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We investigate the entrainment of liquid films on a partially wetting plate vertically
withdrawn from a reservoir of viscous liquid using a combination of diffuse-
interface numerical simulation and lubrication analysis. So far available theoretical
investigations were commonly conducted by focusing on separate parameter regions,
and a complete description of the flow regimes with increasing plate speed is still
missing. By solving the full Stokes equations, we present a complete scenario of
film transition in the presence of moving contact line. With increasing plate speed,
we identify numerically four successive flow regimes in terms of the interfacial
morphologies: (1) a stationary meniscus, (2) a speed-independent thick film connected
to the liquid bath through a stationary dimple, (3) coexistence of a thick film and the
classical Landau–Levich–Derjaguin (LLD) film connected by a propagating capillary
shock and (4) a film with a monotonically varying thickness. The characteristics of
the film profiles in different regions of the interfaces are analysed with lubrication
theory as applicable, and satisfactory agreements with the numerical results are
obtained. In particular, we confirm that the onset of film deposition occurs at a
vanishing apparent contact angle, consistent with the predictions of lubrication theory.
Numerical results suggest that the critical capillary number for the onset of film
deposition is smaller than that for the onset of LLD film despite the fact that it
is higher than the experimentally observed one, showing that the thick film can be
realized in the two-dimensional model. We also demonstrated that the LLD film is
triggered by the bifurcation of the stationary dimple, which is found to admit multiple
branches of stable and unstable solutions.

Key words: capillary flows, contact lines, thin films

1. Introduction
The deposition of a liquid layer on a solid substrate is widely encountered in a

variety of industrial processes, such as coating and painting (Weinstein & Ruschak

† Email address for correspondence: gaopeng@ustc.edu.cn
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2004). This can be realized by imposing a relative movement between the solid and
the liquid interface. Among others, one of the simplest setups for film deposition is the
so-called dip coating, in which a solid plate is withdrawn from a liquid reservoir with
velocity U, giving rise to a thin film of uniform thickness. For a Newtonian liquid
with viscosity µ and surface tension σ , the dip-coating problem is governed by the
balance between the viscous and capillary forces, which is measured by the capillary
number Ca = µU/σ . Specifically, Landau, Levich and Derjaguin (LLD) proposed a
celebrated relation, referred to as the LLD law, to relate the film thickness hL and Ca,

hL = 0.946`cCa2/3, (1.1)

where `c is the capillary length (Landau & Levich 1942; Derjaguin 1943). The
LLD law corresponds to the small-Ca asymptotics of the film deposition, and is
generally believed to be valid for Ca. 0.01 according to a series of experimental and
numerical tests (see Ruschak 1985, and references therein). In addition, the liquid is
assumed to be completely wetting and there is no three-phase contact line. The film
deposition process on a partially wetting plate, on the other hand, can exhibit much
more complicated behaviours, mostly due to the presence of moving contact lines.

In the dynamic wetting with a finite contact angle, it is well known that the liquid
can only be entrained when the relative speed between the contact line and the
solid is beyond a threshold (Blake & Ruschak 1979; Petrov & Sedev 1985; Quéré
1991; Sedev & Petrov 1991; Hocking 2001; Snoeijer et al. 2006; Delon et al. 2008;
Snoeijer & Andreotti 2013). Specifically, in the dip-coating geometry, there exists a
critical capillary number, below which a raised but stationary contact line relative
to the reservoir can be sustained. Otherwise, the contact line keeps moving when
the plate speed is large, leading to the deposition of a liquid film on the plate. The
determination of the critical speed for this dynamic wetting transition from dry plate
to film deposition is not trivial because of the multiscale and nonlinear features
of moving contact lines (Voinov 1976; Cox 1986). Compared with solving the full
hydrodynamic equations, it is more convenient to deal with dynamic wetting in the
framework of lubrication theory (Oron, Davis & Bankoff 1997). Remarkable progress
was made by Eggers (2004, 2005), who elucidated quantitatively how the contact-line
displacement depends on the withdrawal speed when coating an inclined plate. More
importantly, Eggers derived an analytical expression of the critical speed, which is
related to both the microscopic behaviour of the contact line and the macroscopic
geometry. As numerically shown by Snoeijer et al. (2007), the critical point for
film deposition is associated with a saddle-node bifurcation of stable and unstable
meniscus solutions, and the menisci that can be physically realized is actually one
stable branch of a more complete family of solutions. Interestingly, Snoeijer et al.
(2007) also identified a series of bifurcations around a capillary number smaller than
the critical one. The behaviour of the unstable solutions was analytically interpreted
by Chan, Snoeijer & Eggers (2012), who also presented an explicit expression for
the critical point of a vertical plate by extending the work of Eggers (2005). Details
of the bifurcation curves for inclined plate were recently studied by Galvagno et al.
(2014) and Tseluiko, Galvagno & Thiele (2014), who also found more continuous
and discontinuous transitions of the film solutions.

In addition to the critical capillary number, the apparent contact angle is another
important quantity to characterize the wetting transition. It is defined based on
the macroscopic interfacial profiles and therefore more convenient to be observed.
Derjaguin & Levi (1964) first proposed that the onset of the film deposition occurs
when the apparent contact angle vanishes. In this way, the macroscopic meniscus at
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the threshold behaves as that of a perfectly wetting fluid. This criterion was confirmed
by the lubrication theory of Eggers (2004, 2005), Snoeijer et al. (2007) and Chan
et al. (2012), who also demonstrated that the critical capillary number corresponds to
a bifurcation point of the stationary meniscus solution. In the experiments, however,
controversial scenarios have been reported. While Sedev & Petrov (1991) indeed
found a zero apparent contact angle at the transition for the dewetting on a fibre, the
experiments for a plate with finite width showed that the film deposition occurs at a
capillary number well below the bifurcation point predicted by the lubrication theory,
thus corresponding to a finite apparent contact angle (Snoeijer et al. 2006; Delon
et al. 2008). The mechanism of this precritical transition remains unclear.

