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Linear shape oscillations and polymeric time
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We study small-amplitude axisymmetric shape oscillations of viscoelastic drops in a
gas. The Jeffreys model is used as the rheological constitutive equation of the liquid,
which represents a liquid with a frequency-dependent dynamic viscosity. The analysis
of the time-dependent deformations caused by the oscillations yields the characteristic
equation for the complex frequency, which describes the oscillation frequency and
damping rate dependence on the viscous liquid behaviour and the stress relaxation
and deformation retardation time scales λ1 and λ2 involved in the viscoelastic material
law. The aim of this study is to quantify the influences of the two time scales on the
oscillation behaviour of the drop and to propose an experimental method to determine
one of the time scales by measuring damped oscillations of a drop. A proof-of-concept
experiment is presented to show the potential and limitations of the method. Results
show that values of λ2/λ1 from these measurements are orders of magnitude smaller
than typical values used in simulations of viscoelastic flows.

Key words: capillary waves, drops, viscoelasticity

1. Introduction
The deformations of a drop surface due to shape oscillations may influence transport

processes across the liquid–gas interface, such as the evaporation of the drop and the
absorption of gases from the environment. Examples of technical processes where drop
shape oscillations may be important are fuel injection and flue gas cleaning. For their
relevance for transport processes, and for scientific interest, oscillations of liquid drops
have been under investigation since the times of Rayleigh (1879), who derived the
angular frequency αm,0 =

√
m(m− 1)(m+ 2)

√
σ/ρa3 of linear oscillations of mode m

for an inviscid drop with density ρ, radius a and surface tension σ against an ambient
vacuum. Rayleigh’s work was extended by Lamb (1881), who included the influence
of viscosity of the drop liquid and obtained the oscillation frequency and the rate of
decay of the oscillations in the limits of very high and very low drop viscosity. Lamb
(1932) also generalized Rayleigh’s result by including the influence of a host medium
with a non-negligible density ρo on the oscillations of an inviscid drop. He obtained
a dependence of the angular frequency of oscillation on a weighted mean of the two
densities, αm ∝

√
σ/[mρo + (m+ 1)ρ]a3. The proportionality factor depends on the
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mode number m. The most general case of an oscillating viscous drop immersed in
another liquid with non-negligible density and viscosity was analysed by Miller &
Scriven (1968). From their work, the characteristic equation for the oscillating drop
emerges in the form of a determinant that must equal zero. For the various special
cases of fluid behaviour, the equation reduces to the well-known results of previous
works.

This brief survey of the existing literature on linear drop oscillations, which we
restrict to the classical works, reveals work on drops of Newtonian liquids only. To
date, the literature on the oscillations of non-Newtonian, e.g. viscoelastic, drops has
been quite sparse. Bauer (1985) and Bauer & Eidel (1987) studied the oscillations of
an immiscible viscoelastic spherical system. The authors found that, depending on the
stress relaxation time of the liquid as compared to the period of the oscillation, the
drop deformation may be more or less influenced by the liquid elasticity. Khismatullin
& Nadim (2001) presented an extensive theoretical analysis of the characteristic
equation for linear shape oscillations of viscoelastic drops in a vacuum, and found
some interesting influences from the liquid material properties. For example, ranges of
values of the relaxation Deborah number (De1) and the Ohnesorge number (Oh) of the
drop exist where the shape oscillations are due to the elasticity of the liquid, not due
to surface tension.

In the present study, we sketch the theoretical derivation of the characteristic
equation of the drop, quantifying the influence of viscoelasticity on the small-
amplitude shape oscillations of drops of polymer solutions around their spherical
equilibrium shape. We present an analysis of the importance of polymeric time scales
for the motions, inspired by the results of Khismatullin & Nadim (2001). Ultimately
we aim to propose the foundations of a method for measuring the deformation
retardation time of the polymeric substance dissolved in the drop liquid using damped
drop oscillations. To demonstrate its feasibility, we present and discuss a proof-of-
concept experiment with first results that show that the deformation retardation time
may depend on both the molecular properties and the concentration of the polymer in
the solution.

Our paper is organized as follows. In the following section we sketch the theoretical
derivation of the characteristic equation of the oscillating drop and the equations
for the flow and pressure fields in the drop. In § 3 we analyse and discuss the
characteristic equation of the oscillating drop in various states of motion caused by
the relevant physical properties of the drop liquid. Section 4 presents the basics of
an experimental method for measuring the polymer deformation retardation time and
discusses various aspects of the experimental technique with influence on the results.
In § 5 we summarize the article and draw the conclusions from the results.

2. Theoretical description of linear viscoelastic drop shape oscillations
Linear viscoelastic drop oscillations are described by the linearized equations of

motion for an incompressible fluid and a linear viscoelastic material law. The
appropriate material law is the Jeffreys model. The dependence of the motion on
time is determined by an exponential function exp(−αmt), with the complex angular
frequency αm of mode m. The stress tensor τ with this temporal behaviour satisfying
the Jeffreys equation reads

τ = η0
1− αmλ2

1− αmλ1
γ̇ = η(αm)γ̇ , (2.1)
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FIGURE 1. Equilibrium and deformed drop shapes in the spherical coordinate system for
m = 2. The deformed shape given by the dashed line may be represented as rs(θ, t) =
a+ ε0Pm(cos θ)e−αmt.

where λ1 and λ2 are the stress relaxation and deformation retardation times of the
polymeric liquid, respectively, η0 is the zero-shear viscosity and γ̇ is the rate-of-
deformation tensor. With this material law, the structure of the momentum equation is
formally identical to that for a Newtonian fluid, with the only difference being that
the dynamic viscosity depends on the frequency of the deformations and on the two
polymeric time scales λ1 and λ2.

We note that there exist several nonlinear rheological material models exhibiting the
Jeffreys model as the linear limit. Among them we mention the Oldroyd eight-constant
and the Giesekus models (Bird, Armstrong & Hassager 1987; Giesekus 1994). The
latter includes the Oldroyd-B model as a special case and expresses the extra stress
τ = τ s + τ p and the dynamic viscosity η = ηs + ηp as sums of contributions from the
solvent and the polymer. The solvent stress τ s is formulated by the Newtonian material
law, and the stress τ p due to the polymer is the solution of a differential equation
with a convective derivative. The linear limit of the resulting differential equation for
the total extra stress τ is formally identical with the Jeffreys model and exhibits a
factor corresponding to the deformation retardation time λ2, leading to the equation
λ2 := λ2G = λ1ηs/η0. It will be interesting to test the values λ2G from this approach for
their suitability for use with the characteristic equation of the oscillating drop in the
present analysis.

