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1. A model can be generally understood as an entity or structure used to represent
(Frisch 1998) or denote (Hughes 1997) another system, object, or structure. The specific
class of models of interest here will be defined more fully in Section 2.

Horizontal Models:
From Bakers to Cats*

Alisa Bokulich†‡

At the center of quantum chaos research is a particular family of models known as
quantum maps. These maps illustrate an important “horizontal” dimension to model
construction that has been overlooked in the literature on models. Three ways in which
quantum maps are being used to clarify the relationship between classical and quantum
mechanics are examined. This study suggests that horizontal models may provide a new
and fruitful framework for exploring intertheoretic relations.

1. Introduction. One of the most important insights in physics in the last
thirty years is the realization that a wide variety of classical systems exhibit
chaotic behavior, that is, they exhibit sensitive dependence on initial con-
ditions. This is perhaps surprising in light of the fact that quantum me-
chanics recently celebrated its hundredth birthday as the fundamental the-
ory that replaced classical mechanics. On the standard interpretation of
quantum theory, there does not seem to be genuine chaos in quantum
mechanics and furthermore, it is difficult to see how classically chaotic
behavior could even emerge. This difficulty has given rise to a new sub-
discipline in physics known as quantum chaos.

Quantum chaos provides a particularly rich arena in which to explore
the use of models.1 On the one hand, the difficulty in solving classical
nonlinear equations giving rise to chaotic dynamical behavior requires the

https://doi.org/10.1086/376927 Published online by Cambridge University Press

https://doi.org/10.1086/376927


 610

2. See Bokulich 2001 for an overview and evaluation of current attempts to solve the
problem of quantum chaos.

use of models to bridge what Michael Redhead (1980) has called “the
computational gap.” A computational gap occurs when the fundamental
equations of a theory are too difficult to solve for the sort of systems you
are interested in making empirical predictions about. Quantum mechanics
also faces a computational gap when it comes to trying to solve the Schrö-
dinger equation for systems more complicated than the usual textbook
examples. In these cases, the use of mathematical models and approxi-
mation techniques becomes essential.

In classical mechanics the study of chaotic Hamiltonian systems is
greatly aided by the use of discrete area-preserving maps. These maps
function as geometrical models in which the long-term chaotic behavior
of systems can be readily followed. The success of discrete area-preserving
maps in providing insight into classical chaos has led researchers to quan-
tize some of them in the hopes that these “quantum maps” will similarly
provide new insights into the problem of quantum chaos.

In the following section, I briefly trace the conceptual history of quan-
tum maps. This history plays an important role in understanding the mo-
tivation and current justification of these models. Quantum maps can best
be understood as a product of what I call horizontal model construction.
These horizontally constructed models have proven to be an ideal tool for
exploring the relation between classical and quantum mechanics. Sections
3 through 5 provide a more detailed examination of the role that particular
quantum maps are playing in quantum chaos research. Specifically, they
are being used, first, to develop a new semiclassical approximation; sec-
ond, as a concrete test of the correspondence principle; and finally, to
demonstrate a novel quantum effect used to explain the quantum sup-
pression of classical chaos. In the final section I return to a general dis-
cussion of the nature and function of horizontal models.

My aim in this paper is not to offer a solution to the problem of quan-
tum chaos. As of yet there is no satisfactory solution to this problem.2

Rather, my aim is to illustrate the important role that horizontally con-
structed models play in the theoretical and philosophical enterprise of
elucidating the relationship between two different, but partially overlap-
ping, theories.

2. Horizontal Model Construction: From Poincaré Sections to Quantum
Maps. Traditionally, model construction is seen as proceeding in one of
two ways: either top down from theory or bottom up from empirical data.
Both of these approaches emphasize what might be called the vertical
component to model construction. When it comes to quantum maps, how-
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ever, neither of these approaches adequately explains how these models
are constructed. The introduction of quantum maps did not come by way
of quantum theory itself nor from any particular set of quantum phenom-
ena. Instead, quantum maps can best be understood as a product of hor-
izontal model construction. To say that the construction of a model is
“horizontal” means that the primary guiding principle in the model’s con-
struction came, not by way of theory or any particular set of experimental
phenomena, but rather, by way of analogy with models belonging to
neighboring theories. Quantum maps are interesting not only because of
the work that they are doing in quantum chaos research, but also because
they illustrate this important horizontal dimension to model construction.
In order to better understand how quantum maps are the product of hor-
izontal model construction, it is necessary to briefly trace their develop-
ment.

