
Combinatorics, Probability and Computing (2017) 26, 118–137. c© Cambridge University Press 2016

doi:10.1017/S0963548316000183

Pfaffian Formulas for Spanning Tree Probabilities

GRETA PANOVA1 and DAVID B. WILSON2

1Mathematics Department, University of Pennsylvania, Philadelphia, PA 19104, USA

(e-mail: panova@math.upenn.edu)

http://www.math.upenn.edu/~panova/
2Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

(e-mail: David.Wilson@microsoft.com)

http://dbwilson.com

Received 18 July 2014; revised 14 April 2016; first published online 30 May 2016

We show that certain topologically defined uniform spanning tree probabilities for graphs

embedded in an annulus can be computed as linear combinations of Pfaffians of matrices

involving the line-bundle Green’s function, where the coefficients count cover-inclusive

Dyck tilings of skew Young diagrams.

2010 Mathematics subject classification: Primary 82B20, 05C05

Secondary 05C50, 05C10, 60C05

1. Introduction

Consider a graph G with edge weights, possibly with multiple edges connecting pairs of

vertices, and possibly with self-loops. The edge weights correspond to conductances in an

electrical network. Suppose that G comes with a set of distinguished vertices, which we call

nodes. We think of the nodes as being ‘boundary vertices’, and the other vertices as being

internal. Suppose G is the induced subgraph of some larger graph, which is connected to

the larger graph only through the boundary vertices. Then a spanning tree on the larger

graph, when restricted to G, is a grove of G, which is defined to be spanning forest of

G such that each tree contains at least one node. (Groves were first studied by Carroll

and Speyer [1], and then more systematically by Kenyon and Wilson [7], who gave this

current definition.) We can study spanning trees of the larger graph by studying groves

of G. Each grove of G defines a partition σ of the nodes, according to which nodes are

contained in the same tree. We let Z[σ] denote the weighted sum of groves of G whose

induced partition is σ, where the weight of a grove is the product of its edge weights.

Suppose that the nodes are labelled 1, . . . , n. Both Z[1, . . . , n] (where the grove has one

tree) and Z[1| · · · |n] (where the grove has n trees) can be computed using the matrix-tree
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theorem. We would like to compute Z[σ] for other partitions σ, or else the ratios

...
Z[σ] :=

Z[σ]

Z[1|2| · · · |n] (1.1)

or

Z[σ] :=
Z[σ]

Z[1, . . . , n]
. (1.2)

Of special interest are circular-planar graphs G, which are embedded in a disk with every

node on the boundary of the disk, arranged in cyclic order 1, . . . , n. For circular-planar

graphs, Kenyon and Wilson [7] showed how to compute Z[σ] for any partition σ as a

polynomial in the pairwise electrical resistances between the nodes, and how to compute...
Z[σ] as a polynomial in the entries of the ‘response matrix’, defined in Section 1.1.

Also of special interest are annular-one graphs G, which are embedded in an annulus so

that the nodes 1, . . . , n − 1 are arranged in cyclic order on one boundary of the annulus,

while node n is on the other boundary of the annulus (see Figure 1). The grove partition

function ratios (1.1) and (1.2) for certain annular-one graphs were used to compute the

intensity of loop-erased random walk on Z
2 and other lattices [10], and the probabilities

of local events in the abelian sandpile model [14]. In contrast to circular-planar graphs,

for annular-one graphs the pairwise resistances are not sufficient to compute Z[σ], and the

response matrix is not sufficient to compute
...
Z[σ]. However, by using additional boundary

measurements, in particular the ‘line-bundle Green’s function’ or the ‘line-bundle response

matrix’ defined in Section 1.1, Kenyon and Wilson showed that Z[σ] and
...
Z[σ] can be

computed for any partition σ in which node n is not in a singleton part [10].

In this paper we give a new formula for computing Z[σ] and
...
Z[σ] for annular-one

graphs, which expresses them as linear combinations of Pfaffians of matrices defined in

1

2

3

4

Figure 1. An annular-one graph G (a) and a schematic diagram (b) showing just the annulus, nodes, and

zipper. In this case the outer boundary has just one vertex (node 4) and the bottom edge is a self-loop, and the

inner boundary is one of the squares of the grid, which has four vertices, of which three are nodes. There is a

‘zipper’ (edges crossing a dual path) connecting the inner boundary to the outer boundary of the annulus, and

edges crossing the zipper have parallel transport z from their left endpoint to their right endpoint. (This figure

first appeared in [10].)
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terms of the boundary measurements, rather than linear combinations of determinants

as in [10]. The Pfaffian formulas have fewer terms than the determinant formulas. In

addition to being (somewhat) computationally more efficient, the Pfaffian formulas have

some consequences, described in Section 1.5, regarding how Z[σ] and
...
Z[σ] depend on

the boundary measurements. This in turn simplifies some long-range sandpile height

correlation calculations [14].

In Section 1.1 we describe the line-bundle Laplacian together with its associated line-

bundle Green’s function and line-bundle response matrix, which are the relevant boundary

measurements for annular-one graphs. We discuss ‘partial pairings’ in Section 1.2; for

annular-one graphs, Z[σ] can be expressed as a linear combination of Z[τ]’s, where each

τ is a partial pairing [10]. In Section 1.3 we state our main theorem, which shows how

to express each Z[τ] and
...
Z[τ] as a linear combination of Pfaffians in the boundary

measurements. In the interest of clarity, we give a number of examples in Section 1.4.

In Section 1.5 we give some corollaries of the main result. In Section 2 we review the

relevant determinant formulas from [10], since they are the starting point of the present

work. In Section 3 we derive several Pfaffian formulas, including the main theorem. We

conclude with some open problems in Section 4.

1.1. Line-bundle Laplacian, Green’s function, and response matrix

The graph Laplacian Δ of a graph G with edge weights c is given by

Δu,v =

{
−cu,v u �= v,∑

w:w �=u cu,v u = v,

where cu,v is the weight of edge (u, v), or the sum of such weights in the case of a

multigraph. We review here the line-bundle Laplacian, which generalizes this, together

with its associated response matrix and Green’s function, which is sufficiently general to

study annular-one graphs.

Suppose that each edge (u, v), in addition to its weight cu,v , has a ‘parallel transport’ φu,v

which is a non-zero complex number such that φu,v = φ−1
v,u . The line-bundle Laplacian is

Δu,v =

{
−cu,vφu,v u �= v,∑

w:w �=u cu,w u = v.