The continuity and momentum equations are formulated in spherical coordinates and
solved subject to the kinematic boundary condition that the rate of radial displacement
of the drop surface rs(θ, t) from the spherical equilibrium (figure 1) equals the radial
velocity component at the location of the equilibrium drop radius a, and the dynamic
boundary condition that the shear stress at the drop surface, evaluated at r = a, is
zero in the present case of a drop in a gas. The normal-stress boundary condition will
finally reveal the characteristic equation of the system.

The oscillation-induced flow in the drop is analysed assuming symmetry in the
direction of the azimuthal angle ϕ. The description of the two-dimensional flow
field is based on the Stokesian stream function ψ . Introducing it into the linearized
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momentum equation by proper definition of the velocity components vr and vθ , and
taking the curl of the resulting equation, the fourth-order partial differential equation(

− 1
ν(αm)

∂

∂t
+ E2

)
(E2ψ)= 0 (2.2)

with the operator (Bird, Stewart & Lightfoot 1960)

E2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
(2.3)

is obtained. The solution of this equation reads

ψ = [C1,mrm+1 + C2,mqrjm(qr)]sin2θ P′m(cos θ)e−αmt, (2.4)

where jm is a spherical Bessel function of the first kind. In its argument we have
defined

q=
√
αmρ/η(αm)=

√
αm/ν(αm). (2.5)

The resulting radial and angular components of the velocity vector read

vr =−
[

C1,mrm−1 + C2,mq2 jm(qr)

qr

]
m(m+ 1)Pm(cos θ)e−αmt (2.6)

and

vθ =
[

C1,m(m+ 1)rm−1 + C2,mq2

(
(m+ 1)

jm(qr)

qr
− jm+1

)]
sin θ P′m(cos θ)e−αmt. (2.7)

The two integration constants C1 and C2 are determined by the above-mentioned
kinematic and dynamic boundary conditions. For the drop shape given in figure 1, the
two conditions reveal the constants

C1,m = ε0αm

m(m+ 1)am−1

[
1+ 2

(
m2 − 1

)
2qajm+1(qa)/jm(qa)− q2a2

]
(2.8)

C2,m =− 2(m− 1)ε0αma

mq[2qajm+1(qa)− q2a2jm(qa)] . (2.9)

This velocity field is formally identical with the results of Chandrasekhar (1959) and
Khismatullin & Nadim (2001).

The pressure field is readily obtained with the known velocity field by integration of
the momentum equation and reads

p=−(m+ 1)C1,mραmrmPm(cos θ)e−αmt. (2.10)

The characteristic equation for the complex angular frequency αm is found from the
second dynamic boundary condition, which states that the (r, r) component of the total
stress tensor vanishes at the drop surface. It reads

α2
m,0

α2
m

= 2(m2 − 1)
q2a2 − 2qajm+1/jm

− 1+ 2m(m− 1)
q2a2

[
1+ 2(m+ 1)jm+1/jm

2jm+1/jm − qa

]
. (2.11)

Here the spherical Bessel functions are taken at the value qa of their arguments. The
equation is identical to the results of Lamb (1881) and Chandrasekhar (1959). In the
present case of a viscoelastic liquid, however, the kinematic viscosity ν involved in
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the equation is a function of the oscillation frequency αm. In the following section we
analyse the behaviour of the oscillating drop by solving this equation.

3. Analysis of the characteristic equation for a viscoelastic drop
To solve the characteristic equation (2.11), we introduce η(αm) resulting from the

linearized material law (2.1). For the analysis we use the definitions

y= αm/αm,0, Oh= η0/
√
σaρ, De1 = αm,0λ1, De2 = αm,0λ2, (3.1)

which enter the argument qa of the spherical Bessel functions as per

q2a2 =
√

m(m− 1)(m+ 2)
y

Oh

1− yDe1

1− yDe2
. (3.2)

Since αm occurs in the argument of the spherical Bessel functions, it is not possible
to solve the characteristic equation analytically. For a numerical analysis of (2.11) we
use the computer algebra software MATHEMATICA.

Before starting the analysis, we validated our MATHEMATICA routine by
reproducing some results of Khismatullin & Nadim (2001) for quadrupole oscillations
m= 2. For a fluid characterized by ρ = 103 kg m−3, σ = 0.073 N m−1, η0 = 10−3 Pa s
and a drop radius a = 0.1 mm, we obtain from Rayleigh’s equation the angular
frequency α2,0 ≈ 24 166 s−1. The Ohnesorge number defined in (3.1) equals 0.0117.
The deformation retardation time λ2 is set to zero, as Khismatullin & Nadim (2001)
did in their investigation. Our results for the non-dimensional frequency and damping
rate as functions of De1 (not shown here) agree with figure 1 of Khismatullin &
Nadim (2001). Without the liquid elasticity, one would expect the angular frequency to
assume the value of α2,0 (Prosperetti 1980).

Taking the same Rayleigh frequency as before, and varying the Ohnesorge number
as a parameter, we reproduce figure 4 of Khismatullin & Nadim (2001), which
displays the dimensional frequency f = [Im(y) αm,0]/(2π) and the dimensional damping
rate d = Re(y) αm,0 as functions of the relaxation Deborah number De1, again with
De2 = 0. Figure 2(a,b) displays these results. As the parameter in this analysis,
Khismatullin & Nadim (2001) used a Reynolds number defined as Re = a2αm,0ρ/η0,
which we rather interpret as an inverse of the Ohnesorge number Oh, since the angular
frequency αm,0 depends on surface tension. The identity Re = √m(m− 1)(m+ 2)/Oh
holds. For our case with m = 2, for example, Oh = 11.8 is equivalent to Re = 0.24.
Khismatullin & Nadim (2001) pointed out that there exists a critical relaxation
Deborah number De∗1 that marks the limit between the aperiodic mode of decay and
the oscillatory mode. Figure 2(a) shows that this critical Deborah number increases
with decreasing Ohnesorge number. We can also see this change in the damping
behaviour in figure 2(b), which shows details of the drop behaviour beyond figure 4
of Khismatullin & Nadim (2001). While the damping rate increases with the Deborah
number for the aperiodic cases, it decreases with further increase of the elasticity, once
the critical Deborah number is exceeded. The rate of decay of deformations assumes
lower values for high supercritical Deborah numbers than in the aperiodic cases.