The use of geometrical models to solve problems in kinematics and
dynamics has a long history. An innovative move by Henri Poincaré at
the end of the nineteenth century was to extend this tradition of using
geometrical models in mechanics to more abstract state spaces. In classical
mechanics the state of a system can be represented as a point in phase
space and the evolution of that state as a trajectory. If the number of
integrals of motion is less than the number of degrees of freedom, such as
in the case of the infamous three-body problem, then the system is said to
be nonintegrable and can exhibit chaotic behavior.

In trying to deal with the three-body problem, Poincaré introduced a
new method that became known as a surface of section. The central insight
of this method is that, rather than trying to follow the entire trajectory,
much of the essential information about the behavior of the system can
be determined by examining the intersection of the trajectory with a plane
in phase space called the surface of section. Given a piercing point A, the
differential equations describing the evolution of the trajectory can be used
to determine uniquely the next piercing at B, as shown in Figure 1. Thus,
the continuous dynamics can be said to induce a discrete mapping, M, on
the plane, such that M(A) � B. This map, M, can then be iterated to find
all subsequent piercings of S.

In general, the maps associated with real dynamical systems (such as a
three-body system) can still be extremely difficult to evaluate. Further-
more, when it comes to the study of chaotic systems, one is interested in
their long-term behavior, which corresponds to typically several thousand
iterations of these maps. For this reason, researchers interested in studying
chaos introduced further simplified and idealized mappings that no longer
necessarily corresponded to any real physical system or continuous dy-
namics. The guiding idea, as with most models, is that these simplified
maps would capture certain generic features common to many different

https://doi.org/10.1086/376927 Published online by Cambridge University Press

https://doi.org/10.1086/376927


 612

S
B

A

Figure 1. Poincaré surface of section used to reduce continuous dynamics to a discrete
map. Only piercings in one direction are considered.

3. The term “quantum map” was first introduced in Berry, Balazs, Tabor and Voros
1979.

4. The basic idea here is to divide the unit phase space square into N minimum uncer-
tainty patches of size h.

dynamical systems without being encumbered by the idiosyncrasies of par-
ticular systems. As it turns out, chaotic behavior can be exhibited even in
these simple maps. A particularly important class of maps is the area-
preserving transformations of the unit square, used to model Hamiltonian
systems. Here the area-preserving property of the map corresponds to the
phase-space-volume preserving property of Hamiltonian systems. In this
class of maps belong the baker’s map, the cat map, and the standard map,
which will be discussed in the following sections.

The success of these simple maps in modeling classical chaotic dynamics
led researchers in quantum chaos to develop quantum versions of the
chaotic area-preserving maps, known as quantum maps.3 While a classical
map, M, is a one-to-one area-preserving transformation of the phase space
into itself, a quantum map is a unitary transformation, Û, of the Hilbert
space of states. More specifically, quantum maps are unitary N � N ma-
trices with a particular type of N-dependence in their entries, where N �
1/2p�.4 For quantum maps the classical limit is defined as N r �.

Unlike classical maps, quantum maps cannot be obtained directly from
the full quantum dynamics by means of a method like the Poincaré surface
of section. Rather, quantum maps are obtained horizontally by “quantiz-
ing” a particular classical map. As is generally the case in quantizing a

https://doi.org/10.1086/376927 Published online by Cambridge University Press

https://doi.org/10.1086/376927


  613

classical system, there is no universal prescription for how to quantize
maps. For a classical map that can be viewed as a stroboscopic picture of
a time-dependent Hamiltonian system, like the standard map to be dis-
cussed in Section 5, the quantization procedure is relatively straightfor-
ward. For more idealized classical maps, like the baker’s map discussed
in Section 3 and the cat map discussed in Section 4, ad hoc quantization
procedures have to be invoked. As is also generally the case when quan-
tizing a classical system, the quantization of a classical map is not unique.
Researchers in quantum chaos identify three constraints that a quantum
map should satisfy: it must be unitary (in order to conserve probability),
it should respect the same symmetries as the classical map, and finally, it
should give the chaotic classical map in the classical limit.