Owing to the influences of the contact line, the entrained film beyond the critical
capillary number is neither completely distributed over the plate nor of uniform
thickness. On the one hand, the film admits a trapezoidal or triangular shape, which
is characterized by the presence of inclined contact lines (Blake & Ruschak 1979;
Petrov & Sedev 1985; Snoeijer et al. 2006; Delon et al. 2008). Similar contact-line
inclination was observed in the context of sliding drops (Podgorski, Flesselles &
Limat 2001; Le Grand, Daerr & Limat 2005; Rio et al. 2005). The inclination
is an effective way to reduce the normal speed of the contact line relative to the
plate, which is believed to be constrained by a maximum. Blake & Ruschak (1979)
postulated that this normal speed remains a constant, irrespective of the inclination
angle. As demonstrated in our recent work (Gao, Li & Lu 2015), the constant-speed
assumption was only valid up to a logarithmic correction, and a significant reduction
of the contact-line speed was predicted for large inclination angles. On the other hand,
available experiments demonstrated that the film thickness might not be unique. In
addition to the LLD film, there exists a region close to the contact line that displays
a ridge, whose thickness does not follow the LLD law (1.1) but is fully determined
by the physics of the contact line (Snoeijer et al. 2006). In a later work, Snoeijer
et al. (2008) showed that the LLD film may be absent when the capillary number
is close to the critical value; the plate was instead coated by a thick film, which is
again determined by the contact line. The thick film is connected to the liquid bath
via a dimple, which disappears at large Ca, leading to the emergence of the LLD
film. The behaviour of the dimple–LLD film transition remains to be further studied.

In spite of numerous theoretical and experimental investigations of the film
dynamics on a partially wetting plate in dip coating, there is much less numerical
work devoted to directly solving the Navier–Stokes equations. Since most of previous
theoretical work relies on the lubrication approximation, it is important to use direct
numerical simulation to verify the accuracy of the theoretical analysis, especially
for the cases in which the interfacial slope is not small. However, difficulties are
encountered in the numerical simulation of film dynamics in dip coating. The primary
challenge is to simultaneously resolve the thin film and the moving contact line. As
is well known, the latter together with the no-slip boundary condition give rise to a
viscous stress singularity at the contact line (Huh & Scriven 1971; Dussan & Davis
1974), where a cutoff or an effective slip should be implemented. To the best of the
authors’ knowledge, the only numerical investigation of the contact-line dynamics in
the dip-coating geometry was performed by Srivastava et al. (2013) using the lattice
Boltzmann method. However, they only considered the subcritical regime where the
menisci remain stationary and no film is entrained.

In this paper, we perform a systematic study of dip coating for a partially wetting
plate by means of numerical simulation and theoretical analysis. A diffuse-interface
method was employed to handle the interface deformation and the moving contact line,
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FIGURE 1. Sketch of the dip-coating geometry and the computational domain.

and the full hydrodynamic equations were solved via a finite-element method with
adaptive meshing. The purpose of this work is to provide a complete description of
the flow regimes with increasing plate speed and a comprehensive numerical validation
of previous theoretical and experimental work. In particular, we show that the onset
of film deposition occurs when the apparent contact angle vanishes, confirming the
predictions of lubrication theory. We also explore the transition from a thick film to
a configuration with two film thicknesses.

2. Governing equations and methodology

We study the dynamics of forced wetting transition induced by withdrawing
a vertical plate from a bath filled with partially wetting liquid, as schematically
shown in figure 1. Since the contact line is receding with respect to the plate,
the influence of air can be safely neglected. This is in contrast to the plunging
case, which is characterized by advancing contact lines and the presence of air is
crucial to the dynamic wetting transition (Marchand et al. 2012; Chan et al. 2013;
Vandre, Carvalho & Kumar 2013). Accordingly, previous theoretical work on forced
dewetting omitted the air effect and considered the problem as a single-phase flow
with a free surface (Eggers 2004, 2005; Snoeijer et al. 2006, 2008). In the present
simulations, it is convenient to employ a stratified two-phase model, and both the
air and the liquid phases are assumed to be incompressible and Newtonian. We use
a two-dimensional frame of reference, in which the x- and y-axes coincide with
the horizontal interface and the upward direction along the plate, respectively. The
problem was investigated numerically by a diffuse-interface finite-element method
and theoretically by lubrication analysis.

2.1. Diffuse-interface method
A diffuse-interface method coupled with the Cahn–Hilliard model was employed
to handle the deformation of the air–liquid interface and the moving contact line
(Jacqmin 2000; Qian, Wang & Sheng 2006; Ding & Spelt 2007; Yue, Zhou & Feng
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2010). A phase-field variable φ was introduced such that φ= 1 and −1 in the bulk of
the liquid and the air, respectively. The interface is characterized by a small thickness
ε, across which a steep yet continuous variation of φ occurs. The density ρ and
viscosity µ of the mixed fluid are given by

ρ = 1
2(1+ φ)ρ1 + 1

2(1− φ)ρ2, (2.1)

µ= 1
2(1+ φ)µ1 + 1

2(1− φ)µ2, (2.2)

where the subscripts 1 and 2 stand for the liquid and the air, respectively. In typical
experiments, the viscosity of the liquid (typically silicone oil) is large and the plate
speed is low such that the inertial effect is negligible (e.g. Snoeijer et al. 2006).
Therefore, the coupled fields of velocity v = (u, v), pressure p and the phase field φ
are governed by the Stokes and Cahn–Hilliard equations

∇ · v = 0, (2.3)
−∇p+µ∇2v − ρg j +G∇φ = 0, (2.4)

∂φ

∂t
+ v · ∇φ = γ∇2G, (2.5)

where G = Λ[−∇2φ + (φ2 − 1)φ/ε2] is the chemical potential; Λ is the density of
the mixing energy, related to the interfacial tension σ through σ = 2

√
2Λ/3ε in the

limit of sharp interfaces (Yue et al. 2004). In the momentum equation (2.4), g is
the gravitational acceleration and j denotes the upward unit vector; the last term
represents the contribution of the interfacial force, which acts within the diffuse
interface and directs normal to it. The Cahn–Hilliard equation (2.5) describes the
advection and diffusion of the phase field φ, with γ the mobility. The instantaneous
position of the interface can be extracted by the contour φ = 0.

The creeping flow induced by the plate was investigated in a two-dimensional
rectangular domain as shown by the dashed line in figure 1, and boundary conditions
are required for both the velocity v and the phase field φ. The left boundary is the
solid plate that moves upward with a speed U. The right boundary is also specified as
a wall that remains at rest. We use the no-slip and no-penetration boundary conditions
at both walls. Note that the well-known contact-line singularity (Huh & Scriven 1971;
Dussan & Davis 1974) is circumvented by the Cahn–Hilliard diffusion, which drives
the relative motion between the contact line and the plate. At the bottom, we impose
a parabolic profile of the vertical velocity with zero net flux that is consistent with the
velocities of two lateral walls. The upper boundary is open and a stress-free condition
is used. In addition, two boundary conditions are required for the phase field φ. The
first is n · ∇G= 0, where n is the unit normal vector pointing outward; this condition
indicates that there is no flux of φ due to diffusion across the boundaries. The second
condition corresponds to a local equilibrium of φ and reads

Λn · ∇φ =
{−f ′w(φ), on the moving plate,

0, elsewhere. (2.6)

Here fw(φ) = (σφ(φ2 − 3) cos θ)/4 is the diffuse-interface representation of the wall
free energy, shifted by a reference energy that is irrelevant to the solutions (Jacqmin
2000; Yue et al. 2010). This condition ensures that the interface and the moving wall
intersect at an angle θ , which is identified as the receding contact angle measured
in the lower fluid, since the contact line is always receding relative to the plate.
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The interface also intersects the right wall, which is further specified to be neutrally
wetting, i.e. the contact angle is 90◦ as also predicted by (2.6), such that the interface
far from the left plate remains horizontally flat. Note that no boundary conditions are
needed at the fluid–fluid interface.