Note that the parallel transports do not occur on the diagonal. Forman proved a version of

the matrix-tree theorem for the line-bundle Laplacian, in which the objects being counted

are oriented cycle-rooted spanning forests (OCRSF’s) [3]. Each OCRSF is weighted by

the product of the edge weights, and also an additional weight for each oriented cycle C ,

which is 1 −
∏

(u,v)∈C φu,v .

(There is a further generalization known as the vector-bundle Laplacian, in which

the parallel transports φu,v are matrices, usually in SL2(C), which can be used to study

additional properties of spanning trees [5, 10].)

To compute grove partition functions for annular-one graphs, it suffices to consider the

line-bundle Laplacian with the following parallel transports. We draw a path (the ‘zipper’)

connecting the two boundaries of the annulus which may cross edges but not vertices;

https://doi.org/10.1017/S0963548316000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000183


Pfaffian Formulas for Spanning Tree Probabilities 121

see Figure 1. All directed edges crossing the zipper in one direction get a connection of

z; in the opposite direction the connection is 1/z. For all other edges the connection is 1.

We are interested in the limit z → 1.

The Green’s function G(s)
u,v of a finite weighted graph G is defined with respect to a ‘sink

vertex’ s, and has the following electrical interpretation: if one unit of current is inserted

at u and extracted at s, and s is held at 0 volts, G(s)
u,v gives the voltage at v. The function

v �→ G(s)
u,v is harmonic except at u and s. When the graph is connected, the Green’s function

(when u, v �= s) is the inverse of the Dirichlet Laplacian Δŝ
ŝ, formed from Δ by removing

row and column s: (
G(s)

u,v

)v �=s

u�=s
=
(
Δŝ
ŝ

)−1
,

so G(s)
u,v = G(s)

v,u. If u = s or v = s, then G(s)
u,v = 0.

The effective electrical resistance Ru,v between u and v is (for any s)

Ru,v = G(s)
u,u − G(s)

u,v − G(s)
v,u + G(s)

v,v .

The line-bundle Green’s function G (s)
u,v generalizes the usual Green’s function for the

line-bundle Laplacian: (
G (s)
u,v

)v �=s

u�=s
=
(
Δŝ
ŝ

)−1
,

and G (s)
u,v = 0 if u = s or v = s. For annular-one graphs, we take the sink s to be node n

(the node on the annulus boundary component with just one node), and write Gu,v(z) to

emphasize the dependence on z. Of course when z = 1 it specializes to the usual Green’s

function:

Gu,v = Gv,u = G (s)
u,v (1).

The line-bundle Green’s function G has the symmetry Gv,u(z) = Gu,v(1/z). We define

G′
u,v =

[
d

dz
G (s)
u,v (z)

]
z=1

,

which is antisymmetric, and is what we referred to as the derivative of the line-bundle

Green’s function.

We do not need any further derivatives of Gu,v(z): the boundary measurements Gu,v and

G′
u,v , where u and v range over the nodes other than n, are sufficient to compute the grove

partition functions for annular-one graphs [10].

There is another set of electrical variables that are useful to work with, the response

matrix, or the Dirichlet-to-Neumann matrix Lu,v . We let N denote the set of nodes, which

we think of as being ‘boundary vertices’, with the other vertices as being internal. The

response matrix gives the linear map from voltages at N to current flows: when node

u is held at 1 volt and the other nodes are at 0 volts, Lu,v gives the current leaving the

network at node v. When the Laplacian is written in block form,

Δ =

[ v∈N v /∈N

u∈N A B

u/∈N C D

]
,

https://doi.org/10.1017/S0963548316000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000183


122 G. Panova and D. B. Wilson

the response matrix can be computed:

−L = A − BC−1D.

Since Δ is symmetric, Lv,u = Lu,v . The response matrix also satisfies∑
v

Lu,v = 0

for each vertex u.

In the line-bundle setting we denote the response matrix by Lu,v(z), which is computed

using the above formula. Here too Lv,u(z) = Lu,v(1/z), and the line-bundle response matrix

specializes to the usual response matrix when z = 1,

Lu,v = Lv,u = Lu,v(1),

which is symmetric, and we define

L′
u,v =

[
d

dz
Lu,v(z)

]
z=1

,

which is antisymmetric. As with the Green’s function, we require no further derivatives.

1.2. Partial pairings

For annular-one graphs, for any partition σ of the nodes for which node n is not in a

singleton component, Z[σ] is a linear combination of Z[τ]’s, where each τ is a ‘partial

pairing’ of the nodes 1, . . . , n [10]. (It turns out that for the loop-erased random walk

and sandpile applications it suffices to assume that node n is in a doubleton part.) A

partial pairing is a set of pairs of nodes, singletons, and ‘internalized’ nodes, which are not

listed in the partition, but which may appear in any of the parts (like the other non-node

vertices in a grove). Consider for example Z[2, 6, 9|3, 4, 5|7|1, 8]. If we internalize node 6,

then

Z[2, 9|3, 4, 5|7|1, 8] = Z[2, 6, 9|3, 4, 5|7|1, 8] + Z[2, 9|3, 4, 5, 6|7|1, 8]

+ Z[2, 9|3, 4, 5|6, 7|1, 8] + Z[2, 9|3, 4, 5|7|1, 6, 8],

which allows us to write

Z[2, 6, 9|3, 4, 5|7|1, 8] = Z[2, 9|3, 4, 5|7|1, 8] − Z[2, 9|3, 4, 5, 6|7|1, 8]

− Z[2, 9|3, 4, 5|6, 7|1, 8] − Z[2, 9|3, 4, 5|7|1, 6, 8].

Considering the first term on the right, if we internalize node 4, we obtain

Z[2, 9|3, 4, 5|7|1, 8] = Z[2, 9|3, 5|7|1, 8],

since the other terms in the internalization expansion, such as Z[2, 9|3, 5|4, 7|1, 8], are zero

for topological reasons, using the fact that the graph is embedded in an annulus. After

more transformations of these types, we can obtain a partial pairing expansion

Z[2, 6, 9|3, 4, 5|7|1, 8] = Z[2, 9|3, 5|7|1, 8] − Z[2, 9|3, 6|7|1, 8]

− Z[2, 9|3, 5|6, 7|1, 8] − Z[2, 9|3, 5|1, 6|7] + Z[2, 9|3, 5|1, 6|7, 8].
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Kenyon and Wilson [10] showed that for any partial pairing τ, Z[τ]/Z[1|2| · · · |n]
can be expressed as a linear combination of determinants involving the Li,j ’s and L′

i,j ’s,

and that Z[τ]/Z[1, 2, . . . , n] can be expressed as a linear combination of determinants

involving the Gi,j ’s and G′
i,j ’s. We shall re-express them as linear combinations of

Pfaffians.

