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Abstract

A classical problem in free-surface hydrodynamics concerns flow in a channel, when an
obstacle is placed on the bottom. Steady-state flows exist and may adopt one of three
possible configurations, depending on the fluid speed and the obstacle height; perhaps
the best known has an apparently uniform flow upstream of the obstacle, followed
by a semiinfinite train of downstream gravity waves. When time-dependent behaviour
is taken into account, it is found that conditions upstream of the obstacle are more
complicated, however, and can include a train of upstream-advancing solitons. This
paper gives a critical overview of these concepts, and also presents a new semianalytical
spectral method for the numerical description of unsteady behaviour.

2020 Mathematics subject classification: primary 76B07; secondary 76B15, 76M22.

Keywords and phrases: free-surface flow, bottom topography, surface waves, upstream
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1. Introduction and overview

A canonical problem in free-surface hydrodynamics is that in which a fluid flowing
at constant depth and speed in a horizontal channel encounters some sort of blockage.
This might occur as a surface disturbance from a ship or a hovercraft, or be due to some
object such as a submarine within the water, or an obstruction such as a reef on the
bottom. The question of interest is to determine what kind of flow patterns are formed
behind the blockage when the fluid has a free surface that can deform in response
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to the presence of the obstruction. In addition to the fundamental scientific interest
that such flows represent, they are clearly also of great relevance to an extensive range
of applications, such as ship hydrodynamics, submarine and hydrofoil design, flows
produced by reefs, and so on. An authoritative review of many flows of these types has
been presented by Wehausen and Laitone [52]. The book by Kostyukov [33] presents
many of the classical solutions for waves produced by ships in various situations and
shows how to calculate the wave resistance of hulls and propellers. Some more recent
methods for the numerical solution of steady free-surface flow problems are discussed
by Vanden-Broeck [48].

An enormous amount of research has been undertaken on free-surface flows
caused by obstructions, in particular, when the vast amount of literature on ship
hydrodynamics is taken into account. For this reason, we restrict our attention here only
to surface waves that have been generated by irregularities at the bottom of a running
stream. However, even within this greatly reduced subset of such possible flows, the
variety of cases to consider is enormous. Such flows can occur either as steady-state or
time-dependent entities. In general, they would exist in three-dimensional geometry,
with a wedge-shaped pattern of waves formed behind the obstacle. Such flows are
discussed in detail by Wehausen and Laitone [52] and in the text by Stoker [43] who
also presents photographs of three-dimensional ship-wave patterns. These patterns
also occur in atmospheric cloud formations [41, 54]. Furthermore, in fluids consisting
of more than one layer, obstacles can induce waves at the free surface in addition to
internal waves at the interface(s) between fluid layers; this results in extra wave drag
on the obstacle, and some seafarers have even ascribed the sluggish motion of their
ships in layered oceans to the presence of magical beings within the ocean grasping
hold of the hull of their ship [55]1. Surface waves in the full three-dimensional
geometry can become particularly complicated in water of finite lateral extent
[45, 46].

Here, we restrict our attention to the consideration of bottom-mounted obstacles in
two-dimensional geometry only. The flow therefore occurs in vertical planes and does
not vary laterally. The obstacle can thus be considered as a cylinder of effectively
infinite width. Further, we consider here only fluids that are “ideal”, in the sense
that they are assumed to be inviscid and incompressible, and which therefore flow
irrotationally.

The study of steady-state planar flows of ideal fluids over bottom-mounted obstacles
is classical, and is discussed in detail by Lamb [34, Article 245], in a linearized
approximation in which the height of the obstacle above the bottom is supposed to be
small. The problem can be solved in a reasonably straightforward manner using Fourier
transforms, and the free-surface shape is given as an integral (an inverse Fourier
transform). The behaviour of this integral is critically dependent upon a dimensionless

1 A similar superstition was apparently held by Japanese fishermen, as told to L. K. Forbes in 1982 by Professor
Kazuhiro Mori, of the Faculty of Engineering at Hiroshima University.
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Froude number

F = c/
√

gH, (1.1)

in which c is the undisturbed speed of the fluid stream past the obstacle, H is the
undisturbed stream depth and g is the downward acceleration due to gravity. Since it is
a ratio of two speeds, the Froude number F is closely analogous to the more familiar
Mach number of gas dynamics [1, p. 8]. Lamb’s linearized solution shows that there
are two distinct parameter regions, in which the behaviour of the free surface is quite
different. In the supercritical case F > 1, the integral in the formula for the surface
elevation is convergent, and it unambiguously shows that waves are formed neither
upstream nor downstream of the obstacle; the surface on both sides is flat and it
merely rises above the obstacle before resuming its undisturbed height downstream.
However, in the subcritical case F < 1, the integral expression for the surface shape
is formally divergent, since a pole singularity appears in the denominator of the
integrand. Nevertheless, Lamb [34, Article 245] shows how to interpret this integral
in such a way that it gives a finite result and also satisfies the radiation condition that,
for F < 1, waves cannot exist far upstream of the body in steady flow. In the process,
Lamb obtains a free-surface shape that is flat far ahead of the obstacle, and then dips
over the bottom bump before forming a downstream wave train that extends to infinity.
Furthermore, Lamb, in Article 247, shows that the amplitude of the waves formed far
downstream is proportional to the quantity exp(−1/F2). This intriguing observation
is the basis of the “low-speed paradox”, in which the downstream wave amplitude
decreases faster than exponentially as F → 0. Lamb’s Fourier transform solution fails
to yield a steady-state solution for the critical speed F = 1.