The presence of gravity introduces a capillary length `c=√σ/(ρ1 − ρ2)g, typically
1 mm, which naturally serves as the characteristic length scale of the problem. The
distance between the two walls is W = 5`c such that the right wall only plays a minor
role in the wetting dynamics at the moving plate, because the perturbations induced
by the latter decay exponentially with distance (deGennes, Brochard-Wyart & Quéré
2004). The height of the computational domain is H= 30`c, which is long enough to
resolve various structures of the entrained film. Initially, the interface is horizontally
flat and locates 10`c above the lower boundary of the domain. One can alternatively
use the analytical profile of the equilibrium interface for a stationary plate as the initial
condition (de Gennes et al. 2004), but this hardly affects the results discussed below.
In the following, all lengths are scaled with the capillary length `c.

An important purpose is to study the flow behaviours with increasing plate speed.
The governing dimensionless number is the capillary number Ca = µ1U/σ , which
measures the strength of the viscous force to surface tension. The contact angle
was representatively selected as θ = 51.5◦ throughout the paper, consistent with the
value reported in the experiments of Snoeijer et al. (2006) and Delon et al. (2008);
a different value of θ only modifies the results quantitatively and does not change
the qualitative flow scenario. We fixed ρ2 = 0, such that gravity only acts in the
lower liquid, and µ2 = µ1/50. In the diffuse-interface method, two additional length
scales are involved: the interface thickness ε and a diffusion length

√
γµ1, or in

dimensionless form, the Cahn number Cn = ε/`c and S = √γµ1/`c, respectively.
These parameters should be carefully selected to obtain physically significant results,
especially for problems in the presence of moving contact lines (Yue et al. 2010).
First, the Cahn number Cn should be sufficiently small so that the macroscopic
flow behaviours of interest are independent of the interfacial thickness. Second, the
diffusion length is one of the microscopic length scales commonly encountered in
various contact-line models (Blake 2006; Bonn et al. 2009); others include the slip
length, the precursor-film thickness, etc. These microscopic lengths are typically of
nanometer scale, much smaller than the minimum resolution of available numerical
tools (Sui, Ding & Spelt 2014). Therefore, care should be taken when comparing
the numerical results with the experimental data quantitatively. The present results
were obtained using Cn = 5 × 10−3 and S = 5 × 10−3. Yue et al. (2010) introduced
an effective viscosity µe = √µ1µ2 and defined S∗ = √γµe/`c, which takes the
value 1.88 × 10−3. They proposed a criterion, Cn < 4S∗, for the convergence to the
sharp-interface limit, which is obviously satisfied by the present parameters.

The governing equations were solved numerically using the Galerkin finite-element
method, which is described in detail by Yue et al. (2006) and Zhou, Yue & Feng
(2010). The numerical algorithm has been previously employed in simulations of an
extensive range of two-phase flows involving moving contact lines (e.g. Gao & Feng
2011a,b; Ahmadlouydarab & Feng 2014). For completeness, we only mention the key
ingredients of the numerical method. The mesh consists of unstructured triangular
elements, which are adaptively refined near the interface to resolve the steep variation
of φ and also in the vicinity of the moving plate to capture the thin film. A typical
mesh has an element size of approximately 0.5ε at the interface, which is small
enough to ensure the numerical accuracy. The adaptive meshing allows to handle
the long interface, as encountered for the film deposition, with an affordable cost. A
second-order fully implicit scheme was used for the time-stepping, and the discretized
nonlinear system was solved via Newton iterations.
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2.2. Lubrication theory
To gain more insight into the film transition, the interface profiles were investigated
in the framework of lubrication theory (Oron et al. 1997). Accordingly, the film
thickness h(y, t) is governed by

∂h
∂t
+ ∂q
∂y
= 0, (2.7)

∂κ

∂y
− 1+ 3

h(h+ 3λ)

(
Ca− q

h

)
= 0, (2.8)

where q= ∫ h
0 v dx is the volume flow rate of the liquid through the film, and

κ = ∂2h/∂y2

[1+ (∂h/∂y)2]3/2 (2.9)

denotes the interfacial curvature. Note that we have maintained the full form of
the curvature, instead of the simplified form ∂2h/∂y2, to ensure accuracy for the
situation of finite interfacial slopes (Snoeijer 2006; Snoeijer et al. 2007). To resolve
the singularity of the viscous force at the contact line, a Navier slip model was
employed and λ is the slip length scaled with the capillary length.

As will be shown in the following section, the film dynamics can be analysed in
a piecewise manner, and each film structure maintains a steady morphology which
is more conveniently studied by introducing an appropriate moving frame. In this
way, the flux q either vanishes or remains a finite constant, and only (2.8), which
simply reflects the balance of capillarity, gravity and viscous force, is required. This
equation should be supplemented by appropriate boundary conditions depending on
the concerned region of film, as discussed later.

3. Results and discussion
3.1. Overview of the flow regimes

We begin with an overview of the typical flow regimes characterized by different
interfacial morphologies, and will elaborate each regime in more detail in the
following subsections. Depending on the governing parameter Ca, there are four
successive interfacial configurations that can be observed. For convenience, the
corresponding flow regimes are referred to as I to IV, as illustrated in figure 2(a–d).
When the speed of the plate is low, the contact line is raised to a new equilibrium
location. Correspondingly, the flow evolves into a steady state with a stationary
meniscus, as shown in figure 2(a). If the plate speed is increased above a threshold
(Ca > Cac,1 = 0.0243), a stationary contact line cannot be sustained; it continues
moving upwards, leading to the deposition of a liquid film on the plate. Interestingly,
the dynamic wetting transition does not immediately cause the occurrence of the
classical LLD film, but gives rise to a film whose thickness is larger than that of
the LLD film expected at the same Ca. In fact, the thickness of this new film is
almost independent of Ca (see figure 3). The film connects to the bath through a
dimple, as shown in figure 2(b). While the length of the thick film keeps growing,
the shape of the dimple hardly varies with time. Yet above a second critical speed
(Ca>Cac,2=0.029), the dimple in regime II becomes unstable and is transformed into
a thinner film, which will be identified as the LLD film, while the upper thick film
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FIGURE 2. Interfacial morphologies for typical values of Ca. (a) Regime I: Ca= 0.024,
stationary meniscus. (b) Regime II: Ca = 0.028, thick film. (c) Regime III: Ca = 0.035,
coexistence of a thick film and a thin film, connected with a travelling capillary shock.
(d) Regime IV: Ca= 0.17, a film with monotonic thickness. The film solutions in (b–d)
are snapshots of unsteady solutions, corresponding to t= 1100, 603 and 63, respectively;
the contact line eventually moves outside the domain. The interfaces are magnified in the
horizontal directions to show the details.