1.3. Partial pairings in terms of Pfaffians

For a partial pairing τ in which node n is in a doubleton part, we can encode τ by a string

λ of n symbols, where the symbol at position i encodes the role of node i in the partial

pairing. For bookkeeping purposes that will soon become apparent, we label each symbol

with the label of the node that it represents; when the labels are 1, . . . , n we sometimes

omit the labels. For example, for the annular partial pairing

τ = 1, 5|2|3, 4|7, 10|8, 14|11|12, 13 =

the associated (labelled) encoding string is

λ = λ(τ) =
1

U
2

S
3

U
4

D
5

D
6

I
7

D
8

F
9

I
10

U
11

S
12

U
13

D
14

�. (1.3)

Here node n, which is on the other boundary, is given the special symbol �. The node

paired with n is also given a special symbol, F, which stands for ‘flat step’. (So each λ(τ)

has exactly one F and one � symbol.) I in dicates that the node has been internalized,

and S indicates a node in a singleton part. The remaining nodes are assigned the symbols

U and D, which stand for ‘up-step’ and ‘down-step’, so that when the F is cyclically rotated

to the end, the substring λ◦ formed by the U’s and D’s defines a (labelled) Dyck path

whose associated non-crossing matching is the pairing of the nodes in τ. In the above

example,

.

We call the string λ the augmented cyclic Dyck path associated with the partial pairing τ –

‘augmented’ because it contains symbols not in the Dyck path λ◦, and ‘cyclic’ because its

start is determined by the location of the F symbol.

Given two labelled augmented cyclic Dyck paths λ and μ, we say that λ 
 μ if they are

the same length, have the same labels, all the letters other than U and D are the same in

both λ and μ, and as Dyck paths, λ◦ lies below μ◦.

If λ is a labelled string, we let λi denote its ith labelled symbol, and we let λ(i) denote

the label of λi.
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For a labelled augmented cyclic Dyck path μ, we define μI to be the labelled string

obtained from μ by deleting all the S letters, and replacing each
i

I with the two letters
i

�
i©. We also define μS to be the labelled string obtained from μ by deleting all the I

letters, and replacing each
i

S with the two letters
i© i

�. For example, if μ is the labelled

augmented cyclic Dyck path in (1.3), then

μI =
1

U
3

U
4

D
5

D
6

�
6© 7

D
8

F
9

�
9©10

U
12

U
13

D
14

�

and

μS =
1

U
2© 2

�
3

U
4

D
5

D
7

D
8

F
10

U
11© 11

�
12

U
13

D
14

�.

Next we define
...
μ and μ. Recall that there is only one letter F in μ; let f be its label, so

that
f

F ∈ μ. For each letter
i

U,
i

D,
f

F in μS, we make the substitutions

i

U �→

⎧⎨⎩
i

⊕ i < f
i© i > f

i

D �→

⎧⎨⎩
i© i < f
i

� i > f

f

F �→
f

©

to obtain μ. We let
...
μ be the result of these same substitutions applied to μI. For our

example,

...
μ =

1

⊕
3

⊕
4© 5© 6

�
6© 7© 8© 9

�
9©10©12© 13

�
14

�

and

μ =
1

⊕
2© 2

�
3

⊕
4© 5© 7© 8©10© 11© 11

�
12© 13

�
14

�.

The original string μ can be recovered from either μ or
...
μ.

Given a string σ of m labelled symbols ⊕, �, ©, �, such as as the ones above, we

define an m × m matrix Mσ(A,A
′) by

Mσ(A,A
′) :=

⎡⎣
σj �=� σj=�

σi �=� −A′
σ(i),σ(j) + Aσ(i),σ(j)

(
+1σi=⊕ − 1σj=⊕
−1σi=� + 1σj=�

)
Aσ(i),σ(j)

σi=� −Aσ(i),σ(j) 0

⎤⎦
j=1,...,m

i=1,...,m
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The symbols ⊕, �, and © are mnemonic for +1, −1, and 0, which go into the

coefficient of Aσ(i),σ(j) when σi, σj �= �. For example, when σ is the above value for μ, this

matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1 2

�
2

−
3 4 5 7 8 10 11

�
11 12

+

13
�
14

+ 1 0 A1,2−A′
1,2 A1,2 −A′

1,3 A1,4−A′
1,4 · · · · · · · · · A1,11 A1,12−A′

1,12 2A1,13−A′
1,13 A1.14

2 A′
1,2−A1,2 0 A2,2 −A2,3−A′

2,3 −A′
2,4 · · · · · · · · · A2,11 −A′

2,12 A2,13−A′
2,13 A2,14

� 2 −A1,2 −A2,2 0 −A2,3 −A2,4 · · · · · · · · · 0 −A2,12 −A2,13 0

+ 3
.
.
.

.

.

.
. . . 0 A3,4−A′

3,4 · · · · · · · · · A3,11 A3,12−A′
3,12 2A3,13−A′

3,13 A3,14

4 0 · · · · · · · · · A4,11 −A′
4,12 A4,13−A′

4,13 A4,14

5
. . .

.

.

.
.
.
.

.

.

.
.
.
.

7
.
.
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We define M(L)
μ = M...

μ(L,L′), and M(G)
μ = Mμ(G,G

′), where Gi,n is replaced with 1. Both

M(L)
μ and M(G)

μ are antisymmetric. The new formulas involve Pfaffians of these matrices

M(L)
μ and M(G)

μ .

The new formulas have coefficients that are defined in terms of ‘cover-inclusive Dyck

tilings ’, which were first defined in [8] and independently in [13], and were studied further

in [11, 12, 10, 9, 4], and whose definition we now recall. If λ and μ are Dyck paths

such that λ is below μ, then the region λ/μ is a skew Young diagram (rotated 45◦).

A Dyck tile is a ribbon tile which is shaped like a Dyck path, that is, a collection of√
2 ×

√
2 boxes rotated 45◦ centred at the points of a Dyck path. A Dyck tiling of

λ/μ is a tiling of it by Dyck tiles. We say that one Dyck tile covers another Dyck tile

if it contains a box which is directly (not diagonally) above a box of the other tile.

