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Stability of a growing cylindrical blob
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The stability of an accelerating cylindrical blob of a time-varying radius is considered
with the goals of understanding the effects of time dependence of the underlying base
state on a Rayleigh–Plateau instability as well as of evaluating a contribution due
to a lateral acceleration of the blob, treated as a perturbation here. All of the
key processes contributing to instability development are dissected, with analytical
analyses of the exact incompressible inviscid potential flow formulation. Herein,
without invoking the ‘frozen’ base state assumption, the entire time interval of the
evolution of a perturbation is explored, discerning physical mechanisms at each stage
of development. It transpires that the stability picture proves to be cardinally different
from Rayleigh’s standard analysis.
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1. Introduction

Breakup of a time-varying cylindrical blob represents a key example of the
evolution of a perturbation superimposed on a time-dependent base state and arises
in various situations, such as edges of retracting soap films, extending fluid threads
and stretching liquid bridges. Historically, proper stability analysis of time-dependent
base states has often been obstructed by the difficulties associated with analytical
treatment, apart from very few scarce exceptions when there is symmetry (Plesset
1954) or periodicity (Davis 1976), and is therefore most frequently amenable to
numerical methods only (Homsy 1973). Without exception, stability analysis of a
growing blob has hitherto been based on either phenomenological (i.e. not exact)
formulations or numerical simulations (cf. Fullana & Zaleski (1999), Roisman,
Horvat & Tropea (2006), Agbaglah, Josserand & Zaleski (2013), Dziwnik et al.
(2014), to name a few), often producing contradictory results and thus calling for a
precise analysis to be performed. Explicit in many of these studies is the universal
assumption that the instability can be described by spectra (eigenvalues) of the
corresponding autonomous linear operator, usually enabled by a ‘frozen’ base state,
resulting in exponential growth of the perturbation. A somewhat different formulation
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by Dziwnik et al. (2014), based on a thin-film approximation, which strictly speaking
is invalid in the rim region and in which the initial fronts evolve slower compared
with their instability, thus allowing a time-scale separation, envisaged the idea of a
time-dependent dominant wavelength that scales with the size of the growing rim.

As will be shown in the present study (§ 3), the assumption of exponential growth
proves to be inadequate in the context of a growing rim if its (base sate) radius
varies on the same time scale as instability. Moreover, the results of the analysis
of the original fluid dynamics equations (§§ 2–3) suggest that the phenomenological
equations fail to capture the true intricacies of the instability dynamics. It is also
demonstrated that the seemingly intuitive idea of a time-dependent wavenumber
scaling with the time-dependent rim radius is not mathematically justified (§ 3).
For an analytical study of the instability of an accelerating cylindrical blob in the
large-Bond-number regime, when its growth in time is treated in a quasi-steady
fashion (i.e. instability develops faster than the initial cylindrical base state is
modified), the reader is referred to Krechetnikov (2010). In the present work, we
consider the opposite situation, namely when the time dependence of the base state
(growing cylinder) cannot be neglected, but the effect of the lateral acceleration g is
treated as a perturbation in the limit of small Bond number.

2. Derivation of the linear stability equations

The problem of breakup of a liquid jet is often studied in the incompressible
inviscid potential approximation, starting with the work of Rayleigh (1878) and
continuing with more recent studies (Agbaglah et al. 2013), which allows one to
explain the breakup phenomena robustly. Adopting this formulation, the governing
equations for a fluid of density ρ and surface tension σ reduce to the Laplace
equation for the velocity potential φ, the Cauchy–Lagrange integral for the pressure
p and the kinematic boundary condition at the cylinder interface r = f (t, z, ϑ) (cf.
figure 1a):

1φ = 0, for r 6 f (t, z, ϑ), (2.1a)
∂φ

∂t
+

1
2
|∇φ|2 =−

1
ρ

p+ gy+C(t), for r 6 f (t, z, ϑ), (2.1b)

∂f
∂t
=
∂φ

∂r
−

1
r2

∂φ

∂ϑ

∂f
∂ϑ
−
∂φ

∂z
∂f
∂z
, at r= f (t, z, ϑ). (2.1c)

Here, C(t) is an arbitrary function of time which can be added to φ without
changing the velocity field v = ∇φ. The cylinder interface S = r − f (t, z, ϑ) is
characterized by the unit normal vector n = ∇S/|∇S| and the interfacial curvature,
which simplifies to ∇ · n ' r−1

− fzz − r−2fϑϑ for small departures from a circular
cylinder shape. The cylinder is accelerated in the y-direction with a magnitude
g= |g|. Following the classical treatment (Drazin & Reid 2004), we perform analysis
in dimensional variables, except for the numerical results to be presented in § 3.1,
which for convenience are in a non-dimensional form.

