 I3

]
06,6 06,6

[
I6,6

]

⎤
⎥⎥⎥⎥⎥⎦

Because of the triangular block-structure of the matrix Õ, the determinant of Õ can be computed
by multiplying the determinants of the blocks composing the main diagonal,33 i.e., det Õ =
det(−R̂�

2 ) det(−R̂�
�2

) det(−R̂�
1 ) det(−R̂�

�1
) det(I6,6). Since the involved matrices are rotation or

identity matrices we obtain det Õ = 1. The determinant is different from zero, then the matrix
det Õ is full rank; therefore, if a subset of η rows in O are already linearly independent, also the rank
of O is η, and the system is completely observable.

In conclusion, we demonstrated that, assuming a pose to be known, allows to prove that the
absolute poses included in the state vector in SLAM are completely observable from relative pose
measurements over the interval [1, k]. It is intuitive that the lack of local observability stems from
the impossibility of exploiting absolute information from relative measurements, hence the system
becomes locally observable at time k only if the measurement matrix Hk includes at least one
measurement referred to the anchor pose. This aspect will be further underlined in Section 6.1.

6. Experiments and Discussion

6.1. Numerical experiments
The numerical analysis is mainly concerned with the study of consistency of the SLAM approach,
i.e., we evaluate if the covariance matrices computed with the proposed filter are compatible with
the corresponding estimation errors.5 Consistency is crucial in Probabilistic Robotics since a robot
that is unable to quantify the uncertainty on the variables of interest (poses of the robot or of 3D
landmarks in the considered setup) acts in a misleading optimism which may lead to catastrophic
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Fig. 2. (a) Ground truth trajectory (green line) and starting pose of the robot moving in a loop-shaped corridor
(axis scale in meters); (b) Example of 3D vectors corresponding to a sensor measurement: the robot pose
is denoted with three arrows (red-green-blue), whereas the 3D vectors are shown in black. In vision-based
applications one may consider vectors describing the position of distinguishable visual features (e.g., SURF).

failure. In SLAM problems, consistency directly affects estimation results: if the robot underestimates
the uncertainty on its pose it risks to discard potential loop closings when performing data association
with previously observed landmarks: this is undesirable since loop closings offer the robot the
possibility to drastically reduce the localization error. On the other hand, an overestimation of the
uncertainty leads to false positives in data association that cause the failure of the mapping process.
In this section we evaluate the consistency of the proposed approach, discussing numerical evidence.
To the best of our knowledge this is the first work performing such analysis in a 3D-SLAM setup.

Let us start by considering the case in which a robot travels the loop in Fig. 2(a) three times.
The robot is denoted by a local reference frame (red-green-blue axes) which uniquely identifies its
pose: the origin of the frame denotes robot position whereas the axes define its orientation (red =
x-axis, aligned with the direction of robot motion; blue = z-axis, perpendicular to the robot platform
and pointing upwards; green = y-axis, completing the reference frame). When traveling in the
environment, the robot implements the delayed-state EKF-SLAM approach discussed in this paper.
At time k = 0, the robot initializes a landmark corresponding to its own pose and sets this landmark
at the origin of the reference frame; the initial covariance matrix of robot pose is set to P(0|0) = 06,6

(the choice of the reference frame is arbitrary and no source of uncertainty influences it). Moreover,
the robot associates to the initialized landmark a set of vectors corresponding to the exteroceptive
measurement taken at time k = 0, e.g., Fig. 2(b).

At time k = 1 the robot moves and acquires a 3D odometric measurement ū(1), describing the
relative displacement between its pose at time k = 0 and time k = 1 (Section 4.2); the covariance
matrix describing the noise on odometric data is supposed to be known and, for the numerical
experiments, we use the following process noise covariance Pu(k) = diag(σ 2

u,t I3, σ
2
u,θ I3), where σ 2

u,t

and σ 2
u,θ are the Cartesian variance and orientation variance of the odometric data, respectively.

For sake of simplicity, the nominal trajectory is planar, but such information is not used in the
experiments and all the errors are referred to a 3D setup. At time k = 1 the robot also acquires a
second exteroceptive measurement. As before, this measurement is described by a collection of 3D
vectors, each one characterized by a unique descriptor. According to the algorithm in Appendix
D, the robot can now obtain relative pose measurements with respect to the previous landmark,
by computing the roto-translation between the current set of 3D vectors and the corresponding
measurements acquired at time k = 0. In Section 6.2 we describe how to extract such information in
real-world examples. Now, instead, let us simply assume that we can directly measure the relative pose
between the current robot position and a given landmark in the state vector, when at least m 3D vectors
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Fig. 3. Numerical results: Average position and orientation errors for different values of uncertainty. Blue
(� marker): {σu,t = 0.1 m, σu,θ = 1o, σz,t = 0.1 m, σz,θ = 1o}; Red (
 marker): {σu,t = 1 m, σu,θ = 10o,
σz,t = 0.1 m, σz,θ = 1o}; Magenta (� marker): {σu,t = 0.1 m, σu,θ = 1o, σz,t = 1 m, σz,θ = 10o}; Black (�
marker): {σu,t = 1 m, σu,θ = 10o, σz,t = 1 m, σz,θ = 10o}.

