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We report experimental measurements of kinematic and dynamic particle concentration
kernels conditioned by the separation distances of solid inertialess particles in isotropic
turbulence by three-dimensional particle tracking velocimetry with particle diameters
smaller than the Kolmogorov length scale. Particle radial relative velocity statistics are
measured from the dissipation to the integral length-scale range. The radial scaling
of particle and fluid relative velocity variance 〈wr(r)2〉 ∼ r2/3 in the inertial subrange,
consistent with Kolmogorov’s theory, is reported, while a new scaling is found for small
distances due to finite-size effects between particles. The measured concentration kernels
at small separation distances therefore deviate from those in the theory of Saffman &
Turner (J. Fluid Mech., vol. 1, 1956, pp. 16–30) at small inter-particle distances due to
hydrodynamic interactions. A real kernel taking into account the history of the particle
tracks and excluding multiple events is also calculated, while the normalised particle
concentration kernels are found to be essentially insensitive to the flow Reynolds number.

Key words: particle/fluid flows, isotropic turbulence

1. Introduction

Particles suspended in a fluid play an important role in several natural and industrial
processes. In the atmosphere, collisions of microscopic water droplets in clouds are a
necessary step in the production of macroscopic raindrops (Grabowski & Wang 2013),
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while collisions of dust grains in turbulent protoplanetary disks are essential in
planetesimal formation (Pan & Padoan 2014). Inhomogeneous concentrations of particles
in a sandstorm can also dramatically increase the strength of the storm (Carneiro et al.
2013). In the ocean, collision and coagulation between suspended phytoplankton cells
play an important role in marine aggregate formation (Kiørboe, Andersen & Dam 1990).
In industry, examples include solid–liquid separation in wastewater treatment, design of
fine spray combustion nozzles, control of industrial emissions (pollutant transport) and
titanium dioxide production (Flagan & Seinfeld 1988; Xiong & Pratsinis 1991; Wang,
Wexler & Zhou 1998).

Processes associated with inhomogeneous concentrations often involve two distinct
physical problems (Sundaram & Collins 1996): the microphysical problem involving
particle collisions, which is dependent on the particle/fluid flow conditions; and the
macrophysical problem, which involves particle coagulation, preferential concentration
and the evolution of particle size and population (Delichatsios & Probstein 1975; Kiørboe
et al. 1990; Brunk, Koch & Lion 1998a,b). In this study, we will focus on the microphysical
problem of particle conditional concentration rate in turbulent flows based on the
separation distance between particles.

Over the past century, particle conditional concentration models for a range of particle
inertia and flow conditions have been developed (Meyer & Deglon 2011). Saffman
& Turner (1956) in their pioneering work presented a formulation of the geometric
conditional concentration kernel for point-like zero-inertia particles in turbulence. In the
limiting case where particles have very large inertia, Abrahamson (1975) obtained a simple
collision model by arguing that the assumption of independent particle velocities as in gas
kinetic theory is appropriate for high-intensity turbulence. The conditional concentration
of particles with finite inertia in turbulence is more complicated than the zero-inertia
case due to two distinct effects: particle preferential concentration and particle relative
velocity (Maxey 1987; Squires & Eaton 1991; Zaichik & Alipchenkov 2009; Pan &
Padoan 2010; Gustavsson & Mehlig 2011; Bragg & Collins 2014a,b; Hammond & Meng
2021).

To date, though, collision kernels for finite-size inertialess particles have not been
measured in an experiment, and only the direct numerical simulations (DNS) from Wang
et al. (1998) and Ten Cate et al. (2004) have shown that hydrodynamic interactions can
lead to important effects. In particular, the lubrication forces are known to be the dominant
repulsion force for this particular regime, which prevents particles from approaching one
another when near contact (Ababaei et al. 2021). To the best of our knowledge, inertialess
particles with a finite size (but smaller than the Kolmogorov length scale) is a regime
where experiments have not been yet performed. In this paper, we measure conditional
concentration and relative velocity kernels but we are not able to perform measurements
for relative distances between particles smaller than one diameter. Therefore, we cannot
directly conclude on the collision kernel but provide important information on the
concentration of particle pairs conditioned on their separation distance.

Conditional concentration kernels can be described as the average volume of fluid or
solid entering a sphere per unit time (Saffman & Turner 1956), and the radius of this sphere
sets the separation distance between two particles. Note that when the separation distance
is equal to the diameter of the particles, the latter are in contact and the concentration
kernel reduces to the collision kernel.

However, in order to draw a link between conditional concentration and collision, it is
important also to take into account the time history of particle pairs in order to differentiate
the first event when the inter-particle distance falls below a certain threshold (often
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Turbulence of inertialess particles at small separations

denoted as ‘geometric’) from multiple events (often denoted as ‘ghost’, resulting from
particle–particle interactions). In other words:

(i) For ghost conditional concentration, two particles are considered when their radial
distance is lower than a given threshold, but this method does not take into account
the time history between two particles where multiple collisions can occur.

(ii) Geometric conditional concentration reintroduces the temporal history between two
particles and only considers the first instance as valid.

However, the only way to isolate geometric from ghost conditional concentration is to
consider long-enough particle tracks in order to analyse the temporal history of particle
pairs. This is one of the novel aspects in the present study compared to the recent
experimental work of Hammond & Meng (2021).

Different kernels have been introduced in the present study:

(i) The kinematic kernel (Γ K) provides a unique perspective to describe the relationship
between the particle conditional concentration rate and two statistical properties of
the particle phase: the radial distribution function (RDF) and the particle relative
velocity (RV). This estimate of the conditional concentration rate in turbulence does
not exclude ghost events.

(ii) The dynamic kernel (Γ d
gh) can be defined as the ratio of particle pairs below a certain

threshold to particle pair concentration (Rosa et al. 2013). It can be obtained by
measuring instantaneous particle distances for a given volume and time, and does
not exclude multiple events.

(iii) The geometric collision kernel (Γ d
re) is based on the history of particle tracks, which

therefore allows for filtering out multiple events.

Note that the kinematic conditional concentration kernel can also be computed such that
only the first (initial) event is retained, which should provide similar results to those for
the geometric concentration kernel.