Ca
0 0.06 0.12 0.18

0.1
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III IVII

h

I

FIGURE 3. (Colour online) Characteristic thickness of the thick film hT , the dimple hD
and the LLD film hL, as a function of Ca. The thicknesses hT and hL are measured in the
flat region of the films, and hD is measured at the minimum of the dimple. The dashed
line indicates the mean value of hT , 0.242. The grey bars mark the flow regimes II and IV.

is almost the same as the previous one. As will be discussed in § 3.6, the transition
from the dimple to the LLD film is not simply a process of extending the dimple
length, but is associated with a bifurcation. The thick and thin films in regime III
are connected by an interfacial shock smoothed by capillarity (figure 2c). Both films
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as well as the capillary shock propagate upwards and eventually the plated is coated
by the LLD film in this case. At even higher plate speed (Ca > Cac,3 ≈ 0.16), the
capillary shock never appears, and a film with monotonic variation of the thickness
develops in regime IV, as illustrated in figure 2(d). As the LLD film thickness
increases with Ca, this transition can be thought of as the thin film of figure 2(c)
reaching the thickness of the thick film, thereby eliminating the transient capillary
shock. Note that the film structures in regimes II and III were also observed in the
experiments of Snoeijer et al. (2006, 2008), while here they are realized numerically
for the first time.

To present a more quantitative description of the interface structure, the characteristic
thicknesses of the thick film, the LLD film and the dimple are plotted in figure 3 as
functions of Ca. The thicknesses of the thick film adjacent to the contact line and
the LLD film, denoted by hT and hL, respectively, are measured in the region where
they are flat as illustrated in figure 2. The thickness of the dimple, hD, is measured at
the local minimum (see figure 2b). As shown in figure 3, the thickness of the upper
film is almost a constant in both regimes, with hT ≈ 0.242 as indicated by the dashed
line. This speed-independence of the thick film is quite different from the dimple and
the LLD film, which exhibit much stronger dependencies on Ca. Specifically, when
increasing the plate speed, the minimum point of the dimple approaches the plate in
regime II, and the LLD film is thickened in regime III. At the boundary between
regimes II and III, our numerical results show a significant jump from hD to hL, which
precludes the suspicion that the transition occurs through a continuous variation of
the interfacial shape from the dimple to the flat LLD film. This discontinuity is not
an artefact due to insufficient numerical resolution, but is attributed to a saddle-node
bifurcation at the transition, which will be justified below.

3.2. Stationary meniscus
At low speeds of withdrawal, Ca < Cac,1 = 0.0243, the interface evolves into a
stationary meniscus after a transient relaxation process, and no liquid films are
entrained on the plate. The elevation of the contact line over the liquid bath, 1ycl, is
shown in figure 4 as a function of Ca. Note that the film deposition leads to a weak
descending of the interface away from the moving plate since the total volume of
the liquid is a constant; this effect has been accounted for such that 1ycl is slightly
different from the real position of the contact line. For comparison, the asymptotic
results of Chan et al. (2012) based on the lubrication theory are also presented
as the continuous curve. Since Ca � 1, the viscous diffusion primarily occurs in
a microscopic length scale close to the contact line; the rest of the meniscus is
determined by the balance between gravity and capillarity, and admits an analytical
solution (Landau & Lifshitz 1984; de Gennes et al. 2004), according to which the
contact-line position 1ycl is related to the apparent contact angle θap by

1ycl =
√

2(1− sin θap). (3.1)

In the lubrication analysis of Chan et al. (2012), θap has the form

θap =−22/3(3Ca)1/3Ai′(s1)

Ai(s1)
, (3.2)

and s1 is obtained by solving a nonlinear equation, which represents the matching
condition of the inner solution close to the contact line (Eggers 2004, 2005) and the
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FIGURE 4. (Colour online) Elevation of the contact line over the liquid, 1ycl, as a
function of Ca. The circles represent the results of the diffuse-interface simulations, and
the continuous curve denotes the results of the lubrication theory of Chan et al. (2012),
i.e. (3.1) and (3.2), with the slip length λ= 2.8× 10−3.

outer solution of the meniscus. Specifically, Chan et al. (2012) demonstrated that the
onset of dynamic wetting transition occurs at θap= 0, corresponding to 1ycl=

√
2 and

a critical capillary number

Cac = θ
3

9

[
ln
(

(3Cac)
1/3θ

25/6 × 3πAi2
maxλ

)]−1

, (3.3)

where Aimax = 0.53565 . . . is the maximum of the Airy function. We have chosen
the slip length λ= 2.8× 10−3 such that the critical capillary number (3.3) coincides
with the numerical value Cac,1 = 0.0243. This value of slip length is of course not
necessarily identical to the diffusion length scale S∗, due to the difference in the
contact-line models; they are of the same order as expected. Note that both S∗ and λ
are much higher than the real value of the microscopic length, typically of O(10−5),
leading to an overestimation of the critical capillary number as compared with the
experimentally observed value, 0.0091, reported by Snoeijer et al. (2006). We note
that the unrealistic microscopic length does not change the qualitative flow regimes
discussed above, but only affects qualitatively the capillary number for them to be
observed.

As can be seen in figure 4, the agreement between the results of the diffuse-
interface simulations and the lubrication theory of Chan et al. (2012) is quite good,
though the lubrication results were developed under the assumptions of small θ
and θap, and in the limit of λ → 0, which are obviously violated by the present
parameters. Compared with the meniscus adjacent to a plate at rest, i.e. Ca= 0, the
interface with a moving plate is characterized by a higher contact line and hence a
smaller apparent contact angle θap. The results in figure 4 are actually one branch
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of the steady solutions of the Stokes equations, and the curve is only the lower
branch of a more complete bifurcation curve (Snoeijer et al. 2007; Chan et al. 2012).
Theoretically, there exist an upper branch of solutions, which meet the lower branch
at the critical capillary number Cac,1, Thus, Cac,1 corresponds to a bifurcation point
(Snoeijer et al. 2007; Chan et al. 2012; Galvagno et al. 2014). These solutions are
unstable and cannot be realized in our numerical simulations.