Quantum maps can best be understood as part of a lineage of models
with their own internal dynamic and justification. Adam Morton, in his
article on mathematical models notes that, “what is new and distinctive
in the science of our time is the existence of complex mediating models
which themselves have explanatory power and which embody techniques
of modeling [that] can be refined and passed down to successor models”
(Morton 1993, 664). While maps may not be the sort of model Morton
has in mind, his central insight about successor models is a relevant one.
As the history of quantum maps shows, the impetus for their introduction
does not come from quantum theory nor from any particular set of quan-
tum phenomena. Rather, the motivation—and current justification—of
these models comes from the successes of classical maps.

To deny that models are exclusively theory driven does not commit one
to the view that theories play no role in the construction of models, nor
to the view that models can tell us nothing about theories. Similarly, to
deny that a class of models is phenomenologically driven does not commit
one to the view that these models have no role to play in explaining phe-
nomena and making contact with experiment. In what follows I will show
how these two points are born out by study of classical and quantum
maps.

3. The Baker’s Maps and Developmental Models. One of the many impor-
tant functions of models is to aid in the articulation and development of
a new theory that has not yet been completely specified. Such models were
aptly named “developmental models” by Jarrett Leplin (1980). Develop-
mental models typically have two important functions: first, testing the
range and validity of fledgling theories and second, suggesting ways of
improving or expanding such theories by indicating certain paths of re-
search to pursue.

When it comes to classically chaotic systems, many of the traditional
approximation techniques break down. One of the central projects of
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5. It should be noted that there is some controversy over whether semiclassical theory
should at all be called a ‘theory’. Batterman (1995) has argued that semiclassical theory
is worthy of the name, but I shall not address this issue here.

quantum chaos is the development a new semiclassical theory5 that can be
applied to classically nonintegrable systems. The essence of semiclassical
mechanics is to build up approximations to quantum quantities, such as
eigenvalues, through the use of classical objects, such as trajectories. In this
context, the so-called baker’s map has been important, not only for testing
the range and validity of the current semiclassical approximations, but also
for suggesting new ways of extending and improving semiclassical methods.

The baker’s map is an area-preserving map of the unit phase space
square. The action of the map is essentially a repeated halving in the
P-direction and doubling in the Q-direction which results in a mixing of
the phase space. It is called the baker’s map because of the similarity of
this action to a baker kneading dough. The motion generated by this map
is chaotic. A feature of the baker’s map that makes it a particularly useful
model is that the dynamics of a point under the action of this map can be

Figure 2. The baker’s map. The square brackets indicate that only the integer part is kept.
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given a simple symbolic representation. If one writes the coordinates of a
point, X, in binary notation, and puts them back to back separated by a
decimal, then the new point, X’, that results from one iteration of the
baker’s map can be found simply by moving the decimal point one place
to the right (known as a Bernoulli shift) as shown in the example below.

X X
Q P P Q Q

=








 =











⇒ ′ =.25 .75 ...0011 0100... .5
� � ���

i
���
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�� � ��� ��

i
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The entire history of the trajectory can be easily followed in this way.
Furthermore, in binary notation it is easy to identify the periodic orbits
since they will be represented by a finite string of digits repeated an infinite
number of times. It is these sorts of features of the baker’s map that make
it a particularly useful model for understanding chaotic dynamics.

The first quantizations of the baker’s map employed ad hoc quantiza-
tion procedures, guided by intuitive analogies with the classical map (cf.
Balazs and Voros 1989 and Saraceno 1989). The action of the quantum
map takes one from an initial state W in the N-dimensional Hilbert space
to a final state U as U � B̂W. Just as the classical map divides the phase
space square into left and right halves, which get mapped into bottom and
top halves respectively, one can decompose the vector space into two or-
thogonal subspaces L and R whose vectors get mapped into two other
orthogonal subspaces B and T. The mapping from W to U involves a
discrete Fourier transform, FN, which takes one from the position repre-
sentation to the momentum representation. What is important here is not
the details of the quantum baker’s map, but rather, how it is being used
to help researchers in quantum chaos learn more about the applicability
of semiclassical approximations.