We now present further results from an analysis of the characteristic equation (2.11).
For this purpose, the deformation retardation time λ2 of the fluid must be given a
value. The deformation retardation time represents the time scale of relaxation of
the rate of strain, once the stress is removed (Joseph 1990). To date, there is no
established technique for measuring this time scale (Huang, Hu & Joseph 1998). What
we know, however, is that the relation λ2 < λ1 must hold in order that the sign
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FIGURE 2. (a) Frequency and (b) damping rate as functions of the relaxation Deborah
number for mode m = 2 with ρ = 103 kg m−3, σ = 0.073 N m−1, η0 = 1 mPa s and drop
radius a = 0.1 mm. The retardation time λ2 was set to zero, as in Khismatullin & Nadim
(2001).

of the extra stress is correct (Bird et al. 1987). The case where λ2 = λ1 represents
a Newtonian fluid. For values of λ2/λ1 less than a threshold value, shear-thinning
behaviour as predicted by the corotational Jeffreys model becomes excessive (Larson
1988). Larson gives the value of 1/8 for the threshold, whereas Denn (1990) and
Giesekus (1994) give 1/9. In the literature, values for λ2/λ1 of 1/10 and 1/8 are
commonly used, for historical rather than for physical reasons (Huang et al. 1998;
Phillips & Williams 1999; Ho-Minh, Mai-Duy & Tran-Cong 2010). For the present
part of our analysis we set De2 = De1/10. Our ultimate aim, however, is to propose
a method for measuring λ2 from damped drop oscillations (Trinh, Zwern & Wang
1982). We are therefore interested in the frequency and the damping rate as functions
of the Ohnesorge number, with the relaxation Deborah number De1 as a parameter
(figure 3a,b). For the inelastic, Newtonian case (De1 = 0), the non-dimensional
frequency decreases with increasing Ohnesorge number. This means that, for example,
an increase of the viscosity reduces the frequency. For Ohnesorge numbers exceeding
the critical value Oh∗0 ≈ 0.766, where the subscript 0 denotes the case of zero elasticity,
two aperiodic modes of decay occur.
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FIGURE 3. Non-dimensional (a) frequency and (b) damping rate as functions of the
Ohnesorge number for mode m= 2.

Liquid elasticity (De1 > 0) leads to greater values of Oh∗ than the inelastic case and,
therefore, to wider ranges of the Ohnesorge number where shape oscillations exist. It
is important to note, however, that increasing elasticity makes this range narrower, for
example, Oh∗16 ≈ 13.5, while Oh∗29 ≈ 10.5. The critical Oh number, however, does not
reach the value of 0.766 of the purely viscous case, even for very large De1. This
convergence behaviour can be expected, since the curves approach the purely viscous
one as the relaxation Deborah number increases, but the deformation retardation keeps
the corresponding viscosity lower than in the inelastic case. Considering Oh∗ as a
function of De1, we find that

lim
De1→∞

Oh∗ ≈ 7.66.

This is 10 times the value of the inelastic case, since, in the case that the
ratio λ2/λ1 converges to a finite value not equal to zero as De1 goes to infinity,
limDe1→∞ η(αm) = η0De2/De1, and we have set λ2 = λ1/10 for the present analysis.
This behaviour is seen for each Ohnesorge number with shape oscillations: Im(y)
decreases when the drop elasticity is increased, but there exists a lower limit of
the non-dimensional frequency. For example, for Oh = 6, it is not possible to reach
Im(y) < 0.6 by increasing the elasticity. Finally, we may mention that the tendency of
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FIGURE 4. Non-dimensional damping rate in the range of subcritical Ohnesorge numbers for
m = 2 at De1 = 0 and 16. The slight bends mark the limits of validity of the low-viscosity
approximation.

the frequency to decrease or increase depends on the degree of elasticity. For example,
for the lowest Deborah number not equal to zero in figure 3(a), the frequency
increases with Oh, reaches a maximum at Oh ≈ 5, and then decreases again. This
behaviour is not found for the higher De1, where the frequency is monotonic with Oh.

Figure 3(b) shows the damping behaviour of the drop oscillations. For zero
Ohnesorge number, i.e. for the inviscid case, the damping rate is zero, as expected. For
Oh < Oh∗, the dependence on Oh appears to be linear. The dependence ∂Re(y)/∂Oh,
however, assumes a smaller value in the interval [0,Oh∗] of the Ohnesorge number
than predicted by the low-viscosity limit (Khismatullin & Nadim 2001)

∂Re(y)
∂Oh

∣∣∣∣
Oh→0

= (m− 1)(2m+ 1)(1+ De1De2)√
m(m− 1)(m+ 2)(1+ De2

1)
. (3.3)

The straight line seen for Oh < Oh∗ bifurcates at Oh∗ into two branches, with the
lower one converging for Oh� Oh∗ to a line Re(y) ∝ 1/Oh. The bifurcation of the
damping rate into a fast decaying (upper) and a creeping (lower) mode at the onset
of aperiodic behaviour was found also by Chandrasekhar (1959) and by Prosperetti
(1980) for the Newtonian case. Since the mode on the upper branch disappears very
rapidly, it is not observed in experiments. It is, however, a part of the manifold
of solutions of the characteristic equation of the drop in the aperiodic regime and
therefore shown here. The inelastic curves in figure 3 are identical to the results by
Prosperetti (1980). It is interesting to note that the apparently linear behaviour of the
damping rate for subcritical Ohnesorge numbers is not really linear, as seen in figure 4,
where we show the evolution of the damping rate with Oh for the inelastic case and
for De1 = 16. The bend in the curves is slight, but indicates the range of Oh numbers
where the low-viscosity approximation is valid. For the inelastic case this range ends
at Oh≈ 0.06, while it extends to 0.1 for De1 = 16.

