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Generalized Beilinson Elements and
Generalized Soulé Characters

Kenji Sakugawa

Abstract. The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and
is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of
generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in
K-groups under Soulés higher regulator maps. This result generalizes Huber-Wildeshaus’ theorem,
which is a cyclotomic field case of our results, to an arbitrary number fields.

1 Introduction

Let N be a positive integer and let { be an N-th root of unity. For each positive
integer m, A. A. Beilinson constructed an element ¢, ({) € Kz,-1(Q(un)) ®z Q
called Beilinson’s cyclotomic element characterized by the equality regh (c,,({)) =
(R (Lim(0({))),- Here, reg is the Beilinson regulator map

reg,: Ko (Qun)) — B R(m-1),
0:Q(un)—C
R (z) is defined to be (z + (-1)""'z) /2 for each z € C, and Li,, (z) = Yooy 2" /0™ is
the m-th classical polylogarithm function. Since Li,,(0({)) is a linear sum of partial
zeta values over Q(py ), the Beilinson element ¢, ({) can be regarded as a zeta element
in the K-group.

For each prime number ¢, an £-adic analogue of ¢,,, ({’) was constructed by C. Soulé
in [25] by twisting cyclotomic units, which are also considered as zeta elements. We
fix a system {{pn } 451 Of €-powers roots of unity and regard it as a basis of the Galois
module Z,(1). Soulé defined a continuous group homomorphism

Xon: Gal (Q/Q(pwe=)) — Ze(m)
called the Soulé character by the equations

(L.1) X(m(a) mod £" = ( [T - C?n)am_l)

1<a<eé",tta

ar (0-1)
‘ & (" inz/e"Z(m)

for all positive integers n. A modification }(“,51 of X(m is defined by a similar equation
to (1.1), but a runs over every integer such that 1 < a < ¢". If N is prime to ¢, then

— e .
there exists a simple relation ng = X,i, - X,f, between these two homomorphisms.
The homomorphism an can extend to a continuous 1-cocycle on the absolute Galois
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group Yo (uy) = Gal(Q/Q(un)) ,of Q(pn) and denote by [an] its cohomology class
in H'(Q(pn), Qe(m)). Let reg’ ¢ be the ¢-adic higher regulator map ([25]):

reg) ' Ko 1(Q(pn)) — H'(Q(un), Qe(m)).

The main result of [18] relates these two zeta elements by the regulator.

Theorem 1.1 (Beilinson, Deligne, Huber, Wildeshaus, Kings [16,18])  For each prime
number €, the image of ¢, ({) multiplied by —(m —1)! under reg’:** coincides with the

m

class ofj{,ﬁ, :
~(m =1)!regy® (cm(0)) = [T ).

This theorem plays an important role in the proof of Bloch-Kato’s Tamagawa num-
ber conjecture for Dirichlet motives ([17]). The purpose of this paper is to generalize
Theorem 1.1 to a general number field K.

Let Z[K\{0,1}] be the free abelian group generated by the symbols {z} for
z € K\{0,1} and suppose that m is greater than 1. For each positive integer k, the
symbol £ denotes the k-th single-valued classical polylogarithm (see (3.5) for the
precise definition). We call an element >, a;{z;} € Z[K\{0,1}] satisfies the m-th
Bloch condition if we have two equalities

n

2
S ai¢"(zi)zin(1-2) =0 in AK*®2Q,
i=1

iai(pmk(zi)gkcl(o_(zi)) -0

for any group homomorphism ¢: K* — Q, forany 0: K — C, and for any positive inte-
ger k such that 2 < k < m—1. Denote by A" (K) the subgroup of Z[K\{0, 1} ] satisfying
the m-th Bloch condition. Note that, by definition, {(} is an element of Al (K) for any
root of unity { of K. In [6], R. de Jeu constructed an element ¢, (&) € Kyp—1(K) ®2 Q
for each & € AM(K) characterized by reg'!(c,.(§)) = (£S5 (0(£)))s. Note that
Beilinson and Deligne also gave a conditional construction of the elements c,, ()
in [1] independently. In this paper, we call ¢, (&) a generalized Beilinson element.
Note that, since Z5'({) = R, (Lin({)) for any root of unity { € C\{1}, we have

em({C}) = em(0).
On the other side, in the paper [20], H. Nakamura and Z. Wojtkowiak defined a
continuous group homomorphism

X D (goe 216>y = Le(m)

by the Kummer properties

n_ am—1y0-1 _
(12)  Fa(o) mode"=( [T (1-¢az"")) e Vinz/e'z(m),

1<a<en

which is a generalization of Soulés cyclotomic character. For each formal linear sum
E=Y'_ ai{zi} € Z[K\{0,1}], we define K; to be K({pe=, zye I_) and define ¥5,
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to be the linear sum of group homomorphisms
3 l i ,
Xm ::Zaixzngz Zf(m)
i=1

We will prove that if £ is an element of AY (K), then )751 can extend to a continuous
1-cocycle on ¥k (Corollary 4.15, Corollary 6.5) and denote by the same notation this
1-cocycle by abuse of notation. The main theorem of this paper is as follows.

Main Theorem  Let m be a positive integer greater than 1. Let K be a number field
and let & be an element of ATl (K). Then, for each prime number ¢, we have the equality

~(m —1)!reg, (cn(£)) = [Xn)-

Our approach follows essentially the path laid out by Beilinson and Deligne. The
proof of the main theorem is based on analysis of moduli of torsors under funda-
mental groups, and one of the key ingredients is the motivic fundamental groupoid
of P'\{0,1, 0o} whose existence was proved by Deligne and Goncharov [5]. When
K = Q(pn), it seems that the proof of our Main Theorem is a simplification of the
original proof of Theorem 1.1 by Huber and Wildeshaus.

Conjecturally, {Cm(f)}feAtl,,(K) spans Ky,,-1(K) ®z Q for any number field K and
positive integer m greater than 1 ([29, §8, Main Conjecture]). Although this conjec-
ture proved only the case that K is an abelian extension of Q, which is a key of [17],
the author hopes that the Main Theorem will be useful for studying the motive Z(m)
over an arbitrary number field.

1.1 Plan

The plan of this paper is as follows. In Section 2, we recall a concept of an abstract
modified polylogarithm attached to a series of abstract unipotent Albanese maps in a
mixed Tate category. In the following three sections, we see examples of abstract mod-
ified polylogarithms. In Section 3, we define the Hodge modified polylogarithms and
give a comparison of that polylogarithms with the classical modified polylogarithms
(cf. Proposition 3.10). In Section 4, we define the £-adic étale modified polylogarithms.
We also compare the ¢£-adic étale modified polylogarithms with Wojtkowiak’s £-adic
polylogarithms and generalized Soulé characters. Then we define the motivic modi-
fied polylogarithms in Section 5. In Section 6, we compare the three modified poly-
logarithms introduced in the previous sections and give a proof of Main Theorem. In
Appendix A, we give proofs of technical lemmas that are needed to describe classify-
ing spaces of torsors under algebraic groups in a mixed Tate category.

1.2 Notation

For a field F, we fix its separable closure F and denote by % the absolute Galois group
Gal(F/F) of E. For any topological group A equipped with a continuous action of %,
we denote by H'(F, A) the continuous first Galois cohomology. For a set S, let Z[S]
be the free abelian group generated by symbols {s}, s € S.
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Let k be a field of characteristic 0 and let V be a finite dimensional k-vector space
equipped with an algebraic action of the multiplicative group G, x. Then we define
V(=21) to be the subspace of V on which G,,, x acts via the n-th power of the standard
character std := idg,, ,: Gy x = Gu,k. For each abstract group G, we denote by Gy
the unipotent completion of G over k in the sense of [12, Appendix A]. Let R be a
k-algebra and let X be a k-scheme. We denote by Xz or by X ® R the base change of
X to Spec(R). For a scheme X, the symbol O(X) denotes the ring of regular functions
on X. We denote by P}, the scheme Spec(Z[t, ﬁ]) =P,\{0,1,00}.

We mean a left action by an action unless otherwise noted. Let G be a group and
let A be a set equipped with an action of G. Then for each g € G and a € A, we denote
by £a the action of g on a. For an object X of a category, the symbol [ X] denotes the
isomorphism class of X.

2 Abstract Modified Polylogarithms in Mixed Tate Categories

In this section, we recall abstract modified polylogarithms in a mixed Tate category
introduced in [22, Section 2]. This notion was referred to as an abstract polylogarithm
in that previous work.