Experimental measurements of particle collision is challenging. Most of the relevant
literature focuses on the kinematic properties of particles in order to predict conditional
concentration kernels. For example, the review by Monchaux, Bourgoin & Cartellier
(2012) compares various indicators and methods developed to analyse preferential
concentrations of inertial particles in turbulence, including the clustering index, the
box counting method, the correlation dimension, the RDF and Voronoï diagrams, to
name only a few (Monchaux, Bourgoin & Cartellier 2010, and references therein).
Amongst these methods, the RDF is the indicator directly related to the particle
conditional concentration kernel (Sundaram & Collins 1996; Wang, Wexler & Zhou 2000).
Both three-dimensional (3-D) volumetric techniques such as holographic particle image
velocimetry (HPIV) (Meng et al. 2004; Cao et al. 2008) and lower-dimensional projections
such as two-dimensional (2-D) imaging (Peterson, Baker & Coletti 2019) have been
applied to the measurement of RDF. However, Holtzer & Collins (2002) demonstrated
that the lower-dimensional RDF showed a fundamentally different distribution function
than its 3-D counterpart, especially for small particle separation distances. Computing
3-D RDF based on dimensional reduction is not well posed unless a functional form for
the 3-D RDF is assumed.

When it comes to particle relative velocity measurement, techniques include HPIV
(de Jong et al. 2010), 3-D particle tracking velocimetry (3-D PTV) (Bewley, Saw &
Bodenschatz 2013; Saw et al. 2014) and planar four-frame PTV (Dou et al. 2018a,b).
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The first two methods provide 3-D measurement of particle relative velocity; the HPIV
method shows significant discrepancies in the tails of the probability density function
(p.d.f.) of particle relative velocities compared with DNS, which is attributed to increased
ambiguities in the particle matching for larger relative velocities (de Jong et al. 2010).
The 3-D PTV and four-frame PTV techniques provide comparable accuracy of particle
relative velocity measurement; the four-frame PTV is a 2-D technique whose out-of-plane
component of particle velocity is lost when projected onto an imaging plane (Dou et al.
2018b). This problem was very recently addressed by Hammond & Meng (2021) who
performed four-pulse particle image velocimetry (PIV) and measured simultaneously the
RDF and the RV in a homogeneous and isotropic flow for inertial particles for separation
distances of the order of the particle size. In this paper, we explore similar properties
for inertialess particles and report the effect of the turbulent Reynolds number and finite
particle size.

In this study, we use 3-D PTV and OpenPTV (http://www.openptv.net) software (Maas,
Gruen & Papantoniou 1993) to measure both kinematic and dynamic concentration kernels
of near-zero-inertia solid particles in isotropic turbulence for separation distances that
are small but larger than the sphere’s diameter. We compare the measured concentration
kernels with the Saffman & Turner (1956) prediction, which does not take into account
hydrodynamic interactions induced, for instance, by the motion of the fluid around the
particle, which is known to alter particle–particle interactions (Ababaei et al. 2021).
The aim is to obtain a dynamic kernel and thereby estimate real particle conditional
concentration potentially leading to collisions in turbulence. Moreover, based on the
method used in the present study, we are able to isolate geometric particle conditional
concentration from their ghost counterparts. The paper is organised as follows. The
experimental apparatus of PIV and 3-D PTV and the characteristics of the turbulent flows
are presented in § 2. The methods of dynamic and kinematic kernel measurements are also
described in § 2. Results and discussions are given in § 3 and conclusions are drawn in § 4.

2. Methods

2.1. Experimental set-up
The experimental study consists of two complementary techniques using the same
flow apparatus. The characteristics of turbulent flow were first quantified by
double-frame/single-exposure two-dimensional two-velocity-components (2-D 2-C) PIV.
Separate experiments use 3-D PTV to obtain particle trajectories in order to estimate
conditional concentration kernels for separation distances greater than or equal to the
particle’s diameter. The experimental apparatus shown in figure 1(a) includes a rectangular
tank of 18 cm × 18 cm × 22 cm height (inner dimensions) and a horizontally oriented grid
attached to a linear motor. Both the tank and the grid are made of clear acrylic sheet of
6.4 mm thickness. The porosity of the grid is 36 %, where the mesh size is M = 36 mm
and the bar size is b = 7.2 mm. The distance of the bars’ end from the wall is 0.5 mm,
and the set-up is symmetric in both the x and y directions, as shown in figure 1(a) (see
Chen (2020) for further details). A coordinate system was defined with the origin at the
geometric centre of the tank (top view) and 60 mm away from the bottom of the tank; X
and Y represent horizontal and vertical directions, respectively. It was defined such that
the PIV coordinate system coincides with that of the PTV.

In the PIV system, the light source is a Nano L 135-15 pulsed Nd:YAG laser
from Litron Lasers, outputting a light beam at 532 nm, and generating a vertical laser
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Figure 1. (a) The 3-D PTV set-up. (b) PTV particles (green) superimposed onto an instantaneous snapshot
of vorticity ωz (red/black) and local streamlines (continuous lines). Note that PIV and PTV were performed in
separate experiments and that the present picture illustrates the density of particles with respect to the scales
of flow features. In addition, particles are accumulated in the z direction, which gives an impression of high
density. However, experiments are performed in the dilute regime and the solid fraction is of the order of 10−5.
In the present study, PIV is used to compute flow quantities such as isotropy and dissipation while PTV is
used to compute particle relative velocity variance, radial distribution functions and conditional concentration
kernels. In panel (b), particles were made larger than their real counterpart to appear visible and highlight the
volume of measurement of the PTV. (c) The 3-D trajectory samples in the volume shown in (a) with particle
tracks longer than 250 frames. Measurements in both panels (b) and (c) were performed for the flow condition
III (see table 1).