were observed from both poses (we set m = 50). Moreover we assume that the covariance matrix
of the measurements is Pz(k) = diag(σ 2

z,t I3, σ
2
z,θ I3), where σ 2

z,t and σ 2
z,θ are the Cartesian variance

and orientation variance of the measurements, respectively. The estimation process is iterated as the
robot moves; in particular, every 20 time steps, the robot checks if the current observation contains a
sufficient number of known 3D vectors, otherwise it initializes a new landmark. When adding a new
landmark to the n + 1 poses that are already in the state vector, the covariance matrix augmentation
works as follows:

P(k|k) =
⎡
⎣ I6 06,6n

I6 06,6n

06n,6 I6n

⎤
⎦ P−(k|k)

⎡
⎣ I6 06,6n

I6 06,6n

06n,6 I6n

⎤
⎦�

= A� P−(k|k)A (20)

where P−(k|k) is the posterior covariance before initialization and P(k|k) is the augmented
covariance.

In Fig. 3, we compare the average position errors and the average orientation errors for different
values of the parameters {σu,t , σu,θ , σz,t , σz,θ }. Notice that the error definition mirrors the one used
in the theoretical development. In particular, the average position error is εt (k)

.= ∑
i∈� ‖ t̃i(k)‖ =∑

i∈� ‖ti(k) − t̂i(k|k)‖, whereas the average orientation errors is εθ (k)
.= ∑

i∈� ‖θ̃i(k)‖, where θ̃i(k)
is the rotation vector corresponding to the error quaternion q̃i(k) = q̂i(k|k)−1qi(k). It is possible to
notice the effect of the first loop closing, occurring approximately at time step 1000: it leads to a
drastic error reduction and the estimation error continues decreasing since the robot is traversing an
already mapped area.

The consistency of our approach is evaluated by computing the Normalized Estimation Error
Squared (NEES):5

NEESk
.= x̃�(k|k)P−1(k|k)x̃(k|k) ≤ χ2

β,1−α

where x̃(k|k) and P−1(k|k) are the estimation error and the corresponding covariance matrix computed
with the proposed approach, and χ2

β,1−α is the quantile of the χ2 distribution with β = dim(x̃(k|k))
degrees of freedom and upper tail probability equal to α. We notice that, when a new landmark is
initialized, the covariance matrix becomes rank deficient, since the augmentation matrix A, in Eq.
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Fig. 4. Numerical results: Average consistency ratio (α = 0.01) for different values of uncertainty. Blue (�
marker): {σu,t = 0.1 m, σu,θ = 1o, σz,t = 0.1 m, σz,θ = 1o}; Red (
 marker): {σu,t = 1 m, σu,θ = 10o, σz,t = 0.1
m, σz,θ = 1o}; Magenta (� marker): {σu,t = 0.1 m, σu,θ = 1o, σz,t = 1 m, σz,θ = 10o}; Black (� marker):
{σu,t = 1 m, σu,θ = 10o, σz,t = 1 m, σz,θ = 10o}.

(20), produces a linear combination of the rows in the original matrix P−(k|k). This is a consequence
of the fact that the landmark is initialized at the current pose of the robot and does not cause further
complications in the algorithm. In Fig. 4 we report the consistency ratio (NEES/χ2

β,1−α)5 averaged
over 10 Monte Carlo runs for different values of {σu,t , σu,θ , σz,t , σz,θ }, with α = 0.01. According to
the considerations on landmark initialization, we do not report the consistency ratio in the instants
corresponding to the initialization. It is possible to see that the consistency ratio remains below 1,
confirming the consistency of the approach. Consistency is connected with the results on observability
presented in Section 5: the presence of unobservable subspaces leads to an unbounded growth of the
uncertainty in some directions of the state space, producing inconsistency in the estimation process.
Accordingly, when the robot does not observe the initial pose (origin of the reference frame) the
consistency ratio increases (see the initial ramp in Fig. 4) remarking the lack of local observability; as
expected, this issue becomes more and more evident when increasing the uncertainty in the system.
As soon as the first landmark is re-observed (loop closing occurs approximately at k = 1000) the
consistency ratio stabilizes and remains below 1. It is clear that for longer loops or higher uncertainty
the initial lack of observability would lead to inconsistency; however, we are already considering a
challenging scenario, since the highest slope in the consistency ratio is obtained with σu,t = σz,t = 1
m and σu,θ = σz,θ = 10o, which are large values for common applications.

6.2. Real experiments
In a real scenario, the computation of the relative pose measurements requires the following steps:

1. Information extraction: salient elements are extracted from sensor data (e.g., visual features from
cameras, positions of distinguishable objects, corners, normal to walls, etc.);

2. Information synthesis: the data extracted from 3D sensors are expressed in terms of 3D vectors
(e.g., 3D points, normal to planes, line directions, etc.), each one described by a unique descriptor;

3. Data association: the vectors extracted from the current observation are compared with the previous
observations in order to establish the correspondences, i.e., the matches between each feature in
the current observation and vectors occurring in previous measurements;
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4. Vector Registration: the relative pose (equivalently, the roto-translation) between pairs of poses
from which two observation were made is retrieved, e.g., using the registration algorithm in
Appendix D.

The concept of descriptor is purposely kept general. If the 3D vectors correspond to visual features,
computer vision literature offers a large range of choices (e.g., SURT, SIFT32). Descriptors for lines
and surfaces may include both geometric and appearance-based description of the landmark (e.g.,
color of the plane, length of the line, area and shape of the surface).