2.1 Preliminaries on Mixed Tate Categories

In this and the next subsection, we fix a field k of characteristic 0 and a mixed Tate
category M over k with the invertible object k(1) (cf- [9, Appendix 8.1]). Any object M
in M has a natural weight filtration W, M indexed by even integers such that gr,¥ M :=
Wa M [ W,,,_, M is isomorphic to a direct sum of k(—2n). Let w be the canonical fiber
functor of M defined by

w: M —> GrVecy —> Vecy; M — €D Homyy (k(—n),gr;"; M),
nez

where GrVecy is the category of finite dimensional graded k-vector spaces. Let
m1(M, w) be the Tannakian fundamental group of M with the base point w. Since w
factors through GrVecy, there exists a natural splitting 7; (M, w) = G,k x U(M),
where U(M) is a pro-unipotent pro-algebraic group over k. Namely, there exists
an inverse system {U,}, of unipotent algebraic groups over k such that U(M) =
l(iLna U,. The fundamental Lie algebra Lie(M) of M is defined to be the inverse limit

lim Lie(U,) of the inverse system of Lie algebras {Lie(Uy)},. The action of G, &
on U(M) defines the positive grading on the fundamental coLie algebra

coLie(M) := lim Homy (Lie(Uy), k) = EBcoLie(M)(z”)
n=1

44

of M where coLie(M)?") is the subspace of coLie(M) on which G,, x acts by the
(=n)-th power of the standard character std := idg,, ,. We denote by

2
day: coLie(M) — /\ coLie(M)

the Lie cobracket of coLie(M). The following lemma is well known.
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Lemma 2.1 (cf. [1, Section 2.1]) We have a canonical isomorphism
coLie(M)2m-dx=0 = Exd (k(0), k(n)) ® std™"

as G, x-modules. Here, we regard Ext (k(0), k(n)) as a k-vector space equipped with
the trivial action of G, k.

We introduce two conditions for affine group schemes in M in the sense of Deligne
(cf. [4, Section 5.4]).

Definition 2.2 Let G = Sp(A) be an affine group scheme in M. We say that G
satisfies (Pos) (resp. (Triv)) if A satisfies the following condition:

(Pos) : Wy A = k(0) (resp. (Triv) : U(M) acts on w(A) trivially).

We say that an affine group scheme G = Sp(A) in M is an algebraic group in M
if the k-algebra w(A) is finitely generated. The canonical fiber functor w induces a
functor from the category of algebraic groups in M to the category of algebraic groups
over k equipped with an algebraic action of 7; (M, w). We use the same letter w for
that functor by abuse of notation. The following proposition is a direct consequence
of Corollary A.6.

Proposition 2.3  Let G be an algebraic group in M satisfying (Pos). Then the under-
lying algebraic group of w(G) is unipotent.

For each algebraic group G in M, we define the object Lie(G) in M by the equation
w(Lie(G)) = Lie(w(G)).

Here, the existence of such an object follows from the Tannakian duality. According
to Proposition 2.3, the correspondence G — Lie(G) induces an equivalence between
the category of algebraic groups in M satisfying (Pos) and the category of nilpotent
Lie algebra objects in M with negative weights.

For the rest of this subsection, we fix an algebraic group G in M satistying (Pos)
and (Triv). We denote by H'(M, G) the set of isomorphism classes of right G-torsors
in M. Recall that the pointed set H' ()M, G) is canonically isomorphic to the first ra-
tional cohomology H' (m,(M, w), w(G)) (cf. [22, Appendix A6.2]). We recall another
description of this pointed set.

Proposition 2.4 ([3, Proposition 5.2]) Let G be an algebraic group in M satisfying

(Pos) and (Triv).

(i) For each G-torsor X, there exists a unique rational 1-cocycle c[x] representing the
isomorphism class [ X] of X such that cxilg,,, = L

(i) The correspondence [ X] ~ log(c[x7lu(m)) defines a bijection

~ Go, N Gk (7 .
®:H' (M, G) — Homk_g; (u(w), w(G)) & Hom, "}, (Lie(M), w(Lie(G))).

Here, log(crxjlu(any) is the Lie homomorphism corresponding to the homomor-
phism c(x)luvy: UM) = w(G) of group schemes over k.
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2.2 Abstract Modified Polylogarithms

For any Lie algebra object L of M such that w(L) is nilpotent, we denote by exp(L)
the associated algebraic group in M.

Definition 2.5 Let m be a non-negative integer. We define the polylogarithmic quo-
tient 22 in M, which is an algebraic group in M, by

73 = exp(a)l) = exp (k() « D k().

Here, p) := k(1) x @™ k(n) is a Lie algebra object in M such that the abelian Lie
algebra k(1) acts on the abelian Lie algebra @™ k(n) by k(1) ® k(n) = k(n +1) for
n < m and annihilates k(m). We understand 22" as exp(k(1)).

It is easily checked that the algebraic group ) in M satisfies two conditions
(Pos) and (Triv). By using Proposition 2.4, we define a natural map r,, that is needed
to linearize abstract unipotent Albanese maps.

Lemma 2.6 ([22, Lemma 2.4]) Let m be a non-negative integer. Then there exists a
natural map of pointed sets

rm: H'(OM, f@nj\{t) — coLie(M)(z"”ze),

where € denotes 0 or 1 when m > 0 or m = 0, respectively.

Proof We define the map

rm H(M, 20 2, Hom®"* (Lie(M), w(p%)) —> coLie(M)?m+2€)

k- Lie
by
rm([X]) = @[ XD lnie(vt)2m-200 = 1og(ex))Lie(t) cam-20) -
This map coincides with the map defined in [22, Lemma 2.5]. [ ]

There exists another description of r,,, by using the weight filtration on U(M). The
action of G, x on Lie(M) defines a natural filtration W_,, Lie(M) by the equality

W_,, Lie(M) := the closure of @) Lie(M)2 in Lie(M).

i>n

The graded piece gr") Lie(M) is canonically isomorphic to Lie(M)(~2"). Denote

by W_,,U(M) the closed sub-pro-algebraic group of U(M) corresponding to
W_,,, Lie(M), namely,

Lie (W_,,U(M)) = W_,, Lie(M).

By definition, log: U(M)(k) = Lie(M) induces a natural isomorphism of k-vector
spaces

@1) (g™, UV)) (k) = g™, Lie(M) = Lie(M) 2.

Since the following lemma was essentially proved in [22, Lemma 2.4] by using a stan-
dard weight argument, we skip its proof here.
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Lemma 2.7 Let c:m(M, 0) - w(2N) be a rational 1-cocycle. If m is a positive
integer, then the restriction of ¢ to W_y,,, U(M) induces a group homomorphism

grls, (0): (g, UOW)) (k) — w(k(m)) = k.

Furthermore, this homomorphism depends only on the cohomology class [c] in the first
rational cohomology H'(m (M, w), w(2))).

Let X be a right torsor under ) and let ¢: (M, w) - &) be any rational
1-cocycle representing X. Then, by the construction of r,, and Lemma 2.7, we have

(2.2) rm([X]) = g, (c)

under the isomorphism (2.1). Now, we recall the concept of series of abstract unipo-
tent Albanese maps. For the rest of this section, we fix a field F that will be specified
as a number field K in Sections 5 and 6.

Definition 2.8 (cf. [22, Definitions 2.3 and 2.5])
(i) A series of abstract unipotent Albanese maps Alb = {Alb,},o is an inverse
system of maps

Alb,: Py, (F) = F\{0,1} — H'(M, ;)
with respect to n satisfying the following two conditions:

(Hom) Alb, extends to an injective group homomorphism from F*/FJ. to
H' (M, k(1)).

(Ref) We have Alb;(z) = (Alby(z), Albg(1 - 2)) in H'(M, 2M) = H'(M, k(1))®?
for all z € Py, (F).

(ii) Let m be a positive integer. We define the m-th abstract modified polylogarithm
L (Alb): Z[Ph,., (F)] - coLie(A0) ")
attached to Alb to be the linearization of the composite
#m © Alb,,: Py, (F) - coLie(M)(™.
Abstract modified polylogarithms satisfy the following differential formula.

Proposition 2.9 ([22,(2.2)], [1, Proposition 2.3])  For each positive integer m, we have
the following differential formula:

di-Zn(Alb) = 1 (Alb) A Zy(Alb).
The above proposition leads us to define Bloch groups attached to Alb.