Lamb [34, Article 247] illustrated his techniques to solve for the steady-state
problem of free-surface flow over a semicircular cylinder of radius α placed across the
bottom of a stream. The height α of the bump (and therefore also its total width 2α)
was assumed to be small, so that a linearized solution could be obtained. This problem
of “ideal” fluid flow over a semicircle was reconsidered in the nonlinear context by
Forbes and Schwartz [19]. They used the Zhukovskii conformal transformation to map
the bottom shape simply to a straight line, and thus enforced the bottom boundary
condition on the semicircle exactly. They also calculated a linearized solution, valid
for small semicircle radius α, and obtained essentially the same free-surface profile
as Lamb [34, Article 247], except that their downstream waves had exactly twice the
amplitude of those calculated by Lamb. They attributed this difference to the fact that
their linearized solution is no longer just a small perturbation about uniform flow,
but instead represents a perturbation about a base flow that takes exact account of
the semicircular bottom bump, including the two stagnation points on the bottom,
as a result of the conformal mapping. They obtained numerical solutions to the
nonlinear problem, based on a boundary-integral formulation, and computed solutions
for F < 1 having an evanescent surface shape upstream of the semicircle followed
by a downstream nonlinear wave train. In the supercritical case F > 1, they obtained
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wave-free surface profiles symmetric about the centre-plane x = 0. They were not
able to compute wave-like solutions in the transcritical region near the critical value
F = 1, but they speculated that nonlinear effects might allow such waves to exist
for an appropriately large semicircle radius α. For both types of solution at each
Froude number F, there was found to be a maximum bump size α at which the free
surface formed crests enclosing the Stokes angle of 120◦. Steady-state solutions for
larger obstacles could not be found. Later, Vanden-Broeck [47] demonstrated that the
supercritical wave-free solution is nonunique and that two such flows are possible. The
first is the one computed by Forbes and Schwartz and is an analytical continuation of
the linearized solution of Lamb, but a second solution also exists, and may be regarded
as a bifurcation from a soliton.

Zhang and Zhu [58] later reconsidered the results of Forbes and Schwartz for
flow over a submerged semicircle, computing the steady nonlinear solutions using an
integral equation based on hodograph variables. They obtained accurate numerical
free-surface profiles and undertook a careful comparison with both the linearized
solution and the results of Forbes and Schwartz. More recently, Pethiyagoda et al. [40]
have argued that boundary-integral numerical methods require a very large number of
numerical points on the free surface in order to maintain accuracy, and this requires
a large nonlinear system of algebraic equations to be solved for the surface shape.
It can be argued that the solution of this algebraic system must be carried out by a
technique such as Newton’s method, which would solve a linear system exactly [15]
when F < 1, and this then leads to the requirement that a large Jacobian matrix of
derivatives be calculated and inverted at each iteration of the method. Pethiyagoda
et al. [40] used an integral-equation approach closely related to that of Zhang and Zhu,
but they devised an approach whereby they could avoid the explicit use of a Jacobian
matrix. This allowed them to use many more free-surface points and to investigate
numerical convergence of their scheme in considerable detail.

In linearized theory of the type presented by Lamb [34], two-dimensional steady
flow over a bump suggests the possibility that, for obstacles of certain critical lengths,
the free-surface waves generated at the front of the bump may be exactly half a
wavelength out of phase with those produced at the back. Since, in linearized theory,
these two wave trains superpose, the downstream waves cancel completely, leaving a
subcritical flow that is nevertheless free of waves either side of the body. Forbes [13]
investigated this numerically for nonlinear flow over a semielliptical bump and found
that there appeared to be ellipse lengths for which the downstream waves vanished.
He followed this with a paper that sought wave-free subcritical solutions explicitly
[14], by demanding symmetric flow and making the numerical scheme compute the
ellipse length for which this occurred. Remarkably, such drag-free solutions do occur,
evidently for a countably infinite set of ellipse lengths agreeing very closely with the
predictions of linearized theory for small ellipse heights; the nth such waveless flow
contains n − 1 trapped waves over the ellipse, but none downstream. As the ellipse
height is increased, however, these wave-free eigenfunctions begin to merge, and
eventually coalesce in pairs at certain maximum ellipse heights. This intriguing result
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represents a relatively rare instance of an effective superposition principle present
even in a nonlinear system, although the ellipse lengths for which it occurs depend
strongly on the ellipse height, unlike the linearized system. As such, it is perhaps
reminiscent of the celebrated result of Zabusky and Kruskal [56] for the Korteweg–de
Vries equation. Later, Holmes et al. [29] and Hocking et al. [27] carried out similar
and more accurate computations for steady flow over a system of two bottom bumps,
and confirmed the existence of sets of separation distances between the bumps for
which wave-free solutions exist; furthermore, they allowed these bumps to have either
positive or negative heights, and obtained an elaborate lattice of waveless solutions in
a parameter space consisting of the separation distance and height of the two bumps.
These results were extended by Holmes and Hocking [28], who also compared the
fully nonlinear solutions with the predictions of weakly nonlinear theory.