A cover-inclusive (c.i.) Dyck tiling is one for which, whenever a Dyck tile T1 covers

another Dyck tile T2, the range of x-coordinates of T1 is a subset of the range of x-

Figure 2. Cover-inclusive Dyck tilings of a skew shape. (This figure first appeared in [8].)
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coordinates of T2. See Figure 2 for a list of the Dyck tilings of a particular skew shape

λ/μ.

Theorem 1.1. Suppose τ is a partial pairing of the nodes of an annular-one graph with n

nodes, where node n is paired in τ. Let λ be the labelled augmented cyclic Dyck path which

encodes τ. Then

Z[τ]

Z[1|2| · · · |n] =
∑
μ�λ

[# of c.i. Dyck tilings of λ◦/μ◦] × Pf M(L)
μ (1.4)

and

Z[τ]

Z[1, 2, . . . , n]
=
∑
μ�λ

[# of c.i. Dyck tilings of λ◦/μ◦] × Pf M(G)
μ . (1.5)

1.4. Examples

We give a couple of examples.

For the partial pairing 1, 3|2, 4, the encoding string λ is
1

D
2

F
3

U
4

�; the only μ in the sum

is μ =
1

D
2

F
3

U
4

�, for which the skew Young diagram λ◦/μ◦ has only the empty Dyck tiling,

so the coefficient is 1. For this μ =
1

D
2

F
3

U
4

�,
...
μ =

1© 2© 3© 4

�, so

Z[1, 3|2, 4]

Z[1|2|3|4]
= Pf

⎡⎢⎢⎣
0 −L′

1,2 −L′
1,3 L1,4

L′
1,2 0 −L′

2,3 L2,4

L′
1,3 L′

2,3 0 L3,4

−L1,4 −L2,4 −L3,4 0

⎤⎥⎥⎦
︸ ︷︷ ︸

M
(L)
DFU�

= −L′
1,2L3,4 − L′

2,3L1,4 − L′
3,1L2,4,

which matches [10, eqn 5.5b], and μ =
1© 2© 3© 4

�, so

Z[1, 3|2, 4]

Z[1, 2, 3, 4]
= Pf

⎡⎢⎢⎣
0 −G′

1,2 −G′
1,3 1

G′
1,2 0 −G′

2,3 1

G′
1,3 G′

2,3 0 1

−1 −1 −1 0

⎤⎥⎥⎦
︸ ︷︷ ︸

M
(G)
DFU�

= −G′
1,2 − G′

2,3 − G′
3,1,

which matches [10, eqn 5.6b].
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For the partial pairing 1, 4|2|6, 7 the encoding string is λ =
1

U
2

S
3

I
4

D
5

I
6

F
7

�, the only μ � λ is

μ =
1

U
2

S
3

I
4

D
5

I
6

F
7

�, and
...
μ =

1

⊕
3

�
3© 4© 5

�
5© 6© 7

�, so

Z[1, 4|2|6, 7]

Z[1|2|3|4|5|6|7]

= Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 L1,3 L1,3 − L′
1,3 L1,4 − L′

1,4 L1,5 L1,5 − L′
1,5 L1,6 − L′

1,6 L1,7

−L1,3 0 −L3,3 −L3,4 0 −L3,5 −L3,6 0

L′
1,3 − L1,3 L3,3 0 −L′

3,4 L3,5 −L′
3,5 −L′

3,6 L3,7

L′
1,4 − L1,4 L3,4 L′

3,4 0 L4,5 −L′
4,5 −L′

4,6 L4,7

−L1,5 0 −L3,5 −L4,5 0 −L5,5 −L5,6 0

L′
1,5 − L1,5 L3,5 L′

3,5 L′
4,5 L5,5 0 −L′

5,6 L5,7

L′
1,6 − L1,6 L3,6 L′

3,6 L′
4,6 L5,6 L′

5,6 0 L6,7

−L1,7 0 −L3,7 −L4,7 0 −L5,7 −L6,7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M
(L)
USIDIF�

,

while μ =
1

⊕
2© 2

�
4© 6© 7

�, so

Z[1, 4|2|6, 7]

Z[1, 2, 3, 4, 5, 6, 7]
= Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 G1,2 − G′
1,2 G1,2 G1,4 − G′

1,4 G1,6 − G′
1,6 1

G′
1,2 − G1,2 0 G2,2 −G′

2,4 −G′
2,6 1

−G1,2 −G2,2 0 −G2,4 −G2,6 0

G′
1,4 − G1,4 G′

2,4 G2,4 0 −G′
4,6 1

G′
1,6 − G1,6 G′

2,6 G2,6 G′
4,6 0 1

−1 −1 0 −1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M
(G)
USIDIF�

.

For 1, 2|3, 7|4, 6 we have λ = UDFUID�. There are two μ’s such that μ � λ:

Z[1, 2|3, 7|4, 6]

Z[1, 2, 3, 4, 5, 6, 7]
= Pf M(G)

UDFUID� + Pf M(G)
DDFUIU�.

For the partial pairing 1, 3|2|4, 10|5, 6|7, 9 we have λ = USDFUDUID�. There are five

μ’s such that μ � λ, and for one of these μ’s the skew Young diagram λ◦/μ◦ has two Dyck

tilings:

Z[1, 3|2|4, 10|5, 6|7, 9]

Z[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
= Pf M(G)

USDFUDUID� + Pf M(G)
USDFUUDID�

+ Pf M(G)
DSDFUDUIU� + Pf M(G)

DSDFUUDIU� + 2 × Pf M(G)
DSDFUUUID�.

1.5. Corollaries

The formulas in Theorem 1.1 immediately imply the following statement.

Corollary 1.2. For a partition τ on {1, . . . , n} in which n is not in a singleton part, on an

annular-one graph with n nodes, the ratio Z[τ]/Z[1|2| · · · |n] is a polynomial in the variables
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L and L′ with integer coefficients. Similarly, Z[τ]/Z[1, 2, . . . , n] is a polynomial in G and G′

with integer coefficients.

It was known that these ratios are polynomials in the L and L′ variables, or the G and

G′ variables, and that the coefficients were half-integers [10], but the integrality of the

coefficients was previously a mystery.

Recalling

Z[1, 3|2, 4]

Z[1, 2, 3, 4]
= −G′

1,2 − G′
2,3 − G′

3,1,

observe that this polynomial is invariant under the substitution G′
i,j → G′

i,j + f(i) − f(j).

The next corollary states that this is a general phenomenon for the G-G′-

polynomials of any partition.