2.1. Base state
We will study stability of the axisymmetric uniform (i.e. with pure radial growth)
cylinder base state, which does not depend on the z and ϑ coordinates: φ =Φ(t, r),
p=P(t, r), f =F(t). It is straightforward to show from the structure of equations (2.1)
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FIGURE 1. On stability of a cylindrical blob: (a) problem set-up, (b,c) qualitative velocity
fields of the base state without (b) and with (c) the lateral acceleration g. The vector
lengths show the relative velocity magnitudes.

that this is possible only if there is no flow in the z-direction and g= 0. Since we are
going to consider the case Bo= ρgF2/σ � 1, then deviation from this base state due
to acceleration can be treated as a perturbation (§ 4.1). The Laplace equation (2.1a)
admits a non-trivial solution of the above type only when there is a line source at the
axis of symmetry providing a mass flux Q, treated here as constant,

Φ(t, r)= (Q/2π) ln r, (2.2)

producing an axisymmetric flow field; cf. figure 1(b). The logarithmic singularity can
be removed by considering a mass source on the cylinder axis of a small radius
ε > 0. The time-dependent cylinder radius F(t) is found from the kinematic boundary
condition (2.1c), yielding F(t) =

√
F2

0 +Qt/π, the same as the rim growth on a
retracting soap film in the Taylor–Culick theory (Taylor 1959; Culick 1960). We will
focus, without loss of generality, on the asymptotic case,

F(t)'
√

Qt/π, valid for t�πF2
0/Q≡ tc. (2.3)

For a shrinking cylinder, i.e. when t′= tc− t� tc, F(t)'
√

Qt′/π, and since ∂t→−∂t′ ,
the stability results would be the exact opposite of the case considered below. The
base state pressure is P(t, r) = p∞ + σ∇ · n = p∞ + σ/r, so that the constant C(t)
determined by evaluating the Cauchy–Lagrange integral (2.1b) at the cylinder surface
r=F(t) becomes C(t)= σ/ρF(t)+ (Q/2πF)2/2. Then, deviations from this base state
due to instability development and lateral acceleration can be treated as perturbations
in §§ 3 and 4, respectively.

2.2. Perturbation equation
In the analysis to follow, first, we are going to superimpose general perturbations
of the form f (t, z) = F(t) + f ′(t, ϑ, z), φ(t, r) = Φ(t, r) + φ′(t, ϑ, r), p(t, r, ϑ) =
P(t, r)+ p′(t, r, ϑ). Due to the linearity of inviscid incompressible potential flows, the
perturbation of the velocity potential φ′ obeys the Laplace equation (2.1a) as well.
Following the same procedure as in the classical case (Drazin & Reid 2004), modulo
the time-dependent boundary r = F(t), the linearization of the kinematic condition
(2.1c), after projecting onto the undisturbed interface r=F(t) and taking into account
that Φr|r=F+f ′ =Φr|F +Φrr|F f ′+ higher-order terms, furnishes

r= F(t) :
∂f ′

∂t
=
∂2Φ

∂r2

∣∣∣∣
F

f ′ +
∂φ′

∂r
. (2.4)
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Similarly, we can linearize the dynamic condition (2.1b) around r= F(t),

∂φ′

∂t
+
∂Φ

∂r

(
∂2Φ

∂r2
f ′ +

∂φ′

∂r

)
=−

1
ρ
[p|r=F+f ′ − P|r=F] + g cos ϑ(F(t)+ f ′), (2.5)

where the expression in square brackets simplifies given the pressure perturbation at
the interface p′ = −σ( fzz + fϑϑ/F2(t)) related to the perturbed part of the interfacial
curvature ∇ · n,

[· · ·] =

[
∂P
∂r

∣∣∣∣
r=F

f ′ + p′
]
=−

σ

r2

∣∣∣
r=F

f ′ + p′ =−σ
(

f ′ + ∂2f ′/∂ϑ2

F2(t)
+
∂2f ′

∂z2

)
. (2.6)

It should be noted that when calculating ∂Φ/∂t in (2.1b), we first differentiate
(with respect to time t) and then evaluate at r = F(t), not vice versa – these two
operations do not commute. The same result (2.5) can be arrived at directly from
Euler’s equations of fluid motion.

Taking an infinite Fourier transform in the z-direction and a finite Fourier transform
in the ϑ-direction, the Laplace equation (2.1a) reduces to r−1∂r(rφ̂′r)− (k

2
+n2/r2)φ̂′=

0, with the solution expressed in terms of the modified Bessel functions φ̂′n =
CnIn(kr)+ DnKn(kr), where k and n are continuous axial and discrete (i.e. quantized
due to boundedness of the ϑ domain) azimuthal wavenumbers, respectively. Thereby,
the conditions (2.4) and (2.5) become

r = F(t) :
∂

∂t

(
f̂ ′n
φ̂′n

)
=

 Φrr
∂

∂r

−ΦrΦrr +
σ

ρ

(
1− n2

F2(t)
− k2

)
−Φr

∂

∂r


(

f̂ ′n
φ̂′n

)

+
g
2

(
0

f̂ ′n−1 + f̂ ′n+1

)
+

gF
2

(
0

δn,−1 + δn,1

)
, (2.7)

where δn,m is the Kronecker delta function. As we can see from the above system,
the base state is affected by acceleration g only at the mode n = 1. Moreover,
since the system (2.7) is symmetric with respect to the transformation n → −n,
in the subsequent stability analysis we can focus on n > 0. The system (2.7) is
universal in the sense that it allows us to compute both distortion of the base state
from a circular cylinder state and the time-dependent perturbation responsible for
instability (or stability); in the former case, the amplitude of the distortion is limited
by the magnitude g of acceleration, while in the latter case, the amplitude can grow
unboundedly.