The beginnings of a semiclassical theory that is applicable to nonin-
tegrable as well as integrable systems is the so called Gutzwiller trace
formula. This formula gives an expression that allows one to use knowl-
edge about the periodic orbits of the classical system to compute approx-
imate values for the energy eigenvalues of the quantum system. The suc-
cess of this approach depends on being able to find and classify the actions,
periods, and stabilities of all the periodic orbits. Obtaining all of the pe-
riodic orbits of a general Hamiltonian system is a formidable task. In
general this is not possible except for idealized models. The process of
finding the classical periodic orbits is greatly simplified when applied to a
discrete map, such as the baker’s map.

One of the hallmarks of a developmental model is the role that it plays
in testing the range and validity of a fledgling theory. Originally, it was
believed that the Gutzwiller trace formula breaks down when the classical
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6. A discussion of the correspondence principle in the context of quantum chaos can
be found in Belot and Earman 1997 and Batterman 1991.

chaos has mixed the phase space on a scale smaller than Planck’s constant
(Sepúlveda et al. 1992). This means that, for a phase space divided up into
cells of size h, a typical initial state has visited most of these cells. The time
at which this breakdown occurs is approximately equal to ln(1/�), dubbed
the “log time.” In their study of the baker’s map, Patrick O’Connor et al.
(1992) were able to show that the semiclassical formula remained valid
even after the log time. They cite a number of special features of the baker
model that enabled them to first make this discovery. They write, besides
the simple encoding of the dynamics,

the added clarity resides in two additional features of the baker’s map
which further its appeal as a paradigm. In a typical system, a log time
is a somewhat vague concept, varying throughout phase space. The
baker’s map, though, naturally presents a specific and sharp value for
what to call the log time, making it quite clear when we are studying
dynamics ‘beyond the log time.’ The second . . . is that the object
which plays the role of a caustic or singularity appears only at two
coordinate sites. This means that by confining our study to regions
away from these sites, the complications . . . are avoided. (O’Connor
et al. 1992, 342)

Thus, it is not simply one feature of the baker’s map that makes it a useful
model, but rather a variety of simplifying features that, together, make
these studies possible.

A second hallmark of developmental models is the role they play in
improving and extending fledgling theories. The baker’s map has been
important, not only for testing the range of validity of semiclassical ap-
proximations, such as the Gutzwiller formula, but also has played a central
role in suggesting ways of extending and developing better semiclassical
approximations. One of the fundamental limitations of Gutzwiller’s trace
formula is that it only gives information about eigenvalues and not wave-
function amplitudes. As such, it is only a partial semiclassical theory.
Steven Tomsovic and Eric Heller have used the quantum baker’s map to
develop a more complete semiclassical theory that goes beyond the infor-
mation given by the classical periodic orbits used in Gutzwiller’s formula.
Once again it is the simplifying features of this chaotic model—such as
binary coding and linear discrete dynamics—that allowed Tomsovic and
Heller (1993) to show that a more complete semiclassical method was, in
fact, possible.

4. Cat Maps and the Correspondence Principle. Questions about the rela-
tionship between classical and quantum mechanics are often formulated
in terms of the correspondence principle.6 Although many different ver-
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Figure 3. The cat map. The matrix stretches the figure and the “mod 1” means that only
the fractional parts are kept, projecting the image back into the unit square. After just one
iteration of this map even the cat’s smile is all but gone.

sions of the correspondence principle can be found in the literature, a
minimal, though perhaps not historically accurate, version of the corre-
spondence principle asserts that quantum mechanics should be able to
reproduce, within experimental error, the empirically well-confirmed suc-
cesses of classical mechanics. Joseph Ford and his collaborators (1991,
1992) have argued that classical chaos poses an insurmountable threat to
the correspondence principle. His controversial argument is based on a
particular chaotic model known as the cat map.

The cat map is so-named because Vladimir Arnold and André Avez
(1968) first illustrated the action of this map on a drawing of a cat. In the
cat map, one begins with a unit phase space square that, when multiplied
by a matrix, A, results in a stretched parallelogram. The “modulo one”
operation then “folds” the parallelogram back into the unit square. This
stretching and folding procedure is repeated for each iteration of the map.