Considering the dependences for small Ohnesorge numbers O(10−2), which may
occur, for example, for drops with a = 0.8 mm, ρ = 1000 kg m−3, σ = 0.07 N m−1

and η0 between 2 and 10 mPa s, we obtain the data in figure 5(a,b). For very
large stress relaxation times, we see the same trend as for the inelastic liquid. The
non-dimensional angular frequency decreases with increasing Ohnesorge number of
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FIGURE 5. Non-dimensional (a) frequency and (b) damping rate for small Ohnesorge
numbers for the mode m= 2.

the drop, i.e. with increasing liquid viscosity. This is, however, not the case for
viscoelastic liquids with De1 < 90. Here the elasticity causes frequencies above the
Rayleigh frequency. In the low-viscosity limit, the damping rate is a linear function of
Oh, as predicted by equation (43) of Khismatullin & Nadim (2001). For these small
Oh, the line is steeper than in the range of Ohnesorge numbers up to Oh∗. From
figure 4 we conclude for De1 = 16 that the validity of the low-viscosity approximation
is limited to Oh 6 0.1. Since the curves Re(y) = f (Oh) nearly collapse for higher
De1 > 16 at small Oh, it is reasonable to assume that this limit applies to the higher
relaxation Deborah numbers also.

We now analyse the behaviour of the characteristic equation (2.11) with varying
Oh for small relaxation Deborah numbers. For the values of De1 > 16 investigated
so far, we have seen that, for decreasing De1, the critical Ohnesorge number Oh∗

increases, i.e. the range of subcritical Ohnesorge numbers enabling shape oscillations
widens (figure 3a). For much smaller Deborah numbers De1, however, the frequency
may first decrease with increasing Oh, vanish, and, at a certain value of the Ohnesorge
number, increase again with a sharp bend of the curve (figure 6). With decreasing
Deborah number De1 < 1, the state at the bend decreases to Im(y) = 0, which it
reaches at De1 ≈ 0.2 and Oh ≈ 0.6. This state corresponds to the critical value of
the stress relaxation time λ1,c given by Khismatullin & Nadim (2001). For values of
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FIGURE 6. (a) The non-dimensional oscillation frequency for small Deborah numbers with
m= 2. (b) Enlarged part of figure 6(a).

De1 less than 0.2, a range of values of Oh with aperiodic drop behaviour is formed
between two separate branches (figure 6a). The two branches represent states of the
drop enabling shape oscillations. The branch at the higher Oh numbers represents
oscillations that are due to the liquid elasticity, not due to the surface tension
(Khismatullin & Nadim 2001). For these cases we can define a lower and an upper
critical Oh number, which we term Oh∗l and Oh∗u, respectively. Figure 7 displays Oh∗l
and Oh∗u as functions of De1. The difference between the critical Oh numbers increases
with decreasing Deborah number De1. The maximum De1 enabling this behaviour
represents the critical stress relaxation time λ1,c, which corresponds to the viscosity
at the onset of elastic shape oscillations of the viscoelastic drop. In the present cases,
where we have set λ2 = λ1/10, this phenomenon is observed for 0 < De1 < 0.2 only.
Figure 8(a) shows the non-dimensional damping rate as a function of the Ohnesorge
number for varying De1, with a zoom-in displayed in figure 8(b). Here the critical
states of the Ohnesorge number are also visible. In the range of small Oh, where shape
oscillations exist, the damping rate varies approximately linearly with the Ohnesorge
number, as for the much larger De1 also. The dependence is nonlinear in the range
of aperiodic drop behaviour (i.e. for Ohnesorge numbers between Oh∗l and Oh∗u). We
discuss the case of De1 = 0.05 given by the dotted curves in figure 8. The curves show
three solutions of the characteristic equation, which correspond to the related dotted
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FIGURE 7. Lower and upper critical Ohnesorge numbers as functions of the relaxation
Deborah number for m= 2.

curves for the oscillation frequency in figure 6. In figure 9 we put these solutions
together: (i) the curve with shape oscillations, starting at Oh= 0 with the damping rate
increasing up to the bifurcation point at Oh≈ 0.6 and then decreasing along the lower
of the two aperiodic modes; (ii) the aperiodic upper branch from the bifurcation point
at Oh ≈ 0.6 up to the damping rate of ∼10 at Oh ≈ 2.1, where a new branch appears
with apparently linear increase of the damping rate with the Ohnesorge number
(the latter corresponds to the branch of non-zero oscillation frequencies starting at
Oh ≈ 2.1); and (iii) the part of the upper aperiodic branch with damping rates >10
for Oh between ≈2.1 and 0 (the oscillation frequency corresponding to this branch in
figure 6(a) is zero). This structure of the solution indicates that the shape oscillations
at Oh numbers above ≈2.1 are damped more strongly than the aperiodic deformations
on the upper branch of the bifurcation of an inelastic liquid.

Finally we look at the non-dimensional frequency and damping rate as functions
of the Deborah number, with the Ohnesorge number as the parameter. We select
values of the parameter that may be realized in experiments with acoustically levitated
drops. The data are shown in figure 10(a,b). The non-dimensional frequency increases
steeply with the Deborah number at small De1, where the curves for all values
of Oh investigated collapse. Higher Oh exhibit higher maximum non-dimensional
frequencies. In the present range of Oh numbers, however, the maximum frequency
deviates from the Rayleigh frequency by no more than 6 %. At high values of De1,
the non-dimensional frequency converges asymptotically to the value of 1, which
is the state of the Rayleigh frequency. This means that, regardless of the value of
the Ohnesorge number in the present range, the value of 1 is approached in all
cases for high Deborah numbers De1 above, say, 80. This behaviour corresponds to
the finding that ∂Im(y)/∂Oh is very small for small Oh at high relaxation Deborah
numbers. The damping rate also converges to constant values with increasing Deborah
number (figure 10b). The values assumed asymptotically are smaller for smaller Oh,
as expected. The smaller Ohnesorge numbers lead to smaller damping rates, which is
again reasonable. The drop behaviour is unaffected by stress relaxation times that are
very long compared to the oscillation period. The liquid then behaves as Newtonian,
with a viscosity influenced by the ratio λ2/λ1.
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FIGURE 8. (a) The non-dimensional damping rate for small Deborah numbers at m= 2.
(b) Enlarged part of figure 8(a).