sheet through the centre of the tank. LaVision Glass Hollow Spheres 110P8 (density
1.10 ± 0.05 g cm−3, and mean size 9–13 μm) were used as seeding particles. The
instantaneous PIV images were captured by an IMPERX B3320-8MP charge-coupled
device (CCD) camera (3312 pixel × 2488 pixel) equipped with a Nikon Nikkor-O Auto
35 mm f /2 lens. The camera was synchronised with the laser at a frame rate of 1 Hz
with a delay of 0.25 ms between two successive frames. Synchronisation with the
laser was performed using a DG535 pulse generator. The software Stream Pix 7 was
used for data stream acquisition. The image pairs were processed with DPIVSoft-2010
(Meunier & Leweke 2003; Passaggia, Leweke & Ehrenstein 2012; Passaggia et al.
2020) by means of interrogation windows with dimensions 64 pixel × 64pixel for the
first pass and 32 pixel × 32 pixel for the second pass with 50 % overlap. The spatial
resolution is approximately 43.4 μm pixel−1. The dimensions of the field of view
are 14.4 cm × 10.8 cm. Three different turbulent intensities were generated by varying
the frequency ( f ) of the imposed oscillations (1 Hz, 1.5 Hz and 2.5 Hz) with a fixed
oscillating stroke of 4 cm, while statistics were obtained by averaging over 750 realisations.
The isotropy ratio u1,rms/u2,rms measured using PIV provided values between 0.8 and
1.3, indicating a good degree of isotropy for the three flow conditions. The normalised
root-mean-square (r.m.s.) velocities (Hwang & Eaton 2004) are u1,rms/u1,rms ≈ 0.9–1.2
and u2,rms/u2,rms ≈ 0.8–1.3. Although the velocity field in the vertical direction is slowly
decaying, it still can be seen as nearly homogeneous in the region of interest. The turbulent
kinetic energy dissipation rate (ε) was estimated by means of a time-averaged turbulent
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Parameters Units Condition I Condition II Condition III

Oscillating frequency, f Hz 1.0 1.5 2.5
Maximum grid velocity mm s−1 160 240 400
Integral length scale, L11 mm 104 110 120
Taylor microscale, λ mm 11.8 10.8 9.1
Kolmogorov length scale, η mm 0.54 0.45 0.32
Kolmogorov time scale, τη s 0.30 0.20 0.10
Turbulent energy dissipation rate, ε m2 s−3 1.1×10−5 2.49×10−5 9.15×10−5

Turbulent kinetic energy, k m2 s−2 1.54×10−4 2.9×10−4 7.51×10−4

R.m.s. turb. vel. fluctuation, u′ = √
2k/3 mm s−1 10.1 13.9 22.3

Kolmogorov velocity scale, uη mm s−1 1.0 2.2 3.1
Particles’ mean terminal velocity, u0 mm s−1 0.05 0.05 0.05
Taylor microscale Reynolds number, Reλ — 120 150 202
Dissipation scaling, Cε = εL11/u′3 — 1.09 1.01 0.98

Table 1. Driving parameters and turbulent flow characteristics.

(a) (b)

10–1 100
0.5

1.0

1.5

2.0

2.5
3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–0.2

0

0.2

0.4

0.6

0.8

1

k/kλ x/M

f = 1 Hz
f = 1.5 Hz
f = 2.5 Hz

E(
k/
k λ

)k
5/

3 ε
–2

/3

h 1
,1

(x
/M

)

Figure 2. (a) Normalised horizontal velocity spectra from PIV measurements, where kλ = 2π/λ is the
Taylor microscale wavenumber. (b) Autocorrelation function h1,1(x/M) for the three different flow cases.

kinetic energy budget from the PIV data, detailed in Appendix A (see table 1 for the
computed values).

The turbulent spectrum was then computed from the PIV data, and the compensated
horizontal energy spectrum E11k5/3ε−2/3 is shown in figure 2(a) for the three flow
conditions. The compensated spectra are essentially flat, confirming the existence of
an inertial range for all flow conditions. The horizontal axis is normalised with the
Taylor microscale (λ) computed as λ = √

10νk/ε, where k is the mean turbulent kinetic
energy estimated as k = 3(u′

rms + v′
rms)/4 and ν is the kinematic viscosity of water. The

turbulence Reynolds number is Reλ = u′(λ/ν), where u′ = √
2k/3 is the r.m.s. of the

velocity fluctuations and provides values Reλ = [120, 150, 202] for the three oscillating
frequencies. Note that the lowest value of Reλ is relatively close to that from the DNS of
Ten Cate et al. (2004) with similar particles.

In addition, the horizontal autocorrelation function of velocity fluctuations h1,1(x/M)

was calculated in order to estimate the horizontal integral length scale L11 and is
reported in figure 2(b). This L11 was calculated from the zero crossing of h1,1(x/M) and
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Turbulence of inertialess particles at small separations

slowly increases with the oscillating frequency as reported in table 1. The Kolmogorov
equilibrium number Cε = εL11/u′3 ≈ 1 was found to be nearly constant and close to the
mean value observed in the compensated spectra reported in figure 2(a). Note that, in our
experiments, Cε ≈ 1 is close to the canonical value of 0.9 (Vassilicos 2015). For the lower
value of Reλ, a residual large-scale circulation exists but its amplitude with respect to
turbulence kinetic energy decreases with increasing stroke frequency f . This mean flow is
composed of large-scale circulation regions whose amplitude is stronger in the bottom and
decreases closer towards the grid. In the region where PTV measurements are performed,
the mean velocity

√
K (where K is the mean flow kinetic energy) is roughly half the r.m.s.

of the turbulent kinetic energy in this region. The resulting ratio between the mean-field
kinetic energy and the turbulent kinetic energy is 0.27 for the worst-case scenario when
f = 1 Hz and decreases to 0.19 for f = 2.5 Hz.

A schematic of the 3-D PTV and planar two-component PIV set-up is shown in
figure 1(a). The 3-D PTV imaging system consists of four synchronised Grasshopper3
3.2 MP cameras. A continuous-wave argon ion laser was used to generate a cylindrical
laser volume of 4 cm diameter through the tank. During PTV experiments, the tank
was first filled with pre-filtered saline solution. The calibration process was then
conducted to determine the interior and exterior parameters of the cameras, the lens
distortions and electronic effects (Maas et al. 1993). To quantify uncertainty in the
calibration process, the real positions of points on the calibration block were compared
with the positions measured from PTV (Akutina 2016), and the r.m.s. of the errors
obtained were r.m.s.x = 0.0203 mm, r.m.s.y = 0.0244mm and r.m.s.z = 0.0240 mm.
Quasi-monodisperse polyethylene microspheres (Cospheric LLC) with density ρp =
1.084 g cm−3 (the same as the density of saline solution ρf ) and diameter range D =
106–125 μm were used for PTV and, for each flow condition, 0.15 mg of particles
were used consisting in a dilute volume fraction O(10−5). The particle Stokes number,
St ≡ τp/τη, the ratio of the particle response time τp = ρpD2/18μf (where μf is the
fluid dynamic viscosity) to the turbulent Kolmogorov time scale τη = √

ν/ε, ranges from
St = 0.0028 to St = 0.0080 in the three flow conditions. The particles were allowed to
mix for one minute after being dispersed, before data acquisition began. A series of 72 000
images (10 min at 120 frames s−1) per camera were then captured. On average, the number
of voxels moved per frame with an acquisition rate at 120 Hz is of the order unity for flow
condition I, two voxels for flow condition II, and three voxels for flow condition III, which
is the size of an individual particle for the latter (see table 1).