The example given above, with A =






1 1

1 2
, is just one possible cat map.
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More generally, the elements of the matrix, A, can be any integers such that
the determinant is equal to 1 (to ensure that the map is area-preserving)
and the trace of A is greater than two (to ensure the map is hyperbolic, or
chaotic).

The quantum version of the cat map is an N � N unitary matrix, Û.
The method by which one derives Û from the elements of the classical
map was first given by John Hannay and Michael Berry (1980). Rather
than attempting to quantize the cat map directly, their quantization pro-
ceeds by first making an analogy to optics, where classical mechanics is
likened to ray optics and quantum mechanics is likened to wave optics.
They construct an optical system of lenses and rays of monochromatic
light, whose dynamics are described by the action of the classical cat map.
They then obtain the quantum cat map by considering the wave optics
counterpart of this system. It is important to note, however, that while
these contrived optical systems played a central role in constructing the
quantum version of this map, they are not the systems that physicists are
trying to better understand through this model. Although deriving the
expression for the quantum cat map is nontrivial, once one obtains the
quantum cat map its behavior can be readily determined and compared
with the classical cat map.

Joseph Ford and his collaborators have analyzed the classical and
quantum cat maps and drawn the following conclusion:

We here quantize the Arnol’d cat and examine its quantum motion
for signs of chaos using algorithmic complexity as a litmus. Our anal-
ysis reveals that the quantum cat is not chaotic in the deep quantum
domain nor does it become chaotic in the classical limit as required
by the correspondence principle. We therefore conclude that the cor-
respondence principle . . . fails for the quantum Arnol’d cat (Ford et
al. 1991, 493).

One of the central motivations for Ford’s claim that the correspondence
principle fails is the observation that, for any finite N, the quantum dy-
namics described by the quantum cat map is always periodic. That is to
say, for any wavefunction there exists an m such that after m iterations of
the map one is back to the original wavefunction, Ûmw0 � w0 (up to a
phase factor). By contrast, the classical dynamics, described by the clas-
sical cat map, are not periodic (except for those trajectories described by
rational coordinates which are of measure zero).

There are several different ways in which one can respond to Ford’s
polemical claim that the correspondence principle fails for the cat map.
For example, Gordon Belot and John Earman (1997) have challenged the
adequacy of Ford’s notion of algorithmic complexity to characterize
chaos. Another possibility is simply to reject the quantum cat map as a
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7. See Keating 1991 for further details.

legitimate model with which to test the correspondence principle. Another
approach, however, which has proven to be fruitful, is to examine whether
the model itself is rich enough to provide the resources for responding to
Ford’s claim that it violates the correspondence principle.

A central question for testing the validity of the correspondence prin-
ciple is to determine what happens to the periodic quantum motion in the
classical limit, which in quantum maps is given by N r �. Jonathan Keat-
ing (1991) has studied the orbits of the cat map in great detail and has
shown that on average, the periods of the periodic orbits of the quantum
cat map tend to infinity as N r �. In other words, the regular periodic
quantum behavior can, for all practical purposes, be said to mimic the
classical chaotic nonperiodic behavior in the classical limit.7 Recall that
the minimalist correspondence principle requires that in the classical limit
the behavior of a quantum system should be empirically indistinguishable
from the classical behavior. Since one of the defining features of classical
chaotic behavior is its non-periodicity, it is significant that, in the cat map,
the quantum orbits (which are always periodic) can nonetheless be made
empirically indistinguishable from the chaotic orbits by having extremely
long periods. Thus, Keating’s result suggests that, contrary to Ford, the
correspondence principle does not fail for the quantum cat map.

This debate shows how quantum maps can be used as a concrete model
situation in which to explore what are otherwise often intractable ques-
tions about the validity of the correspondence principle. Again, it is the
simplified features of the model that make possible this kind of analysis
on a level that would not be technically feasible in a more realistic system.
Unlike many more realistic systems, the classical limit of the cat map is
both well defined and mathematically solvable. Although the cat maps are
caricatures of dynamical systems, they play an essential role in setting out
a research program and developing techniques with which to address ques-
tions about the validity of the correspondence principle in more realistic
models. Before turning to a more general discussion of these points in
Section 6, it will be useful to have one more case study in hand.