In addition to the subcritical wave-like solutions (F < 1) and the symmetric
supercritical (F > 1) wave-free solutions, there also exists a third solution type for
steady-state flow. These are well known in the civil engineering literature, where
they are often referred to as “critical flows” or “hydraulic falls”, and are discussed
in the text by Henderson [24]. In these flow types, there is subcritical flow ahead
of the obstacle, and wave-free supercritical flow behind it. The fluid falls over the
obstacle in a type of waterfall flow, and there is a point on it where the local Froude
number equals one. Here, the obstacle is acting as a weir, choking the flow so that
only a fixed steady volume flux is possible for a given obstacle height. Such steady
solutions can only occur at one value of the upstream Froude number F for each value
of the obstacle height α. Forbes [16] used the conformal map and boundary-integral
approach of [19] to compute steady critical flows produced by a semicircular bottom
bump, allowing the upstream Froude number F in (1.1) to be found as an unknown
parameter in the numerical scheme. He computed free-surface profiles and a portion of
the subcritical F– α relationship for these flows, and also compared his results against
experimentally measured values of the downstream fluid depth. A picture of one such
flow is presented in Figure 12. Steady critical flows have since been computed for
flows over various different bottom shapes, and some examples for flows over steps
and rectangular obstacles are presented by Binder et al. [5].

Because the calculation of nonlinear free-surface flows is difficult and
computer-intensive, many researchers have been attracted to the use of simpler, weakly
nonlinear theories to model such flows and, until the past two decades, these two
approaches had proceeded almost independently and in parallel. Many of these more
approximate analyses focused on the use of the Korteweg–de Vries (KdV) equation
for two-dimensional flow, and Shen and Shen [42] present a concise picture of the
predictions of KdV theory for steady free-surface flow over a bump. If the bottom
disturbance is taken to be a semicircle, as assumed by both Forbes and Schwartz
[19] and Shen and Shen [42], then there are only two dimensionless parameters that

2 This photo was taken by L. K. Forbes in 1987, in the Civil Engineering laboratory at the University of
Queensland.
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FIGURE 1. A photograph of a critical flow over a semicircular obstacle mounted on the bottom of a
horizontal channel.

describe the steady free-surface flow over this object. The first is the Froude number F
in (1.1) and the second is the semicircle radius α. Suppose we fix the upstream speed
F < 1 and consider the change of the behaviour of the (subcritical) solution as the
bump radius α is increased; according to KdV theory, the wavelength and the wave
amplitude of the downstream waves increases until a finite value of α is reached at
which the wavelength becomes infinite. Thus, in KdV theory, the downstream waves
evolve continuously into the critical flow solution in Figure 1 as α increases, and
there is no longer a steady solution once α exceeds this limiting value. This is an
elegant explanation for both the subcritical solution with downstream waves and the
critical flow type, and it gives an appealing synthesis of the two. Unfortunately, this
pleasing explanation is not confirmed by fully nonlinear calculations, which instead
show that, as α is increased, the downstream waves shorten rather than lengthen,
and although there is a limit radius α for these steady solutions, it is characterized
by the breaking of the downstream waves at their crests, and is thus not related to
the formation of the critical flow solution. Belward and Forbes [3] computed both
the solution type with downstream waves and the critical flow type for F < 1 and
argued that there are parameter regions for which both steady solution types could
exist simultaneously. However, Higgins et al. [26] later disputed this claim, arguing
instead that the boundary-integral method of Belward and Forbes [3] lacked sufficient
accuracy to guarantee such a conclusion. The relationship, if any, between subcritical
flows and critical flows therefore remains an open question.

A recent review of the steady flow types predicted by KdV theory has been given by
Binder [4]. That article examines various types of obstructions both mounted on the
bottom and present at the free surface, and it carries out an extensive phase-plane
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analysis of the KdV model for these flows. Several authors have also investigated
the use of other, similar, weakly nonlinear theories to describe flow over obstacles.
Marchant and Smyth [38] derived a fifth-order KdV-type equation to describe unsteady
flows over obstacles and compared their results with experiment. For unsteady flows,
more elaborate approximations such as the Green–Naghdi equations [12] or Wu’s
equations [35] have also been investigated, and the review by Helfrich and Melville
[23] discusses further extensions of KdV-type models. Several more recent papers have
also examined the accuracy of KdV theory against the predictions of fully nonlinear
inviscid free-surface hydrodynamics. Holmes and Hocking [28] found that KdV theory
was only accurate for flow over topography when F ≈ 1, which is entirely consistent
with the approximation used in the derivation of that theory. Tam et al. [44] used
both KdV theory and fully nonlinear models to solve the (inverse) problem in which
the free-surface elevation is assumed known, for a critical flow, and the bottom bump
shape then calculated. They were able to obtain reasonable agreement with experiment
only with fully nonlinear theory, and the KdV model was only able to predict coarse
features of the underlying topology.