Modes corresponding to the modified Bessel functions of the first kind In play
the dominant role in the instability, since the Kn are singular at r = 0 and decay
towards the cylinder surface, where the instability is driven by the surface tension
forces. Hence, we can put Dn = 0 as in the classical case of a time-independent
cylinder (Drazin & Reid 2004). If the line source is substituted (to remove the
singularity at r = 0) by a finite-size mass source r 6 ε, then the Kn would need
to be taken into account, but for ε � 1 their contribution should be negligible
for the above reasons. With these considerations, we can reduce the system (2.7)
to a single second-order equation. From the first equation of (2.7), we determine
Cn = [df̂ ′n/dt −Φrr(F)̂f ′n]/kI′n(kF), where we divided by I′n(kF) since it does not have
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zeros for kF > 0, and substituting into the second of equations (2.7) we arrive at a
second-order equation for f̂ ′n,

L f̂ ′n =
d2 f̂ ′n
dt2
+ a(t)

df̂ ′n
dt
+ b(t)̂f ′n =

g
2
(̂f ′n−1 + f̂ ′n+1)+

gF
2
(δn,−1 + δn,1), (2.8)

with the coefficients defined by

a(t)=−Φrr(F)− k
I′′n (kF)
I′n(kF)

dF
dt
+ k

I′n(kF)
In(kF)

Φr(F), (2.9a)

b(t)=−Φrrr(F)
dF
dt
+ k

I′′n (kF)
I′n(kF)

dF
dt
Φrr(F)− k

I′n(kF)
In(kF)

σ

ρ

(
1− n2

F2
− k2

)
. (2.9b)

3. Stability analysis for g= 0

3.1. Numerical integration of the evolution equation
In order to get an initial insight into the solution of (2.8), let us non-dimensionalize
it for the convenience of numerical integration only. Letting t= t0̃t with t0=

√
ρF3

0/σ
(surface-tension-driven breakup time for a cylinder of radius F0), (2.8) reduces to

d2 f̂ ′n
d̃t2
+ ã(̃t)

df̂ ′n
d̃t
+ b̃(̃t)̂f ′n = 0, (3.1a)

where

ã(̃t)=
â(κ)

2̃t
, b̃(̃t)=−

1
4̃t2
[2+ b̂2(κ)] − b̂1(κ)

(
t∗
t0

)3/2 1− n2
− κ2

t̃3/2
, (3.1b,c)

with the abbreviations b̂1(κ)= κI′′n (κ)/I
′

n(κ), b̂2(κ)= κI′n(κ)/In(k̂), â(κ)= 1+ b̂2(κ)−

b̂1(κ) and the non-dimensional wavenumber κ = k̂ t̃ 1/2. Here, k̂ = k̃(t0/t∗)1/2, k̃ = kF0
and the inertial time scale t∗ = πF2

0/Q≡ t1 (which can be interpreted as the time to
grow from F = 0 to F0). Thus, the solution f̂ ′n of (3.1a) can be treated as a function
of t̃, n and k̂.

If one naively applies the stability results for a time-independent cylinder to a
time-dependent one, it seems to be intuitive to hypothesize that the most unstable
wavenumber should still scale as k ∼ F−1, now being time-dependent. Indeed, after
analysing equations (3.1) with κ = const., we conclude that for large time, t̃→∞,
the solution behaves as

f̂ ′0 ∼ t̃−â(κ)/4−(1/8)e4
√

c t̃ 1/4
, c= b̂2(κ)(1− κ2)(t∗/t0)

3/2. (3.2a,b)

For truly t̃ → +∞, the growth is dominated by the exponential only, so that the
maximum growth rate is achieved when c(κ) is at maximum, which occurs at some
finite κ = O(1) similar to the classical dispersion relation (3.5); cf. also figure 1.5
of Drazin & Reid (2004). For finite times, the optimum κ is affected by a(κ) as
well. The problem with the above hypothesis k∼F−1 is that it implicitly requires the
Fourier transform with time-dependent wavenumber to commute with the operation
of the time derivative, whereas they clearly do not. Hence, it can be surmised that
the hypothesis is not viable. In fact, by solving an initial value problem for (3.1a),
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FIGURE 2. Plots of f̂ ′n at different wavenumbers k̂ ∈ [0, 0.1] for n = 0 and t∗/t0 = 1:
(a) short time interval; (b) longer time interval; (c) ultra-long time interval with ultra-short
wavenumbers k̂=O(10−6); (d) solution for k̂= 2× 10−2 from figure 2(b) for three values
of t∗/t0.

we can validate this suspicion. Before that, let us first make a few observations
from numerical solution of (3.1), which can be constructed accurately even for long
times using the conservative nature of the problem at hand and hence appealing to
symplectic integrator methods.