A crucial point in the implementation of the algorithm lies in data association. Since the descriptors
are affected by uncertainty, it is often convenient to compare each vector in the current observation
with all the possible matching candidates and select the optimal match according to some criterion
(e.g., double consistency check for visual features54). The set of candidate matches may be huge,
since the features observed at current time need be compared with all the previous observations
corresponding to landmarks in the state vector. When using vision sensors, a fast approach for detecting
correspondences between current and past observations is the so called Vocabulary Tree, proposed by
Nister in ref. [48]. A vocabulary tree is an appearance-based method for detecting similarity between
two images. Suppose to have an image that contains a collection of visual features, each one denoted
by a feature descriptor. The vocabulary tree organizes the features in a tree, according to a K-means
algorithm and computes a descriptor of the image.53 Therefore, the vocabulary tree associates a
single identifier to each image acquired at time k, with k = 1, 2, . . . , instead of having several feature
descriptors for each image. Moreover, the advantage is that the similarity score between two images
can be compared with simple operations between the corresponding image descriptors (e.g., dot
product53).

In our setup, we use the vocabulary tree as follows. As soon as a landmark is initialized in the
delayed-state architecture, the corresponding image is stored by the robot, and the image descriptor
is computed. For detecting loop closing, the similarity between the current image and all the previous
images is evaluated, by computing the dot product between the corresponding image descriptors. If
the similarity score between the image acquired at time k and image corresponding to landmark j

exceeds a given threshold, the j -th landmark is a good candidate for loop closing, i.e., it is likely that
the robot is re-observing the landmark. Vocabulary tree approach is convenient in this context since it
allows fast loop closing detection (the computation of the similarity scores requires few milliseconds
also for large datasets48). Moreover, an online implementation is available.10

Since the loop closing detection only accounts for appearance-based information, we found it
convenient to improve robustness of the detection by including geometric information from EKF:
the SLAM posterior contains information of the poses of the landmarks and the relative uncertainty,
hence it allows to check how likely it is that the current observation matches a given landmark. This
test was implemented using a standard validation region approach,5 in which measurements with
high normalized innovation squared (NIS

.= r̃(k)� Pr (k)r̃(k)) are discarded. The overall architecture
used for the real experiments is summarized in Fig. 7.

We now have all the ingredients for presenting the real experiments. We tested the proposed
framework on a real dataset from the Rawseeds project.17 This allows to use standard metrics for
evaluating the approach in terms of estimation errors and correctness of the estimated 3D map. For
the prediction phase we used the self-motion measurements from wheel odometry, while the update
phase was based on the relative pose measurements from 3D vectors registration, where each vector
was a visual feature (SURF) extracted from the left image of the stereo pair and then reprojected in
3D using standard stereo triangulation.

The trajectory estimated with the proposed approach is shown as a blue line in Fig. 5. The
corresponding ground truth trajectory (obtained using a RTK-GPS27) is shown in red, in the same
figure. Figure 6 reports the candidate loop closings detected by the vocabulary tree and loop closings
that passed the NIS test and that were actually included in the EKF-SLAM update phase. A quantitative
evaluation of the approach can be obtained from the statistics in Fig. 8. Such metrics are computed
with the metrics computation toolkit available at ref. [17]. In Figure 8 they are reported the Cartesian
errors (considering the x and the y components of the error separately) and the orientation error (yaw
angle θ only) since the dataset corresponds to a planar problem. We obtained the planar estimates by
projecting the 3D estimates on the ground plane. We remark that the peaks in the orientation statistics
are only due to the fact that the ground truth trajectory has more poses than the estimated trajectory (as
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Fig. 5. Real test: the ground truth trajectory from Rawseeds (dataset Bovisa 20090225b) is shown as a red line,
whereas the trajectory estimated with the proposed approach is plotted in blue.
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Fig. 6. Estimated robot trajectory (black line). The blue and the red segments denote the candidate loop closings:
the segments connect the poses at which the images matched by the vocabulary tree were acquired. The blue
segments are the loop closings that passed the NIS test and were included in filter update, whereas the red
segments were classified as outliers and discarded.

mentioned before the filter initializes a new landmark every 20 time steps) and the missing samples
in the estimated trajectory are estimated by interpolating contiguous samples. We refer to Fig. 9 for
further discussion.

In Fig. 10(a), instead, it is shown a statistic on the Cartesian error over the whole experiment: the
plot reports (i) the mean error, (ii) the histogram with the frequency with which a certain error occurs,
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Fig. 7. Block diagram describing the architecture used in the real experiments. The scheme shows how raw
sensors data are abstracted in terms of relative pose measurements and then fed to the proposed EKF-SLAM
approach. In particular, the computation of relative poses from a sequence of stereo images starts from the
extraction of features from the images (SURF in our experiments). The features are also used to detect similarity
with previous images, using a vocabulary tree (loop closing detection). Once a loop closing with a landmark j
is detected, the features from the corresponding stereo images are converted into two sets of 3D vectors (one
corresponding to the current observation, the other one describing the observations taken from pose j ) and a
vector registration algorithm (Appendix D) is used to compute the relative transformation between the current
pose and the pose of landmark j .