As discussed previously, the linearized theory of Lamb [34, Article 247] indicates
that, for the subcritical flow F < 1, the downstream wave amplitude is proportional to
the quantity exp(−1/F2), which approaches zero faster than any power of F2 as F → 0.
Consequently, any attempt to create a “linearized” steady solution by expanding in
powers of F2 (rather than the obstacle height, as in Lamb’s solution) will encounter
difficulties, since the naïve series can be expected to be divergent and not to predict
waves. In some free-surface fluid-flow problems, such as the canonical problem of flow
generated by a submerged line or point source in otherwise stationary fluid, there is
only the single dimensionless parameter F2, so that linearization in the sense of Lamb’s
solution is simply not possible. Consequently, expansions in powers of F2 give only
asymptotic series, although it is nevertheless well known that such expressions can
be remarkably accurate when only the first few terms in the series are retained; this
was discussed for the problem of source flow by Peregrine [39] in two dimensions and
by Forbes and Hocking [18] in three-dimensional geometry. Possibly the first serious
attempt to obtain detailed information from a high-order (divergent) series expansion
in powers of F2 was made by Vanden-Broeck et al. [49]. They used computer
arithmetic to generate the coefficients of the series expansions in F2, and they observed
that such series are indeed divergent with the nth order coefficient behaving like n!. By
using numerical series-acceleration techniques (the Shanks transformation), they were
able to “sum” their divergent series, and for flow past a surface-piercing ship in planar
geometry, their result indicated a free surface, behind the ship, that was wave-free
but possessed a discontinuity. Vanden-Broeck et al. [49] interpreted this to mean that
there were two different solutions, and their series-summation technique was giving
the wave-free portions of each; the discontinuity at the free surface represented their
technique attempting to connect their two solution portions with a branch cut. In fact,
by interpreting the portion between the ship and the discontinuity as representing
a section of a genuine stern flow, they used an integral-equation formulation to
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“complete” the downstream flow, and they did indeed obtain a steady-state stern flow
with a train of downstream waves.

The more recent development of techniques for analysing these divergent series
in the Froude number has enabled the phenomenon of the downstream waves
behind bottom topography to be understood from a different perspective. Chapman
and Vanden-Broeck [7] employed the theory of exponential asymptotics to study
steady-state flow over a step on the bottom of a channel, and thus re-examined
an earlier paper by King and Bloor [31] who had solved this problem using an
integral-equation approach. Chapman and Vanden-Broeck found that their technique
generated a Stokes line, at which waves of exponentially small amplitude could be
produced. This line started from one corner of the bottom-based step and moved
through the fluid until it intersected the free surface; this is reminiscent of the
discontinuous jump at the free surface that the Shanks-transform series-summation
method of Vanden-Broeck et al. [49] had similarly produced. This work was later
generalized by Lustri et al. [37] to allow the bottom-based step to have a finite
slope.

The solutions for flow over topography discussed so far have all been for the
steady-state case, but it is not always obvious whether such solutions would be
observable once transient (time-dependent) behaviour is also considered. In the
laboratory, two-dimensional flows of the type studied in this paper would be achieved
by placing a cylindrical obstruction across the bottom of a rectangular channel and
avoiding boundary-layer effects at the channel walls. The steady-state flow presumably
then corresponds to infinite-time behaviour t → ∞, and so questions of stability
naturally arise. For supercritical flow upstream, F > 1, it seems likely that one of
Vanden-Broeck’s two steady solutions would be unstable [47] and thus would not be
seen. By contrast, the “critical” flow type, in which there is an hydraulic fall over
the obstacle, is easily generated, is stable, as Figure 1 indicates, and agrees well with
nonlinear numerical solutions of the steady equations [16].

The situation for time-dependent subcritical flow F < 1 is much less clear. For
a bottom bump placed across a channel with parallel vertical walls, Ertekin et al.
[11] demonstrated experimentally that a train of solitons is generated ahead of
the obstruction and, as time progresses, these waves move further upstream. This
observation was supported by numerical solutions of approximate, weakly nonlinear
models in a later paper by the same authors [12]. These upstream-advancing solitons
have since generated a great deal of interest. Wu [53] used a weakly nonlinear theory
(Wu’s equations) to compute unsteady flow over topography at the critical Froude
number F = 1 and demonstrated the presence of the upstream train of solitons and a
downstream pattern of waves moving away from the disturbance. Similar computations
were also carried out by Lee et al. [35], again using Wu’s equations, and they also
demonstrated that their results were in accordance with experimental measurements
for Froude numbers in the transcritical range F ≈ 1. Recall that Lamb’s linearized
solution [34, Article 247] for steady flow fails at the critical value F = 1, and it has
been demonstrated by Cole [10] that the corresponding linearized theory for unsteady
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flow predicts that the free-surface elevation grows like t1/3 for large t, for critical
flow F = 1. Some degree of nonlinearity is therefore required to obtain solutions in
the transcritical regime, and Cole used KdV theory to obtain these; her results are
qualitatively equivalent to those of Wu [53] obtained with a different weakly nonlinear
model. The use of KdV theory to calculate unsteady flow over a step is reviewed by
Grimshaw [21], and KdV theory has also been used in a variety of other applications,
including waves generated by two bottom bumps [8, 22].