From figure 2(a), the mode entanglement makes it clear that the growth is not
monotonic with the wavenumber k and time t. Moreover, what appears to be a
‘winning’ mode (bold) on a short time interval becomes a decaying oscillating mode
on a longer time interval; cf. figure 2(b). It also appears, cf. figure 2(c), that there is
no short-wavenumber cutoff – the limit k→ 0 indicates that the perturbation starts to
grow at a very long time and brings up larger maxima of the solution f̂ ′0 compared
with shorter wavelengths. The latter observation suggests that there is no optimal, i.e.
most amplified, wavenumber, as the maximum achieved increases with decreasing k.
Any wavenumber k, no matter how small, is eventually amplified and then damped;
cf. figure 2(c). Finally, as observed from figure 2(d), increase of the inertial over
the surface tension time scale brings up the decaying oscillation stage closer in time.
Overall, figure 2 suggests that there is no single most amplified wavenumber k̂, and
hence the stability should be interpreted in terms different from those in standard
eigenvalue studies. The purpose of the subsequent discussion is to disentangle the
observed dynamics.

3.2. Long-wave approximation
To get a better sense of the system behaviour, let us consider a long-wave, kF� 1,
and long-time, t � tc, approximation. Introducing un = f̂ ′n exp(

∫
a dt/2), we can
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reduce (2.8) to

u′′n − s2(t)un = 0, where s2(t)=−b+ 1
2 at +

1
4 a2. (3.3)

Depending upon the index n of the Bessel function, we obtain

n= 0 : s2(t)=
1

4t2
+

k2

2F
σ

ρ
(1− k2F2)+

1
4

(
Q
4π

k2

)2

, (3.4a)

n 6= 0 : s2(t)=
n

4t2
+

n
F3

σ

ρ
(1− n2

− k2F2), (3.4b)

which should be contrasted to the classical dispersion relation for F= const.,

s2
=
σ

ρ

1
F3

kFI′n(kF)
In(kF)

(1− n2
− k2F2), (3.5)

with the asymptotics in the long-wave approximation,

n= 0 : s2
'
σ

ρ

k2

2F
(1− k2F2), n 6= 0 : s2

'
σ

ρ

n
F3
(1− n2

− k2F2), (3.6a,b)

where now s has the meaning of a growth rate (eigenvalue), i.e. f̂ ′n ∼ est: for n =
0 (axisymmetric mode), the growth is observed for k2F2 < 1, while for n > 1, all
modes are stable (not growing). The dispersion relation (3.6) suggests that the growth
rate in the classical case vanishes in the limit of k = 0 (long waves, for which the
surface tension σ is ineffective) and at k=F−1 (short waves, when the surface tension
starts to suppress instability). Clearly, the long-wave asymptotics is accurate enough
to determine the optimal mode n and wavelength k; indeed, expression (3.6) for n= 0
gives kF=0.707, versus the precise 0.697 from (3.5). These results are recovered from
the time-dependent case (3.4a) if one puts F= const., Q= 0 and t→∞.

In the time-dependent case, when n= 0 and t→∞, we observe that for k→ 0, s2
=

(k2/2F)(σ/ρ)> 0, i.e. a long-wave instability is expected; for k→∞, the coefficients
in (2.8) become

a(t)=
1
2t
, b(t)=−

1
2t2
−

k
4

Q
πt

√
π

Qt
−

kπ
Qt
σ

ρ
(1− n2

− k2F2)' k3σ

ρ
, (3.7a,b)

so that s2(t) = −k3σ/ρ, i.e. the surface tension has a stabilizing effect on short
wavelengths in the long-time limit. Based on the above, one might expect that for
some large fixed time t (independent of k), there exists a sufficiently large wavenumber
k at which s2 changes sign from positive to negative and hence, loosely speaking,
growth is succeeded by decay in time. While general ordinary differential equation
theorems (Bellman 1949; Kamke 1961) applied to (3.3) suggest that instability is
plausible, they do not provide any insight into the wavenumber structure of the
growing/decaying perturbation. Hence, the rest of this section is devoted to a detailed
analysis of the instability phenomena.
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3.3. Stability time intervals
Instability develops over several distinct time intervals, defined by the values of Q,
σ/ρ and k. In the following analysis, we discuss the solution of (3.3) for u0(t), bearing
in mind that it is related to the total solution via f̂ ′0(t) = e−t/8t1u0(t). In the classical
case (3.6), the exponential factor is absent as t1 =∞. In addition to the mass supply
time scale t1 = π/Qk2 previously introduced with k = F−1

0 , the surface tension time
scale t2 = (Q/π)3(ρ/σ)2 emerges. We focus on axisymmetric disturbances, n= 0, as
the most unstable ones in order to analyse the time intervals on which different terms
in (3.4a) dominate.

Case 1: ((Q/8π)k2)2 is dominant if

t� 4t1 and t� 45t2
1t−1

2 and t� 4−5t2, (3.8a−c)

which is possible provided that t2 is large enough and t1 is sufficiently small. In this
case, we get a linear oscillator equation with the solution

u0(t)=C1e(Q/8π)k2t
+C2e−(Q/8π)k2t

; (3.9)

i.e. exponential growth of u0(t) is observed, with the most unstable wavenumber being
k=∞ (short waves), which is expected as surface tension is not present in this limit;
of course, the conditions (3.8) are invalidated then. However, f̂ ′0(t) (and hence the blob)
is not prone to a Rayleigh–Taylor instability; in fact, the acceleration of the interface
Ftt ∼−t−3/2 is negative at this stage. The observed behaviour in this case corresponds
to the flat part of the graphs in figure 2(c). The presence of the term (Qk2/4π)2/4=
4−3t−2

1 is due to the radial acceleration of the cylinder interface, as can be gleaned
from (2.3).