The maximum height that the stationary menisci can attain at the threshold is 1.51,
a value slightly larger than

√
2. This difference is due to the large diffusion length

used in the simulations, where the viscous force is not localized in the vicinity of
the contact line, which violates the assumption of Chan et al. (2012). In this case,
it is no longer appropriate to use (3.1) to defined an apparent contact angle, which
would be negative. In spite of the slight discrepancy, it is reasonable to conjecture
from our simulations that the onset of wetting transition for real systems occurs at
θap = 0, which thus supports the criterion predicted by the asymptotic theory (Eggers
2004, 2005; Chan et al. 2012). There is an experimental controversy, however. The
apparent contact angle was indeed found to vanish at the threshold when withdrawing
a glass cylinder (Sedev & Petrov 1991). On a flat plate, on the other hand, Snoeijer
et al. (2006) and Delon et al. (2008) found that the maximum rise of the contact line
on a flat plate is about 1.1, a value significantly smaller than

√
2, corresponding to

a finite θap; the wetting transition occurs at a smaller capillary number Ca∗, which
happens to be the dimensionless speed of a receding film with respect to the plate
(Snoeijer et al. 2007; Galvagno et al. 2014), as will also be discussed below. This
precritical transition may be due to the pinning of the contact line at the edges of the
plate, which is absent in an axisymmetric setup. Therefore, the contact line would be
tilted because of the pinning, which cannot be handled by the present two-dimensional
simulations.

Whether θap vanishes or not at the transition depends on its definition. Maleki et al.
(2007) found, both theoretically and experimentally, that θap remains finite when it is
measured as the slope of the meniscus at the deflection point, while a vanishing θap
can be attained when it is defined by fitting the whole profile or the height of the
meniscus as in (3.1). The present work follows the latter definition.

3.3. Dynamic process of film deposition in regimes II and III
An increase of Ca above the threshold Cac,1 leads to the instability of the static
menisci and the entrainment of liquid films on the plate. Typical processes of film
evolution are depicted in figures 5 and 6 for Ca= 0.029 and 0.035, corresponding to
regimes II and III, respectively. The contours of the vertical velocity component are
shown in the lower fluid, with the variation across the film indicating the strength of
the gravity-induced drainage flow. The flow in the upper fluid has a negligible effect
on the film dynamics, and is omitted here for clarity. The two values of Ca selected
here are close to the boundary between regimes II and III such that various interfacial
structures can be clearly identified. Note that the film for the capillary number just
above Cac,2 is not easily measured in the experiment, since it would take too long a
distance to develop on a plate of finite length (Snoeijer et al. 2008). Our numerical
simulations do not suffer this constraint and can deal with this parametric region
without any difficulties.

In regimes II and III, the evolution of the interface seems qualitatively similar at
the early stages. The initial elevation of the contact line produces a ridge or bump
behind the contact line, followed by a dimple. After a transient, the ridge evolves into
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FIGURE 5. (Colour online) Time evolution of the interface for Ca= 0.029 in regime II.
(a) Corresponds to t= 200, and the time difference between successive panels is 1t= 200,
where time is scaled by µ1`c/σ and the same dimensionless time is used in the following
figures. The lower fluid is coloured by the value of the vertical velocity v/U to indicate
the gravity-driven flow. The flow in the upper fluid is not shown for clarity.
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FIGURE 6. (Colour online) Same as figure 5 but for Ca = 0.04 in regime III.
(a) Corresponds to t= 50 and the time interval is 1t= 100.

a thick film propagating upwards in both flow regimes. In contrast, the dynamics of
the dimple differs significantly, depending on the capillary number. In regime II, the
dimple eventually relaxes to a static shape, which serves as a connection between the
thick film and the liquid level. In regime III, however, such a static dimple cannot
be sustained. Instead, it evolves towards the traditional LLD film, which connects the
reservoir in a smoother way, as compared with the thick film in regime II. Owing to
the difference in the film thicknesses, the LLD film and the thick film are matched
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FIGURE 7. Time evolution of the vertical position of the contact line and the capillary
shock for Ca=0.029 and 0.04, corresponding to regimes II and III, respectively. The latter
is measured at the point where the thickness of the film is equal to (hT + hL)/2.

by the occurrence of a capillary shock, which also propagates upwards but maintains
a constant profile, as also been experimentally observed by Snoeijer et al. (2006).

It can be seen from figures 5 and 6 that both the contact line and the capillary
shock move upward with a constant speed. This can be more definitely demonstrated
by tracking the vertical position of the contact line and the capillary shock, as shown
in figure 7, where the latter is measured at the location where the film thickness equals
to (hT + hL)/2, corresponding roughly to the middle of the capillary shock. It is clear
that all heights vary linearly with time, except at the early stage of the film deposition,
leading to a well-defined propagation velocity for each interfacial structure.

3.4. Contact-line velocity
The propagation velocity of the contact line, scaled by σ/µ, is shown in figure 8(a)
as a function of Ca. For comparison, the plate velocity is also plotted as the straight
thin line. Consistent with the experiments of Snoeijer et al. (2006), the contact-line
velocity increases linearly with Ca, once the film deposition occurs. Figure 8(b) shows
the velocity of the contact line with respect to the plate, which is independent of Ca
in regimes II and III. This constant velocity, Ca∗ = 0.020± 0.0004, is the dewetting
velocity of the thick film relative to the vertical plate, as also mentioned § 3.2 and
will be further discussed later. Note that the fact Ca∗ is slightly smaller than Cac,1
once again agrees with the lubrication theory of Snoeijer et al. (2007) and Galvagno
et al. (2014). This velocity difference of receding contact lines was also found by
Maleki et al. (2007) in the experiment of withdrawing a solid cylinder, although the
underlying mechanism was not elucidated therein. Since the two capillary numbers
correspond to different interfacial profiles adjacent to the contact line, i.e. a stationary
meniscus and a thick film, the velocity difference is a reflection of the fact that the
dewetting velocity relies not only on the microscopic properties of the contact line,
but also on the macroscopic flow.
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FIGURE 8. (a) Variation of the propagation velocities of the contact line and the capillary
shock as a function of Ca. The plate velocity is also shown for comparison. (b) Contact-
line velocity with respect to the plate versus Ca. All velocities are scaled by σ/µ.

In the experiment of Snoeijer et al. (2006), the onset of film deposition was found
to occur at Ca = Ca∗, where the contact-line velocity in the reference frame of the
reservoir, Ca − Ca∗, vanishes; thus, the contact-line velocity increases continuously
from zero in regime I (see figure 5 in Snoeijer et al. (2006)). In contrast, our
numerical results show that the dynamic wetting transition occurs at Ca = Cac,1,
corresponding to a small but finite contact-line velocity Cac,1−Ca∗. This is identified
as the minimum velocity of the contact line when Ca > Cac,1 such that the film is
formed. As a result, the curve for the contact-line velocity in figure 8(a) does not
start from zero but a finite value Cac,1 − Ca∗ at the boundary between regimes I
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and II. Correspondingly, at the boundary between regimes I and II, the relative
receding velocity of the contact line also exhibits a jump, i.e. Cac,1 −Ca∗, as shown
in figure 8(b).