The 3-D PTV data processing performed in OpenPTV can be divided into two major
parts: determination of particle positions in spatial coordinates and tracking of individual
particles through consecutive images. The approach of Willneff (2003) is used in the
present study and combines the two steps together with a spatio-temporal matching method
which improves tracking efficiency of particles by 10–30 % (Lüthi, Tsinober & Kinzelbach
2005). Willneff’s method predicts particle motion based on particle tracking in image and
object space to resolve ambiguous particle image positions and correspondences. In other
words, ‘temporal’ information at time t is used to resolve ‘spatial’ uncertainties regarding
the existence and positions of particles in the next time step t + 	t. The seemingly modest
improvement of 10–30 % in tracking efficiency is very significant in the context of further
processing and analysis. Particle trajectories that are longer than the relevant Kolmogorov
scales, η and τη, are the key prerequisite for a Lagrangian flow analysis, and they also
significantly enhance the accuracy of the applied processing to obtain velocity derivatives
(Lüthi et al. 2005). To track particles, i.e. to find corresponding particles in image and
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object space of consecutive time steps, three criteria are used for effective assignment.
First, a 3-D search volume is defined by minimum and maximum velocities in all three
coordinate directions. Second, the Lagrangian acceleration of a particle is limited, defining
a conic search area. Third, in the case of ambiguities, the particle leading to the smallest
Lagrangian acceleration is chosen. Similarities in brightness, width, height and sum of
grey values of the pixel of a particle image in two consecutive time steps proved to be not
as valuable as expected. From the 565 detected particles per frame for which a position
in space can be determined, typically 470 particles can be followed long enough, which is
equivalent to a tracking efficiency of ∼80 % and a seeding density for linked particles of
∼26 particles cm−3.

An instantaneous vorticity ωz and some 3-D trajectory samples at f = 2.5 Hz (i.e. flow
condition III) are shown in figures 1(b) and 1(c), respectively. Figure 1(b) illustrates the
particle density accumulated in the out-of-plane direction as well as the size of the relevant
scales in the experiment. Note that both results were acquired in separate experiments.

2.2. Conditional concentration kernel models
The collision rate between particles in a monodisperse system can be described as (Wang
et al. 1998)

Nc = Γ d n̄2

2
, (2.1)

where Nc is the collision rate per unit volume and n̄ is the particle number concentration,
defined as Np/Ω , where Np is the number of particles and Ω is the observation volume.
The dynamic kernel Γ d, namely the ratio of concentration rate conditioned based on the
distance d to particle pair concentration (Rosa et al. 2013), can be obtained by directly
measuring Np, Ω and the number of events when particles are separated by a certain
distance d over time. The conditional concentration is obtained by counting the number of
particles located at a distance smaller than or equal to a given inter-particle distance d > D,
which is then averaged in time. In what follows, we report conditional concentrations down
to d/D = 2. The associated error level is dependent only on the number of events measured
during the experiment and is below 5 % for all cases considered in the present study.

In the pioneering work of Saffman & Turner (1956), the conditional concentration
kernel was described as the average volume of fluid entering a sphere per unit time.
Saffman & Turner showed that this kernel for zero-inertia particles can be written as

Γ (d) = 2πd2〈|wr(d)|〉, (2.2)

where d � D is the distance between two particles. The particle pair radial relative velocity
wr(d) at a separation distance d is defined as wr(d) = (v2 − v1) · d/|d| (Dou et al. 2018b).
The subscript r means ‘radial’ and, since the velocity component perpendicular to the
separation vector is not relevant to the particle conditional concentration nor collision, we
will refer to radial relative velocity as ‘relative velocity’ from here on. Here v2 and v1 are
the velocities of particles 1 and 2, d/|d| denotes the unit vector in the direction parallel
to the separation vector, and 〈·〉 denotes the ensemble average. Further assuming that d 	
η, uniform particle concentrations in space and probability distributions of the velocity
gradient being Gaussian, Saffman & Turner (1956) proposed the following expression for
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the conditional concentration kernel in turbulent flows:

Γ ST(d) = 1.294d3
( ε

ν

)1/2
. (2.3)

Note that this concentration kernel reduces to the collision kernel when d = D, that is,
when the separation distance is equal to one diameter.

The theoretical description of Γ (d), (2.2), was then further developed by Sundaram &
Collins (1997) to take into account non-uniform particle spatial distribution:

Γ K(d) = 4πd2g(d)〈wr(d)−〉, (2.4)

where g(d) is the RDF, which serves as a correction to the particle number concentration
due to non-uniform particle distribution. Here, 〈wr(d)−〉 represents the inward particle
radial relative velocity, which relates to particle pairs moving towards one another. The
inward radial relative velocity can be further expressed as (Sundaram & Collins 1996)

〈wr(d)−〉 =
∫ 0

−∞
−wrP(wr | d) dwr, (2.5)

where P(wr | d) is the p.d.f. of wr conditioned on the inter-particle distance d. The
kinematic conditional concentration kernel Γ K , (2.4), thus combines the effects of the
particles’ relative motion and particles’ preferential concentration.

2.3. Conditional concentration kernel measurements
In order to determine dynamic conditional concentration kernels for small separation
distances, the present study considers the method introduced in Balachandar (1988) and
Wang et al. (1998) to detect inter-particle distances. The analysis mainly focuses on
geometric particle overlap for a given separation distance.