Case 2: 1/4t2 is dominant if

t� 4t1 and t� (4−1t2
1t2)

1/3 and t� (4−1t4
1t2)

1/5, (3.10a−c)

which is possible provided that both t1 and t2 are large enough, i.e. the behaviour
corresponds to the earlier time growth in figure 2(a). Since in this case s2(t)= 1/(4t2),
we get Euler’s equation, admitting the solution

u0(t)=C1t(1/2)+(1/
√

2)
+C2t(1/2)−(1/

√
2), (3.11)

i.e. algebraic growth is observed.

Case 3: (k4/2)(σ/ρ)F is dominant if

t� t1 and t� 4−5t2 and t� (4−1t4
1t2)

1/5, (3.12a−c)

which is possible provided that both t1 and t2 are small enough. In this case, the
solution can be expressed in terms of Bessel functions of fractional order ν, namely

u0(t)=
√

tZ1/2q

(
i
q
√

ctq

)
, where

1
2q
=

2
5
, c=−

k4

2
σ

ρ

√
Q
π
, (3.13)

and Zν(z)=C1Jν +C2J−ν , with the asymptotics for large z (large time t),

Jν(z)=
√

2/νz cos [z− (2ν + 1)π/4] +O(z−3/2) as z→∞. (3.14)

Hence, u0(t)∼ t−1/8 cos (αt5/4)+ · · ·→ 0 as t→+∞.
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Stability of a growing cylindrical blob

Case 4: (k2/2F)(σ/ρ) is dominant if

t� t1 and t� 45t2
1t−1

2 and t� (4−1t2
1t2)

1/3, (3.15a−c)

which is possible provided that t1 is large enough and t2 is sufficiently small. In this
case, s2(t)= ct−1/2, with c= 2−1t−1

1 t−1/2
2 , and thus

u0 = t1/2Z1/3
(

4
3 ic1/2t3/4

)
, (3.16)

where Zν(z) = C1Jν(z) + C2J−ν(z), z = iαt3/4 and α = (4/3)c1/2, with the asymptotics
u0(t) ∼ t−3/8eαt3/4 . Hence, the solution first grows (case 4) and then decays in
an oscillating fashion (case 3) in time, as observed in figures 2(a–c). Thus, the
combination of cases 3 and 4 is analogous to the classical situation (3.6), and
therefore one then might infer that selection of the most amplified wavenumber
k should be made possible when two terms – (k2/2F)(σ/ρ) and (k4/2)(σ/ρ)F
– compete, similarly to the classical Rayleigh–Plateau instability. However, this
expectation proves to be unfeasible.

3.4. On non-existence of optimal growth time and wavenumber
Here, we will consider cases 3 and 4 together (omitting index 0), which leads to the
equation

u′′ − s2(t)u= 0, s2(t)=
α
√

t
− β
√

t, with α =
k2

2
σ

ρ

√
π

Q
, β = α

k2Q
π
. (3.17a,b)

The sign of s2(t) changes at the ‘turning’ point t∗, which coincidentally equals the
previously introduced inertial time scale t∗=α/β ≡ t1. The solution to this problem is
amenable to the Wentzel–Kramers–Brillouin method, namely away from the turning
point it renders

u(t)=
C±

[s2(t)]1/4
exp

[
±

∫ t

t0

√
s2(τ ) dτ

]
, (3.18)

which after Taylor expansion of s2(t) near t∗, s2(t∗ + t)=−αt/t3/2
∗
+ · · ·, with t now

measured from the turning point t∗, becomes

t> 0 : u=
t3/8
∗

(αt)1/4
[Aei(2/3)(α1/2/t3/4∗ )t3/2

+ Be−i(2/3)(α1/2/t3/4∗ )t3/2
], (3.19a)

t< 0 : u=
t3/8
∗

(−αt)1/4
[Ce−(2/3)(α

1/2/t3/4∗ )(−t)3/2
+De(2/3)(α

1/2/t3/4∗ )(−t)3/2
], (3.19b)

where D= 0, as for t→−∞, the solution should be bounded.
In a neighbourhood of the turning point, (3.17) simplifies to the Airy equation

u′′ + αtt−3/2
∗

u= 0, (3.20)

the solution of which is expressed in terms of Airy functions u0(t)= a Ai(z)+ b Bi(z),
z = −α1/3t−1/2

∗
t. In order to determine the constants a and b, we will need the

asymptotics of Ai and Bi for z� 1(t→−∞) and −z� 1(t→+∞) (Abramowitz
& Stegun 1965). Matching these asymptotics with the Wentzel–Kramers–Brillouin
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FIGURE 3. Solution of (3.17) near the turning point t∗; the maximum is achieved after
passing through t∗.

solutions (3.19) for both t→±∞, we find

A=
ei(π/4)

2
√

π

α1/6

t1/4
∗

[b− ia], B=
e−i(π/4)

2
√

π

α1/6

t1/4
∗

[b+ ia], C=
a

2
√

π

α1/6

t1/4
∗

, D=
b
√

π

α1/6

t1/4
∗

.