3.5. Thick film
The occurrence of the thick films in regimes II and III is obviously associated with the
presence of the moving contact line. Similar films with a contact line were also found
on an inclined plate, driven by either plate withdrawal (Hocking 2001) or Marangoni
forces (Bertozzi et al. 1998; Münch & Evans 2005). Since their thickness is larger
than the LLD film, the gravity-induced drainage flow is much more significant than
that inside the LLD film, especially for small capillary numbers (see figure 6). In
regime II, the drainage is so strong that the velocity at the film surface can even be
negative, corresponding to a locally downward flow, as can be seen in figure 5.

The thick film can be more conveniently studied in a frame of reference moving
with the contact line, in which the interfacial profile retains a steady shape and the
effective velocity of the plate reduces to Ca∗. We have κ = κ(y) and q= 0, and the
lubrication equation (2.8) reduces to

κ ′ = 1− 3Ca∗

h(h+ 3λ)
, (3.4)

where a prime denotes the differentiation with respect to y. For λ� 1, (3.4) admits a
particular solution of a flat film with thickness

hT =
√

3Ca∗, (3.5)

which is independent of the contact-line details, e.g. the contact angle and the slip
length, although each separate value of hT and Ca∗ does depend on them (Snoeijer
et al. 2006). This relation is confirmed by the computed values hT = 0.242 and
Ca∗ = 0.020. The lubrication equation (3.4) is a particular form of the equation
for films with inclined contact lines, which was treated in our previous work (Gao
et al. 2015). Adopting a similar shooting procedure of Gao et al. (2015), we have
numerically solved (3.4) to obtain the interfacial profile of the thick film, which
approaches the thickness hT far from the contact line and additionally satisfies
the contact angle condition, h′ = −tan θ . As shown in figure 9, the interfacial
profile calculated by the diffuse-interface simulations exhibits an excellent agreement
with the lubrication theory. Alternatively, our numerical results in turn confirms the
validity of the lubrication theory at large contact angles, which is only trustable to
be quantitative when retaining the full form of the curvature (2.9) in the lubrication
equation (Snoeijer 2006; Snoeijer et al. 2007).

3.6. Dimple
As will be shown below, the behaviour of the dimple solution in regime II plays a
crucial role in the formation of the LLD film. To elucidate the transition between
regimes II and III, we further study the dimple via a lubrication analysis. We focus on
the long-time limit here and thus the dimple maintains a steady shape. In the reference
frame of the reservoir, the lubrication equation has the form

κ ′ − 1+ 3
h2

(
Ca− q

h

)
= 0, (3.6)
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FIGURE 9. (Colour online) Comparison of the interfacial profile for the thick film (solid
curve) with the lubrication theory (dashed curve). The curves in the rectangular domain
are enlarged in the inset to show the difference.

where the slippage is omitted due to the absence of moving contact line in this region.
For small values of Ca, Snoeijer et al. (2008) recognized a generalized family of
asymptotic solutions of the dimple profile, which are not necessarily connected to
the thick film. They found the solutions are parameterized by a reduced flow rate
Q≡ qCa−5/3 through the film and the dimple only exits for Q< 1.376, beyond which
the transition to the LLD film occurs. This criterion, however, cannot be used to
predict Cac,2 for the present parameters. At the flat region of the film after sufficient
evolution (asymptotically as y→+∞), h= hT and κ = 0, yielding

q= hT
(
Ca− 1

3 h2
T

)
, (3.7)

which is positive since Ca>Ca∗= h2
T/3. For a given hT , it is trivial to prove that the

maximum of Q is Qmax= 0.678h−1/3
T . As a result, the flux 1.376 cannot be reached for

the present film thickness hT = 0.242, which gives Qmax= 1.09, and thus no transition
to the LLD film can occur.

In order to give a more quantitative description of the transition from the dimple to
the LLD film, we instead consider the dimple as well as the adjacent interfaces as a
whole. More specifically, we seek solutions that approach the liquid bath below and
a flat thick film above, corresponding to the boundary conditions

h(y)=
{

ln(c/y), as y→ 0
hT, as y→+∞. (3.8)

The condition as y→ 0 is simply an asymptotic solution for the meniscus far from
the plate and c is a free parameter (Snoeijer et al. 2007). A shooting method is used
to solve the lubrication equation (3.6) together with (3.7), and c can be adjusted to
fulfill the boundary condition as y→∞.
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FIGURE 10. (Colour online) Bifurcation curves of the dimple solution in terms of (a) hD
and (b) the height of the interfacial minimum yD as functions of Ca, for hT = 0.242.
Stationary solutions only exist for Ca< 0.0302. A sequence of bifurcations occur around
Ca = Ca∗∗ = 0.0281, where the dimple becomes more and more flattened. Results of
diffuse-interface simulations are shown as the squares for comparison. (c) Illustration of
the interfacial profiles at the labelled points.

The stationary solutions of the lubrication theory are depicted in figure 10(a,b) by
plotting the minimum thickness hD, which has also been given in figure 3, and the
corresponding height yD, as functions of Ca. The results compare well with those of
diffuse-interface simulations. Note that the theoretical curve can extend to the range
of capillary number in regime I, where the dimple cannot be generated in simulations
with the present initial conditions. Similar to Snoeijer et al. (2008), the present
theory also predicts the existence of a maximum capillary number, beyond which no
stationary dimple solution can be found and instead a time-dependent interface is
expected. This threshold is thus identified as the transition condition between regimes
II and III. For fixed thickness of the upper film, hT = 0.242, the maximum Ca is
0.030, which is close to the numerical value Cac,2 = 0.029.

The disappearance of the stationary dimple is due to a saddle-point bifurcation
of stable and unstable solutions. In fact, the solution that can be realized by the
diffuse-interface method lies only on one branch of a more complete family of
theoretical solutions. At the maximum Ca, the curves in figure 10(a,b) turn back
toward a branch of solutions characterized by thinner and higher dimples. This branch
is expected to be unstable and cannot be produced by the present diffuse-interface
simulations. Interestingly, the curves further undergo a sequence of bifurcations
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with Ca oscillating around a value Ca∗∗ = 0.0281, as indicated by the dashed line.
An examination of the interfacial profiles shows that the dimple becomes more
and more flattened, and eventually approaches an asymptotically flat thin film with
infinite length (see figure 10c), a scenario also reported by Benilov et al. (2010)
for an inclined plate. On the one hand, this thin film connects to the reservoir in a
monotonic way and is thus identified as the LLD film, with the thickness roughly
estimated as (Ca∗∗)2/3. On the other hand, similar with regime III, the thin and thick
films are connected through a capillary shock, which, however, remains stationary
rather than propagating upwards. In this case, the interface solution does not behave
like a dimple any more, and the minimum interface thickness occurs at the trough
located just under the capillary shock (see figure 10c), with yD diverging. We note
that these solutions with a stationary capillary shock cannot be observed in the
simulations, and do not contradict the numerical results in regime III.