In this article, we consider the time-dependent linearized solution, based on Lamb’s
[34] formulation. We also present some solutions to the full nonlinear system of
inviscid free-surface equations, using a novel spectral method based on one developed
by Forbes et al. [17] for free-surface flows, but extended here to permit arbitrary
smooth bottom-bump topography.

2. Unsteady spectral formulation

We now consider a novel semianalytical approach to the description of the unsteady
two-dimensional problem of flow over an obstacle. A Cartesian coordinate system is
located with its x-axis pointing horizontally along the bottom and its y-axis pointing
vertically, as in Figure 2. The fluid is subject to the gravitational body force, with
constant acceleration g directed negatively along the y-axis. As in earlier works [19,
34], the fluid is taken to be inviscid and incompressible, so that its velocity vector
q(x, y, t) ≡ u(x, y, t)i + v(x, y, t)j can be written as the gradient of a velocity potential
Φ(x, y, t) in the form q = ∇Φ. Here, the two constant unit vectors i and j point along
the positive x- and y-axes, respectively. The governing equation in the fluid is then
Laplace’s equation

∇2Φ = ∂2Φ/∂x2 + ∂2Φ/∂y2 = 0. (2.1)

In the absence of any obstacle, the fluid would simply be flowing from left to right
with some uniform speed c and have constant depth H.

We now introduce dimensionless variables, which we will use henceforth. All
lengths are referenced to the undisturbed fluid depth H, and speeds are referred to c.
The scale for time is chosen to be H/c. In these nondimensional coordinates, the
upstream speed and depth of the fluid are both one, as depicted in Figure 2. The form
of the governing equation (2.1) remains unchanged by this transformation. The key
dimensionless parameter is seen to be the Froude number F in (1.1), although there
will be two further dimensionless constants α and β which will specify the length and
the height of the bottom-based obstruction, respectively. Clearly, the height β provides
a direct measure of the effects of nonlinearity, since, as β→ 0, the obstruction vanishes
and simple uniform flow Φ = x is restored.

For simplicity, we assume that the shape of the bottom-mounted obstacle does not
change with time, and so we suppose it to be described by the equation y = h(x). For
inviscid fluid, there can be no flow normal to the bottom, which gives the kinematic
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FIGURE 2. Definition sketch for unsteady flow over smooth bottom topography. This is taken from the
linearized solution of Section 3, with bottom profile given by (3.17) at time t = 20, with F = 0.7, α = 2
and β = 0.3.

condition

v = u
dh(x)

dx
on y = h(x) (2.2)

holding on the bottom surface.
A similar kinematic condition holds on the unknown location y = η(x, t) of the free

surface. Since this is a material boundary, taking the time derivative following the
motion gives

∂η

∂t
= v − u

∂η

∂x
on y = η(x, t). (2.3)

There is also a dynamic boundary condition that holds on the free surface, which
expresses the fact that the pressure in the fluid there must be continuous with
the (constant) atmospheric pressure. The fluid pressure can be calculated using
Bernoulli’s equation, and, in dimensionless coordinates, the final form of this dynamic
condition is

F2 ∂Φ

∂t
+

1
2

F2(u2 + v2) + η =
1
2

F2 + 1 on y = η(x, t). (2.4)

The constant F is the Froude number in equation (1.1).
Forbes and Schwartz [19] developed a numerical scheme for solving the steady

version of this nonlinear inviscid problem (2.1)–(2.4). Their technique was based on
the use of boundary-integral methods to satisfy (2.1) in the fluid region, replacing
it with a singular integral equation that only involved variables on the free surface.
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Such an approach has obvious advantages, but, in the unsteady problem, it can lead
to ill-conditioning, since the integral equation to be solved at each new time step is a
Fredholm equation of the first kind. Here, we instead seek the numerical solution to the
unsteady problem, in some computational window −L < x < L, in the semianalytical
form

Φ(x, y, t) = x +
N∑

n=1

[
An(t) cos

(nπx
L

)
+ Bn(t) sin

(nπx
L

)]cosh(nπy/L)
cosh(nπ/L)

+

M∑
m=1

Qm(t)
∫ α
−α

sin
(mπ(ξ + α)

2α

)
ln
√

(x − ξ)2 + y2 dξ. (2.5)

Here, the bump y = h(x) on the bottom of the channel is supposed to have finite
support, and to lie over the portion −α < x < α. Outside the interval, the bottom is
simply the flat surface y = 0. The aim is to find the Fourier coefficients An(t), Bn(t) and
the coefficients Qm(t) of an effective distribution of sources along −α < x < α, y = 0
designed to enforce the bottom boundary condition (2.2). The velocity components u
and v are then obtained by direct differentiation of the velocity potential (2.5).

The paper by Forbes and Schwartz [19] used conformal mapping to enforce the
bottom condition (2.2) exactly, and this is the most precise and accurate technique
available. It also has the advantage that it copes exactly with corners in the bottom
profile, where there might be a stagnation point or even a flow singularity in the
inviscid flow model. The drawback of conformal mapping is that each specific bottom
shape requires its own unique mapping function. Thus Forbes and Schwartz studied
flow generated by a semicircular bump only, although Forbes [14] generalized the
mapping function to allow semielliptical obstacles, demonstrating, in the process,
that exact wave cancellation could occur downstream for obstacles of the appropriate
length and height, even in the nonlinear problem. These findings were confirmed
later by Hocking et al. [27] and Holmes et al. [29]. King and Bloor [31] investigated
free-surface flow produced by polygonal obstacles, and even devised a numerical
conformal-mapping technique based on a continuous Schwarz–Christoffel mapping
[32]. More recent flows over rectangular obstacles have been presented by Herterich
and Dias [25].