(3.21a−d)
Since D= 0, then b= 0. As a result, the solution for t> 0, i.e. after the turning point
t∗, reads

u(t)=C
2t3/8
∗

α1/4t1/4
sin
(
ξ +

π

4

)
, where ξ =

2
3
α1/2

t3/4
∗

t3/2, (3.22)

and thus the interfacial deflection becomes f̂ ′(t) = e−1/2
∫

a dtu(t) = const. e−t/8t∗u(t),
where again t is defined relative to the turning point t∗. To determine the maximum
achieved during the time evolution, we differentiate the above (total) solution,

d
dt
[e−t/8t∗u(t)]= 0⇒

1
6

tan
(
ξ +

π

4

)
[δξ 2/3

+ 1]= ξ, δ=
32/3

24/3

(
t2

t1

)1/6

� 1, (3.23a,b)

where δ� 1 since t2/t1� 1 in the considered case 4. For δ= 0, the above extremum
condition admits the approximate solution reflecting the presence of infinitely many
‘humps’ (cf. figure 3),

ξ0 =π

(
m+

1
4

)
− ξ ′, ξ ′ =

2
3π

1
1+ 4m

, m ∈Z. (3.24a,b)

The corresponding maxima of u(t) scale as umax ∼ m−1/6k−5/6 for m � 1, i.e. the
extremum decays with m. For δ 6= 0, the solution of (3.23) is corrected to ξ = (1−
3δ/2)ξ0; that is, the time when the maximum of the solution is reached becomes
shorter with increase of the ratio t2/t1.

Finally, in order to determine the wavenumber for which the maximum of the
solution is absolute, it should be noticed that this maximum corresponds to m = 1
and is achieved after passing through the turning point t∗, cf. figure 3, which is
analogous to the bifurcation delay phenomena in dynamical systems if s2(t) is
deemed to be a time-dependent bifurcation parameter. Given the general turning point
solution with b= 0, we can first determine where the maximum is achieved,

d
dt
[e−t/8t∗Ai(τ )] = 0⇒

Ai(−θ τ̃ )
Ai′(−θ τ̃ )

=−8θ, θ =
1

21/3

(
t1

t2

)1/6

, τ =
t
t1
, (3.25)
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Stability of a growing cylindrical blob

with θ � 1 in case 4. Graphical analysis indicates that the solution of the above
equation is near the first zero of Ai′(−θ τ̃ ), denoted by a′s = −1.01879 · · · < 0
(Abramowitz & Stegun 1965), which allows one to apply asymptotic methods to find
the solution of (3.25),

τ̃ =−
a′s
θ
+ τ̃ ′, where τ̃ ′ =−

1
8θ 2

Ai(a′s)
Ai′′(a′s)

+ · · ·. (3.26)

By evaluating the solution at τ̃ , i.e. f̂ ′(τ̃ ) = const. t1/2
2 θ 5/6e−τ̃ /8Ai(−θ τ̃ ), it is

straightforward to show that there is no ‘optimum’ wavenumber k. Indeed, as k→ 0,

f̂ ′(τ̃ )∼ θ 5/6
∼ k−5/18, (3.27)

because Ai(−θ τ̃ ) ∼ const. and e−τ̃ /8 ∼ 1 (since t1 → +∞ for k→ 0). As expected
from the discussion in § 3.1, there is no critical self-similar wavenumber scaled with
F−1(t) and growing exponentially since, based on (3.26) and (3.27), the most amplified
wavenumber at a given time t scales as k ∼ t−3/5. Thus, the fundamental difference
from the classical case Q= 0 is that no matter how small (but non-zero) k is, there
is a large enough time when this k is amplified and then damped (for later times). It
should be noted that for k≡ 0, from (3.4a) we find that a(t)= 0, b(t)=−1/(4t2) and
s2(t)= 1/(4t2), so that the leading-order solution reads as

u(t)=C1t(1/2)+(1/
√

2)
+C2t(1/2)−(1/

√
2), and therefore f̂ ′ ∼ t(1/2)+(1/

√
2), (3.28a,b)

i.e. it grows faster than the undisturbed interface F ∼ t1/2, in analogy with the
Rayleigh–Taylor instability of an expanding sphere (Plesset 1954). The result (3.28)
for k ≡ 0 contrasts with f̂ ′ ∼ t1/6 for k→ 0, i.e. the limits k→ 0 and t→∞ are
not interchangeable and thus distinguished. Since the limit of k= 0 corresponds to a
2D problem, this transition from 3D to 2D makes some of the mechanisms (transfer
of energy from the base state to the perturbation) disappear. Physically, a growing
blob imminently breaks up in a finite time, and thus the range of finite non-zero
wavenumbers amplified on this time scale ultimately affects the size of the resulting
drops, which might be non-uniform due to the lack of a single preferred wavenumber.