Inter-particle distance corresponding to collisions (i.e. when d = D) is particularly
challenging in laboratory experiments. The time scale associated with physical collisions
of real particles (i.e. D ≈ 0.116 mm in the present study) is much smaller than the temporal
resolution of the experimental set-up (Yang & Hunt 2006; Monchaux et al. 2010; Marshall
2011; Ababaei et al. 2021). Instead, we consider analogous particles (Hill, Nowell &
Jumars 1992), which are fluid volumes centred on real particles with effective diameters
larger than D. The conditional concentration detection was thus based on the effective
particle diameters d (which are adjustable) to obtain a relationship between conditional
concentration kernels and thereby analogous collision kernels versus effective particle
diameter. A schematic of effective diameters is shown in figure 3(a). Care should be taken
to ensure that the effective diameters are small enough that the analogous particles can still
be seen as inertialess and follow the fluid (and their host particles’) motion faithfully. The
conditional concentration kernel derived using the ‘ghost events’ approximation will be
denoted as Γ d

gh. This method counts all possible inter-particle distances below a given
threshold but does not take into account the nature of the particles’ relative motion.
A more realistic scheme is also considered: in the case of a particle pair candidate, if there
are multiple points along the trajectories when two particles approach one another with
distances smaller than their effective diameter (i.e. a multiple conditional concentration
event), only the first instance meeting the threshold is considered. This conditional
concentration kernel is denoted as Γ d

re.
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Figure 3. (a) Sketch of the particle coordinate system, distances and angles used in the analysis. Analogous
particle conditional concentration events are shown with dashed lines. (b) Time-averaged RDF measured under
three flow conditions. The distance is normalised by the particle diameter. (c) Sketch of the measurement
method of the radial distribution function. Particles in grey are in the range d = [0.98r, 1.02r] from the
red particle, while the blue particles are out of that range. (d) P.d.f.s of particle pair radial relative velocity
conditioned on different separation distances at 2.5 Hz. The particle relative velocities are normalised by the
Kolmogorov velocity scale uη. The p.d.f. of the standard normal distribution is also given for comparison.

For the kinematic conditional concentration kernel, the RDF is calculated by the
following expression (McQuarrie 1976; de Jong et al. 2010):

g(ri) = Ni/	Vi

N/V
. (2.6)

At each time step of the experiment, an arbitrary particle’s location is taken to be at
the origin O. In the above, Ni is the number of particles that lie within a range of
[0.98ri, 1.02ri] relative to this origin (a spherical shell), ri is the average radius of the
spherical shell, 	Vi is the volume of the spherical shell, i is the discrete index, and N/V
is the average particle number concentration. The RDF g(ri) is averaged over all the cases
in which each particle takes a turn to serve as the origin and then averaged again over
time. A sketch of the way the RDF is calculated is shown in figure 3(c). Periodic boundary
conditions are used to cope with the reduction of the number of particles at larger particle
separation distances (de Jong et al. 2010).

Figure 3(b) shows the time-averaged RDF measured for the three flow conditions with
separations from less than the Kolmogorov length scale to the integral length scale. In
the case of inertialess particles in turbulence, there is no preferential concentration and
the RDF should equal unity. However, when the particle separation d/D < 5, the RDF is
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Turbulence of inertialess particles at small separations

smaller than 0.8 (see figure 3b). This result can seem surprising at first, since most studies
analysed inertial particles, which tend to collide. For inertialess particles, the picture is
somewhat different, since hydrodynamic effects can prevent particles coming near contact
and can span large inter-particle distances because of the viscous nature of the flow. The
recent DNS of inertial particles in homogeneous turbulence by Ababaei et al. (2021)
shows that the RDF can drop well below unity when r/D < 3.5, Stk < 0.1, and when
long-range many-body interactions and lubrication forces are taken into account. Thus, it
is essential to take g(r) into account when measuring conditional concentration kernels
when the separation distance is small, even for inertialess particles. The particle radial
relative velocities were collected and binned according to the particle separation distance
r with a bin size in the range [0.98r, 1.02r]. Ranges [0.95r, 1.05r] and [0.9r, 1.1r] were
also tested, but without noticeable differences on the RDF. Then 〈wr(d)−〉 was calculated
according to (2.5).

2.4. Fluid and particle radial relative velocity
Hereafter, we evaluate the following: (i) the dynamic conditional concentration kernel Γ d

by directly measuring the number of particles for separation distances lower than d, the
volume these particles occupy and the number of events; (ii) the kinematic conditional
concentration kernel Γ K through (2.4) by measuring 〈wr(d)−〉 and the RDF at different
effective diameters; and (iii) the Saffman & Turner (1956) concentration kernel Γ ST

through (2.3) by measuring the turbulent energy dissipation rate ε, and we provide a
comparison. (iv) We also use the second-order relative velocity structure functions of
particles SP

2‖ ≡ 〈wr(r)2〉, following the nomenclature in Bragg & Collins (2014b) and
assuming that particles strictly follow fluid particles.

We use the second-order relative velocity structure functions for the fluid S f
2‖ as a

reference to deduce the scaling laws of particle motions and determine the behaviour of
SP

2‖. According to Kolmogorov theory, the second-order relative velocity structure function
is given by

S f
2‖ =

⎧⎪⎨
⎪⎩

ε

15ν
r2, for η < r < λ,

C2(εr)2/3, for λ	 r 	 L11,

2(u′2), for r > L11,

(2.7)

where C2 is a constant, u′2 is the mean turbulent velocity fluctuation squared and L11 is
the integral length scale, measured using the autocorrelation method from the PIV and
found to be nearly constant among the flow conditions at each location considered. In
what follows, we show that, for small distances, finite-size effects can play an important
role in determining the p.d.f. of particle relative velocity and their second-order structure
function.

3. Results and discussion

In this section we analyse the statistical properties of relative particle motions across
multiple scales, from the integral length scale characterising the mean size of the large
eddies of turbulence down to below the Kolmogorov scale. We begin with the p.d.f.s of
particle pair radial relative velocity conditioned on different separations for flow condition
III in figure 3(d) and observe a remarkable deviation from the Gaussian distribution,
particularly at small separation distances.
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At large separation distances, the p.d.f.s of relative velocity are slightly negatively
skewed, which is a natural consequence of vortex stretching in turbulence (Tavoularis,
Bennett & Corrsin 1978). For smaller separations (figure 3c), the p.d.f.s become
symmetric, which is in line with the relative velocity p.d.f.s of Saw et al. (2014), who
did not observe significant skewness in their relative velocity p.d.f.s at r/η ≈ 1 for
inertialess particles; the tails of our relative velocity p.d.f.s are somewhat higher but much
lower than reported in Hammond & Meng (2021) for inertial particles. The essentially
straight tails for r/D = 3.5 hint at a decrease of the particles’ relative motion, contrary
to finite-Stokes-number particles where the tails of the p.d.f.s are wide. This further
hints at the importance of particle–particle interactions for scales of the order of the
particle size, and we analyse the motion of two finite-size inertialess particles using the
structure function method together with asymptotic theory for the lubrication motion of
two colliding particles.