4. An experimental approach to determine the deformation retardation time
from damped drop oscillations

4.1. Liquid characterization by the oscillating drop method

The oscillating drop method has been developed and used in the past for measuring
various physical liquid properties. The dynamic viscosity of aerodynamically levitated
drops was measured by Perez et al. (2000) making use of the resonance behaviour of
the oscillating drop with account for the spheroidal drop shape. The dynamic viscosity
follows from a correlation with the width of the resonance peak, which the authors
derive. The accurately measurable dynamic liquid viscosity ranges between 2 and
150 mPa s. The authors propose to apply the method to materials in the semisolid
state (Perez et al. 2000). Similarly, Egry et al. (1998) used the damped oscillations of
drops of the eutectic Pd78Cu6Si16 for measuring the dynamic viscosity of the material
over a wide temperature range. In this case, the drops were observed in microgravity,
so that an extra levitation technique was not needed. At the eutectic temperature of
1033 K, the measured dynamic viscosity was found to agree very well with results
known from the literature. Further to the dynamic viscosity of Newtonian systems,
the oscillating drop method was applied to measure the surface tension of the drop
liquid against the ambient air (Hiller & Kowalewski 1989) and the interfacial tension
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FIGURE 9. The non-dimensional (a) angular frequency and (b) damping rate at De1 = 0.05
for m = 2: three solutions of the characteristic equation. The branches of the solution are
slightly mutually displaced to make them more easily visible.

between immiscible liquids (Hsu & Apfel 1985). The former authors determined
the drop oscillation frequency from drop images obtained by visualization; the latter
determined the resonance frequency to derive the interfacial tension with the densities
of the two liquids given.

For viscoelastic systems, the oscillating drop method was used for investigating the
surface rheology (Tian, Holt & Apfel 1995; Apfel et al. 1997). The materials were
surfactant solutions, and the drops were levitated due to the microgravity conditions
of the experiment. In the study by Tian et al. (1995), complementary effects of the
bulk and the surface viscosities were found. Owing to the coupling between the
surface elastic and viscous effects, the surface viscosities can enhance or lower the
damping rate of the drop. Experimental studies based on drop visualization under
microgravity conditions determined the frequency and damping rate of free drop
oscillations excited by loudspeakers. The experiments quantified both bulk and surface
viscoelastic properties of surfactant solutions with the aim of developing rational
models of the behaviour of the surfactants (Apfel et al. 1997). A study with crude
oil in water used the oscillating pendant drop method to determine the dilatational
elasticity modulus and the dynamic interfacial tension of the oil (Aske, Orr & Sjöblom
2002). The aim of that study was to quantify the absorption behaviour of crude oil
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FIGURE 10. Non-dimensional (a) frequency and (b) damping rate as functions of the
Deborah number De1 (m= 2).

surfactants at oil–water interfaces. A review of oscillating drop and bubble techniques
is given by Kovalchuk et al. (2001).

4.2. Properties of the oscillating drop
In the above analyses of the present study, the polymer deformation retardation time
λ2 was set to one-tenth of the stress relaxation time λ1. While the latter may be
determined experimentally with a standard method (Stelter et al. 2000) for spinnable
polymer solutions, the former is far more difficult to obtain (Huang et al. 1998). The
characteristic equation of the oscillating drop (2.11) involves both time scales, as well
as a dynamic viscosity scale η0, and we propose to use the characteristic equation
for determining the values of η0 and λ2. This may be possible, since all the other
quantities are given if both the frequency and the damping rate of oscillations of a
drop of the polymeric liquid are known from an experiment. These quantities can
be measured with acoustically levitated drops, as shown by Trinh et al. (1982) for a
Newtonian drop embedded in an immiscible Newtonian host liquid.

Since our interest is to determine the deformation retardation time of a polymeric
substance dissolved in a liquid, we look at solutions of the characteristic equation
(2.11) for varying λ2 and η0 to quantify the sensitivity of the solutions against
variations of these liquid properties. Varying the deformation retardation time in
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FIGURE 11. (Colour online) (a) Ranges of frequencies and damping rates for periodic
oscillations of a 1.96 mm drop of an aqueous liquid with ρ = 998.8 kg m−3, σ =
0.0765 N m−1 and λ1 = 137.7 ms (m = 2). (b) Enlarged part of figure 11(a) showing lines
η0 = constant and λ2 = constant.

the range 3.3 × 10−4 λ1 6 λ2 6 λ1 and the viscosity in the range 2 × 10−2 Pa s 6
η0 6 1.52 Pa s for a drop with ρ = 998.8 kg m−3, σ = 0.0765 N m−1, λ1 = 137.7 ms,
a = 0.98 mm and m = 2, we obtain the results in figure 11(a). We see that the
dimensional frequencies and damping rates cover a band in the Gaussian plane of the
real and imaginary parts, d and f , of the complex angular frequency. A zoom-in to the
range of damping rates O(102 s−1) at frequencies 110 Hz 6 f 6 140 Hz is shown in
figure 11(b). We see lines of constant viscosity η0 and constant deformation retardation
time λ2. The dynamic viscosity varies from 0.02 Pa s on the bottom line, which
ends at d = 88 s−1, and in steps of 0.15–1.52 Pa s on the top line. The deformation
retardation time on the lines from top to bottom assumes the values 4.59, 9.18, 13.77,
22.95, 36.72, 68.85 and 137.7 ms. The state λ2 = λ1 on the bottom line is not realized
physically. These data represent that, with the values of oscillation frequency and
damping rate known, the state of the drop defined by the pair of values (η0, λ2) may
be determined by finding the point in this Gaussian plane.

The variation of the functions η0 = gη(f , d) (say) and λ2 = gλ(f , d) with their
independent variables determines the accuracy of the measurements of f and d
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FIGURE 12. Set-up for levitating single drops in an ultrasonic resonator and measuring the
drop deformations in forced oscillations by means of image processing.

required for a valid determination of η0 and λ2. Based on figure 11(b), we evaluate
the dependences of η0 and λ2 with varying f and d. As an example, in the range
around f = 132 Hz and d = 30 s−1 we obtain that an uncertainty of ±1 % in both
the frequency and the damping rate results in uncertainties in η0 and λ2 of ±30 and
±40 %, respectively. This means that the frequency and damping rate of the drop
oscillations must be accurately measured in the experiment with uncertainties well
below 1 %.

4.3. Acoustic drop levitation as the key experimental technique
To investigate the damped oscillation behaviour of single drops of viscoelastic liquids
experimentally, one may use the technique of acoustic levitation (Yarin et al. 1999).
This technique allows for the positioning of individual drops in the quasi-steady
pressure field of a standing ultrasonic wave produced between a vibrating horn and a
reflector, as shown in figure 12. The reflector may have a concave curved surface to
enhance the sound pressure level (SPL), as in the present apparatus. Oscillations of the
levitated object may be excited by amplitude modulating the ultrasound. Modulation
frequencies up to 2 kHz are achievable with the equipment at hand. For further details
the reader is referred to Yarin et al. (1999).