Definition 2.10 ([22, Definition 2.6]) Let m be a positive integer.
(i) We define R,,(F, Alb) the space of functional equations of .Z,, (Alb) by

R (F, Alb) := Ker (-, (Alb): Z[ P, (F)] —> coLie(M)?™).
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(ii) We put

0 ifm=1,
Tpwi={(A*F*)®zQ ifm=2,
((Z[Pélw(F)]/Rm,l(F,Lb)) ®z FX) ®zQ ifm>2,

and define the group homomorphism §8,,: Z[P},.. (F)] = T;, by

0 ifm=1,
Om({z})=4(0-2)rz ifm=2,
{z}m1®z ifm>2,

where {z},,_; is the image of {z} in Z[P},.. (F)]/Rm-1(F, Alb). Then we define the
subgroup A, (F, Alb) of Z[Pj, .. (F)] to be the kernel of §,,.

Proposition 2.11 ([22, Lemma 2.7, Proposition 2.9])  The space of functional equa-
tions R, (F, Alb) of £, (Alb) is a subgroup of A, (F, Alb). We put

Bm(FaLm) = Am(FaLm)/Rm(F’Lb)’

and call this abelian group the m-th Bloch group attached to Alb. Then Z,,(Alb) in-
duces a well-defined injective group homomorphism

Z(AID): By, (F, Alb) = Exth (k(0), k(m)).

Proof For the reader’s convenience, we briefly recall the proof of the second asser-
tion of the proposition. The proof is executed by induction on m. If m = 1, there is

nothing to prove, because coLie(M)?) = Ext}(k(0), k(1)) ® std"". Thus, we show
the case where m > 1. By Proposition 2.9 and Lemma 2.1, we have the following com-
mutative diagram with exact rows:

B (F, Al Z[P}__ (F)]/Ryn (F, Alb) T,
ZLm (ALb) f—%ml(Alb)/\ZO(A]b)
Ext)  (k(0), k(m)) ® std™"C— coLie(M)?m) — 204 A2 coLie(M).
Hence, the dotted arrow in the diagram exists, and we have the conclusion. ]

Remark 2.12 Let £ bean element of Z[ P}, (F)]. Then, by the diagram in the proof
of Proposition 2.11, £ is contained in A, (F, Alb) if and only if dy.%,, (Alb) (&) = 0.

3 Hodge Modified Polylogarithms

In the following three sections, we give examples of abstract modified polylogarithms.

The first example is the Hodge modified polylogarithm L We apply our general
theory to the category J{q of mixed Hodge-Tate structures over Q and compare the

projections of % to the fundamental coLie algebra of the mixed Hodge-Tate struc-
ture over R with the single-valued polylogarithm .ZS!.

https://doi.org/10.4153/50008414X20000073 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000073

550 K. Sakugawa
3.1 Preliminaries on Mixed Hodge-Tate Structures

Let R be a subring of C. Recall that an R-mixed Hodge structure H is called a mixed
Hodge-Tate structure if any non-zero Hodge number is of the form h?9 for some
integer g. We denote by Hy the category of mixed Hodge-Tate structures over R.
For simplicity of notation, we use the same letter H for the underlying R-module of a
mixed Hodge-Tate structure H. We recall some basic facts about Hy for later use.

According to [1, Section 2.5], giving an object H in H(g is equivalent to giving a
finite dimensional graded R-vector space Vo = ®;czV; equipped with R-linear ho-
mogeneous endomorphisms N, (V,): Vo — V, of degree n for all positive integers .
Since V, is finite dimensional, N, (V, ) is a zero map for sufficiently large n. The mixed
Hodge-Tate structure H corresponding to V, is defined as follows.

« The underlying R-vector space of H is defined by
H:=12nV/-1)V, = @V, ®r R(n)

nez
and the weight filtration on H is defined by W_,, H := @5, V; ®g R(j).
« The Hodge filtration on H ®g C = V, ®x C is defined by
Fi(V.@r C) =g Vjor C),
j<—i

where g is a unipotent C-linear automorphism on V, ®g C satisfying the equality
1 _ ad -1
(3.1 3 log(gg™) = Y N.(Va)2nv-1)"® V-1 egl(r(2nV-1)V,) @g C.
n=1

Here we take the complex conjugate g of g with respect to the R-structure
7(2717/-1) Vs of V, ®g C.

This implies that the fundamental Lie algebra of H{g is isomorphic to the nilpotent
completion of the free Lie algebra over R with the set of generators {N, € Lie
(Hg)("?"} ,51. Now, we fix such a set of topological generators { N, } ,»; of Lie(Hg).

Example 3.1 Let m be a positive integer and let b € R. We consider the graded
vector space V, = Rey @ Re,, equipped with the nilpotent endomorphism

N, (Ve):Reg @ Re,;, —> Reg @ Reyy5ae9 — abey,, e — 0

of degree m. Then the mixed Hodge-Tate structure H corresponding to V, is an ex-
tension of R(0) by R(m) whose isomorphism class is represented by

b(2m)"V1" eR(m -1) = Exth. (R(0),R(m)).

This implies that the image fb(zm) € coLie(Hg)®™ of 19(27'r)”’\/—_1’”71 under the

canonical injection
R(m -1) = Exth (R(0),R(m)) = coLie(Hg) @™ 4= s coLie(Hg)

is characterized by dy, (fb(zm)) =0, fb(zm)(Nm) = b, and by fb(zm)(Nn) = 0 for all
n#+m.
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3.2 Definition of Hodge Modified Polylogarithms
We fix a positive integer m in this subsection.

Definition 3.2 We define the m-th Hodge polylogarithmic quotient 2}, which is an
algebraic group in Hq, by 2! := P = exp(Q(1) x @7,Q(n)).

Let 7, (P}, (C), 01)q be the unipotent completion of the topological funda-
mental group of P}, (C) = C\{0, 1} with the base point 01 over Q. Then, by the the-
ory of iterated integrals due to Chen, 7, (P}, (C), Hi)Q has a natural structure of a

group scheme in Hq. It is well known that Z is a quotient of 7,°? (P}, (C), 0l)q
as an affine group scheme in J(q (cf. [4, Proposition 16.13]). Let

i 1" (Pl (C), O1)q = 27,
be the canonical surjective homomorphism of group schemes in JHq. For each

z € P}, (C), we denote by 221 (01, z) the pushforward by u!l of the path torsor
7P (Pl (C); 01, 2)q under 7, (P}, (C), 01)q.
Definition 3.3  The m-th Hodge-unipotent Albanese map AlbL\:P}, (C) - H'
(Hq, 2Y) is defined by

Alble(z) = [%ﬁ‘(ﬁi, z)] forall ze P, (C).
We denote by Alb™@ the series of Hodge unipotent Albanese maps {Alb}2}%_ = We
define AIb'® to be the composite of Alb'? with the natural map

H'(Hq, Z,,) — H'(Hr, Z,, x Spec(R))

induced by the canonical functor Hq — JHg.

It is well known that @F(ﬁ,z) is a direct sum of the Hodge realizations of
Kummer torsors K(z) and K(1 — z) (¢f. [4, Proposition 14.2, Proposition 16.26]).
Since the Hodge realization of K(z) is represented by log(z) € C/Q(1) = Ext13{Q

(Q(0),Q(1)), the series Alb™ of Hodge unipotent Albanese maps the condition of
Definition 2.8(i). Note that, however, { AIb}:*}°_ is not a series of abstract unipo-
tent Albanese maps. Indeed, these maps do not satisfy the condition (Hom) because
the map

log||:C*/Ci, = R;  z~logz]

tor

is not injective.
Definition 3.4 We define the m-th Hodge modified polylogarithm
#He:7[Pl,(C)] > colie(%q) ™)
to be %, (AIb") and define Z1® to be the composite of homomorphisms
Z[P),..(C)] » coLie(Hq)®™ - coLie(Hg)™,

where the last homomorphism is induced by the canonical functor Hq - Hg.
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By construction, £ is a linearlization of Alb'*. We define R™ (C), A (C), and
B, (C) by

R},(C) = R (C, Alb™), AY(C) := A,,(C,Alb"), B,(C) := B,y(C, Alb™).
Similarly, for each number field K, we define R} (K) and A'l (K) to be the inverse
images of ®,.x-.cR (C) and @,.x.,c A (C) under the inclusion
®
Z[P(l)loo(K)] —J) @CZ[P%)IOQ(C)]’
0:K—
respectively. Then we define Bl (K) := AM(K)/RY(K). By Proposition 2.1, the
Hodge modified polylogarithm Zn induces a well-defined injective group homo-
morphism
L By (C) = Extl, (Q(0),Q(m)) = C/Q(m)

and £ induces a group homomorphism
Zy*: By (C) — Exthe, (R(0),R(m)) = C/R(m) < R(m -1).