4. Effects of lateral acceleration

In addition to the radial acceleration due to Q 6= 0, there could also be a lateral
acceleration, e.g. due to the presence of gravity or, as in the case of a retracting soap
film, due to the force pulling the cylinder in one direction. In the latter case, however,
the Bond number Bo= ρF2

0g/σ at the start of retraction (when the acceleration is the
largest) of a film of thickness h is not small as Bo=F0/h> 1; this is easy to see from
the estimate of acceleration based on the Taylor–Culick theory, g ∼ σ/(ρhF0). The
case of low Bond numbers in the soap film retraction corresponds only to the later
stage of retraction when the blob has already grown and the acceleration diminishes
as the blob approaches a constant Taylor–Culick speed

√
2σ/ρh, but by that time,

the blob instability may have already developed. Here, we focus on the case of
a weak acceleration due to external body forces such as gravity, so that Bo � 1,
which nevertheless leads to a modification of the base state and a contribution to the
instability growth, analysed below with the help of (2.8).
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4.1. Base state correction
From (2.8), it is obvious that non-zero acceleration g affects mode n = 1 only and
thus induces a non-axisymmetric flow field in the blob such as in figure 1(c),

Lf̂ ′1 = gF/2, (4.1)

which after the transformation u1 = f̂ ′1 exp(
∫

a dt/2) reduces to

u′′1 − s2(t)u1 =Ct1/2gF(t)≡ h(t), where s2(t)= t−2
[4−1
− (t/t2)

1/2k2F2
]. (4.2)

Looking for a long-time correction, we can simplify s2(t) to s2(t)=−t−1/2t−1/2
2 t−1 < 0,

provided that t� 42/3t2/3t1/3
2 . The solution for the homogeneous part of (4.2) is

u1(t)=
√

tZ2/3

(
4
3 t−1/2

1 t−1/4
2 t3/4

)
, (4.3)

where Zν(z)= C1Jν(z)+ C2J−ν(z), z= γ t3/4, γ = (4/3)t−1/2
1 t−1/4

2 and ν = 2/3. If u1 =

C1v1+C2v2, with v1= t1/2Jν(z) and v2= t1/2J−ν(z), then the Wronskian is w= v1v
′

2−

v2v
′

1 and the solution to the inhomogeneous problem (4.2) reads

u1(t)= v2(t)
∫ t v1(τ )h(τ )

w(τ )
dτ − v1(t)

∫ t v2(τ )h(τ )
w(τ )

dτ . (4.4)

Since we are considering the long-time limit, given the asymptotics (3.14), we
can choose as independent solutions v1 = t1/8eiγ t3/4 and v2 = t1/8e−iγ t3/4 , so that the
Wronskian becomes constant, w = −3iγ /2, and the long-time limit of the solution
(modulo a constant coefficient) is

u1(t)∼ t1/8eiγ t3/4
∫ t

τ 9/8e−iγ τ 3/4
dτ − t1/8e−iγ t3/4

∫ t

τ 9/8eiγ τ 3/4
dτ ∼ t3/2, (4.5)

where we took into account that the leading-order contribution of the integrals in the
above expression can be evaluated through integration by parts,∫ t

τ 9/8eiγ τ 3/4
dτ =−i

4
3γ

t11/8eiγ t3/4
+O(t5/8). (4.6)

As a result, the correction to the base state scales with time t, acceleration g and mass
flux Q as u1 ∼ g

√
Qt3/2. For shorter times, i.e. when 1/(4t2) dominates in s2(t), it is

still the same mode n= 1 that is excited, but with a different time exponent.

4.2. Contribution to instability
Since lateral acceleration acts at all times, it makes sense to consider its contribution
to instability at early times – if it boosts it, the effect will be observable. From (2.8),
we see that the axisymmetric mode is affected by mode one through the presence of
acceleration g,

Lf̂ ′0 = g(̂f ′
−1 + f̂ ′1)/2= gf̂ ′1, (4.7)

where we took into account the symmetry n→ −n and f̂ ′1 is determined from the
homogeneous equation Lf̂ ′1 = 0 or, after the transformation f̂ ′1 = exp(−

∫
a dt/2)u1 =

t−1/2u1 corresponding to a(t) = 1/t, from (3.3) with n = 1. For short times,
s2(t) = 1/(4t2), and hence the leading-order solution of (3.3) is u1(t) ∼ t(1/2)+(1/

√
2),
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so that f̂ ′1 ∼ t1/
√

2. To construct the solution to (4.7), we make the transformation
u0 = f̂ ′0 exp(

∫
a dt/2), where a= 1/(4t1), to produce

u′′0 − s2(t)u0 = e−t/8t1g f̂ ′1/2≡ h(t)∼ ge−t/8t1 t1/
√

2. (4.8)

Since for short times s2(t)= 1/(4t2), two independent solutions of the homogeneous
part are

u0(t)=C1v1 +C2v2, with v1(t)= t(1/2)+(1/
√

2), v2(t)= t(1/2)−(1/
√

2), (4.9)

i.e. given by case 2, and the Wronskian w = −
√

2. Using formula (4.4), the
corresponding perturbation driven by acceleration g is then to leading order given
by u0(t)∼ ge−t/8t1 t1+(1/

√
2), i.e. f̂ ′0 = t1+(1/

√
2), and thus the (algebraic) growth is faster

than that in the absence of acceleration, which is t(1+
√

2)/2et/8t1 . Here, the exponential
should be discarded as t � t1 according to the case 2 assumptions. Hence, the
presence of lateral acceleration entails amplification of the instability at early times
without changing the wavenumber structure of the perturbation.