A proof-of-concept experiment was carried out with aqueous solutions of the two
different polyacrylamides, Praestol 2500 and Praestol 2540, from Stockhausen Inc.
(Germany). The former is non-ionic with a degree of hydrolysis of 3–4 %, while
the latter is middle anionic with a degree of hydrolysis of 40 %. The different
degrees of hydrolysis of the polymers cause different mechanical flexibilities of the
macromolecules. The molecular weights are about the same for the two polymers,
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Polymer Solute mass
fraction

Density,
ρ

Surface
tension, σ

Zero-shear
viscosity, η0

Stress relaxation
time, λ1

(wt %) (kg m−3) (N m−1) (Pa s) (s)

Praestol 2500 0.3 999.4 0.07315 0.0435 0.078
0.8 1000.9 0.07555 0.7588 0.163

Praestol 2540 0.05 998.8 0.07651 1.521 0.1377

TABLE 1. Properties of the three aqueous polymer solutions at 20 ◦C. The viscosity η0 was
measured with a rotational viscosimeter.

(15–20)× 106 kg kmol−1. The properties of three aqueous solutions of these polymers
relevant for the present study are listed in table 1.

Levitated drops of the solutions are produced by a syringe with a thin needle
to enable the formation of drops with diameters in the range between 1.5 and
2.5 mm. With the needle tip close to a pressure node of the acoustic levitator, a
portion of liquid is pushed out from the syringe to form the droplet. The drop
resonance frequency is then determined approximately by a modulation frequency
sweep, monitoring the maximum occurring oscillatory drop deformations. The drop is
then steadily driven at that resonance frequency, and the modulation is switched off at
a time t = 0, so that the drop carries out damped oscillations, which eventually die out.

4.4. Visualization of the drop

The damped oscillatory motion of the levitated drop is recorded by a high-speed
camera at a frame rate of 2 kHz under backlight illumination. An uncertainty in the
length measurement of ±2 pixels with resolution of 167 pixels mm−1 results in a
sizing uncertainty of ±12 µm, for a 1.9 mm drop equivalent to ±0.6 %. Within at
most 10 s after the drop has been placed in the acoustic levitator, one single picture of
the drop is taken in order to have its initial shape and volume. This initial state, where
evaporation of the solvent has not yet had any influence on the solution concentration,
allows the concentration of the drop liquid at all later times to be deduced from the
volume. The proof-of-concept experiment showed that the maximum decrease of the
drop volume observed between the initial state and later states after the frequency
sweep is of the order of −15 %, which causes the same increase of the polymer
concentration. The related increase of the zero-shear viscosity of the liquid depends on
the polymer. For the two polyacrylamides studied in the present experiment, we see
that η0 may increase by 25–40 % due to solvent evaporation. The zero-shear viscosity
obtained from the experiment is the value corresponding to the concentration of the
solution present during the related experiment.

The oscillation shown in figure 13 was recorded for a Praestol 2500 solution drop
with an equilibrium diameter of 1.94 mm. The drop was driven at 120 Hz before the
modulation was switched off. From these data, the frequency and damping rate in the
last part of the motion were extracted, so that both the linear oscillation behaviour was
ensured and the shear thinning of the polymer solution did not have any influence on
the oscillation. The real and imaginary parts of the complex angular frequency of this
drop are therefore known.
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FIGURE 13. Distance between north and south poles of a levitated 1.94 mm 0.3 wt %
Praestol 2500 solution drop as a function of time in a damped oscillation. Resolution is
167 pixels mm−1. The time between two images is 0.5 ms.

4.5. Uncertainty estimates
The experiment presently proposed for determining the polymeric deformation
retardation time from damped drop oscillations is subject to influences from the
experimental method of acoustic levitation and the non-Newtonian behaviour of the
polymeric liquid, which is shear thinning in many cases. In order to fulfil the
limitations set by the linear theory underlying the characteristic equation of the drop,
and in order to avoid influences from the shear thinning of the liquid, we measure
the drop oscillation frequency and damping rate in the late stages of the damped
oscillation. The proposed method, however, is still subject to some particularities that
must be accounted for in the interpretation of the data. In the present section we
discuss these aspects and their potential influence on the measurements.

4.5.1. Acoustic streaming in the drop
The steady flow induced by the unsteady boundary layer flow of the air around the

drop in the acoustic levitator, called acoustic streaming, induces a recirculating liquid
motion inside the drop due to shear forces on the drop surface. The velocity field in
the drop induced by the acoustic streaming was calculated by Yarin et al. (1999). The
maximum angular liquid velocity induced at the drop surface is given by the equation
(Yarin et al. 1999)

vθ,as

∣∣
r=a
= 9

80
√

2

(
a

η0

√
ρaηaωlev

)
B2

ωleva
, (4.1)

where ρa and ηa are the density and dynamic viscosity of the air, respectively, ωlev

is the angular frequency of the sound in the acoustic levitator, corresponding to the
vibration frequency of the transducer of 58 kHz, and B≈ 10−2ωleva is the amplitude of
the gas particle velocity. For the example of a drop of the 0.3 wt % aqueous solution
of Praestol 2500 in table 1, the velocity given by (4.1) is O(0.2 mm s−1). As a
comparison, the liquid velocity vθ that results from (2.7) due to the oscillation in a late
stage of the damped motion relevant for the measurement, where the non-dimensional
deformation amplitude is ≈ 0.04a, amounts to O(12 mm s−1), which is two orders
of magnitude higher. Since vθ,as|r=a is proportional to η−1

0 , the acoustically induced
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velocity in the drop would remain negligible against the oscillation-induced velocity
even for a one order of magnitude smaller liquid zero-shear viscosity. It should be
noted that the above estimate was carried out for the lowest liquid dynamic viscosity
investigated.