Corollary 1.3. For a partition τ on {1, . . . , n} in which n is not in a singleton part, on an

annular-one graph with n nodes, the G-G′-polynomial for Z[τ]/Z[1, 2, . . . , n] is invariant

under replacing each G′
i,j with G′

i,j + f(i) − f(j).

Proof of Corollary 1.3. Consider each Pfaffian in the formula from Theorem 1.1. Since

the last column (row) is all 1’s (−1’s), we can add an all-f(i)’s row to row i and subtract

an all-f(i)’s column from column i, without changing the value of the Pfaffian. Since

G′
i,j occurs only in row i and column j (and row j and column i), with coefficient 1

(and −1), these operations replace each G′
i,j with G′

i,j + f(i) − f(j) and keep the Pfaffian

invariant.

We remark that it was known [10] that substituting G′
i,j → G′

i,j + f(i) − f(j) and then

evaluating the polynomial at the values of G and G′ that arise from an annular-one

graphs will give a result independent of f. Corollary 1.3 is a stronger statement, since

it was not known whether the values of G and G′ that arise from annular-one graphs

are full-dimensional or whether they satisfy algebraic relations which cause the substituted

G-G′-polynomials, when evaluated at these values, to be independent

of f.

2. Determinant formulas

For an annular partial pairing τ on n nodes, let λ be its encoding string, let T denote the

set of internalized nodes, and let Q denote the set of singleton nodes. Let k denote the

order of the Dyck path λ◦, that is, half its length, so that n = 2k + 2 + |Q| + |T |.
Let S ⊂ {1, . . . , n} \ (Q ∪ T ) be a subset of the paired nodes which has size k + 1 and

includes n, and let R = {1, . . . , n} \ (S ∪ Q ∪ T ) be the complementary set of paired nodes.

Given λ and S , Kenyon and Wilson [10] defined

Bλ,S (ζ) =
∑
μ�λ

[# of c.i. Dyck tilings of λ/μ] × ζ# indices in S at which μ has an up-step×

ζ−# indices in S \ {n} after λ’s flat step+ # down-steps of λ after λ’s flat step, (2.1)
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and showed how to use these polynomials Bλ,S to compute the ratios of grove partition

functions. Specifically,

Z[τ]

Z[1|2| · · · |n] = (−1)|T | × lim
z→1

∑
R,S

Bλ,S (z
2)

(1 − z2)k
det L S,T

R,T , (2.2)

where L S,T
R,T denotes the submatrix of L whose rows are indexed by R and T and whose

columns are indexed by S and T , and we need to specify a pairing between the indices

of R and S to determine the signs of the determinants. We use the Dvoretzky–Motzkin

cycle lemma bijection to make this pairing, as indicated below (figure taken from [10]).

Essentially we make a path with period 2k + 1 which has an up-step at each index in R

and a down-step at each index in S \ {n}. The up- and down-steps are the endpoints of

chords underneath the path, and these chords define the pairing, where the extra up-step

is paired with n:

Recall that Li,j = Li,j(z) is a function of z. We change variables to z = et (here we

differ slightly from the notation in [10], which used ζ = z2 = et). We expand Li,j(e
t) =

Li,j + L′
i,j t + · · · , and let L̂i,j denote its linearized approximation L̂i,j = Li,j + L′

i,j t. In

general the series expansion for Li,j(e
t) will have more terms, but while it is not a priori

obvious, the limit (2.2) can be evaluated using L̂i,j in place of Li,j(e
t):

Z[τ]

Z[1|2| · · · |n] = (−1)|T | × lim
t→0

1

(−2t)k

∑
R,S

Bλ,S (e
2t) det L̂ S,T

R,T , (2.3)

and a similar formula

Z[τ]

Z[1, 2, . . . , n]
= lim

t→0

1

(−2t)k

∑
R,S

Bλ,S (e
2t) det Ĝ S,Q

R,Q (2.4)

holds, where Ĝi,j = Gi,j + G′
i,j t and each Ĝi,n is replaced with 1 [10]. From these formulas

we derive the Pfaffian formulas.

3. Pfaffian formulas

We start in Section 3.1 by showing that a Pfaffian can be expressed as a sum of

determinants. In Section 3.2 we give an application of this identity to tripartite pairings.

Then we use the Pfaffian identity and equations (2.3) and (2.4) to prove Theorem 1.1 in

Section 3.3.

3.1. The Pfaffian as a sum of determinants

For any matching M = (i1, j1), . . . , (ik, jk), we define sign(M) = (−1)cr(M), where cr(M) is

the number of crossings of arcs from M when M is drawn as k arcs between the points

{1, . . . , 2k} on a line. For the left endpoint of each arc we can associate an up-step,
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and for each right endpoint we can associate a down-step, which results in a Dyck

path. The down-steps of the matching M are the down-steps of its Dyck path, that is,

{max(i1, j1), . . . ,max(ik, jk)}.
Given a set of positive integers R for which R ⊂ {1, . . . , 2|R|}, we define dR as follows.

We let n = 2|R| and S = {1, . . . , n} \ R. For an arbitrary matrix A we define

dR(A) :=

{
det[Ai,j]

j∈S
i∈R n ∈ S,

det[−Ai,j]
j∈S
i∈R n ∈ R,

(3.1)

where R and S are ordered according to the Dvoretzky–Motzkin bijection as described

above. For example,

d{3,4,6,7,8,11}(A) = det[Ai,j]
j=5,2,10,9,1,12
i=4,6,7,8,11,3 .

Lemma 3.1. Suppose n � 0 is even, R ⊂ {1, . . . , n}, |R| = n/2, and S = {1, . . . , n} \ R. Let

A be an arbitrary n × n matrix. Then

dR(A) =
∑

directed matchings M s.t.
M matches R to S

(−1)cr(M)
∏

(r,s)∈M
(−1)1r>sAr,s.

Proof. Let k = n/2. The arrangement of elements of R and S in dR is given by the

Dvoretzky–Motzkin cycle lemma bijection, and in particular corresponds to a matching

M0 = {(r1, s1), . . . , (rk, sk)}

(each r� ∈ R and s� ∈ S), which has no crossings when drawn in the annulus. By the

determinant expansion,

detAS
R =

∑
π∈Sk

sign(π)

k∏
�=1

Ar�,sπ(�)
. (3.2)

Suppose n /∈ R. When we draw matching M0 on a line, there may be crossings of the

arc (j, n) from arcs (a, b), such that a > j > b; these are precisely the arcs whose starting

point is larger than its endpoint. When drawn on the line, the number of crossings is

cr(M0) =
∑

(i,j)∈M0
1i>j . If instead n ∈ R, then cr(M0) =

∑
(i,j)∈M0

1i<j .