Fig. 8. Real test: Cartesian error along the x-axis and the y-axis; orientation error in the yaw angle θ . The errors
are reported as function of time, expressed in seconds.

(iii) the 3σ intervals that describe the region in which the error is likely to fall. We also report in
Fig. 10(b) the corresponding error statistics of a benchmark solution of Rawseeds, that is based on
standard EKF-SLAM and stereo data (stereo-based CI-graph SLAM50).

A further advantage of the considered framework is that pose estimation allows to retrieve a dense
representation of the map. For instance we can obtain a dense point cloud representation from a stereo
pair acquired at a given time step and we can use the corresponding pose estimate for roto-translating
the dense point cloud, hence expressing all the points in a common reference frame. The outcome of
the mapping process is shown in Fig. 11 using the Rawseeds dataset.

https://doi.org/10.1017/S0263574714000678 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000678


1268 Quaternion-based EKF-SLAM: observability and applications

Fig. 9. Real test: yaw angle θ of the ground truth (red samples) versus estimated yaw (blue samples). The upper
plot does not reveal remarkable differences between the two angles, whereas the zoom in the lower plot allows
to understand the nature of the error peaks that can be observed in Fig. 8: the estimated orientation (blue dots)
has fewer samples than the ground truth (in red) and when a ground truth angle does not have a corresponding
estimate, an estimate is computed by linear interpolation between the contiguous estimates (nearest blue dots).
It may be now understood that the spikes in the orientation error are only due to the benchmarking technique
and are not related to the accuracy of the proposed approach.

Fig. 10. Real test: histogram plots showing the frequency of Cartesian errors for the proposed approach (a)
versus the CI-graph SLAM approach (b). The figure also reports the mean errors and the 3σ confidence intervals
for the Cartesian errors.

6.3. Relative pose measurements and 3D objects
This last experimental section is aimed at showing that the considered framework is not only functional
to a delayed-state architecture but has interesting applications in a more traditional EKF-SLAM setup
in which the landmarks are external objects in the environment. In this EKF formulation, we store in
the state vector the poses of 3D bodies corresponding to distinguishable objects, instead of storing
only their positions, as it happens in standard EKF-SLAM implementations.2, 42 The advantage in this
case is the fully observability of the approach, with respect to the standard EKF-SLAM observability
results:34 the approach is expected to be more stable and the consistency of the estimation process
assures a more reliable loop closing detection. Moreover, we focus on a full 3D case to further test
the robustness of the quaternion representation.

Let us consider the case of a UAV (Unmanned Aerial Vehicle) starting an a given pose and
performing SLAM to support landing.46 In our toy problem the vehicle approaches the ground
rotating around its x axis (red arrow in Fig. 12) and describing a spiral. The ground truth landing

https://doi.org/10.1017/S0263574714000678 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000678


Quaternion-based EKF-SLAM: observability and applications 1269

Fig. 11. Real test: dense 3D map of the scenario computed from the Rawseeds dataset. A stereo pair is
associated to each pose in the delayed-state filter and a dense point cloud is computed using standard stereo-
vision techniques.32 Then each point cloud is roto-translated according to the pose estimates obtained from the
delayed-state EKF-SLAM, and the result is a consistent dense representation of the environment.

Fig. 12. Numerical results: ground truth trajectory of an Unmanned Aerial Vehicle performing SLAM during
landing phase. The trajectory is shown as a sequence of poses, each one associated with a reference frame,
whereas distinguishable objects on the ground are denoted with circles and a reference frame is associated to
each of them.

trajectory is shown in Fig. 12 as a sequence of poses, each denoted by a reference frame. The same
figure shows that on the ground are deployed some distinguishable objects (the objects are labeled
with circles and a reference frame is attached to each of them). The robot is able to discern such objects
and can take noisy measurements of their poses. Moreover it can take noisy odometric measurements,
using, for instance, visual odometry or an inertial navigation system.

It is easy to see that the approach proposed in this paper can be adapted to this problem with few
changes. The only step that needs slight modifications is the landmark initialization, since now a
landmark is not initialized at the current robot pose but at the pose of the observed object. Moreover,
it is easy to see that the observability analysis remains unchanged if the first observed landmark is set
to be the origin of the reference frame. In Fig. 13 we report the trajectory estimated with the proposed
approach, compared with the ground truth. For a quantitative evaluation, in Fig. 14 we report the

https://doi.org/10.1017/S0263574714000678 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000678


1270 Quaternion-based EKF-SLAM: observability and applications

Fig. 13. Numerical results: ground truth trajectory (green) versus trajectory estimated with the proposed approach
(blue). The figure also reports the estimated poses of the objects in the map.

Fig. 14. Numerical results: Average position and orientation errors for {σu,t = 0.5 m, σu,θ = 0.5o, σz,t = 1 m,
σz,θ = 1o}.

average position and the average orientation errors (that take into account both the error on robot
pose and on landmark poses).

We conclude by observing that is possible to envision several other applications of the pose-
based SLAM discussed in this section; for instance, the 3D bodies in the environment can be cars
in a parking lot or building corners when the robot is moving in urban environment; in indoor
environment an effective application can use the door frames as steady landmarks, for its geometric
structure that is easily recognizable in camera images. Moreover, such applications may rely on
pose estimation algorithms that have been extensively studied in the context of computer vision21

and 3D grasping.3 We strongly believe that this constitutes a remarkable advantage of the proposed
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technique: the observability properties and the quaternion-based formulation enhances the robustness
of the approach, whereas the use of 3D bodies as landmarks provides more information to solve in a
robust fashion data association and landmark detection problems.