3.1. Radial relative velocity variance and finite-size effects
The second-order particle relative velocity structure functions (i.e. particle relative
velocity variance) SP

2‖ normalised by the square of Kolmogorov velocity scales u2
η are

shown in figure 4(a). A feature of r2/3 scaling in the inertial subrange is observed for r > λ,
consistent with Kolmogorov theory in (2.7). The transitions between the viscous and the
inertial subranges should scale as r2 but exhibits a plateau in the range η > r � λ for flow
conditions I and II. This is attributed to the effects of low Taylor Reynolds number and a
loss of isotropy at these scales (see Kim & Antonia 1993) and the relatively small distance
from the oscillating grid. For flow condition III, this region becomes slightly steeper and
the plateau progressively disappears. Note that the same behaviour was observed in the
particle-resolving DNS of Ten Cate et al. (2004) for similar Taylor Reynolds numbers
and inertialess particles. As the radial distance approaches the integral length scale, the
normalised particle relative velocity approaches a plateau defined by the energy-containing
scale L11 given by the velocity structure function (2.7). However, due to the relatively short
distance from the grid and the presence of the large-scale circulation, we obtain a prefactor
close to 0.9 instead of 2 in this expression for the flow condition I. The prefactor increases
to 1.4 for the flow condition III.

For r < η, the relative velocity should abruptly drop to zero. However, the decay for SP
2‖

is different from what was anticipated for S f
2‖ and hints at particle–particle interaction. This

can also be observed in figure 10 in Ten Cate et al. (2004) when plotted with logarithmic
scales, which we report in our study for comparison and analysis (see figure 4b). A similar
trend was also reported very recently in the DNS of Ababaei et al. (2021) at high Taylor
Reynolds numbers for inertial particles when long-range many-body interactions and
lubrication effects were taken into account. Therefore, we analyse a new weaker scaling
(see figure 4a) that accounts for the onset of combined effects of lubrication forces and
finite-size effects since the motion of the fluid should not influence relative inward velocity
for r < η.

In the low Reynolds-number regime for a spherical particle moving in a fluid, where the
particle Reynolds number Rep = uηD/ν 	 1, Mongruel et al. (2010) proposed a model
based on a second-order ordinary differential equation describing the temporal evolution
of the particle–particle distance for two particles moving towards one another, assuming
that lubrication is the dominant effect.
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Figure 4. (a) Normalised relative velocity variance from measurements for the particles SP
2‖ (lines with

symbols) acquired from PTV and the fluid S f
2‖ (dashed lines) acquired from PIV in a separate experiment,

with uη = (νε)1/4 being the Kolmogorov velocity scale. (b) Normalised relative velocity variance SP
2‖ from

the DNS of Ten Cate et al. (2004) from their figure 10 but plotted in logarithmic scales exhibiting the same
scaling laws as the present experimental study.

Starting from the equation of motion for a sphere approaching a fixed wall, or
equivalently for two particles approaching head-to-back vertically (Marshall 2011), the
equation of motion becomes

mp
dVp

dt
= −6πRμVp(δ) frr(δ, Rep) + 4

3
πR3(ρp − ρf )g, (3.1)

where δ = (r − D)/D is the gap between two particles, Vp is the particle velocity and
frr(δ, Rep) is the friction factor given in Cox & Brenner (1967) as

frr(δ, Rep) = 1
δ

+ 1
5

[
1 + Rep

4

]
ln

[
1
δ

]
+ O(Re2

p), (3.2)

which diverges when r − D becomes asymptotically small or equivalently δ → 0. In the
region very close to the wall, the velocity growth is modelled at first order by a linear
growth with the normalised distance δ (in agreement with experiments (Mongruel et al.
2010; Marshall 2011)) of the form

Vp = δVm
St, (3.3)

where Vm
St is some characteristic velocity. Keeping only the terms on the right-hand side

of (3.1) (i.e. neglecting particle inertia), it follows that in this region we take

frr(δ, Rep) = 1
δ

VSt

Vm
St

, (3.4)

where VSt is the Stokes velocity which is chosen equal to uη = (νε)1/4, the Kolmogorov
velocity scale. In the particular case Rep 	 1, then frr(δ, Rep) = 1/δ and from the classical
lubrication theory and VSt = Vm

St , it appears appropriate to use Vm
St as a velocity scale. We

then define a dimensionless time τ = tVm
St/R then Vp/Vm

St = −dδ/dτ . We further assume
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that the friction factor frr can be used in the near-contact case (δ 	 1). Equation (3.1) is
then rewritten in dimensionless form as

− Stm
d2δ

dτ 2 = 1
δ

dδ

dτ
+ 1, (3.5)

where Stm = ρp(Vm
St)

2/(ρp − ρf )gR is a modified Stokes number for the particle.
Izard, Bonometti & Lacaze (2014) then proposed a modified version of (3.5) where

the effective roughness height ζe for non-smooth spheres is included. In this case, the
lubrication force F lub between two finite-size particles (i.e. a particle i and a particle j) of
velocity upi and upj and radius Ri and Rj, respectively, can be written as (Brenner 1961)

F lub = −6πμ(upi · n − upj · n)

r + ζe

(
RiRj

Ri + Rj

)2

n, (3.6)

where ζe accounts for the mean height of surface asperities of real particles. This allows
for mimicking real particles and avoiding the divergence of the force in (3.5) when contact
occurs (i.e. r = D). The present lubrication force becomes active only when the distance
between particles r is such as (0 � r � 2D). This upper bound is in the range of the critical
distance for which the velocity of the particle decreases due to the presence of the wall (see
Izard et al. 2014, and references therein). Using F lub in (3.6) instead of frr in (3.4), equation
(3.5) becomes

Stm
d2δ

dτ 2 + D
(r − D + ζe)

dδ

dτ
+ 1 = 0. (3.7)

Note that this equation remains valid for separation distances smaller than η = 1 ≈ 3D
(Izard et al. 2014), even for small gap distances r � D. In the present model, we obtained
Stm = [0.67, 0.98, 1.18], ζe/R = 0.05 and R = 5.5 × 10−5 m.