For a permutation π let the matching M(π) be

M(π) = {(r1, sπ(1)), . . . , rk, sπ(k)}.

The matching M0 corresponds to the identity permutation, so at least when the permuta-

tion π is the identity, we have

sign(π) = (−1)cr(M(π))(−1)
∑

(r,s)∈M(π) 1r>s(−1)(n/2)1n∈R ,

a formula which we now verify for the other permutations. Any permutation π can be

expressed as a sequence of transpositions, and it is a straightforward case analysis to verify

that any transposition changes the parity of the number of crossings in the matching plus

the number of arcs directed backwards.
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Theorem 3.2. Suppose n � 0 is even. If A is an arbitrary n × n matrix, and dR(A) is as

defined in (3.1), then ∑
R⊂{1,...,n}
|R|=n/2

dR(A) = Pf
[
A − AT

]
, (3.3)

where AT is the transpose of A.

Proof. From Lemma 3.1, we see that the left-hand side of (3.3) equals∑
directed matchings M

(−1)cr(M)
∏

(r,s)∈M
(−1)1r>sAr,s.

Let n = 2k, and let Wi,j = Ai,j − Aj,i. We can expand the Pfaffian as

Pf[W ] =
∑

undirected matchings M
M={(i1 ,j1),...,(ik ,jk)}

i1<j1 ,...,ik<jk
j1<···<jk

(−1)cr(M)
k∏

�=1

Wi�,j� .

When we make the substitution Wi,j = Ai,j − Aj,i, this has the effect of choosing directions

for each pairing, converting the sum over undirected matchings into a sum over directed

matchings:

Pf
[
A − AT

]
=

∑
directed matchings M

(−1)cr(M)
∏

(r,s)∈M
(−1)1r>sAr,s.

3.2. Applications of the Pfaffian identity

Before continuing with our main result, we mention an interesting consequence of

Theorem 3.2. Curtis, Ingerman and Morrow [2] gave an interpretation of the determinant

detLS
R when R = {r1, . . . , rk} and S = {s1, . . . , sk} are disjoint subsets of {1, . . . , n}, which,

when translated into the language of groves, asserts that

detLs1 ,...,sk
r1 ,...,rk

=
∑
π∈Sk

sign(π)
Z[r1, sπ(1)| · · · |rk, sπ(k)|(other nodes singletons)]

Z[1| · · · |n] . (3.4)

This formula holds for any graph.

If B and C are two disjoint sets of nodes, and we set Ai,j = 0 when i ∈ C or j ∈ B and

otherwise set Ai,j = Li,j , then Theorem 3.2 with the above interpretation of the minors

implies that Pf[A − AT ] is a sum over directed matchings for which the nodes in B are

sources and the nodes in C are destinations, of the sign of the directed matching times the

grove ratio associated with that matching. In particular, nodes of B are only paired with

nodes not in B, and nodes in C are only paired with nodes not in C . If a matching M

contains a pair (i, j) where i, j ∈ B or i, j ∈ C , then M is not included in the sum. Notice

that if i, j /∈ B ∪ C , then the matching (M \ {(i, j)}) ∪ {(j, i)}, in which the pair (i, j) has
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been reversed, has the same weight as M but opposite sign. Thus

Pf

⎡⎢⎢⎣
j∈B j /∈B∪C j∈C

i∈B 0 Li,j Li,j

i/∈B∪C −Li,j 0 Li,j

i∈C −Li,j −Li,j 0

⎤⎥⎥⎦
=

∑
directed matchings M

if (i, j) ∈ M then
i ∈ B or j ∈ C or both

(
(−1)cr(M)

∏
(i,j)∈M

(−1)1j<i

)
...
Z[i1, j1| · · · |in/2, jn/2]. (3.5)

When the graph is circular-planar (i.e., the nodes lie on the outer face of a planar graph),

and B = {1, . . . , |B|} and C = {n + 1 − |C|, . . . , n}, there is only one matching M for which...
Z[M] �= 0, and the sign is positive, so

...
Z[M] is the Pfaffian. For example,

=
Z[1, 6|2, 3|4, 5]

Z[1|2|3|4|5|6]
= Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 L1,3 L1,4 L1,5 L1,6

0 0 L2,3 L2,4 L2,5 L2,6

−L1,3 −L2,3 0 0 L3,5 L3,6

−L1,4 −L2,4 0 0 L4,5 L4,6

−L1,5 −L2,5 −L3,5 −L4,5 0 0

−L1,6 −L2,6 −L3,6 −L4,6 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This is one of several tripartite matching formulas that were derived earlier by Kenyon

and Wilson [6] using a different method [7].

The determinant formula (3.4) has been extended in several directions. Kenyon and

Wilson [10] showed that if Q = {q1, . . . , q�} and T = {t1, . . . , tm}, and Q,R, S, T partition

{1, . . . , n}, then

det L s1 ,...,sk ,t1 ,...,tm
r1 ,...,rk ,t1 ,...,tm

= (−1)m
∑
π∈Sk

sign(π)
Z
[sπ(1)
r1 | · · · |sπ(k)

rk |q1| · · · |q�
]

Z [1| · · · |n] , (3.6)

where the Z ’s give the weighted sum of ‘cycle-rooted groves’. (The cycle weights go to

zero and Z converges to Z when z → 1: see [10] for further explanation.) When we

combine Theorem 3.2 with the above formula, we obtain the following theorem.

Theorem 3.3. Suppose there are n nodes, P ,Q, T partition {1, . . . , n}, and |P | = 2k is even.

For each i ∈ P let αi and βi be parameters, and for i ∈ T let αi = βi = 1. List the nodes

p1, . . . , p2k , t
′
1, t1, . . . , t

′
m, tm, where t′i is a second copy of ti, and let T ′ = {t′1, . . . , t′m}. Then

Pf

[ j∈P∪T j∈T ′

i∈P∪T αiβjLi,j − αjβiLj,i αiLi,j

i∈T ′ −αjLj,i 0

]
j=p1 ,...,p2k ,t

′
1 ,t1 ,...,t

′
m,tm

i=p1 ,...,p2k ,t
′
1 ,t1 ,...,t

′
m,tm

(3.7)

=
∑

directed matchings M of P
M={(r1 ,s1),...,(rk ,sk)}

(
(−1)cr(M)

∏
(r,s)∈M

(−1)1s<r αrβs

)
×

Z [s1r1 | · · · |skrk |q1| · · · |q�]
Z [1| · · · |n] .
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Proof. If i ∈ T ′ then take αi = 0 and βi = 1. Then apply Theorem 3.2 with Ai,j = αiβjLi,j ,

and use (3.6) to interpret the determinants. The factor of (−1)m in (3.6) is absorbed into

the Pfaffian because we listed each t′i before ti.