5. The Standard Maps and the Explanatory Power of Models. Although
there are many interesting projects in quantum chaos, ultimately an ade-
quate theory of quantum chaos should explain two things: first, how clas-
sically chaotic behavior emerges out of quantum mechanics in the classical
limit, and second, how classically chaotic behavior becomes suppressed in
the quantum limit. As of yet, there is no complete answer to either of these
questions. Furthermore, the answers to these questions may involve very
different mechanisms. With regard to the latter question of how classical
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θ
δ�

Figure 4. The kicked rotor is essentially a rigid pendulum, free to rotate around a central
fixed point, that periodical receives a kick causing it to rotate erratically when the kicking
strength is above some critical value.

chaos becomes suppressed in the quantum limit, quantum maps have
played an important role in providing the beginnings of an explanation.

The so-called “standard map” gets it name from the wide variety of
dynamical systems that it can be used to model. The standard map is given
by the following set of equations,

′ = + ′ = + ′P P K Psin modθ θ θ π2

where the unit square is defined as 0 � P,h � 2p. This map can be inter-
preted as a stroboscopic sampling of the continuous dynamics of a kicked
rotor at certain intervals of time (rather than a Poincaré section in space).

The Hamiltonian for the continuous kicked rotor system is

H p I k tT= +2 2/ cos ( )θδ

where p is the angular momentum (or action), h is the angular displace-
ment (or phase), I is the moment of inertia (which can be set equal to one),
k is the kick strength, and dT (t) is a periodic delta function. The standard
map can be obtained by integrating the equations of motion over one
period. Although the standard map greatly simplifies the theoretical anal-
ysis of the kicked rotor model and reduces the continuous dynamics to a
discrete dynamics, it brings no new idealization.

The quantum standard map can be obtained by quantizing the clas-
sical kicked rotor in the standard way and then considering the time
evolution of the quantum kicked rotor over one period of the driving
force. Thus the quantum standard map is a mapping of the wavefunction
over a period T,

ψ θ ψ θ( , ) ˆ ( , )t T U t+ =

in which the unitary evolution operator, Û, is the product of three non-
commuting unitary operators, the first of which corresponds to free ro-
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Figure 5. Classical (solid line) and quantum (dashed line) diffusion of energy as a function
of number of map iterations in the standard map for K � 5 (Adapted from Casati and
Chirikov 1995, 13).

8. Specifically the mean square of the momentum averaged over all the trajectories
grows linearly in time: �P2(t)� � K 2t/2.

9. A closer examination of the model reveals that the smaller the parameter, k, (i.e., the
more quantum mechanical it is) the more diffusion is suppressed. See Izrailev 1990 for
further details.

tation during the first half of a period, the second operator describing the
kick, and the third operator describing the free rotation during the second
half of the period. The quantum standard map allows the dynamical be-
havior of the continuous quantum model to be more readily explored.

Classically, one of the manifestations of chaos in the kicked rotor, or
standard map, is that the energy and momentum will diffuse without
bound as the number of kicks, or iterations of the map, increases.8 To
determine what happens to the energy and momentum of the quantum
kicked rotor we can use the quantum standard map to obtain the energy
as a function of the number of kicks (or iterations). The result, first ob-
tained by Giulio Casati and his collaborators (1979), is that in the quan-
tum model, the energy growth followed the classical energy growth only
up to some critical time, after which it leveled off, as shown in Figure 5.

The difference in predictions between the quantum and classical stan-
dard maps is taken as providing part of an explanation for what is called
the quantum suppression of classical chaos.9 There are a number of gen-
eral theoretical arguments for why there can be no genuine chaos in quan-
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10. See, for example, Berry 1989, 335.

11. See, for example, Moore et al. 1995.

tum mechanics. For example, two quantum states that begin “close to-
gether” will always remain close together under unitary Schrödinger
evolution (that is, there can be no exponential divergence characteristic of
chaos).10 While these arguments may explain the absence of chaotic be-
havior in quantum systems, they do not explain how the chaotic behav-
ior—evident at the classical level—disappears or becomes suppressed in
the quantum limit. It is in this important theoretical task of explaining the
quantum suppression of classical chaos that the present model, the quan-
tum standard map, has proven particularly fruitful.