Note that Z!I* coincides with the composite of homomorphisms
2,0 ~
B (C) == C/Q(m) — C/R(m) «— R(m -1).
3.3 Classifying Spaces of Torsors in Hg

To calculate .Z!®, we study explicit descriptions of classifying spaces of torsors in
JHg. We fix an algebraic group G = Sp(A) in Hy satisfying the condition (Pos) (cf.
Definition 2.2). By definition, A is a finitely generated Hopf algebra object in Ind(Hg)
satisfying the condition WpA = R. In particular, all the Hodge weights of A are non-
negative and F'(A ®g C) is a Hopf ideal of A ®g C. Let R be Q or R. For an affine
scheme Y = Sp(A’) with A" € Ind(Hy ), we sometimes identify Y with the underlying
R-scheme Spec(A”;) where A’ is the underlying R-algebra of A”.

Lemma 3.5 Let g be a C-valued point of the underlying R-group scheme G. Let
g' be the C-algebra homomorphism of A ®g C induced by the left multiplication of g
on G. Then g' on A ®g C preserves the filtration W, A ®g C. Moreover, the induced
isomorphism on gr A ®g C is the identity map for each n.

Proof This proposition is a direct consequence of Corollary A.2 and Lemma A.5. m

Let X = Sp(B) be a right G-torsor in Hg. We say that x € X(C) is a Hodge trivial-
ization of X if the morphism of schemes

Ge — Xg;g+—> xg
preserves Hodge filtrations on the rings of regular functions of both-hand sides. By
the exactly same argument as in [24, Lemma 3.3], all Hodge weights of B = O(X)
are also non-negative. Hence, all F'(B ®g C) are ideals of B ®g C. Put F(X¢) :=
Spec(B ®r C/F'(B ®g C)) and put F°(G¢) := Spec(A ®g C/F'(A ®g C)). Remark
that F°(X¢)(C) coincides with the set of Hodge trivializations of X. Furthermore,
F°(Xc) has a natural structure of a right F°(Gc¢)-torsor in the usual sense.
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Lemma 3.6 Let X be a right G-torsor in Hyg. Then there exists a unique Hodge
trivialization of X.

Proof Since F°(Gc) is the trivial group scheme by the condition (Pos), we
have F°(Xc) 2 Spec(C). Therefore, the set of Hodge trivializations F°(Xc)(C) is
singleton. [ ]

Proposition 3.7  There exists a natural isomorphism of pointed sets
¥:G(C)/G(R) — H'(Hg, G).

Proof Let us take g € G(C). Then we define the right G-torsor G, as follows.
+ The underlying affine R-scheme of G, is defined to be G equipped with the right
action of G defined by right translations.
+ The weight filtration on O(G, ) is the same as that of O(G).
« The Hodge filtration on O(G,) ®x C is defined by

F'(0(G,) ®r C) = g'(F'(0(G) ®r C)).

According to Lemma 3.5, g* is the identity map on each graded piece gr)’ O(G) ®x C.
Hence, O(G,) is an algebra object in Ind(JHr ), and Gy is actually a right G-torsor in
Hg. We put ¥(g) := [G,]. One can check that G, = G if and only if gG(R) =
g'G(R). Hence, ¥ induces an injective map G(C)/G(R) - H'(Hg, G).

We show the surjectivity of ¥. Let X be a G-torsor in H{r. According to Lemma 3.6,
there exists a unique Hodge trivialization py € X(C) of X. We take p,, € X(R)
an R-valued point of X. Then p,, trivializes the weight filtration of X; that is, the
G-equivariant morphism

fprG — X,g — pwg
preserves their weight filtrations on the rings of regular functions of both-hand sides
by Corollary A.3. Let g be an element of G(C) satisfying p,, = pyg. Then f,  defines
an isomorphism of G-torsors between G, and X. Hence, we have ¥(gG(R)) = [X],
and this completes the proof of the surjectivity of V. [ ]
We denote by
¢*:G(C) = G(C)

the group automorphism induced by the complex conjugate ¢ on C. Then the natural
map

G(C)/G(R) — G(C) ~gG(R) — gc*(g7)

is bijective. By composing the logarithmic map from G(C) to the Lie algebra of G,
we obtain the canonical isomorphism of pointed sets

(3.2) ¥ H'(Hr, G) — (Lie(G) ®r C)¢ =" = Lie(G) ®g RV/-1.

Remark that ¢* acts on Lie(G) ®g C by id ®c.
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Now, we assume that G satisfies (Triv). By composing ®! in Proposition 2.4 and
¥’ in (3.2), we obtain an isomorphism
Yo Homgf”i‘}e(Lie(ﬂ-CR), w(Lie(G))) — Lie(G) ®g RvV-1
of pointed sets.
Proposition 3.8  Let G be an algebraic group in Hg satisfying (Pos) and (Triv). Then
the composite of canonical isomorphisms
¥’ o ®~':Homg"® (Lie(Hr), w(Lie(G))) — H'(Hg, Lie(G))
— Lie(G) ®g RV-1
sends f € HomRGf"i‘;e(Lie(fJ—CR), w(Lie(G))) to

2Y f(N,)(2m/=1)" ® V1 ' ¢ Lie(G) @ RV~L.

Proof According to Lemma A.7, the Lie homomorphism
ty:Lie(G) ®g C — Endc(WonA @r C); 1 — log (exp(l)u|W2N(A®RC))

is injective for sufficiently large N. Let us denote by ¢ the composite of ¥/ o @' and
tn. Then, to prove this proposition, it is sufficient to show the equality

(33)  n(f) =22 log (exp(fF(Nu)) lu(wany ) 27/ 1)" © VT |

in Endc(WanA ®g C) for sufficiently large N.
Let f be an element of Homg_"’f}e (Lie(ﬂ-CR), w(Lie(G))) and let
apm(Hr, w) — GL(w(A)); 0 — exp(f) (o)’
be the action of 71; (Hg, w) on w(A) defined by f. Here, exp(f): m(Hg, w) - w(G)
is the group homomorphism corresponding to f. According to Lemma 3.5, ay
preserves w(W,yA). We denote by WoyA( the mixed Hodge-Tate structure on

7(2nv/~-1)w(WanyA) = WonA defined by the action af (see (3.1)). Then, by defi-
nition, Ay := li_n}N Win A has a natural ring structure and Sp(Ay) is a G-torsor in

Hg representing ®~'(f) € H'(Hg, G). Let h be an element of Autc(W,yyA ®g C)
such that Fi(WZNAf ®g C) = h(F'(WyyA ®g C)). Then, by (3.1), we have

(3.4) %log(hﬁ_l) = > log (exp(f(Nu))H|u(wanay ) 21V-1)" ® VA

We remark that the left-hand side of equation (3.4) coincides with $¢x(f). Indeed,
we can take h as gf|w,, ae,c Where g € G(C) is a representative of ¥~' o ®7I(f) €
G(C)/G(R). Therefore, the equality (3.3) holds for all positive integers N, and this
completes the proof of the proposition. [ ]

3.4 Calculation of .Z/*

Now we consider the case G = ZH® := PH « Spec(R). Define the Lie algebra p'l
over Q to be the Lie algebra of 22}
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Corollary 3.9  We define the evaluation map ev,,: coLie(Hg)?™ — R(m —1) by
fr f(Nm)(Zn)m\/—_lm_l. Then the following assertions hold.
(i) The evaluation map ev,, is the left inverse of the canonical inclusion
R(m -1) = Exty, (R(0),R(m)) = coLie(Hg) ™.
(ii) The diagram

H (Hg, PH0) —— g0 R

| -

2evy

coLie(Hg)®™ ——" L R(m-1)

commutes, where pr,, is the projection to the last component

p! ®q RV-1=R(0) x ﬁR(n—l) - R(m -1).

Proof Let b be a real number. Recall that the element fb(zm) € coLie(Hg)®™ de-
notes the image of 19(271)”’\/—_1"1_1 under R(m — 1) = coLie(Hg)?™. Then, by the
calculation in Example 3.1, we have equalities
v (F™) = FE(N,) )"V = by
Thus assertion (i) of the corollary holds.
Assertion (ii) is easily checked by the definition of ev,, and Proposition 3.8. =

Let us recall the classical modified polylogarithm ZS": PL,__(C) — R(m~1), which
is a real analytic function defined by
V-1Im( ! B—’,‘ log" (zz Li,_x(z if m is even,
65 290 (2124 3 tog' (22) Lin-+(2)
Re(Z,Z”;O 7 log"(2z) Lipk (z)) if m is odd
(cf. [1,1.5], [29, p. 413 (33)]). Here, B, is the m-th Bernoulli number defined by
= B

> =

—t
o m! el -1

Proposition 3.10  Let m be a positive integer. Then, for each Y ; a;{z;} € A™(C), the
equality

Z ai Ly (zi) = - Zai.i”md(z,-)

holds. In other words, £f*: BH(C) — R(m - 1) coincides with the classical modified
polylogarithm multiplied by —1.