7. Conclusion
We can identify three main contributions in this work. The first regards the derivation of a quaternion-
based approach for solving Simultaneous Localization and Mapping from relative pose measurements.
The approach does not use heuristics for forcing the unit norm constraint on quaternions of rotation and
it is shown to be a high-level abstraction of several 3D perceptions in mobile robotics, being suitable
for information fusion from heterogeneous sensors. Furthermore it has a direct application within a
delayed-state architecture for SLAM and its extension to the multi robot case is straightforward.

The second contribution is the observability analysis of the quaternion-based filter. The work
formally proves that the SLAM system is completely observable over a given interval of time, as long
as this interval includes an observation of the anchor, i.e., the landmark that was set at the origin of
the reference frame for mapping.

The third contribution regards the experimental analysis of the approach in different application
scenarios. The analysis includes a numerical evaluation for assessing the consistency of the SLAM
approach and tests on a real dataset that allow to evaluate the accuracy of the approach using standard
benchmarking metrics.
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Appendix A: Preliminaries on Quaternions and Rotations
This section recalls basic concepts on unit quaternions, as described in ref. [40] (apart from Eq. (A3)
that can be easily verified by inspection). Depending on the context a quaternion will be denoted as a
column vector q = [q1 q2 q3 q4]� ∈ R

4 or as an ipercomplex number, i.e., q = iq1 + jq2 + kq3 +
q4, with i, j , k satisfying:

i2 = j2 = k2 = i j k = −1
i j = − j i = k j k = −k j = i ki = −i k = j

Unit quaternions, i.e., quaternions having unit norm, are compact representations for rotations
and have been used in several applications concerning 3D navigation, see.8, 41, 55, 60 A quaternion can
be also written as q = [v� s]�, where the first element v ∈ R

3 is the vector part of the quaternion
whereas the last element is the real part (contrarily to related work we postpone the real part to
the vector part so to have a unified treatment of quaternions and Cartesian vectors in homogeneous
coordinates). Furthermore, unit quaternions can be written as q = [sin(ϑ/2)u� cos(ϑ/2)]�, and
describe a rotation of an angle ϑ around the axis u ∈ R

3, with ‖u‖ = 1. Then we can recall the
following facts.
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Quaternions multiplication. Given two quaternions qa = [qa
1 qa

2 qa
3 qa

4 ]� and qb = [qb
1 qb

2 qb
3 qb

4 ]�,
the quaternion product qc = qaqb can be computed as:

qc =

⎡
⎢⎣

qa
4 −qa

3 qa
2 qa

1
qa

3 qa
4 −qa

1 qa
2−qa

2 qa
1 qa

4 qa
3−qa

1 −qa
2 −qa

3 qa
4

⎤
⎥⎦

⎡
⎢⎢⎣

qb
1

qb
2

qb
3

qb
4

⎤
⎥⎥⎦ = ϒqb

or, equivalently, as:

qc =

⎡
⎢⎢⎣

qb
4 qb

3 −qb
2 qb

1
−qb

3 qb
4 qb

1 qb
2

qb
2 −qb

1 qb
4 qb

3
−qb

1 −qb
2 −qb

3 qb
4

⎤
⎥⎥⎦

⎡
⎢⎣

qa
1

qa
2

qa
3

qa
4

⎤
⎥⎦ = ϒ̄qa

Inverse quaternion. Given a unit quaternion in vector-scalar form q = [v�s]�, the inverse quaternions
is given by q−1 = [−v�s]�. Moreover, when inverting the product of quaternions, the following rule
applies:

(qaqb . . . qN )−1 = q−1
N . . . q−1

b q−1
a

Quaternion and rotation matrix. Given a unit quaternion q = [q1 q2 q3 q4]�, the corresponding
rotation matrix R(q) can be computed as:

R(q) =
⎡
⎣q2

1 −q2
2 −q2

3 +q2
4 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) −q2
1 +q2

2 −q2
3 +q2

4 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2

1 −q2
2 +q2

3 +q2
4

⎤
⎦

Moreover if qc = qaqb, then R(qc) = R(qa)R(qb), i.e., the quaternion product realizes the
composition of the rotations corresponding to each quaternion; furthermore, given the inverse
quaternion q−1, then R(q−1) = R�(q).

Rotations and 3D vectors. Given a unit quaternion q and a vector t ∈ R
3, if we express the vector t

in homogeneous coordinates as p = [t� 1]�, then the following property holds:

pr
.= q pq−1 =

[
R(q)t

1

]
(A1)

Homogeneous sum. Given two homogeneous vectors pa = [t�
a 1]� and pb = [t�

b 1]�, their sum and
difference is:

pa ⊕ pb =
[

ta + tb
1

]
pa � pb =

[
ta − tb

1

]

Exponential map. The exponential map � : R
3 � θ → q ∈ SO(3) from the vector space R

3 to an
element of the special orthogonal group SO(3), maps the rotation vector θ into a unit quaternion
describing a rotation of an angle ‖θ‖ around the axis θ/‖θ‖1. The exponential map can be written
explicitly as �(θ) = [

sin
( ‖θ‖

2

)
θ�
‖θ‖ cos

( ‖θ‖
2

)]�
.