A mechanism for the suppression of chaos was suggested by an analogy
drawn between the behavior of the quantum standard map (depicted in
Figure 5) and a similar effect in a model in condensed matter physics
(known as the Anderson model), which describes the localization of elec-
trons in a disordered solid (Grempel et al. 1984). The analogy suggests
that the mechanism for the suppression of diffusion is a novel quantum
interference effect that is now called dynamical localization. Dynamical
localization is essentially a destructive interference phenomenon that limits
the spread of the rotor wave function over the available angular momen-
tum space. What is important for the discussion here is the fact that it was
the study of this quantum map and the comparison of it with its classical
counterpart that led to the discovery of a new physical effect in quantum
mechanics.

With corresponding quantum and classical models, the intractable
question of what happens to classical chaos in the quantum limit becomes
the more tractable question of what happens to the chaotic behavior of
the classical standard map in the transition to the quantum standard map.
As was done here, one can look at the behavior of an observable in the
classical model and then ask to what extent that behavior is followed in
the quantum model. Although the quantum standard map was the product
of horizontal model construction, this does not mean that such models
cannot ultimately make contact with empirical data. Recently, researchers
have been able to construct an experimental realization of this quantum
map and found that its behavior conforms with the predictions of this
model.11 What is noteworthy here is that the model was not introduced to
account for a set of empirical data; rather, the model was introduced and
studied long before anyone knew what would count as a physical instan-
tiation of the model. In the next section I will argue that this sort of
independence from empirical phenomena is one of the striking character-
istics of horizontal models.
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6. Horizontal Models and Intertheoretic Relations. From the preceding
three case studies one can begin to see the key features of horizontal mod-
els emerge. What makes this class of models philosophically interesting is
both the way in which they were constructed and the uses to which they
are being put.

Historically most of the philosophical literature on model construction
has focused on top-down model construction, in which models are con-
structed from a full theory through the introduction of various idealiza-
tions. More recently this emphasis on the top-down approach has been
challenged by several philosophers of science. For example, Matthias
Frisch in his discussion of models in electromagnetism notes, “according
to a widespread view, mathematical models are derived from the laws of
a theory in such a way that the models satisfy the laws” (Frisch 1998, ix).
He goes on to argue that this conception of models is inadequate in the
context of electromagnetism, where one finds models of that theory that
do not necessarily obey the laws of electromagnetism. Nancy Cartwright,
Towfic Shomar, and Mauricio Suárez (1995) have also challenged the
top-down approach, referring to it as the “theory-driven” view of mod-
els. They criticize it on the grounds that “it is rarely the case that models
of the phenomena are arrived at as de-idealizations of theoretical mod-
els” (Cartwright et al., 142). Instead, they argue for an alternative mode
of model construction, which they call phenomenological model build-
ing. In phenomenological model building, models are built “bottom up,”
directly from the empirical data or phenomena, largely independent of
any theory.

While this recent philosophical work has expanded our understanding
of modeling in many important ways, it is still confined within the frame-
work of what I earlier called the “vertical” approach. This vertical view
of model building (either top down from theory or bottom up from data)
is reinforced by the traditional view that the function of models is to me-
diate between theory and data. While this is certainly one of the functions
of models, it is emphatically not their only function. The foregoing de-
tailed study of quantum maps points to a number of ways in which our
philosophical understanding of the construction and function of models
in scientific practice needs to be further expanded.

Recall that what makes a model horizontal is the way in which it was
constructed. Rather than being derived from either theory or data, these
models are developed by way of analogy with models of a neighboring
theory. In the case of quantum maps, these models were developed by
drawing analogies to the already successful classical maps. In the discus-
sion of the quantum baker’s map, for example, it was shown how this
model was not derived top down from quantum theory, nor derived from
any quantum phenomena or experimental data. Instead the quantum
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12. I prefer the term “intertheoretic relations” to the more common “theoretical reduc-
tionism” because reductionism is just one of several possible ways that two theories can
be related.

13. See, for example, the classic works on reductionism by Nagel (1961) and Nickles
(1973).

baker’s map was developed via the classical model. This same method of
horizontal model construction was found to be at work in the case of the
quantum cat map and the quantum standard map.