4.5.2. Influence of the oblate drop shape on the oscillation frequency
The theoretical analysis on which we base our study assumes a spherical equilibrium

state of the oscillating drop. In acoustic levitation of drops, however, the sound
pressure compensating the weight of the drop may cause its equilibrium shape to
be more or less different from spherical. The deviation from the spherical shape
depends on the SPL in the levitator and on the Eötvös number Eo= g(ρ − ρ0)a2/σ of
the drop. Small values of Eo allow for nearly spherical levitated drops. In the present
proof-of-concept experiment, the static (aspect) ratios of the short to the long axes
of the elliptical meriodional section of the oblate drop shape are O(0.9), i.e. close
to unity. For drops with a static oblate deformation, Trinh et al. (1982) investigated
the shift of the resonance frequency from the value for the spherical drop and found
an increase with decreasing aspect ratio. For the present values, Trinh et al. (1982)
found a shift of the resonance frequency of O(8 %). In their experiments, however,
which were carried out with drops in immiscible liquid–liquid systems, the viscous
and inertial influences from the ambient host medium on the drop oscillation are
much stronger than in the present case of oscillations in a gaseous environment. We
therefore expect a substantially lower influence of a non-spherical equilibrium drop
shape on the resonance frequency here.

4.5.3. Influence of the oscillation amplitude on the oscillation frequency
It is well known that the nonlinear behaviour of oscillating drops at sufficiently

large oscillation amplitudes changes the oscillation frequency and the times spent in
the oblate and prolate states for the quadrupole mode of oscillation. Tsamopoulos
& Brown (1983) found for inviscid drops that, for drop aspect ratios O(1.5) in the
maximum prolate state, the oscillation frequency decreases by 5 % from the Rayleigh
value, and the time spent in the prolate shape increases to 57 %. In the present
proof-of-concept experiment, the distortion of the drop in the period of time where the
oscillation is measured is substantially lower than that, so that this nonlinear aspect
will not be of any importance for the interpretation of the data.

4.5.4. Influence of shear thinning of the liquid
The linear analysis of the drop oscillations does not account for the rheological

shear-thinning behaviour of the drop liquid. The dynamic viscosity η0 in the Jeffreys
model may be interpreted as the liquid zero-shear viscosity. The oscillatory liquid
motion in the drop must therefore fulfil the requirement that shear rates be sufficiently
small so as to avoid any influence from the shear thinning on the oscillations. This
requirement coincides with the need for linearity of the drop oscillation behaviour. The
shear stress relevant for the axisymmetric oscillations is τrθ . The relevant shear rate
reads

γ̇rθ,m = 1
r

∂vr

∂θ
+ r

∂(vθ/r)

∂r

=
[

2(m2 − 1)C1,mrm−2 + 2C2,mq3

(
jm(qr)

q2r2
(m2 − 1)+ jm+1(qr)

qr
− jm(qr)

2

)]
×P′m(cos θ) sin θ e−αmt, (4.2)
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where the real part is physically relevant. For the value m= 2 this relation becomes

γ̇rθ,2 =
[

6C1,2 + 2C2,2q3

(
3

j2(qr)

q2r2
+ j3(qr)

qr
− j2(qr)

2

)]
3 cos θ sin θ e−α2t. (4.3)

The integration constants C1,m and C2,m in this equation depend linearly on the
deformation amplitude ε0. With the complex angular frequency given as α2 = αr + iαi,
we require ε0 exp(−αrt) to be small enough to ensure a small shear rate. As the
criterion for comparison of values of the shear rate with material data, we take the
value at the onset of shear thinning. The latter is O(1 s−1) for the 0.3 % Praestol 2500
solution, and one order of magnitude smaller for the 0.8 % Praestol 2500 and 0.05 %
Praestol 2540 solutions. Our method is therefore applicable preferentially with dilute
or semi-dilute polymer solutions that exhibit a high onset shear rate for the shear
thinning.

As a quantity relevant for the integral behaviour of the drop, one may consider the
time and volume average shear rate in the drop. Computing the shear rate in the drop
as a function of the radial coordinate, we see that it changes its sign at up to nine
locations in the drop. For the effect of the shear thinning of the liquid on the motion
of the drop, the sign of the shear rate is unimportant. We therefore compute the time
and volume average shear rate in the drop taking the absolute value of the integrand.
As the averaging period we take the time interval in the measurement data used for
determining the complex frequency α2. Denoting the radially dependent part on the
right in (4.3) as Kr + iKi, and the complex angular frequency as α2 = αr + iαi, we
obtain

Re(〈 ¯̇γ rθ,2〉)=
3
a3

1rinst

n

∫ n

t∗=0

∫ a

r=0
|Kr cos 2πt∗ + Ki sin 2πt∗| r2e−2πt∗αr/αi dr dt∗. (4.4)

Here we have defined the non-dimensional time t∗ = t/T2. The displacement 1rinst

is the instantaneous deformation of the drop at the beginning of the time interval
of the frequency measurement. To evaluate the real part of this equation, we make
use of the time-dependent drop shape data recorded by the high-speed camera. For
late times during the damped motion we get typical displacements of the drop north
pole against the equilibrium shape 1rinst of O(30 µm), corresponding to 5 pixels. The
resulting shear rates averaged in space and time are O(15 s−1). For the polymer
solutions investigated here, this shear rate is greater than the values at the onset of
shear thinning. These average values therefore do not reflect the experimental finding
that the measurements may nonetheless yield correct results. In contrast, looking at
the local shear rates in the drop, we see that, at every instant in time, drops yielding
correct results exhibit the maximum shear rates in a region r/a around 0.8, while
drops yielding viscosities η0 deviating strongly from the viscosity measured with a
shear rheometer exhibit the maximum of the shear rate in the centre of the drop. The
shear rate at the droplet centre r = 0 is the real part of

γ̇rθ,2

∣∣
r=0
= (C1,2 + 1

15 C2,2q3) 9 sin 2θ e−α2t. (4.5)

Shear rate profiles at one time for θ = π/4 are shown in figure 14 for drops of the
three liquids in table 1. Typical values of the extreme shear rates are O(20–60 s−1)

at the drop centre, and O(20 s−1) at the periphery. Resulting shear rates causing
shear-thinning effects on the drop are not detrimental to the measurement if they occur
at the drop periphery, while they are influential when located at the drop centre. The
reason for this difference is that the part of the drop volume with its motion influenced
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FIGURE 14. Profiles of the real part of the shear rate γ̇rθ,2, here termed Re(γ̇ ), in drops of the
three liquids in table 1. The drop sizes are 1.96, 1.94 and 1.85 mm for the three liquids from
top to bottom; the corresponding drop Ohnesorge numbers are 5.6, 1.6 and 2.9.

by the shear thinning is large when high shear rates occur at the drop centre, and small
when they occur at the periphery of the drop. We see in this finding an effect from the
non-viscometric kinematics of the flow field in the drop. From these findings we may
conclude that there exists a maximum allowable concentration for a given polymer,
leading to a largest drop Ohnesorge number with tolerable dynamic influence on the
drop shape oscillations in the sense of the present measurements.