In this present analysis based on (2.5), we have taken an alternative approach that
allows for a general bottom profile y = h(x) over some interval −α < x < α, and thus we
are not restricted only to profiles for which complex conformal mappings are known.
However, our profiles are now required to be continuous and have continuous first
derivatives, so that bottom corners and stagnation points are excluded here. For a bump
having compact support, this necessarily means that

h(±α) = 0 and h′(±α) = 0. (2.6)

This, however, imposes no major limitation, since corners can always be approximated
to some degree by a smooth curve, and, in fact, Fridman [20] has argued that some
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two-dimensional flows replace a single stagnation point with a stagnation zone of
finite area but shape that is unknown a priori; such inviscid flows possibly mimic
closely the recirculating zone near a stagnation point expected in viscous fluids. In
this representation (2.5), the second integral term can be regarded as a continuous
line source distribution along the surface y = 0, with effective source strength PS(x, t)
represented in the Fourier-series form

PS(x, t) =
M∑

m=1

Qm(t) sin
(mπ(x + α)

2α

)
. (2.7)

We observe that PS(x, t) falls to zero at x = ±α due to the smoothness conditions (2.6).
In view of (2.5), the bottom condition (2.2) becomes

M∑
m=1

Qm(t)GB
1 (x) = −h′(x) +

N∑
n=1

An(t)GS
2(x) +

N∑
n=1

Bn(t)GS
3(x), (2.8)

where we have chosen to denote

GB
1 (x) =

∫ α
−α

sin
(mπ(ξ + α)

2α

)[ (x − ξ)h′(x) − h(x)
(x − ξ)2 + h2(x)

]
dξ

GS
2(x) =

nπ
L

[
h′(x) sin

(nπx
L

)cosh(nπh(x)/L)
cosh(nπ/L)

+ cos
(nπx

L

)sinh(nπh(x)/L)
cosh(nπ/L)

]
GS

3(x) =
nπ
L

[
− h′(x) cos

(nπx
L

)cosh(nπh(x)/L)
cosh(nπ/L)

+ sin
(nπx

L

)sinh(nπh(x)/L)
cosh(nπ/L)

]
.

(2.9)

This representation (2.8) of the bottom boundary condition (2.2) is now Fourier
analysed by multiplying it by the basis functions sin(kπ(x + α)/(2α)), k = 1, 2, . . . , M,
and integrating over the compact domain. The result is the M ×M matrix system of
linear equations

LBQ = RAA + RBB − EB, (2.10)

in which the M × 1 vector Q contains the coefficients Qm(t) and the two N × 1 vectors
A and B consist of elements An(t) and Bn(t), respectively. The vector EB has the M
components

EB
k =

∫ α
−α

h′(x) sin
(kπ(x + α)

2α

)
dx
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and the two M × N matrices RA and RB contain elements

RA
k,n =

∫ α
−α

GS
2(x) sin

(kπ(x + α)
2α

)
dx

RB
k,n =

∫ α
−α

GS
3(x) sin

(kπ(x + α)
2α

)
dx.

The M ×M matrix LB has components

LB
k,m =

∫ α
−α

GB
1 (x) sin

(kπ(x + α)
2α

)
dx.

This matrix equation (2.10) is finally solved for the vector Q of bottom-profile
coefficients Qm(t), in terms of the free-surface coefficients An(t) and Bn(t), and gives a
matrix expression of the form

Q = TAA + TBB − FB, (2.11)

with M × N coefficient matrices

TA = (LB)−1RA and TB = (LB)−1RB (2.12)

and M × 1 vector

FB = (LB)−1EB. (2.13)

In the numerical method, it is only necessary to calculate these matrices (2.12) and
vector (2.13) once, since they are independent of time. Once obtained, they are stored
and used later as needed.

The kinematic free-surface condition (2.3) is also subjected to Fourier decomposi-
tion, following the “basic” algorithm in the paper of Forbes et al. [17]. To begin, we
define surface velocity components

U(x, t) = u(x, η(x, t), t) and V(x, t) = v(x, η(x, t), t) (2.14)

by direct differentiation of the velocity potential (2.5) and then evaluating the resulting
expressions on the free surface y = η(x, t). A spectral representation is also needed for
the unknown free-surface shape, which is consistent with (2.5), and we choose

η(x, t) = H0(t) +
N∑

n=1

[
Hn(t) cos

(nπx
L

)
+ Kn(t) sin

(nπx
L

)]
. (2.15)
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Next, the kinematic condition (2.3) at the free surface is multiplied by the appropriate
basis functions and integrated over the computational domain −L < x < L to give

H′0(t) =
1

2L

∫ L

−L

(
V − U

∂η

∂x

)
dx

H′�(t) =
1
L

∫ L

−L

(
V − U

∂η

∂x

)
cos
(
�πx
L

)
dx

K′�(t) =
1
L

∫ L

−L

(
V − U

∂η

∂x

)
sin
(
�πx
L

)
dx

� = 1, 2, . . . , N.