1 More formally, unit quaternions belong to the group SU(2), which is a double cover of SO(3), since the
quaternions q and −q represent the same rotation.
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Small-angle approximations. Given a unit quaternion q̃, the following small-angle approximation
holds:60

q̃ ≈
[

θ̃/2
1

]
(A2)

being θ̃ ∈ R
3 a vector describing a rotation of an angle ‖θ̃‖ around the axis θ̃/‖θ̃‖.

Moreover, for small rotations q̃a ≈ [(θ̃a)� 1]� and q̃b ≈ [(θ̃b)� 1]� it holds the following first-
order approximation:

q̃c = q̃a q̃b ≈ q̃a ⊕ q̃b =
[

θ̃a

2 + θ̃b

2
1

]
(A3)

with ⊕ denoting the sum in homogeneous coordinates. Finally, for a small quaternion q̃ ≈ [θ̃� 1]�
and the corresponding rotation matrix R(q̃), it holds:

R(q̃) = R(θ̃ ) ≈ I3 + S(θ̃ ) (A4)

being S([θ̃1 θ̃2 θ̃3]�) the skew-symmetric matrix:

S(θ̃ )
.=

⎡
⎣ 0 −θ̃3 θ̃2

θ̃3 0 −θ̃1

−θ̃2 θ̃1 0

⎤
⎦ . (A5)

Appendix B: Error State Motion Model
In this section we devise the expression of the motion model of the robot in terms of estimation and
odometric measurement errors. Let us consider robot prediction for the orientation variables in (1)
and the corresponding estimate in (2). By pairwise multiplication we obtain:

q̂−1
0 (k|k − 1)q0(k) = (q̂0(k − 1|k − 1)q̄u(k))−1 (q0(k − 1)qu(k)) (B1)

The first member of (B1) is, by definition, the estimation error of robot orientation at time k, before
including information from exteroceptive sensors, i.e., q̃0(k|k − 1). We can then develop the right
hand side of (B1) as follows:

q̃0(k|k − 1) = q̄u(k)−1q̂0(k − 1|k − 1)−1q0(k − 1)qu(k)

Now let us substitute q̃0(k − 1|k − 1) = q̂0(k − 1|k − 1)−1q0(k − 1) and rewrite qu(k) as function of
the measured rotation and the corresponding error:

q̃0(k|k − 1) = (
q̄u(k)−1q̃0(k − 1|k − 1)q̄u(k)

)
q̃u(k) (B2)

The previous expression provides the relationship between the error of (prior) robot orientation
estimate at time k in function of the error of robot orientation posterior at time k − 1 and the odometric
measurement error. Under the hypothesis of small angular errors we can rewrite the quaternions as

q̃0(k|k − 1) ≈
[

1

2
θ̃0(k|k − 1)� 1

]�

q̃0(k − 1|k − 1) ≈
[

1

2
θ̃0(k − 1|k − 1)� 1

]�
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and

q̃u(k) ≈
[

1

2
θ̃u(k)� 1

]�

according to Eq. (A2). Moreover, using (A1), the following equality holds:

q̄u(k)−1q̃0(k − 1|k − 1)q̄u(k) =
[

R (q̄u(k))� 1
2 θ̃0(k − 1|k − 1)�

1

]

Finally, recalling that in (B2) we are multiplying small rotations, and using (A3), we can now write
a first-order approximation of the orientation error vector as:

θ̃0(k|k − 1) ≈ R (q̄u(k))� θ̃0(k − 1|k − 1) + θ̃u(k) (B3)

Equation (B3) constitutes a first-order expression of the error of the orientation estimate after
prediction. For deriving the error state equations we also need to compute a first-order expression of
the Cartesian error. In order to compute p̃0(k|k − 1) we can subtract memberwise the first equations
in (1) and (2).

If, for notational simplification, we define

pr
u(k) = q0(k − 1) pu(k)q0(k − 1)−1

and
p̄r

u(k) = q̂0(k − 1|k − 1) p̄u(k)q̂0(k − 1|k − 1)−1

we can write:

p0(k) � p̂0(k|k − 1) = p0(k − 1) ⊕ pr
u(k) � p̂0(k − 1|k − 1) � p̄r

u(k) (B4)

Now, remembering that p̃0(k|k − 1) = p0(k) � p̂0(k|k − 1) and p̃0(k − 1|k − 1) = p0(k − 1) �
p̂0(k − 1|k − 1) are the estimation error of the prior at time k and the estimation error of the
posterior at time k − 1, and rewriting q0(k − 1) and pu(k) in function of the corresponding estimated
(measured) quantities, we can develop expression (B4) as follows:

p̃0(k|k − 1) = p̃0(k − 1|k − 1) ⊕ pr
u(k) � p̄r

u(k)
= p̃0(k − 1|k − 1) ⊕ (q̂0(k − 1|k − 1)q̃0(k − 1|k − 1)) ( p̄u(k) ⊕ p̃u(k))

q̃0(k − 1|k − 1)−1q̂0(k − 1|k − 1)−1 � p̄r
u(k)