Equation (3.7) is integrated numerically and shown in figure 5(a) where the boundary
conditions δ(r/η = 1) and dδ(r/η = 1)/dτ are set to the values obtained in figure 4(a).
Figure 5(a) shows a similar behaviour to that reported in the experiment where the
scaling for 〈wr(r)2〉/u2

η is less steep than originally predicted by the second-order
structure function for distances smaller than the Kolmogorov length scale. In particular,
〈wr(r)2〉/u2

η ∼ r/η for increasing forcing frequency f , which simultaneously corresponds
to increasing the finite-size ratio D/η. In other words, the mean inward velocity variance
wr(r) no longer evolves linearly with the radial distance r but seems to follow a power law.
From figure 4(a,b), the particle structure function SP

2‖ appears to approach a scaling of the
form

SP
2‖ ≈ rε/(15ν), for D � η and r � η, (3.8)

and could be due to lubrication effects, whose consequences perhaps persist at those large
distances. A similar behaviour was also recently reported in Ababaei et al. (2021) where
lubrication effects and long-range many-body interactions were found to decrease the RDF
and modify the relative velocity scaling for r/D < 3.5 at low but finite Stokes numbers.

This scaling is compared to the numerical integration of (3.7) in figure 5(a) and provides
a good agreement for all flow conditions. The comparison between measurements and the
theoretical model for the inward velocity variance suggests that lubrication effects could
be the physical mechanisms leading to the scaling 〈wr(r)2〉/u2

η ∼ r/η. Next, we analyse
the relative particle angles for separation distances r � η.
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Figure 5. (a) Normalised particle relative velocity variance from measurements for SP
2‖ from the dynamic

model (3.7) under three flow conditions. (b) Sample trajectories showing two particles near contact measured
for f = 2.5 Hz and r/D = 2.

3.2. Relative angles at small separation distances
A characteristic sample of particle tracks is shown in figure 5(b) where the separation
distance between the two particles is r/D = 2 for the flow condition III. It is interesting to
see that both tracks follow one another before and after the smallest separation distance.
This therefore leads to small relative velocity, in agreement with the interpretation of the
p.d.f. shown in figure 3(d). The p.d.f. of different angles for small separation distances
as a function of both the turbulent Reynolds number and the separation distance r/D are
analysed. Here we considered two different angles: the particle tangential velocity angle
θ‖ and the particle relative position angle θ⊥ defined as

cos(θ‖) = |v1 · v2|
|v1||v2| and cos(θ⊥) = |v1 · r|

|v1||r| . (3.9a,b)

We begin the analysis by representing the particles’ tangential velocity angle θ‖ for
different flow conditions in figure 6(a) and different separation distances r/D in figure 6(c),
before and after the smallest separation distance. For r/D = 2.5, the peak of the p.d.f.s
narrows as the forcing frequency is increased and the peak shifts from θ‖ ≈ 22◦ for the
flow condition I to a nearly parallel angle θ‖ ≈ 7◦ for the flow condition III. It is interesting
to note that, for r/D = 2.5, the p.d.f. narrows for every flow condition before and after
the smallest separation distance, which shows that hydrodynamic interactions modify the
trajectories of the particles. In other words, after the smallest separation distance, the
trajectories of the particles tend to align with one another and particles tend to fly along as
depicted in figure 5.

The effect of the separation distance is shown in figure 6(c) before and after the smallest
separation distance, for the flow condition III. While the p.d.f.s are self-similar for 3 �
r/D � 5, the smaller separation distance (r/D = 2.5) shows that particles tend to further
align their trajectory.

The particle relative position angle θ⊥ is reported for different flow conditions in
figure 6(b) and different separation distances r/D in figure 6(d), similar to figure 6(a,c).
From both plots, it is clear that, near the smallest separation distance, at r/D = 2.5, the
p.d.f. peaks near θ⊥ ≈ 85◦ but the distributions flatten as the forcing frequency decreases.
The peak also shifts from θ⊥ ≈ 60◦ for the flow condition I, θ⊥ ≈ 68◦ for the flow
condition II and θ⊥ ≈ 85◦ for the largest forcing frequency. Similarly, figure 6(d) shows
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Figure 6. (a) P.d.f. of particle tangential velocity angle θ‖, measured at r/D = 2.5, and (b) relative position
angle θ⊥ as a function of the grid frequency. (c) Same as panel (a) but as a function of the separation distance
r/D before and after the smaller separation distance. (d) Same as panel (b) but as a function of r/D measured
for f = 2.5 Hz.

the effect of the separation distance r/D, where, for r/D > 3, the p.d.f.s are essentially
self-similar and peak at θ⊥ ≈ 50◦. These results are consistent with the DNS results of
Wang et al. (2006), who analysed relative angles in homogeneous turbulent at low Taylor
Reynolds numbers (i.e. up to 55). For r/D � 3.5 the angle tends to increase, which denotes
that finite-size effects tend to modify the particle’s relative position angle.

The analysis of the tangential velocity and relative position angles seems to confirm
that particle pairs tend to follow one another for 2.5 � r/D � 5, with a relative angle in
the range 60◦–85◦. Head-on or head-to-tail scenarios seem unlikely to occur. The fact
that p.d.f.s are modified when r/D � 3.5 supports the idea that finite-size effects start
to appear for small separation distances and prevent particles from colliding with one
another. This is also in line with the fact that the RDF drops below one at small separation
distances. Lubrication forces are likely to prevent particles from approaching one another,
modifying their relative angle, and decrease the probability to observe particle pairs with
small separation distances.

3.3. Conditional concentration kernels
Now that the dynamic conditional concentration kernel has been defined and that
finite-size effects have been described, we continue with the analysis of the conditional
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Figure 7. (a) Measured conditional concentration kernels Γ K , Γ d
gh, Γ d

re and Γ ST for flow condition III and
(b) normalised conditional concentration kernels Γ K , Γ d

gh and Γ d
re by Γ ST at the three flow conditions.

concentration kernels by comparing direct measurements of the number of events where
particles are observed at a given separation distance to the different available theories. In
addition, finite-size effects will be found to play a key role in the normalised conditional
concentration kernels for small separation distances, as already reported in the DNS of
Ababaei et al. (2021).