5. Discussion and further questions

In this paper, we considered the case in which the time scale for the growth of
the liquid blob is commensurate with the intrinsic time scale for the instability in
the static situation, so that quasistatic analyses and the idea of a time-varying critical
wavenumber fail. Linearization of the basic equations about the axisymmetric base
state produces a non-autonomous non-homogeneous oscillator equation (2.8). The
results show that no matter how small the wavenumber k is, the apparent growth
of the corresponding mode is illusory, as all of the modes ultimately evolve to
decaying oscillations after passing through a turning point in time t∗ at which the
time-dependent ‘spring constant’ s2(t) changes sign. Furthermore, this time increases
unboundedly for k → 0. Qualitatively, the ultimate decay of the perturbation can
be predicted from the classical theory, in which the unstable wavelengths λ = 2π/k
correspond to λ> 2πF, i.e. should be greater than the circumference of the blob. If
at a given instant of time a perturbation of a particular wavelength λ∗ in that range
is expected to grow, at later time it is pushed back to the stable range λ∗ < 2πF(t)
due to the growth of F(t). Hence, several ‘standard’ assumptions based on the
direct translation of the classical theory onto the time-varying case – exponential
growth of perturbations and time-varying wavenumber – are generally invalid. These
seemingly counterintuitive results can be foreseen from the simple fact that in 3D, in
general, there is no conformal (i.e. angle preserving) mapping that leaves the Laplace
equation (2.1a) invariant. The exceptions – translations and homogeneous scalings,
rotations and reflections, and inversions – known from Liouville’s theorem (Blair
2000) obviously do not apply to the growing cylindrical blob considered here, thus
making the presented theory non-conformal (Blumenhagen & Plauschinn 2009). If
such a mapping – between a growing and a static blob problem – parameterized by
time t were to exist, then there would also exist a most unstable wavenumber that
scales with time.

Therefore, a growing blob is expected to rupture in a manner different from a static
blob with one preferred wavelength. In the natural scenario, when one starts with
random initial conditions with no preferred wavelength, then a range of wavelengths,
determined by the time scale of the cylinder rupture (or, at least, by the time it

827 R3-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.535


R. Krechetnikov

takes for the amplitude of perturbations to become finite and comparable to the
cylinder radius, thus triggering nonlinear mechanisms), will be amplified. Since
perturbations with different wavelengths in this range would also have random phase
shifts between them, then the resulting drop sizes should not be uniform. In the other
scenario, when one provides an initial modulation with a particular wavelength, such
as in the experiments of Donnelly & Glaberson (1966), who verified the classical
dispersion relation (3.5), the breakup may result in a uniform size of the drops.
At this point, there are no experiments (yet) which would be directly comparable
to the offered theory. The closest phenomena would be along-the-edge instability of
retracting soap films, but, as was mentioned above, the Bond numbers in that case are
greater than or equal to one at the start of retraction. The case of low Bond numbers
in the soap film retraction corresponds only to the later stage of retraction when
the blob is already massive and the acceleration decreases as the blob approaches
a constant Taylor–Culick speed, but by that time an instability would have already
developed. Should the presented theory be applicable in that case, it would predict
that the lateral acceleration would amplify the instability at early times without
changing the wavenumber structure of the perturbation. Any future experiment would
have to deliver sufficiently high-fidelity data to be able to distinguish non-exponential
growths predicted by the theory and, instead of focusing on an average wavelength of
perturbation as commonly done, pay attention to the large scatter around the average,
which is indicative of a range of wavelengths amplified, thus leading to breakup at
different drop sizes. It would also be interesting to observe, e.g. through an initial
modulation, the wavenumbers that initially grow and then decay in an oscillating
fashion as in figure 2.

In conclusion, it is worth noting that the transient growth of the perturbation
observed in figure 2 is a consequence of both the non-normal and non-autonomous
nature of the linear operator of the homogeneous part of (2.7). Once the perturbation
amplitude becomes finite, nonlinear advection terms (v · ∇)v in the Euler equations
must be taken into account, which affect not only the amplitude of the disturbance,
but also its direction, due to the gradient operator ∇, thus influencing the eventual
breakup process. All of these aspects are beyond the scope of the present analysis.
While the case of Q = const. considered in detail here provides a roadmap to the
instability development for a growing cylindrical blob, it would also be interesting
to extend the present study to a time-varying mass flux Q = Q(t), in particular to
understand the stability of time-periodic Q(t) amenable to Floquet analysis and to
find a way to suppress instability by controlling the form of Q(t). Moreover, the
influence of viscosity has been omitted in the present analysis, although its inclusion
should not be a serious undertaking in the linear approximation (Levich 1962). Finally,
evaluation of the effect of displacement of the line source off the symmetry axis,
while expected to enhance instability because the amplitude of In increases towards
the surface where the Rayleigh–Plateau instability is generated, would be important
for quantitative understanding of various problems such as retracting liquid (soap)
sheets, where the coupling between the liquid sheet and the rim in previous works
(e.g. Agbaglah et al. 2013) is usually considered through the variation of the rim
radius only, i.e. without actual interaction between the rim and the sheet.
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