The existence of multiple solutions of steady interfaces for fixed Ca has also been
encountered in forced dynamic wetting transition with moving contact lines (Jacqmin
2004; Snoeijer et al. 2007; Ziegler, Snoeijer & Eggers 2009; Chan et al. 2012; Gao
& Lu 2013). Specifically, it is demonstrated by Snoeijer et al. (2007) and Chan et al.
(2012) that the transition from regimes I to II was also associated with a saddle-node
bifurcation of the solution of the stationary menisci. Indeed, the bifurcation curve
in figure 10(b) looks similar to figure 4 of Snoeijer et al. (2007), although different
interfacial structures are involved. Moreover, another difference here is that the critical
capillary number is straightforwardly determined by the thick film rather than the
contact line, which only plays an implicit role since hD depends on the contact line,
as discussed in the previous subsection.

Although the present theory predicts the presence of the LLD film, the interface
at the threshold is still characterized by a dimple rather than a LLD film, as shown
in the second curve in figure 10(c). The corresponding hD is different from the LLD
thickness hL, leading to a significant discontinuity of the interface thickness in figure 3.
As a result, the transition from regime II to III is not accompanied by a continuous
variation of the interface from the dimple to the LLD film, but a substantial change
of the interfacial structure.

3.7. LLD film
An increase of Ca beyond Cac,2 results in the formation of the classical LLD film in
regime III. We first compare the film thickness hL, reproduced from figure 3, with the
predictions of the LLD law (1.1) in figure 11. It can be seen that the curve of the LLD
law exhibits an overestimation of the film thickness. This is not surprising since (1.1)
is believed to be valid for capillary numbers less than 10−2 (White & Tallmadge 1965;
Spiers, Subbaraman & Wilkinson 1974; Maleki et al. 2011); for the partially wetting
plate considered, the film thickness is comparable with the capillary length, and the
significant draining effect of gravity tends to thin the film. An improvement of the
LLD law was presented by Wilson (1982) and reads

hL = 0.946Ca2/3 − 0.107Ca, (3.9)

which differs from (1.1) by a correction term. As shown in figure 11 as the dash-dot
curve, this relation is better than the LLD law but still over-predicts the numerical
results. In fact, both (1.1) and (3.9) are asymptotic solutions of the lubrication
equation for Ca� 1.
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FIGURE 11. (Colour online) Comparison of the thin film thickness in regime III with the
LLD law (1.1), Wilson’s improvement (3.9) and the present lubrication theory.

Under the lubrication approximations, the interface thickness, h(y), is once again
governed by (3.6) to (3.8), but with hT replace by hL, which is not known a priori. To
obtain a better comparison, the lubrication equation is numerically solved by shooting
from the flat film toward the lower meniscus. The initial condition can be obtained
via a formal linearization of the lubrication equation for small departures from the
flat film, yielding

h≈ hL(1+ ηe−ky), (3.10)

where k= [3(Ca− h2
L)]1/3/hL > 0; the free parameter η measures the amplitude of the

perturbation with 0< η� 1 for the situation of LLD film, and plays no role in the
results presented. For fixed Ca, the film thickness hL is adjusted until the asymptotic
form of the meniscus (3.8) is satisfied. The exact solution of hL as a function of Ca
is shown in figure 11 as the dashed curve, which exhibits a better agreement with
the diffuse-interface simulations. In addition, while the numerical simulations cannot
extend to small values of Ca, the three curves of lubrication theory collapse for
Ca < 10−2, demonstrating the validation range of the LLD law as mentioned in
previous work (e.g. Maleki et al. 2011). Finally, by fitting the numerical data, we
propose a power law

hL = 0.759Ca0.621, (3.11)

which will be used later to predict the velocity of the capillary shock.

3.8. Capillary shock
As shown in figures 6 and 7, the capillary shock connecting the LLD film and the
thick film in regime III propagates upwards linearly with time while maintaining
a fixed shape. This leads to a well-defined velocity, similar with the contact line.
Figure 8(a) also shows the variation of the propagation velocity of the capillary
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shock as a function of Ca, which is smaller than the contact-line velocity. This type
of solution has been well studied by Bertozzi et al. (1998) for a more general case in
the presence of surface tension gradient. For completeness, we compare the numerical
results with the lubrication theory, which admits stationary solutions of the interfacial
thickness in a frame moving with the shock. The lubrication equation now has the
form

κ ′ − 1+ 3
h2

(
1Ca− q

h

)
= 0, (3.12)

where 1Ca=Ca−Cacs with Cacs the capillary number defined using the velocity of
the capillary shock, and the flux can be related to either hT or hL,

q= hT
(
1Ca− 1

3 h2
T

)= hL
(
1Ca− 1

3 h2
L

)
. (3.13)

Accordingly, the velocity of the capillary shock is completely determined by the
thicknesses of the flat films, hT and hL, with

Cacs =Ca−1Ca=Ca− 1
3(h

2
L + hLhT + h2

T), (3.14)

as has also been proposed in Snoeijer et al. (2006). We seek solutions that are
asymptotically flat far from the capillary shock, i.e.

h(y)=
{

hL, as y→−∞
hT, as y→+∞. (3.15)

For given values of hL and hT , the lubrication equation can be numerically solved via
a shooting procedure from the LLD film to the thick one. As the initial condition, the
linearly perturbed solution far below the capillary shock has the asymptotic form of
a wavy interface, i.e.

h(y)≈ hL

[
1+ η1eKy cos(

√
3Ky)+ η2eKy sin(

√
3Ky)

]
as y→−∞, (3.16)

where η1 and η2 are the amplitudes of the two independent components, and

K = (hT − hL)
1/3(hT + 2hL)

1/3

2hL
, (3.17)

which is positive since hT > hL. Note that the values of η1 and η2 only act to shift the
position of the capillary shock because of the translational invariance; the sole degree
of freedom in this problem is the ratio η1/η2, which can be adjusted to fulfill the other
boundary condition at the thick film. Moreover, one can alternatively shoot from the
thick film towards the LLD film, employing a condition similar to (3.16). Obviously,
this procedure would produce the same interfacial structure.