For the proof of Proposition 3.10, we recall the calculation of Beilinson and Deligne
in [1] computing the composite of ¥': H'(Hg, Z!*) — pi 4 R\/~1and the m-th
Hodge unipotent Albanese map.
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Lemma 3.11 ([1, Section 1.5])  For any z € P}, (C), the equality
(3.6) pr,, o ¥’ o Albli (2) = -2.25(z)
holds in R(m —1).

Proof Letzbean elementof Py, (C). Accordingto [8, (2.20)], the image of z under
Piioe(C) = H'(Hr, Z,,%) 2 (Z3(C))" T« 2,%(C) = C(1) HC(n)
is calculated as

(log(2z); - Li; (2), ..., —Li,(z)).

Here, Li,: P'(C) — C is a single-valued and real analytic polylogarithm (see [8, The-
orem 2.27]). By the Baker-Campbell-Hausdorft formula, we have the equality

(3.7) ¥ o AlbY (2) = (log(zE); -Lij (2),.. Z log (zz) Li,_ k(z)).
Then the last component of the right-hand side of (3.7) coincides with the right-hand
side of the equation (3.6) by [8, (2.21)]. [

Proof of Proposition 3.10 Let z be an element of P}, (C). Then, by Lemma 3.11
and Corollary 3.9(ii), we have the equalities:

2ev, 0. LM (2) = 2pr, o ¥’ 0 Albl (2) = ~2.Z5(2).

Now we take an element £ = ¥, a;{z;} of A (C). According to Corollary 3.9(i),
LHr (&) coincides with ev,, (ZH® () in R(m —1) ¢ coLie(Hg) ™). Thus, we have

L (8) = v (L(9) = 2 ai v (L (1) = = Y aily (z).
This completes the proof of Proposition 3.10. [ ]

4 ¢-adic Etale Modified Polylogarithms
In this section, we fix a rational prime € and a field F of characteristic p > 0 satisfying
the following conditions:

(cyc)e The characteristic p of F does not divide £ and the £-adic cyclotomic character
on ¢ has an infinite image in Z;.

(nd), There exists no non-torsion £-divisible element in F*.

Example 4.1 If F is finitely generated over the prime field k,, of characteristic p 1 ¢,
then F satisfies (cyc), and (nd),.

WEe fix a coherent system {peo := ({pn ) 451 Of £-power roots of unity in Fand regard
(pe as a Zp-basis of Z,(1) = lim u,. (F) where p,. = Spec(Z[t]/(t* -1)). B
condition (cyc)e, two ¥r-modules Qg (m) and Q,(m’) are not isomorphic for any
two distinct integers m and m’.
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Remark 4.2  Condition (cyc), is not equivalent to the condition U,s1p,. (F) ¢ F.
For example, the maximal totally real subfield Q(p,~)* of Q(y¢~) does not con-
tain pe = Upsift,. (Q), although the order of the ¢-adic cyclotomic character on
gQ(Mew)* is two.

We denote by Repg, () the category of continuous representations of ¥ on
finite dimensional Qg-vector spaces. An €-adic mixed Tate 4r-module is an object
V in Repq, (%F) equipped with an increasing, saturated, and separated filtration
{W1,V} ez indexed by even integers such that gr)’ V is a direct sum of Q,(-n) as
a 9p-module (cf [11, Section 6, Section 7]). We denote by MT,(F) the category of
¢-adic mixed Tate ¥F-modules. Then MT,(F) is a mixed Tate category over Q. The
second example of an abstract modified polylogarithm is the ¢-adic étale modified
polylogarithm. We apply our abstract formalism to MT,(F).

4.1 Classifying Spaces of Torsors in MT,(F)

In this subsection, we make remarks on classifying spaces of torsors in MT,(F).

Lemma 4.3  Let (Vi, W, V1) and (Vy, W, V,) be objects in MT,(F). Let f: Vi = V;
be an isomorphism of Qe[¥r |-modules. Then [ preserves the weight filtration of both-
hand sides. In other words, f defines a morphism in MT,(F).

Proof This is easily checked by the definition of the weight filtration and by an in-
ductive argument on the length of the weight filtration. [ ]

Let us fix an algebraic group G = Spec(R) in MT,(F) satisfying (Pos). Then, ac-
cording to Corollary A.6, the underlying algebraic group G is automatically unipotent.
Recall that G(Q,) has a natural topology on which & acts continuously (cf. [24, Sec-
tion 3.2]). Note that this natural topology coincides with the relative topology induced
by any closed immersion G < GL,, q,, where the topology on GL,(Q¢) — ng is in-
duced by the product topology of Q.

Lemma 4.4  There exists a natural isomorphism of pointed sets
H'(F,G(Qp)) 2 H' (MT,(F),G).
Here, the left-hand side is the first continuous Galois cohomology with coefficients in

G(Qe).

Proof First, we note that the underlying scheme of each G-torsor is isomorphic to
the affine space over Qg, because the underlying group scheme of G is unipotent.
Especially, the set of Q,-rational points of any G-torsor is non-empty.

For each continuous 1-cocycle ¢: % — G(Qg), we define the new action a. of %
on R =0(G) by

(4.1) ac(0)(f) =c(a)!(°f) forall f e R,

and define R, to be the ring R equipped with the new action of ¢ defined by a.. Let
us denote by H l(Reer(%p), G) the set of isomorphism classes of torsors under G

https://doi.org/10.4153/50008414X20000073 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X20000073

558 K. Sakugawa

inRepg, (4r) andlet G, be Spec(R.) equipped with the natural right G-action. Then,
since X(Qe) is non-empty for any G-torsor X in Repg, (%), we have a natural iso-
morphism

HI(F’ G(Qr)) — Hl(Reer(gp),G); [C] — [GC]

(cf. [24, Proposition 3.15]). Therefore, to prove the lemma, it is sufficient to show that
the natural map

(4.2) H'(MT¢(F),G) — H'(Repq, (%), G)

induced by the forgetful functor

MT¢(F) —> Repq, (9 )i (V, W V) — V

is bijective. The injectivity of (4.2) follows from Lemma 4.3 directly. Hence, to show
this lemma, it is sufficient to show the surjectivity of the map (4.2).

We put W5, R, := W5, R. Then, according to Lemma A.5 and (4.1), the action of
@ on R, preserves the filtration { W, R, } ,cz and coincides with the original action
of ¥ on each graded piece gr2wn R, of R.. Therefore, the pair (R., W, R,) is an object
in Ind(M7,(F)) and this implies that (4.2) is surjective. ]

Lemma 4.4 can be rewritten as follows. Let wo: MT,(F) — Vecq, be the forgetful
functor. We fix an isomorphism of fiber functors of MT,(F)

Ilwy — w

such that

wo(Qe(1)) = Qe(1) — @(Qe(1)) «— Qs (o= — 1.
We also denote by I' the isomorphism
m(MTe(F), wg) — m(MT(F),w);0 — Togol™

for simplicity. Since 7, (MT,(F), wy) is canonically isomorphic to the weighted com-
pletion of ¢4 with respect to the £-adic cyclotomic character y,:%r - Z; ¢ G, (Q¢)
in the sense of [12, Section 4], there exists a canonical continuous homomorphism

po: 9 — m(MT(F), wo)(Qe).
Therefore, by composing the isomorphism I', we obtain a continuous homomorphism
PGy — m(MTe(F), w)(Qe)-

The functor T also induces an isomorphism a: G — w(G) of algebraic groups over
Qq. Then, for each continuous 1-cocycle

Y > G(Qe),

there exists a unique rational 1-cocycle

Cm(MTe(F), w) — w(G),
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which makes the following diagram commute:

% P m(MTe(F), 0)(Qe)

G(Qy) u w(G)(Qo).

As an elementary consequence of the lemma, we have the following corollary.

Corollary 4.5 (cf. [11, Corollary 9.3])  For each positive integer m, there exists a nat-
ural isomorphism

Ext (7, (r)(Qe(0), Qe(m)) — H'(F,Qe(m)).