This mode of construction has a number of implications for under-
standing the nature and function of these models. First, horizontal models
are surprisingly independent from both theory and experiment. Instead of
mediating between theory and data, these models take on a life of their
own. Here we see these models playing a dual role: standing in for the
theory on one hand, and themselves becoming the central object of ex-
perimental investigation on the other. For example, as was seen in the case
of the cat map, one can perform thousands of iterations of this map and
analyze the behavior of a “trajectory” produced by these iterations. The
results from these manipulations of the model have become the relevant
“experimental” data. At the same time, however, the quantum cat map is
taken as a representative model from which to draw conclusions about
quantum theory in general: If the quantum cat map cannot exhibit true
chaos, then quantum theory cannot exhibit true chaos; if the quantum cat
map mimics chaotic behavior in the classical limit, then quantum theory
also mimics this behavior in the classical limit.

The independence of horizontal models, such as quantum maps, from
theory and data suggests that their primary function is not to mediate
between theory and data. Instead, the examination of the baker’s, cat, and
standard maps in the previous sections reveals that the primary function
of these horizontal models is to mediate between two theories, in this case
classical and quantum mechanics. Recall that the three uses to which these
particular models are being put are the following: the development of a
new semiclassical approximation, a test of the correspondence principle,
and the discovery of a novel quantum effect to explain the discrepancy
between the predictions of classical and quantum theory. All three of these
uses fall under the rubric of investigating intertheoretic relations.12

Traditionally discussions of intertheoretic relations have focused on the
question of whether the laws of one theory can be derived from, or shown
to be a limiting case of, the laws of the other theory.13 What is new and
progressive about horizontal models is that they provide an alternative
framework for discussing intertheoretic relations—a framework other
than the usual nomocentric approach. Understanding the relationship be-
tween science’s various theoretical descriptions of the world is one of the
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14. The structural similarity between classical and quantum mechanics can be seen, for
example, in the fact that both theories can be given a Hamiltonian formulation. This
structural similarity leaves open the question of whether a reductive or non-reductive
relationship exists between these two theories.

central projects in the philosophy of science. The present study of quantum
maps demonstrates that by focusing on models rather than laws, fruitful
headway can be made on this problem.

One of the reasons that horizontal models are so useful for exploring
intertheoretic relations is that they provide the researcher with a concrete
model pair. For example, the largely impenetrable question of whether
classical mechanics is a limiting case of quantum mechanics becomes, with
the help of horizontal models, the more tractable question of the relation-
ship between the classical standard map and the quantum standard map.
These simplified model pairs, standing in for classical and quantum me-
chanics respectively, allow a detailed level of analysis that would not be
feasible otherwise. As was seen in Section 5, the careful comparison of the
behavior of the classical standard map with that of the quantum standard
map led researchers to discover a novel physical effect that provided a
mechanism for the quantum suppression of classical chaos. Similar pro-
gress was made through detailed comparisons of the classical and quan-
tum cat maps, and the classical and quantum baker’s maps. To reiterate,
the horizontal construction of models provides one with a pair of closely
related simplified models, each of which is used to stand in for the full
theories whose relationship is under investigation.

Although I have focused on the use of horizontal models in quantum
chaos research, these models are not limited to this field. The present study
suggests that horizontal models are particularly effective when the two
theories involved bear a certain structural similarity to each other, such
as is the case with classical and quantum mechanics.14 It is precisely in
these sorts of cases that substantive questions concerning the nature of
intertheoretic relations arise.

The present study of quantum maps in quantum chaos research deepens
our understanding of the nature of modeling practices in science in a num-
ber of ways. One lesson that emerges is that model construction is a more
rich and varied practice than many traditional philosophical accounts
have allowed. Recognizing that models can be constructed horizontally,
by way of analogy with models in neighboring theories, provides an al-
ternative to the theory-driven-versus-phenomenologically-driven dichot-
omy. A second lesson that emerges is that discussions of intertheoretic
relations do not need to be carried out within the context of laws. Mod-
els—particularly horizontal models—have proven themselves in the con-
text of quantum chaos research to be a fruitful way in which to come to
a deeper understanding of the relationship between two theories.
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noni, André Voros, and Jean Zinn-Justin (eds.) Chaos and Quantum Physics (Les
Houches Session LII). Amsterdam: North Holland, 251–303.

Berry, Michael V., Nandor L. Balazs, Michael Tabor, and André Voros (1979), “Quantum
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