Conditional concentration kernels at small separation distances Γ K , Γ d
gh, Γ d

re and Γ ST

are compared in figure 7(a) with the averaged number of particles, observation volumes
and particle number concentrations measured and reported in table 2. The observation
volumes were measured with a QuickHull algorithm (Barber et al. 1996). In figure 7(a),
only kernels for flow condition III are shown for clarity; Γ d

gh, Γ d
re and Γ K normalised by

Γ ST are shown in figure 7(b). We note the following.

(i) The ratio Γ K/Γ ST decreases monotonically and falls below unity with decreasing
separation distance. We attribute this deviation to finite-size effects. As mentioned
above, the theory of Saffman & Turner (1956) is based on the assumptions
of negligible particle–particle interactions. In the present experiments, the
particle separation distance becomes sufficiently small such that particle–particle
interactions cannot be ignored. This effect starts to play a role for r/D � 3.5,
as shown in figure 7. As the separation decreases and particles approach one
another, finite-size effects act against particles’ collision, leading to a decrease in
Γ K compared with Γ ST .

As r/D increases, finite-size effects become negligible and the ratio Γ K/Γ ST

becomes nearly constant. Saffman & Turner assumed that the probability
distribution of the velocity gradient is Gaussian; however, the p.d.f. of particle
pair radial relative velocity, shown in figure 3(d), is indeed not Gaussian at small
distances. The finite ratio of particle size to Kolmogorov length scale leads to a
larger particle relative velocity than that of fluid particles, which contributes to a
larger Γ K .
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Condition I Condition II Condition III

Average number of particles, Np 608 765 764
Average observation volume, Ω (cm3) 29.8 29.5 29.3
Average particle number concentrations, Np/Ω (cm−3) 20.4 25.9 26.0
Stokes number, Stk = (ρpD2/18μ)/τη 0.0028 0.0042 0.0080
Kolmogorov length scale to particle diameter, η/D 4.7 3.9 2.8

Table 2. Measured particle number concentrations under the three flow conditions.

(ii) The normalised conditional concentration kernels are found to be largely insensitive
to the flow Reynolds number that we considered, which is consistent with Ireland,
Bragg & Collins (2016).

(iii) We found Γ D
gh ≈ (1.25–1.30)Γ D

re consistent with Voßkuhle, Pumir & Lévêque (2011)
(i.e. ghost events overestimate the real conditional concentration rate by ∼30 % at
small Stokes numbers).

(iv) For r/D < 3.5, we observe that all concentration kernels increase with r/D, which is
a consequence of the inward velocity modification for r/η < 1 induced by finite-size
effects, preventing particles from colliding.

4. Conclusion

Kinematic and dynamic conditional concentration kernels of solid inertialess particles
in isotropic turbulence at low to intermediate Taylor Reynolds numbers with real
particle diameters smaller than the Kolmogorov length scale are measured experimentally.
Dynamic conditional concentration kernels are measured using 3-D PTV and fully
resolved particles providing similar results with kinematic conditional concentration
kernels. The high spatial resolution, large observation volume and long acquisition time
allow for calculating particle relative velocity statistics over a wide range of distance r
from the dissipation range to the integral scale range with 5 × 105 particle relative velocity
samples in each bin. This leads to over 109 realisations, which allows for well-converged
statistics. The particle relative velocity variance agrees well with Kolmogorov theory in
the inertial subrange. For separation distances r smaller than the Kolmogorov length scale
η, finite-size effects lead to a new scaling of particle relative velocity variance compared
to that of fluid particles where SP

2‖ = rε/(15ν) for particle diameters D � η provides a
good approximation. We speculate that the departure from point-tracer behaviour is due
to long-range interactions together with lubrication forces, whose consequences perhaps
persist at those large distances.

Both kinematic and dynamic conditional concentration kernels at small separation
distances are compared with Saffman & Turner (1956) theory. The deviation at
small distance is attributed to finite-size effects (Ababaei et al. 2021), while, at
larger distance, we recover the Saffman & Turner approximation. The present method
allows for direct conditional concentration measurements, excluding multiple instances
when the inter-particle distance falls below the distance d from the first (initial)
instance for the calculation of the dynamic conditional concentration kernels. This is
confirmed by Γ D

gh ≈ (1.25–1.35)Γ D
re , close to the finding of Voßkuhle et al. (2011),

which demonstrated that the ‘ghost conditional concentration’ approach overestimates
the conditional concentration kernel by up to 30 %. Furthermore, normalised dynamic
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conditional concentration kernels appear to be independent of the present Reynolds
number, in agreement with Ireland et al. (2016). Dynamic conditional concentration
kernels are based on the measurement of inter-particle distances using analogous but
larger particles centred on the real particles. Further experimental work, such as the
recent study by Hammond & Meng (2021), needs to focus on finite-size inertial particles,
since analogous inertial particles would behave differently than real host particles near
contact. Recent DNS by Ababaei et al. (2021) show that finite-size effects should remain
an important factor when inertial particles come into contact and largely contribute to
accurately estimating collision kernels.
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Appendix A. Estimation of the turbulent kinetic energy dissipation rate from PIV

Turbulence kinematic energy dissipation ε could not be directly measured from the spectra
reported in figure 2(a) because the PIV spectra hardly resolved the Taylor microscale λ,
leaving most of the turbulence kinetic energy dissipation spectrum out of reach. Instead, ε

was estimated based on the turbulence kinetic energy budget from 2-D PIV measurements.
Here, we chose a rectangular control volume, located at the position of the laser volume
used for PTV and shown in figure 1. Using the divergence theorem, the quantities are
projected onto the surfaces of the control volume and the turbulence kinetic energy budget
simplifies to

∫
V

ε dV = −
∫

Sx

(Uk′ + u′k′)nx dy −
∫

Sy

(Vk′ + v′k′)ny dx −
∫

V
u′

iu
′
jUij dV, (A1)

where ε is the local time-averaged turbulence kinetic energy dissipation, Sx are the faces of
the control volume in the horizontal direction x while Sy is oriented in the vertical direction
y. Here, the overbar denotes the temporal mean, (U, V) is the mean flow computed from
all PIV snapshots and k′ is the time-averaged turbulence kinetic energy. Note that the
pressure–velocity diffusion term was neglected since it was not directly accessible from
PIV measurements and because it plays no significant role in nearly homogeneous and
isotropic turbulence (Sagaut & Cambon 2008). The spatially averaged turbulence kinetic
energy dissipation rate ε was finally obtained by dividing the left-hand side of (A1) by the
control volume V .
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