(2.16)

These represent a system of differential equations for the coefficients of the
free-surface elevation in (2.15).

Finally, the dynamic free-surface condition (2.4) is subject to similar Fourier
analysis at the surface. The two representations (2.5) and (2.15) for the velocity
potential and surface shape are used, and the even Fourier modes are then obtained by
multiplying by the even basis functions cos(�πx/L), for � = 1, 2, . . . , N, and integrating
over the computational window −L < x < L. This gives an N × N matrix equation of
the form

F2CCA′ + F2CSB′ + F2MQ′ = −H − 1
2 F2YC, (2.17)

in which A, and so on, are the vectors of coefficients as previously, and the additional
N × 1 vector H contains the N coefficients Hn(t) in (2.15). The two N × N matrices CC

and CS have elements

CC
�,n(t) =

1
L

∫ L

−L
cos
(nπx

L

)cosh(nπη(x, t)/L)
cosh(nπ/L)

cos
(
�πx
L

)
dx

CS
�,n(t) =

1
L

∫ L

−L
sin
(nπx

L

)cosh(nπη(x, t)/L)
cosh(nπ/L)

cos
(
�πx
L

)
dx

(2.18)

and the N × 1 vector YC has components

YC
� (t) =

1
L

∫ L

−L
(U2 + V2) cos

(
�πx
L

)
dx. (2.19)

Here, U and V are the two surface velocity components defined in (2.14). The M × N
matrixM in (2.17) contains the elements

M�,m(t) =
1
L

∫ L

−L
cos
(
�πx
L

)
dx

×
∫ α
−α

sin
(mπ(ξ + α)

2α

)
ln
√

(x − ξ)2 + η2(x, t) dξ. (2.20)

The odd Fourier modes for the dynamic free-surface condition are likewise
obtained by multiplying by the odd basis functions sin(�πx/L), for � = 1, 2, . . . , N, and
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integrating. This gives the N × N matrix equation

F2SCA′ + F2SSB′ + F2NQ′ = −K − 1
2 F2YS. (2.21)

Here, the N × 1 vector K contains the coefficients Kn(t) in (2.15). The two matrices
SC and SS have the same form as CC and CS in the definitions (2.18), except that the
quantity cos(�πx/L) in the integrands must be replaced with sin(�πx/L). The vector YS

is obtained from the definition (2.19) by similarly substituting sin(�πx/L) in place of
the cosine term, and the same substitution is used to obtain the elements of the M × N
matrix N in place ofM in equation (2.20).

This coupled system of nonlinear equations is now ready to be integrated forward
in time. The matrix system (2.11) is differentiated with respect to time and used to
eliminate the vector Q′ in (2.17) and (2.21) in favour of the derivatives A′ and B′. Thus
the dynamic boundary condition yields the 2N × 2N matrix system

F2
[

CC +MTA CS +MTB

SC +NTA SS +NTB

] [
A′

B′

]
= −1

2
F2
[

YC

YS

]
−
[

H
K

]
. (2.22)

The system of equations (2.16) and (2.22) constitutes a total of 4N + 1 ordinary
differential equations for the Fourier coefficients H0(t), Hn(t), Kn(t), An(t) and Bn(t),
for n = 1, 2, . . . , N. We integrate it forward in time using a 16-stage, 10th-order
Runge–Kutta scheme presented by Zhang [57]. Surprisingly, perhaps, we find that the
use of this higher-order scheme reduces the computer run time by at least an order
of magnitude when compared with the classical fourth-order Runge–Kutta scheme
presented by Atkinson [2, p. 371], for the same level of accuracy, and we believe
this occurs for two reasons. The first is that, because of the complicated system of
ordinary differential equations being integrated, the number of function evaluations
vastly outweighs any additional overheads associated with a more complicated method.
Secondly, each function evaluation introduces some round-off error due to the use of
64-bit arithmetic. Both of these factors are improved with the use of a higher-order
method, as it allows larger timesteps, and correspondingly fewer function evaluations,
for the same level of accuracy. The initial conditions are taken simply to be

H0(0) = 1, Hn(0) = Kn(0) = 0, An(0) = Bn(0) = 0, (2.23)

corresponding to the impulsive appearance of the bottom bump into an otherwise
uniform flow with initial free-surface location η(x, 0) = 1.

We tested this numerical algorithm in the MATLAB coding environment before
converting the script into the Fortran language. The numerical quadratures required to
evaluate the intermediate quantities (2.16) and (2.18)–(2.20) and so on were all carried
out using the Gaussian-quadrature routine of [50]. The numbers of mesh points in
these quadrature rules on both the free surface and the bottom bump were taken to be
five times the corresponding numbers N and M of Fourier modes. The majority of the
matrix multiplications were performed on graphics hardware using CUDA Fortran to
reduce run time. We used double precision (64 bit) real numbers in all calculations.
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3. Classical linearized theory

The governing equations (2.1)–(2.4) can be approximated by a linearized system,
assuming that the flow corresponds to a small perturbation of the basic uniform flow
of unit speed and depth. For this to be possible, it is necessary to take the obstacle
height β as the small parameter and suppose that

Φ(x, y, t) = x + βΦL(x, y, t) + O(β2)

η(x, t) = 1 + βηL(x, t) + O(β2)

h(x) = βhL(x) + O(β2).