Any of (3.4) or (3.5) or (3.6) can be recovered from (3.7) by choosing the α’s and β’s

suitably and/or setting z = 1.

3.3. Proof of main theorem

Our approach to proving the Pfaffian formulas in Theorem 1.1 is to prove that the right-

hand sides of (2.3) and (2.4) are equal as polynomials in formal variables to the Pfaffian

expressions. We will not, for example, use the fact that
∑

j Li,j = 0 or other relations that

the electrical network quantities might satisfy, since the Li,j ’s and the Gi,j ’s satisfy different

relations. By working with formal variables that do not satisfy these extra relations, the

same proof works for both the L-L′ polynomials and the G-G′ polynomials.

The roles of the S and I symbols are reversed between the L-L′ polynomials for
...
Z[τ]

and the G-G′ polynomials for Z[τ]. As a matter of convenience, we will give these symbols

the roles they have for the G-G′ polynomials. To obtain the L-L′ polynomials, we will at

some point substitute I for S and S for I.

Let λ be a labelled augmented cyclic Dyck path with n symbols. Let λ∗ be the substring

obtained from λ by excising all S and I symbols that it contains, let n∗ be the length of

λ∗, and let Eλ be the set of labels of S symbols. For our running example

λ =
1

U
2

S
3

U
4

D
5

D
6

I
7

D
8

F
9

I
10

U
11

S
12

U
13

D
14

�,

we have

λ∗ =
1

U
3

U
4

D
5

D
7

D
8

F
10

U
12

U
13

D
14

�, n∗ = 10, Eλ = {2, 11}.

For an arbitrary n × n matrix A we define

�

Zλ(A ) :=
∑

R∗⊂{1,...,n∗}
|R∗|=n∗/2
{n∗}∩R=∅

S∗={1,...,n∗}\R∗

Bλ∗ ,S∗(e2t)

(1 − e2t)k
det A λ∗(S∗),Eλ

λ∗(R∗),Eλ
. (3.8)

Recall from (2.1) that Bλ,S (ζ) is a sum over μ � λ of (# of c.i. Dyck tilings of λ◦/μ◦) times

ζ to the power

(# up-steps of μ in S before flat step)

− (# down-steps of μ in S after flat step)

+ (# down-steps of λ after flat step).
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We define
�

Z μ(A ) :=
1

(1 − e2t)k

∑
R∗⊂{1,...,n∗}
|R∗|=n∗/2

{n∗}∩R∗=∅

S∗={1,...,n∗}\R∗

det A
μ∗(S∗),Eμ

μ∗(R∗),Eμ
×

exp
[
2t |(up-steps of μ∗ before flat step) ∩ S∗|

]
÷

exp
[
2t |(down-steps of μ∗ after flat step) ∩ S∗|

]
.

(3.9)

Observe that if μ � λ then μ∗(·) = λ∗(·) and Eμ = Eλ, so

�

Zλ(A ) = exp
[
2t (# down-steps of λ after flat step)

]
×
∑
μ�λ

[# of c.i. Dyck tilings of λ◦/μ◦]
�

Z μ(A ). (3.10)

The following lemma will help us evaluate
�

Z μ(A ).

Lemma 3.4. Suppose n � 0 is even, B,C,U, V ⊂ {1, . . . , n}, B ∩ C = ∅, and U ∩ V = ∅.

Let A be an arbitrary n × n matrix. Then∑
R⊂{1,...,n}
|R|=n/2
B⊂R

C∩R=∅

S={1,...,n}\R

exp
[
2t
(
|S ∩ U| − |S ∩ V |

)]
dR(A)

= exp
[
t(|U| − |V |)

]
× Pf

⎡⎢⎢⎣
j∈B j /∈B∪C j∈C

i∈B 0 Ãi,j Ãi,j

i/∈B∪C −Ãj,i Ãi,j − Ãj,i Ãi,j

i∈C −Ãj,i −Ãj,i 0

⎤⎥⎥⎦
j=1,...,n

i=1,...,n

(3.11)

where

Ãi,j = Ai,j exp
[
t(1j∈U − 1i∈U − 1j∈V + 1i∈V )

]
.

Proof. Observe that 2|S ∩ U| = |S ∩ U| − |R ∩ U| + |U|, and similarly for 2|S ∩ V |. Since

Ã is obtained from A by multiplying the ith row by exp[t(1i∈V − 1i∈U)] and jth column

by exp[t(1j∈U − 1j∈V )], the determinants dR(A) and dR(Ã) differ by a factor depending on

R and S:

exp
[
2t
(
|S ∩ U| − |S ∩ V |

)]
× dR(A) = exp

[
t(|U| − |V |)

]
× dR(Ã).

We can set Ai,j = 0 whenever j ∈ B or i ∈ C , since these variables do not occur in

equation (3.11). We then remove the restrictions B ⊂ R and C ∩ R = ∅ in the summation

on the left-hand side of equation (3.11), since with the above variables zeroed out,

dR(A) = 0 whenever B �⊂ R or C ∩ R �= ∅. Without these restrictions on the sum, we can

apply Theorem 3.2 to sum up the dR(Ã)’s to obtain (3.11).

Lemma 3.5. Let μ be a labelled augmented cyclic Dyck path with n symbols, and suppose

μ has length m. Let U denote the set of labels in μ above ⊕ symbols, and let V denote the

set of labels in μ above � symbols. Let A be an arbitrary n × n matrix, and let

Ãi,j = Ai,j exp
[
t(1j∈U − 1i∈U − 1j∈V + 1i∈V )

]
. (3.12)
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Then

�

Z μ(A ) = Pf

⎡⎢⎣
μj �=� μj=�

μi �=�
Ãμ(i),μ(j) − Ãμ(j),μ(i)

1 − e2t
Ãμ(i),μ(j)

μi=� −Ãμ(j),μ(i) 0

⎤⎥⎦
j=1,...,m

i=1,...,m

(3.13)

Proof. Recall that μS is the string obtained from μ by replacing each
i

S symbol with
i© i

� and omitting each I symbol. Let Bμ denote the positions of these new ©’s (replacing

an S) in μS, let Cμ denote the positions of these new �’s in μS. The strings μS and μ have

the same length, which we are calling m. If μ is our earlier example

μ =
1

U
2

S
3

U
4

D
5

D
6

I
7

D
8

F
9

I
10

U
11

S
12

U
13

D
14

�,

then

μS =
1

U
2© 2

�
3

U
4

D
5

D
7

D
8

F
10

U
11© 11

�
12

U
13

D
14

�
and

Bμ = positions of {
2©,

11©} = {2, 10} and Cμ = positions of {
2

�,
11

�} = {3, 11}.