Proof LetA(Qg(m)) :=Sp(Sym*Q.(—m)) be the vector group scheme in MT,(F)
defined by Q¢(m). Then, by a standard argument, EXtﬁvt‘I[(F) (Qe(0),Qe(m)) is
canonically isomorphic to H'(MT,(F), A(Q,(m))). Since m is positive, the group
scheme A(Q(m)) satisfies (Pos). Hence, we have the conclusion of the corollary by
Lemma 4.4. u

In later sections, we always identify EXt%\/[‘J'e(F) (Qe(0), Qe (m)) with H'(F, Qe(m))
for each positive integer m.

4.2 Definition of ¢-adic Etale Modified Polylogarithms
In this and the next subsections, we fix a positive integer m.

Definition 4.6 We define the ¢-adic étale polylogarithmic quotient 225, which is
an algebraic group in MT,(F), to be PN - exp(Qe(1) x T[T, Qe(n)).

We recall another description of £-adic étale polylogarithmic quotient (cf. [21, Sec-
tion 2.1]). Let 7rf (P}noo e Ei) be the maximal pro-£ quotient of the étale fundamental

group of Pinoo + with the base point 01. This pro-¢ group has a standard set of free

generators {x,) vy} (cf. [27, Section 8, Picture 4], [10, Exposé XIII, Corollaire 2.12]).
Then the group homomorphism

—
p: nf(Pém,f’ 01) — Z,(1);x —> (oo, y —>1

is Yr-equivariant where (p- is the basis of Z, (1) fixed in the beginning of this section.
We put

wrl iz f (B, O)/[Ker(p), Ker(p)]
and

ﬂpol(m) - ﬂpol/ﬂpol,(m)

where {7P°"(")}°° s the central descending series of 7°°'. Then 2% ¢t is canonically
isomorphic to the unipotent completion 777°!(m)q, of 7P°!(m) over Qp.
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By the above remark, the algebraic groups 25 =~ 7P°l(m)q, are quotients of

the unipotent completion 7t (anoof, Ei)Q , of the étale fundamental group of anmj
—
with the base point 01 over Q, because of the functoriality of the unipotent comple-
tion. Let
e-ét, ét pl ai gpl-ét
Uy T ( 0loo,F’ )Qe e m
be the canonical surjective homomorphism of affine group schemes in MJ,(F).
o\, —>

Fc?r each z £ P},..(F), we denote by 2£¢(01,z) the pushforward of the torsor
' (P 7 01,2)q, by ubét

Definition 4.7 We define the series of £-adic étale unipotent Albanese maps ng'ét =
{AIbES,} by
AlbES (z) = PEA(01,2) forall z € P, (F).
By the condition (nd), (see the beginning of Section 4 for the definition of (nd),),

Ailbf;ét is a series of abstract unipotent Albanese maps (cf. [22, (3.1)]). Thus, we can
define the ¢-adic étale modified polylogarithms as follows.

Definition 4.8 We define the m-th £-adic étale modified polylogarithm
Ly 2Py (F)] — coLie(MT,(F))
to be %, (Lb;et)
We define RE€(F), A%¢(F), and BE(F) by
RGE(F) i= Ry (F, Abp),  ALE(F) i= Ay (F, Al ),
By (F) i= By (F, Albp ).

In [22], we used the notation “f-adic” instead of “£-ét”. By Proposition 2.11, £
induces a well-defined and injective group homomorphism

grfl-ét:Bfr;ét(F) < H'(F,Q¢(m)) = Ext_},vm(p)(Qe,Qe(m))-

Remark 4.9 By construction, the m-th £-adic étale unipotent Albanese map Albf{,é;;

is functorial in F. Hence, fnﬁ'ét is also functorial in F.
4.3 Comparison with ¢-adic Polylogarithms

In this subsection, we compare .2 ¢t with the Wojtkowiak £-adic polylogarithms. For
the reader’s convenience, we give a quick review of the £-adic polylogarithm ¢i,, (z, y)

attached to a Q,-path y from 01 to z in P(lnoo 7 Recall that a Qg-path in P:)loo 7 is

— —
defined as an element of nl(anmf; 01,2)q,(Qe). Let i: ﬂf(Ptlw)?, 01) > Qe(X,Y)
be the multiplicative embedding to non-commutative formal power series defined by

1(x) = exp(X), «(y) = exp(Y).
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Letf,:%r — 711(P1noo o al))Qe(Qg) be the 1-cocycle defined by f, (') := y™'o7y. Then
the m-th €-adic polylogarithm €i,, (z, y) is defined by
Cin(z,y)(0) = (-1)""" x the coefficient of log(:(f,(0))) atad(X)™'(Y)

(cf. [28, Definition 11.0.1]).

Lemma 4.10 Let c,: % - 25%(Qy) be the composite of §, and the canonical ho-
momorphism pr,,: nl(lew 7 ai)Qe(Qg) - 1P (m)q,(Qe) & 2L(Qy). Then the
image of the cohomology class [c,] € H'(F, 2},(Q,)) under the natural isomorphism

H'(F, 2,%(Qe)) = H'(MT(F), 2, %)
(ct. Lemma 4.4) coincides with Albf,f}(z).

Proof The cohomology class of ¢, in H'(F, 225, (Q,)) represents the torsor under
PEE(Qy) in Rep, (¥F) defined as the pushforward of nl(P:noo = 0l 2)q,(Q¢) by

pr,,. Therefore, the conclusion follows from the definition of the ¢-adic étale unipo-
tent Albanese map. [ ]

Recall that the weight filtration W_,,%r on % is the filtration induced by the
weight filtration on U(MT,(F)) (cf [12, Section 74]). According to [12, Proposi-
tion 71, Lemma 7.5], we have canonical isomorphisms

gr’ e ®z7, Qe — (g1, UMT(F)))(Qe) = Lie(MT,(F))>™

of Q,-vector spaces.

—
oy . 1 .
Proposition 4.11  Let y be a Qg-path from 01 to z in P o F The composite of homo-
morphisms

xe-é(
W—ZM%F e gl’XVZm gp > LlC(MT@(F))(izm) m—(Z)> Qe

coincides with the restriction of (=1)""€i,,(z,y) to W_p,%r. In particular, that re-

striction does not depend on the choice of y.

Proof Letc,:%r - Z,,(Qc) be the continuous 1-cocycle defined by y (cf. Lemma
4.10). Then there exists a unique rational 1-cocycle ¢): 1 (MT,(F), w) - w(25%)
which make the following diagram commute:

Gr : m(MTe(F), 0)(Qe)

Z5(Qe) . w(Z54(Qe),

where a: 254 5 (2254 is an isomorphism of algebraic groups over Q; induced
by the fixed Q,-basis { of Q,(1). Then, by Lemma 4.10 and equation (2.2), we have

g0 (6) = £, (2)
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under the natural isomorphism
(g, UMTe(F)))(Qe) = Lie(MT((F)) 2.

Therefore, we have the following commutative diagram:

Woam@r ————— Wop UMT(F))(Qe) —— Lie(MT((F))(-2m)
Jcr l’c} lgyﬁét
Q(m) T (Qe(m)) —— Q.

On the other hand, by the definition of the £-adic polylogarithms, we have the equality
cy(0) = (-1)" " im (2, y) (0) ("

for all 0 € W_,,,%F. Hence, we have the conclusion of the proposition. [ |

Lemma 4.12  The restriction map

HI(F, Ze(m)) —> HI(W,zmgp,Ze(m))
is injective for any positive integer m.
Proof By the Hochschild-Serre spectral sequence, it is sufficient to show the van-
ishing of the continuous group cohomology H'(%r/W_2,%r, Z¢(m)). By using the
Hochschild-Serre spectral sequence again, we have an exact sequence
(4.3) 0 —> H'(Gal(F(pe=)/F)Ze(m)) —> H'(Gp|W_2m%r, Zo(m))

— Hom&u p( ooy ) (Wea b/ Weam, Ze(m)).