4.6. Evaluation of the characteristic equation and results from the proof-of-concept
experiment

In our proof-of-concept experiment, typical drop sizes were 2 mm. The drop
Ohnesorge numbers range between 1.6 and 5.7. The polymer concentrations
investigated yield zero-shear viscosities O(0.04 Pa s) and O(0.76 Pa s) for the two
flexible polymer solutions, and O(1.5 Pa s) for the rigid, rod-like polymer solution
(table 1). Stress relaxation times λ1 were O(0.1 s). In the evaluation of the drop
oscillations, we find oscillation frequencies O(130 Hz) and damping rates O(1 s−1).
In experimental cases where the resulting argument qa of the Bessel functions
in the characteristic equation of the drop is large enough so that the relation
2(m + 2)jm+1(qa)/jm(qa)� qa holds for both the real and the imaginary parts of
the two complex relation partners, the approximation of the characteristic equation by
its ‘low-viscosity limit’ (Khismatullin & Nadim 2001)

[α2
m + α2

m,0]q2a2 = 2(m− 1)(2m+ 1)α2
m (4.6)

may be used to determine η0 and λ2. This equation is cubic in the complex
angular frequency αm, but linear in η0 and λ2. With the complex frequency
α2 = αr + iαi = d + i2πf of the drop known, the two liquid properties are readily
determined from the real and imaginary parts of (4.6), which yield

η0 =
[
λ1

αm,0
(α2

r + α2
i )− λ1αm,0 + 2αm,0αr

α2
r + α2

i

] √
m(m− 1)(m+ 2)

2(m− 1)(2m+ 1)
√
σaρ (4.7)
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FIGURE 15. Pairs of time scales λ2 from (2.11) and λ2G as derived from the Giesekus model
for the three polymer solutions in table 1.

and

λ2 = 1
2αr
+ λ1(3αr − α2

i /αr)/2+ α2
m,0λ1/2αr − 1

λ1(α2
r + α2

i )− λ1α
2
m,0 + 2α2

m,0αr/(α2
r + α2

i )
. (4.8)

In the present proof-of-concept experiment, we see that the requirement for
applicability of the low-viscosity limit (4.6) for determining the two liquid properties
is satisfied very well by the real parts of the relation partners, but not by the imaginary
parts. In consequence, we get very good agreement with deviations from the solution
of the full equation (2.11) of O(3 %) for the viscosity η0, while the retardation times
λ2 determined by (4.8) exhibit deviations of O(9–80 %). Here we therefore present the
results from the evaluation of the full characteristic equation, although in the present
state of development of the method the identification of the right solution among the
values provided by the MATHEMATICA solver requires some manual intervention.

From the experiment with the 0.3 % Praestol 2500 solution drop of figure 13, we
obtain the oscillation frequency f = 128.4 Hz ± 0.34 % and the damping rate d =
1.308 s−1 ± 2.9 %. Using these data for solving the characteristic equation numerically,
we obtain the pair (η0, λ2)= (0.043 Pa s± 1.64 %, 0.384× 10−3 s± 5.9 %). Equations
(4.7) and (4.8) yield (η0, λ2) = (0.04265 Pa s ± 0.54 %, 0.4285 × 10−3 s ± 3 %). The
viscosity η0 agrees very well with the value in table 1 measured as the first Newtonian
plateau viscosity with a shear rheometer at shear rates below 1 s−1. The deformation
retardation time obtained is two orders of magnitude below the stress relaxation time,
which is reasonable for flexible macromolecules such as the present ones.

A set of deformation retardation times of the three aqueous polymer solutions
in table 1 is shown in figure 15, where values obtained as solutions of the
characteristic equation (2.11) are compared with values of the deformation retardation
time λ2G = λ1ηs/η0 from the Giesekus model. In the calculation of λ2G, the value
of the solvent viscosity used was 1 mPa s, and for η0 the values from table 1
were taken. Although these data should be regarded as a first set of results, the
values show clearly that the usual practice in simulations of viscoelastic flows to
assume values of the ratio λ2/λ1 between 1/10 and 1/8 may miss the correct value
substantially. Furthermore, a comparison of the measured values of λ2 with the values
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predicted by the linear limit of the Giesekus model yields strong deviations, the ratios
λ2G/λ2 ranging between 0.5 and 6. The deviations are smaller for the hydrolysed
rigid polymer than for the non-ionic flexible one, and increase with the polymer
concentration in the solution. In turn, solving the characteristic equation (2.11) of
the drop using the deformation retardation time λ2G yields an oscillation frequency
deviating from the measured value by less than 5 %, while the damping rate is missed
by more than 280 %, which cannot be explained by inaccuracies of our measured data.
This finding indicates clearly the need for the measured data of λ2 and their value in
characterizing the molecular influences on the deformation retardation behaviour of the
solution. Since the mechanical flexibility of the macromolecules, which is influenced
by the distribution of electrical charge on the molecules and the length of Kuhn
segments, may differ strongly between ionic and non-ionic polymers and depend on
the degree of hydrolysation of the molecules, a method for determining experimentally
the deformation retardation time of the polymers in the solution is definitely needed.
Work is under way to establish this method for determining deformation retardation
times of polymers in solutions by an evaluation of damped drop oscillations.

5. Conclusions
In this study we analyse linear oscillations of viscoelastic drops. The damping

rate as well as the oscillation frequency are found as solutions of the characteristic
equation of the drop depending on the viscous and capillary liquid behaviour and
the stress relaxation and deformation retardation time scales involved in the linearized
constitutive rheological equation. An analysis of the characteristic equation shows that
linear viscoelastic drop oscillations exhibit behaviours caused by the viscoelastic time
scales, which lead to substantial differences from the Newtonian behaviour. Oscillation
frequencies may be greater than the Rayleigh value, and the restoring force may be
either capillary or elastic.

The characteristic equation suggests that damped viscoelastic drop oscillations may
be used to determine the deformation retardation time λ2 and the dynamic viscosity
η0 in the Jeffreys law from the measured oscillation frequency and damping rate. The
accuracy of the frequency and damping rate measurement required for this purpose is
below 1 %. Work is under way to establish this technique as a standard for measuring
the polymeric time scale λ2, which is to date difficult to obtain for polymer solutions.
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