Let Uμ denote the set of positions at which μ has a U before its F, and let Vμ denote

positions at which μ has a D after its F.

For a given μ, the subsets R∗ of {1, . . . , n∗} for which |R∗| = n∗/2 are in straightforward

bijective correspondence with those subsets R of {1, . . . , m} for which |R| = m/2, Bμ ⊂ R

and Cμ ∩ R = ∅, that is, R = μ−1(μ∗(R∗)) ∪ Bμ. Consider the pairing between R∗ and

S∗ = {1, . . . , n∗} \ R∗ given by the cycle lemma bijection. This pairing naturally extends to

a pairing between R and S = {1, . . . , m} \ R, where a pair (r∗, s∗) gets mapped to the pair

(μ −1(μ∗(r∗)), μ −1(μ∗(s∗))),

with the pairing between R and S also containing the pairs (b, b + 1) for each b ∈ Bμ.

Provided n∗ /∈ R∗, this extended pairing is precisely the pairing between R and S given by

the cycle lemma bijection. Thus∑
R∗⊂{1,...,n∗}
|R∗|=n∗/2

{n∗}∩R∗=∅

S∗={1,...,n∗}\R∗

⎛⎜⎜⎝
det A

μ∗(S∗),Eμ

μ∗(R∗),Eμ
×

exp
[
2t |Uμ∗ ∩ S∗|

]
÷

exp
[
2t |Vμ∗ ∩ S∗|

]
⎞⎟⎟⎠

=
∑

R⊂{1,...,m}
|R|=m/2

{m}∩R=∅

Bμ⊂R
Cμ∩R=∅

S={1,...,m}\R

⎛⎜⎜⎝
det A μS(S )

μS(R)
×

exp
[
2t |UμS ∩ S |

]
÷

exp
[
2t |VμS ∩ S |

]
⎞⎟⎟⎠

(3.14)

We could apply Lemma 3.4 with B = Bμ and C = Cμ ∪ {m} to evaluate the right-hand

side of (3.14), but it turns out to work better with B = ∅, C = Cμ ∪ {m}. So long as

(Cμ ∪ {m}) ∩ R = ∅, if Bμ �⊆ R, then the determinant det A μS(S )
μS(R)

has at least one repeated

column and therefore does not contribute to the sum. Applying Lemma 3.4 with B = ∅,

C = Cμ ∪ {m}, U = UμS , V = VμS , and n = m, and then using the fact that μS(·) = μ(·), we
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see that the right-hand side of (3.14) equals

Pf

[ j /∈ C j ∈ C

i /∈ C Ãμ(i),μ(j) − Ãμ(j),μ(i) Ãμ(i),μ(j)

i ∈ C −Ãμ(j),μ(i) 0

]
j=1,...,m

i=1,...,m

with Ã defined as in (3.12). Observe that Cμ ∪ {m}, UμS , and VμS are the locations of �,

⊕, and � symbols in μ respectively (which is of course the reason we defined μ the way

we did).

The definition of
�

Z μ(A ) also contains a factor of 1/(1 − e2t)n
∗/2−1. If for some x

we scale the rows and columns not in C by a factor of x1/2, and scale the rows and

columns in C by a factor of x−1/2, the Pfaffian is scaled by a factor of x[(m−|C|)−|C|]/2.

Now m = n∗ + 2|E| and |C| = |E| + 1, so [(m − |C|) − |C|]/2 = n∗/2 − 1. Upon taking

x = 1/(1 − e2t), we obtain (3.13).

So far all these calculations are exact. Next we take the limit t → 0.

Lemma 3.6. Let μ be a labelled augmented cyclic Dyck path with n symbols, and suppose μ

has length m. Let A be an n × n matrix of formal power series for which Ai,j(t) = Aj,i(−t) =

Ai,j + A′
i,j t + O(t2). Then

�

Z μ(A ) = Pf

⎡⎢⎣
μj �=� μj=�

μi �=�

(
+1μi=⊕ − 1μj=⊕
−1μi=� + 1μj=�

)
Aμ(i),μ(j) − A′

μ(i),μ(j) Aμ(i),μ(j)

μi=� −Aμ(i),μ(j) 0

⎤⎥⎦
j=1,...,m

i=1,...,m︸ ︷︷ ︸
Mμ(A,A′)

+O(t)

Proof. Straightforward series expansion of the expression from Lemma 3.5.

It is also straightforward to extract the coefficients of higher powers of t in the series

expansion
�

Z μ(A ) using Lemma 3.5. As discussed earlier, the constant term is relevant

for computing grove probabilities. The term linear in t is relevant for computing expected

winding [10], and also depends on just the Ai,j ’s and A′
i,j ’s.

Proof of Theorem 1.1. Immediate from (2.3), (2.4), (3.8), (3.9), (3.10) and

Lemma 3.5. For the G-G′ polynomials we substitute G for A and G′ for A′. For the

L-L′ polynomials we first substitute I for S and S for I, and then L for A and L′ for A′,

and we absorb the factor of (−1)|T | from (2.3) into the Pfaffian by writing
i

�
i© rather

than
i© i

�.
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4. Open problems

The coefficients in the Pfaffian formulas in Theorem 1.1 count Dyck tilings whose lower

path is λ◦ and whose upper path depends on the summand. It is known that the sum of

these coefficients is the number of increasing labellings of the planted plane tree associated

with the Dyck path λ◦ [12]. Is there something more to understand here?

Is there a polynomial-time algorithm for evaluating Z[τ]? For certain τ’s there will be

few or even just one Pfaffian, though for general τ the number of Pfaffians is exponentially

large in the number of nodes. But these Pfaffians are all closely related to one another,

which suggests the possibility that some clever linear algebra could be used to evaluate

the sum without evaluating each individual Pfaffian.
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