Since m is non-zero, the first term of (4.3) vanishes. On the other hand, % acts on
the graded quotient gr", @ via the n-th power of the ¢-adic cyclotomic character
by the definition of the weight filtration of ¥z. Hence, there exists no non-trivial

“r-equivariant homomorphism from W_, %5/ W_,,,%F to Z,(m). Thus, the last term
of (4.3) also vanishes, and we have the conclusion of the lemma. ]

Proposition 4.13 (cf. [7, Theorem 2.3]) A cohomology class x € H'(F,Q,(m)) is
represented by a linear sum

Za,-fim(z,»,y,-):gp — Q¢(m)

—

with a; € Q, z; € F, and y;: 01 ~ z; if and only if x is contained in the image of
BSEY(F) ®7 Q under L5, Moreover, for each &= Y, a;{z;} € A5 (F), we have

> ailin(zi,yi) = (- LlEE) in H'(F,Q¢(m)).
i
Proof We first show the “if” part. Suppose that £ € A%¢(F). The existence of good
paths y; follows by repeating exactly the same argument of the proof of [7, Theo-

rem 2.3] by replacing the conjectural vector space £y in that paper by (Z[P},.. (F)]/
REEY(F)) ®7 Q. Indeed, the latter vector space satisfies all the conditions that Ly is
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expected to satisfy except the realization homomorphism Bf “(F) — Ky (F) ®2Q,
and it was not needed for the proof.

Next, we show the “only if” part. Let c:%r — Q¢(m) be a 1-cocycle of the form
Yiailin(zi,yi). Weput & := ¥, a;{z;}. Then, according to Proposition 4.11, the
restriction of ¢ to W_,,,% coincides with the composite of (—1)""'.Z%¢ (&) and
W_am%r — Lie(MT(F)) (™). Since the restriction ¢ to ¥ (u,) factors through the
abelianization of Fr(ye), L5 (§) also factors through the abelianization
homomorphism

Lie(MT,(F))2™ c Lie(MT(F)) - Lie(MT(F))®.

This implies that d.25¢ (&) = 0 and that £ € A%*(F) ®7 Q (cf Remark 2.12). Since
the restriction of the cohomology class (-1)" .25 (£) € H'(F, Q. (m)) to W5, %
coincides with the restriction of the class of ¢, (~1)" 125 (&) agree with [c] in
H'(F,Q(m))) by Lemma 4.12. [

4.4 Comparison with Generalized Soulé Character

In this subsection, we compare modified £-adic étale polylogarithms with generalized
Soulé characters. Here, we suppose that F is a subfield of C. Let y be an ¢-adic path

from 01 to z € P{; o, (F). Recall that the generalized Soulé character
X' 98 — Ze(m)
is defined by the equations

't da n gm-1
U(HISasf" (1- (enxe @ez/e )T ) ® (&mD
N en
(HISaSE" (1- Ceu"zl/e ) e )
in Z/€"Z(m) for all n, where z'/¢" is the £"-th root of z defined by y. If we restrict o to
%F( oo 207> then equation (4.4) coincides with equation (1.2). Similarly, we define
the continuous map «,,:%r — Z,(1) by the equations

(4.4) ¥m!(d) mod ¢" =

Kkzy(0) mod £" = o)V

in Z/¢"Z(1) for all n. We call k., the Kummer cahracter attached to y. The key
formula of our comparison is Nakamura-Wojtkowiak’s formula of £-adic polyloga-
rithms.

Theorem 4.14 ([20, §3 Corollary]) Let k. ,:9r — Z;(1) be the Kummer character
attached to y. Then we have the following equality of functions on 9r valued in Q,(m):

~Z,y

Cin(z,y) = (—l)ml(mz_;) ljf(‘”y>z)jm)fynl:1)!)'

In particulat, on Gy (y,e. /0=, we have

(-t

(m-1)!

lin(z,y) = %x
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Corollary 4.15 Let & = ¥,a;{z;} be an element of A5°'(F) and let L :=
F({pto=, Z;/z }:). Then the group homomorphism

T = Zai%{?% —> Z¢(m)

extends to a 1-cocycle on r. Moreover, the cohomology class of this extension is unique
and coincides with (m —1).25¢(&).

Proof The first assertion is a direct consequence of Theorem 4.14 and Proposi-
tion 4.13. To show the uniqueness of the cohomology class, it is sufficient to show the
restriction map

H' (9, Ze(m)) — H' (91, Zo(m)) = Homeont (91, Ze(m))
is injective. This injectivity is a direct consequence of Lemma 4.12, because ¢}, con-

tains W,%r. ]

5 Motivic Modified Polylogarithms

The final example of an abstract modified polylogarithm is the motivic modified poly-
logarithm. Now, we fix a number field K for the rest of this paper. We denote K, (K)®z
Qby K, (K)q, where K, (K) is the higher K-group of K. Let MT(K) be the category
of mixed Tate motives over K (cf. [5, §1]). For all integers n and m, there exist canon-

ical isomorphisms
0 n#m,
Q n=m,

0 nzm,
Kz(m—n)—l(K)Q n<m,
Ext k) (Q(n),Q(m)) = 0.

In particular, MT(K) is a mixed Tate category over Q. We always identify the left-
hand sides of (5.1) and (5.2) with the right-hand sides by those canonical isomor-
phisms.

(5.1) Homy7(x) (Q(n), Q(m))

112

(5.2) Exty (k) (Q(1), Q(m))

112

Definition 5.1 Let m be a non-negative integer. Then we define £21°!, which is an
MT(K)

algebraic group in MT(K), to be Z7;, =exp(Q(1) x ®7,Q(n)).
It is known that the motivic polylogarithmic quotient is a quotient of the motivic
fundamental group 7" (P, x> ﬁ) which is an affine group scheme in MT(K)

(cf. [5]). More precisely, the projections ufl and u% ¢ are realizations (see the next
p Y; proj m m
section) of a surjective homomorphism

mot, _mot 1 -~ mot
um 'ﬂl (POIOO,K’ 01) - gzm

of affine schemes in MT(K). Deligne and Goncharov also proved the existence
of the path torsor 7" (Pj,,, K;ai,z) from 01 to z, which is a right torsor under
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T (Phoo k> ai) in MT(K) for any K-rational base point z of P, « (cf- loc. cit.).
We put
gzgot(ai, Z) - umOt(ﬂ{nOt(P(l)loo,K; ai)z))‘

m,*

By definition, @y%&i, z) is a right 227°'-torsor in MT(K). Then we define the
motivic unipotent Albanese map as follows.

Definition 5.2 Let m be a non-negative integer. The series of motivic unipotent
Albanese maps AIbR®" := {AlbgS, } is defined by
AIbR (2) := 2101, 2) for all z € Pgo (K).

The following lemma is a well-known fact.

Lemma 5.3 (cf. [5, Lemma 5.12])  The collection of motivic unipotent Albanese maps
is a series of abstract unipotent Albanese maps. Furthermore, the restriction of the 0-th
motivic unipotent Albanese map

ARG Py (K) = K*\{1} — Ki(K)q =K* 2 Q
is the natural map induced by the identity of K*\{1}.

Definition 5.4 We define the m-th motivic modified polylogarithm
2190 7[Ph,.. (K)] —> coLie(MT(K)) ™)
to be .Z,, (AlbR®").

We define R2°Y(K), A°'(K), and B2°'(K) by
RTY(K) := R, (K, AIbR®), AMY(K) = A, (K, Albg®),
B2 (K) = B,y (K, AIbI™),

respectively. Then the motivic modified polylogarithm induces an injective and well-
defined homomorphism

Lt Bp (K) = Extyg ) (Q(0), Q(m)) = Kam-1(K)q.
6 Proof of Main Theorem

6.1 Mixed Realizations of Motives

In this subsection, we recall mixed realizations of mixed Tate motives (cf. [4,5,13-15]).
A. Huber had constructed the category Dy, which contains the derived category of
systems of realizations over a field k that can be embedded into C (cf. [13, Defini-
tion 11.1.3]). The category Dyyr is equipped with the canonical functors

qe: Dyvir — D(Spec(k)e,Qr) and  qf;: Dvr — D(MHS(Q))

for each rational prime £ and o: k — C. Here, D(Spec(k )¢, Q,) and D(MHS(k)) are
the derived category of smooth Q,-sheaves on Spec(k )¢ and mixed Hodge structures
over Q, respectively. We also define qug to be the composite of quy and the natural
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functor D(MHS(Q)) - D(MHS(R)). In [14,15], she also had constructed a functor
between triangulated categories

Rotw: DMy (k) — Davir

called the mixed realization functor for any field k that can be embedded into C. Let
0:k = Cbe an embedding. We denote by R (resp. R¢) the composite of Ry and

Qg .
Dyix —> D(MHS(R)) (resp. Daex — D(Spec(k)ei» Qe))-

Let ¢ be a rational prime and let 0: K = C be a field embedding. By construction, we
have R, (Q(m)) = Q(m) and R%(Q(m)) = R(m) for each integer m. Therefore, R,
and R{; induce canonical functors

RpMT(K) — MT,(K) and Ri:MT(K) — Hg,
respectively. Then we denote by
te: Exthypg () (Q(0), Q(m)) — Extyg, (k) (Qe, Qe(m))
and
%< Exth e () (Q(0), Q(m)) —> Exthe, (R.R(m))

the canonical homomorphisms induced by R, and R{j, respectively.