Rewriting the homogeneous coordinates in terms of 3D vectors and according to (A1), the previous
expression becomes:

t̃0(k|k − 1) = t̃0(k − 1|k − 1)

+ R(q̂0(k − 1|k − 1))R(q̃0(k − 1|k − 1)) t̄u(k)

+ R(q̂0(k − 1|k − 1))R(q̃0(k − 1|k − 1)) t̃u(k)

− R(q̂0(k − 1|k − 1)) t̄u(k)
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We can now consider the small-angle approximation (A4) for the rotation matrix R(q̃0(k − 1|k − 1)),
and, neglecting higher-order terms, we obtain:

t̃0(k|k − 1) ≈ t̃0(k − 1|k − 1)

+ R(q̂0(k − 1|k − 1))
(
I3 + S(θ̃0(k − 1|k − 1))

)
t̄u(k)

+ R(q̂0(k − 1|k − 1))
(
I3 + S(θ̃0(k − 1|k − 1))

)
t̃u(k)

− R(q̂0(k − 1|k − 1)) t̄u(k)

= t̃(k − 1|k − 1)

+ R(q̂0(k − 1|k − 1))S(θ̃0(k − 1|k − 1)) t̄u(k)

+ R(q̂0(k − 1|k − 1)) t̃u(k)

The previous expression can be further simplified by recalling that for generic vectors a, b ∈ R
3 it

holds S(a)b = −S(b)a:

t̃0(k|k − 1) = t̃0(k − 1|k − 1)

− R(q̂0(k − 1|k − 1))S( t̄u(k))θ̃0(k − 1|k − 1)

+ R(q̂0(k − 1|k − 1)) t̃u(k) (B5)

Reporting Eqs. (B3) and (B5) in matrix form we obtain:

x̃0(k|k − 1) = Fk x̃0(k|k − 1) + Gk ũ(k)

with Fk and Gk defined as in (3).

Appendix C: Innovation for the j -th Measurement
In this section we derive the first-order expression (8) of the innovation for the j -th measurement.
Let us consider the second equation in model (7) and rewrite the true quantities in terms of estimates
(priors) and residual errors:

q̄zj
(k) = (q̂0(k|k − 1)q̃0(k|k − 1))−1(

q̂j (k|k − 1)q̃j (k|k − 1)
)

q̃zj
(k)−1 (C1)

Multiplying each member of (C1) by the quantity q̂zj
(k)−1 = (

q̂0(k|k − 1)−1q̂j (k|k − 1)
)−1

we
obtain:

q̂−1
zj

(k)q̄zj
(k) = (

q̂0(k|k − 1)−1q̂j (k|k − 1)
)−1

q̃0(k|k − 1)−1
(
q̂0(k|k − 1)−1q̂j (k|k − 1)

)
q̃j (k|k − 1)q̃zj

(k)−1

(C2)

But, by definition, the quantity q̂−1
zj

(k)q̄zj
(k) is the innovation of the relative orientation measurement

between the robot and landmark j , namely q̃rj
(k); moreover, by applying (A1) and (A2), a first-order

approximation of (C2) can be computed as:

θ̃rj
(k) ≈ −R

(
q̂0(k|k − 1)−1q̂j (k|k − 1)

)�
θ̃0(k|k − 1)

+ θ̃j (k|k − 1) − θ̃zj
(k) ∀j ∈ M

(C3)

The previous expression provides a first-order relation between the innovation, the prior error and
the measurement error, for the orientation variables. We can further derive the innovation for the
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Cartesian variables, starting from the first equation in (7):

p̄zj
(k) = (q̂0(k|k − 1)q̃0(k|k − 1))−1(

p̂j (k|k − 1) � p̂0(k|k − 1) ⊕ p̃j (k|k − 1) � p̃0(k|k − 1)
)

(q̂0(k|k − 1)q̃0(k|k − 1)) � p̃zj
(k)

Using (A1) and passing to 3D coordinates for position variables, we can write the quaternions in
terms of the corresponding rotation matrices:

t̄zj
(k) = − t̃zj

(k) + R� (q̃0(k|k − 1)) R� (q̂0(k|k − 1))(
t̂j (k|k − 1) − t̂0(k|k − 1) + t̃j (k|k − 1) − t̃0(k|k − 1)

)
Taking a small-angle approximation for the rotation matrix R (q̃0(k|k − 1))�, we obtain:

t̄zj
(k) ≈ − t̃zj

(k) + (
I3 + S� (

θ̃0(k|k − 1)
))

R� (q̂0(k|k − 1))(
t̂j (k|k − 1) − t̂0(k|k − 1) + t̃j (k|k − 1) − t̃0(k|k − 1)

)
After few matrix multiplications and neglecting higher order terms in the residual errors we can write:

t̄zj
(k) ≈ − t̃zj

(k) + R� (q̂0(k|k − 1))
(
t̃j (k|k − 1) − t̃0(k|k − 1)

)
− S

(
θ̃0(k|k − 1)

)
R� (q̂0(k|k − 1))

(
t̂j (k|k − 1) − t̂0(k|k − 1)

)
+ R� (q̂0(k|k − 1))

(
t̂j (k|k − 1) − t̂0(k|k − 1)

)
(C4)

Now, revising the expression for the Cartesian measurement in (6), it is possible to see that the last
summand in (C4) is the expected measurement, given the current state estimate, namely t̂zj