Comparison of diffuse-interface simulation and lubrication theory for the capillary
shock is made in figure 12. Representative interfacial profiles are illustrated in
figure 12(a) for Ca = 0.04, corresponding to hL = 0.103. The two curves exhibit
excellent agreement, for not only the primary structure but also the the small-
amplitude capillary waves. A further comparison of the shock velocity Cacs is
presented in figure 12(b), where the lubrication result is given by (3.14). This
formula should be supplemented by a relation between hL and Ca, e.g. the LLD
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FIGURE 12. (Colour online) (a) Interfacial profiles around the capillary shock obtained
by diffuse-interface simulations for Ca = 0.04 (solid curve) and lubrication theory for
hT = 0.242 and hL= 0.103 (dashed curve). (b) Propagation velocity of the capillary shock,
Cacs, as a function of Ca. The solid curve corresponds to (3.14) with hL given by (3.11).

law (1.1), as used in Snoeijer et al. (2006). However, it is found that the LLD law
will underestimate Cacs owing to the large Ca. Instead, we employed here a more
accurate relation, (3.11), which well predicts the numerical data.

One might infer from figure 12(b) that the transition from regimes II to III occurs
when the velocity of the capillary shock vanishes. We now show that this is not
true because of the bifurcation behaviour of the transition. Using (3.14) together with
(3.11), we have Cacs= 0.001 at Ca=Cac,2= 0.030. This small but still finite velocity
is identified as the minimum velocity of the capillary shock in regime III. In fact,
the stationary capillary shock can only theoretically exist at Ca = Ca∗∗ rather than
Cac,2, as discussed in § 3.6. On the other hand, we can alternatively calculate Ca∗∗
based on the condition of the stationary capillary shock. By setting Cacs= 0 in (3.14)
and using (3.11), it is easy to obtain Ca∗∗ = 0.0286, which is close to the exact
value 0.0281; the slight discrepancy is obviously owing to the inaccuracy of (3.11)
to predict the thickness of the LLD film. Note that the minimum shock velocity can
only be rationalized by lubrication theory, while it is too small to be resolved in our
simulations.

In addition to the minimum velocity, there exists a maximum velocity of the
capillary shock, which is expected at the end of regime III (Ca = Cac,3) where
the shock tends to disappear. According to (3.14), this maximum velocity can be
calculated using hL = hT , leading to Cacs = Cac,3 − h2

T = Cac,3 − 3Ca∗. Accordingly,
the maximum velocity of the capillary shock with respect to the plate is identified as
3Ca∗. Here we have used (3.5) to relate hT to Ca∗.

3.9. Monotonic film
The threshold Cac,3 can be determined by hL = hT = 0.242 together with (3.11),
yielding Cac,3= 0.16, which agrees with the numerical result (see figure 3). For larger
values of Ca, the case of two films connected by a steadily propagating capillary
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FIGURE 13. (Colour online) Time evolution of the interface for Ca= 0.17 in regime IV.
(a) Corresponds to t= 10, and the time difference between successive panels is 1t= 13.
Others are the same as figure 5.

shock would not occur. In fact, it can be proved following Benilov, Benilov & O’Brien
(2009) that the boundary-value problem, (3.12) to (3.15), has no solution when hL>hT .
Instead, it is expected to develop an unsteady rarefaction wave connecting the two
flat films, as mentioned by Hocking (2001) and discussed in more detail by Bertozzi
et al. (1998) and Evans & Münch (2006) in the context of Marangoni-driven films.
As illustrated in figure 13 for Ca = 0.17, the present simulations show that the
interface in regime IV evolves unsteadily and does not exhibit any non-monotonic
behaviour of the film thickness with respect to y during the entire evolution period.
However, the rarefaction wave is weak since the thicknesses of the two films are not
well separated for the parameters considered. The film does tend to be uniform after
sufficiently long time, and eventually develops a LLD-type film at larger Ca.

4. Concluding remarks
We have performed diffuse-interface simulations of film deposition on a partially

wetting plate withdrawn vertically from a reservoir. With increasing Ca, four different
flow regimes were numerically identified based on the interfacial morphologies. When
Ca is less than a threshold Cac,1, there is no film entrainment and the meniscus
remains stationary with a fixed contact line. For Cac,1 < Ca < Cac,2, the plate is
coated by a thick film, which is connected to the reservoir through a dimple, and
the classical LLD film cannot be formed; the thick film is determined by the moving
contact line, with the thickness independent of the plate speed. An increase of
Ca above Cac,2 triggers the transition from the dimple to the LLD film, which is
connected with the downstream thick film by a propagating capillary shock. Finally,
a further increase of Ca above Cac,3 removes the capillary shock, leaving a film
with a monotonic thickness. We thus provided a rather detailed understanding of the
film deposition and transition in dip coating. Specifically, our simulations reproduced
the film structures observed in the experiments of Snoeijer et al. (2006, 2008). The
interfacial profiles in the first three flow regimes can be analysed in a piecewise way,
and comparison with available lubrication theory shows favourable agreements.
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The numerical results indicate that the onset of film deposition occurs when
the apparent contact angle vanishes, confirming the criteria widely accepted for
the dynamic wetting transition of receding contact lines. However, the predicted
critical capillary number for the onset of film deposition, Cac,1, is larger than the
experimentally observed one, Ca∗. This raises the question of whether the thick film
can be realized in a two-dimensional theoretical or numerical model, and the answer
obviously depends on the relative magnitude of Cac,1 and Cac,2. If the former is
larger, the thick film cannot occur and the instability of the meniscus will directly
result in the formation of the LLD film. Our numerical results show the opposite
case with Cac,1 < Cac,2, which still allows the occurrence of the thick film in a
two-dimensional model.

It has been shown by Snoeijer et al. (2007) and Chan et al. (2012) that the coating
transition corresponds to a saddle-node bifurcation of the stationary meniscus. Our
numerical results show that the bifurcation causes the formation of the thick film
rather than the LLD one. Instead, the onset of the LLD film is triggered by a
bifurcation of the dimple solution. Based on lubrication theory, we identified multiple
branches of dimple solutions and a series of bifurcations around Ca∗∗, a capillary
number smaller than Cac,2. The bifurcations of the stationary meniscus and the
dimple are accompanied by discontinuities associated with the propagating velocities
and profiles of the interfacial structures. Specifically, both the contact line and the
capillary shock have a non-zero propagating velocity in the laboratory frame, as long
as they move. In addition, the transition of the interfacial profiles from the dimple to
the LLD film also occurs in a discontinuous way.

However, the mechanism of the precritical transition experimentally observed by
Snoeijer et al. (2006) remains yet unknown. Delon et al. (2008) suggested two
potential explanations: the presence of contact angle hysteresis or the edge of the
plate used in the experiments. While the contact angle hysteresis can be incorporated
in the calculations following the procedure of Ding & Spelt (2008), the side edges
of the plate cause a curved contact line and render the flow three-dimensional. A
detailed inspection of these effects is beyond the scope of the present work and
deserves further investigation.
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