Theorem 6.1 ([19, Proposition 5])  Under the canonical identifications

Exthr () (Q(0), Q(m)) = Kam-1(K)q
and
Extﬁvm(,()(Qe,Qe(m)) = H'(K, Qe(m)),

t, coincides with the €-adic higher regulator defined in [25]. In particular, v, is injective
whose image is a Q-lattice of H'(K, Q,(m)).

Theorem 6.2 (cf. [5,1.6]) Under the canonical identifications

Exty 5k (Q(0), Q(m)) = Kam-1(K)q
and
Exty, (R(0),R(m)) = R(m - 1),
tf; coincides with the Beilinson regulator. In particular,

., Gal(C/R)
k= P i Kom-1(K)q —>( ) R(’”—l))

0:K=>Q 0:K—>C

is injective whose image is a Q-lattice of the right-hand side.
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6.2 Proof of Main Theorem
Let z be a K-rational base point of Pf, , . Then the tuple

P (01,2) = (2,3(0, 0(2)), 2,4 (01, 2))

0:K—C, €:prime numbers

is a part of a scheme in the category of systems of realizations (cf. [5, 2.15]). Deligne
and Goncharov proved the following theorem.

Theorem 6.3 ([5, Théoréme 4.4]) Let z be a K-rational base point 0fP51m,K- Then
the system of realizations &, (Ei, z) is motivic. More precisely, the Hodge realization
attached to 0: K — C (resp. ¢-adic étale realization) of QEOt(ai,z) is canonically
isomorphic to the torsor W}j(ﬁ, 0(2)) (resp. 95;“(61’, z)).

We denote by
R{; i coLie(MT(K)) — coLie(Hg)
and by
Ry, .:coLie(MT(K)) —> coLie(MT,(K))

the canonical coLie homomorphisms induced by Rf; and R, respectively. Remark
that the restrictions of R , and Re to Kzn-1(K)q c coLie(MT(K))?™ coincide
with tf; and t,, respectively.

Proposition 6.4 Let K be a number field and let m be a positive integer. Let € be a ra-
tional prime and let o be an embedding K — C. Then the following diagram commutes:

coLie(Hg)™

f:RotT T
R:I *

gmol
“ coLie(MT(K))(m™

\ lRe,*
it

coLie(MT,(K))®m),

Z[Pp;0 (K)]

Proof Thecommutativity of the diagram is a direct consequence of Theorem 6.3 and
constructions of modified polylogarithms. [ ]

Corollary 6.5 Let K be a number field and let € be a rational prime. Then, for each
positive integer m greater than 1, we have equalities

R°(K) = R, (K) = Ri(K).
Proof Let o be one of the symbols H, £-ét, and mot. Since R}, (K) c A%, (K) and
A$,(K) is mapped to the first extension group by %y, it is sufficient to show the in-

jectivity of the restrictions of Ry . and ®,R{] , to K3,,-1(K)q. Theorems 6.1 and 6.2
guarantee those restrictions to be injective. ]
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Proof of the Main Theorem According to Propositions 3.10, and 6.4, and The-

orem 6.2, we have the equality
em(§) = -2 () inKyma(K)®2Q

where c,, () is the generalized Beilinson element defined by de Jeu (cf. the introduc-
tion). Therefore, according to Proposition 6.4 and Theorem 6.1, we have

(6.1) reg,, " (cn(8)) = =2 (§)  in H'(K, Qe(m)).
Finally, by combining Corollary 4.15 and equation (6.1), we have the assertion of Main
Theorem. [ ]

A Group Schemes in IFVecy

In this appendix, we show useful lemmas for describing classifying spaces of torsors
under algebraic groups in a mixed Tate category. Now, we fix a field k and denote by
IFVecy the category of finite dimensional k-vector spaces equipped with increasing,
saturated, and separated filtrations. Denote by (V, W, V') an object of IFVecy, and we
usually denote this object by V for simplicity. Though this category is not an abelian
category, we can consider group schemes in IFVec; as we did. In this appendix, we
fix an algebraic group G = Sp(R) in IFVecy satisfying the condition (Pos) (cf. Defini-
tion 2.2); namely, R is a finitely generated Hopf algebra object in Ind(IFVecy) satisfy-
ing WoR = k.

Lemma A.1 Let Vi, V3, and V3 be objects in Ind(IFVecy ) and let
f: Vi—V, eV,

be a morphism in Ind(IFVecy). For each i = 1,2,3, suppose that W,,V; = 0 for all
negative integers n. Then, for any k-linear homomorphism g: V3 — k, the composite of
k-linear homomorphisms

idy, ®
(idv, ®g) o f: Vi 5> Vs @ V3 —2%% v,
is a morphism in Ind(IFVecy).

Proof To prove the lemma, it is sufficient to show that (idy, ®¢) o f preserves
the filtrations of both-hand sides. Since W, V; vanish for all negative integers n, f
sends W, V; to Yiis0, jei=n WjV2 &k Wi V3. Therefore, (idy, ®g) o f sends W, V; to
2 j,150, j+1=n W V2. Since W, V; isan increasing filtration, wehave 7 159, jy1-n Wi V2 =
W, V,. This completes the proof of the lemma. [ ]

The following corollaries are direct consequences of Lemma A.L

Corollary A.2  Let g be a k-rational point of the underlying algebraic group of G. Let
g": R — R be the k-algebra automorphism induced by the left multiplication by g. Then
the restriction of g' to W;R is an automorphism of W;R for each integer i.

Corollary A.3 Let X = Sp(R") be an affine scheme in IFVecy. equipped with a right
action of G. Suppose that W,R' = 0 for all negative integer n. Then, for each x € X (k),
the k-algebra homomorphism x':R' — R induced by G — X; g + xg is a morphism in
Ind(IFVecy)
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Example A.4 If W;R # 0 for some negative integer, then there exists a counter
example of Corollary A.2. Let G be the additive group G, x = Spec(k[t']). Let us
define the weight of ¢! to be —1. Then the weight filtration W, k[¢™'] is written as

. t'k[t™'] ifi<o0,
Wik[t ]_{k[tl] if i > 0.

By definition, G is an algebraic group in GrVecy.
For each g € k = G(k), we have

SUk[tT ] — k[t T s g+t

Therefore, if g is not 0, then g!(W;k[t']) is not contained in W;k[¢™!] for each neg-
ative integer i.

Lemma A.5 Let G = Sp(R) be an algebraic group in IFVecy satisfying (Pos). Let
g be a k-rational point of G. Then the automorphism on gr)’ R induced by g' is the
identity map.

Proof Wedenotebye*:R — k the counit of R. Since e* is compatible with filtrations
of both-hand sides, Ker(e*) is an object in Ind(IFVecy ) such that W, (Ker(e*)) = 0.
Let cmp be the comultiplication of R and let x be an element of W; R\ W, R. We write

cmR(x)—1®x:Zau®buEW0R®k WiR + Z WiKer(e*) ®¢ WiR
u j+l=i, j21, 120

such that {b, }, are linearly independent over k. Remark that cmpg (x) # 1® x because
x ¢ k = WyR. Since cmp(x) — 1 ® x is contained in the kernel of e* ® 1, all a,, are
contained in the kernel of e*. This implies that all b, are contained in W;_;R. Hence,
we have g'(x) — x = ¥; g(a;)b; € W;_iR and this implies that the induced k-linear
homomorphism by gf on gr)¥ R is the identity map. [ ]

Corollary A.6  Let G = Sp(R) be an algebraic group in IFVecy satisfying (Pos). Then
the underlying algebraic group of G is unipotent.

Proof According to Lemma A.5, W;R is an algebraic representation of the underly-
ing k-algebraic group G. Since R = U; W;R and G is of finite type, WyR is a faithful
representation of G for sufficiently large N. Moreover, WoR ¢ WiR c --- ¢ WyR
is a flag of this representation and G acts on all the graded quotients gr}* R trivially.
Hence, G is unipotent. [ ]

The following lemma follows from the proof of Corollary A.6 easily, so we omit
the proof of this lemma.

Lemma A.7 Let G = Sp(R) be an algebraic group in IFVecy, satisfying (Pos). Then,
for each positive integer N, there exists a natural Lie homomorphism

in:Lie(G) — Endi(WyR); D —> log(exp(D)*|w,r ).

Furthermore, 1y is injective for sufficiently large N.
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