(k), hence
we can write:

t̄zj
(k) − t̂zj

(k) ≈ − t̃zj
(k) + R� (q̂0(k|k − 1))

(
t̃j (k|k − 1) − t̃0(k|k − 1)

)
−S (q̃0(k|k − 1)) R� (q̂0(k|k − 1))

(
t̂j (k|k − 1) − t̂0(k|k − 1)

)
By definition, t̃rj

(k)
.= t̄zj

(k) − t̂zj
(k) is the innovation for the relative position measurement

between the robot and landmark j . Hence, we can finally derive the expression of the innovation in
function of the Cartesian measurement and estimation errors:

t̃rj
(k) ≈ − t̃zj

(k) + R� (q̂0(k|k − 1))
(
t̃j (k|k − 1) − t̃0(k|k − 1)

)
+ S

(
R� (q̂0(k|k − 1))

(
t̂j (k|k − 1) − t̂0(k|k − 1)

))
θ̃0(k|k − 1) (C5)

From Eqs. (C3) and (C5) the innovation vector r̃j = [ t̃�
rj

(k) θ̃�
rj

(k)]� for measurement from the
j -th landmark can be written in compact form as:

r̃j (k) ≈ Hj x̃ − z̃j

with Hj defined as in (9).

Appendix D: Registration of Uncertain 3D Vectors
Let us consider two sets of vectors A = {ai ∈ R

3, i = 1, . . . , κ} and B = {bi ∈ R
3, i = 1, . . . , κ},

each one describing a collection of κ features (points, line directions or normals to planes) observed
from a given vantage pose, respectivelyRA andRB . The point features are described by κp 3D vectors,
while normals and directions correspond to κu three-dimensional unit vectors, with κ = κp + κu. The
vector registration problem consists in finding the roto-translation (R, t) that relates the reference
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framesRA andRB , given A and B. In this appendix we will briefly present an approach for computing
the roto-translation achieving the optimal match between the given vector sets. This technique is
based on a Gauss-Newton method and the interested reader can find a detailed study on registration
techniques in ref. [11] and [12]. It is possible to rewrite the measured vectors as ai = αi − εai

and
bi = βi − εbi

, i = 1, . . . , κ , where αi and βi are the true vectors, whereas the terms εai
and εbi

are
zero mean independent Gaussian noises, i.e., εai

∼ N (03, Pa
i ) and εbi

∼ N (03, Pb
i ), being Pa

i and
Pb

i the 3 by 3 covariance matrices associated to the vectors ai and bi , respectively. Under this setup
the vector registration problem becomes a minimization of the following Mahalanobis distance:

E(R, t) =
κp∑
i=1

(ai − Rbi − t)� P−1
i (ai − Rbi − t)

+
κ∑

i=κp+1

(ai − Rbi)
� P−1

i (ai − Rbi), (D1)

where Pi = Pa
i + R Pb

i R� is the registration covariance expressed in the reference frame RA.
Let us consider the expression of a single residual in the previous summand:

ξi = ai − Rbi − λi t, (D2)

where the support variable λi is equal to 1 for i = 1, . . . , κp and equal to zero for the other vectors.
Let us assume that an initial guess R̄ for optimization is available and let us express the rotation R in
the residual (D2) as a function of such known rotation and an unknown correction R(δθ ):

ξi = ai − R̄R(δθ )bi − λi t. (D3)

Assuming the correction angle δθ to be small we can approximate R(δθ ) = I3 + S(δθ ), hence (D3)
becomes:

ξi ≈ ai − R̄bi − R̄S(δθ )bi − λi t = ai − R̄bi − λi t + R̄S(bi)δθ = ai − R̄bi − 	iδ,

with 	i = [λi I3 − R̄S(bi)], i = 1, . . . , κ and δ = [t� δ�
θ ]�. We can now rewrite a quadratic

approximation of the objective function (D1) around the initial guess R̄ as:

E(R, t) =
κ∑

i=1

ξ�
i P−1

i ξi

≈
κ∑

i=1

(
ai − R̄bi − 	iδ

)�
P̄−1

i

(
ai − R̄bi − 	iδ

)
.

with P̄i = Pa
i + R̄ Pb

i R̄�. The solution to the previous convex optimization problem can be computed
as:5

δ∗ =
⎛
⎝ κ∑

j=1

	�
j P̄−1

j �j

⎞
⎠−1

κ∑
i=1

	�
i P̄−1

i (ai − R̄bi).

The previous solution provides an estimate of the translation t∗ and a local angular correction δ∗
θ .

The algorithm can be iterated until convergence, using the refined rotation matrix estimate R̄R(δ∗
θ )

as initial guess for a new iteration.
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According to the framework presented so far it is also possible to devise a covariance matrix of
the estimated roto-translation:

P∗ =
⎛
⎝ κ∑

j=1

	�
j P̄−1

j 	j

⎞
⎠−1

. (D4)

For sake of brevity we refer the reader to12 for the derivation of P∗. In the same reference it is shown
that the registration algorithm described so far, with a suitable initialization of the iterative nonlinear
optimization method, converges to a minimum of the objective function in few iterations and assures
that the estimation errors are consistent with the covariance matrix (D4). Finally, we observe that
when the quality of the data association is expected to be poor, the registration approach can be
integrated within a RANSAC algorithm.
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