(3.1)

The first-order perturbation potential ΦL(x, y, t) continues to satisfy Laplace’s equation
(2.1) as expected, although now in the linearized known domain 0 < y < 1. The bottom
condition (2.2) becomes

∂ΦL

∂y
=

dhL(x)
dx

on y = 0. (3.2)

The linearization process (3.1) projects quantities at the true free surface y = η(x, t)
onto the surface y = 1 using Taylor series, so that the kinematic condition (2.3) is
approximated by

∂ΦL

∂y
=
∂ηL

∂t
+
∂ηL

∂x
on y = 1. (3.3)

The dynamic condition (2.4) is linearized to become

F2 ∂Φ
L

∂t
+ F2 ∂Φ

L

∂x
+ ηL = 0 on y = 1. (3.4)

The steady-state solution to these equations, in which all the time-derivative
terms are removed, is a classical problem that has been extensively studied over the
past century. Lamb [34, Article 245] uses Fourier transforms to obtain a linearized
free-surface shape given by the expression

η(x) = 1 − βF
2

√
2π

∫ ∞
−∞

kh̃L(k) exp(ikx)
sinh k − kF2 cosh k

dk + O(β2), (3.5)

in which the function h̃L(k) is the Fourier transform of the bottom shape function hL(x)
in equation (3.1). Essentially this same solution (3.5) is given by Wehausen and Laitone
[52, p. 570], at least for the case of a symmetric bottom bump shape h(x).

The problem with the expression (3.5) is that the integral is formally divergent for
subcritical flow, in which F < 1, since, in that case, the denominator of the integrand
has two real zeros at k = ±k0 obtained from the equation

sinh k0 − k0F2 cosh k0 = 0. (3.6)
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Lamb [34] argues that waves cannot propagate upstream against the oncoming flow
when F < 1, since the radiation condition from physics precludes such behaviour.
He shows that the required physical characteristics for the steady surface shape are
recovered by interpreting the path of integration in (3.5) to be a contour in the complex
k-plane, from k = −∞ to k = ∞ along the real k-axis, but passing below the pole
singularities at k = ±k0. With such an interpretation, (3.5) now yields a linearized
free-surface shape that is flat with η = 1 far upstream, rises slightly as it nears the
leading edge of the bump at x = −α, dips over the obstacle and finally makes a train of
waves of wavelength 2π/k0 extending infinitely far downstream, for subcritical flow
F < 1. When the flow is supercritical, F > 1, this difficulty does not arise, since
the equation (3.6) has no real roots, and the integrand in (3.5) possesses no such
singularities. In that fast-flowing case, the interface rises above the submerged obstacle
and there are no waves either upstream or downstream of the bump. There is no
steady linearized solution for the critical case F = 1. Numerical solutions of the steady
nonlinear problem confirm these general features of the flow, and pictures of the free
surface both for subcritical and supercritical flows can be found in articles by Forbes
and Schwartz [19], King and Bloor [32], Grimshaw [21] and others.

The unsteady problem, consisting of Laplace’s equation (2.1) for the function
ΦL and conditions (3.2)–(3.4), can likewise be solved using Fourier transforms.
After some algebra, the general form of the perturbation velocity potential is found
to be

ΦL(x, y, t) =
1
√

2π

∫ ∞
−∞
Φ̃L(k; y, t)eikx dk (3.7)

and the linearized free-surface elevation function is, similarly,

ηL(x, t) =
1
√

2π

∫ ∞
−∞
η̃L(k; t)eikx dk, (3.8)

where the Fourier transforms of these two functions are

Φ̃L(k; y, t) = 2e−ikt[C1(k)e−iP(k)t + C2(k)eiP(k)t] cosh(ky)

− ih̃L(k)
cosh(k(y − 1)) + kF2 sinh(k(y − 1))

sinh k − kF2 cosh k
(3.9)

and

η̃L(k; t) = 2iF2P(k)e−ikt[C1(k)e−iP(k)t − C2(k)eiP(k)t] cosh(k)

− h̃L(k)
kF2

sinh k − kF2 cosh k
. (3.10)

The quantity

P(k) =

√
k sinh k

F2 cosh k

https://doi.org/10.1017/S1446181121000341 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000341


394 L. K. Forbes, S. J. Walters and G. C. Hocking [18]

has been introduced for convenience, and the two functions C1(k) and C2(k) in Fourier
space are determined by the initial conditions.

In choosing appropriate initial conditions for this linearized problem, we wish
to mimic conditions (2.23), in which the bump appears impulsively at the stream
bottom. Thus the initial free-surface elevation is simply η(x, 0) = 1, so that (3.1) gives
ηL(x, 0) = 0. In the Fourier space, this becomes ˜ηL(k; 0) = 0 and therefore

2iF2P(k)[C1(k) − C2(k)] cosh(k) = h̃L(k)
kF2

sinh k − kF2 cosh k
. (3.11)

A second initial condition is more difficult to construct, but if we suppose that the flow
originally consisted purely of the bottom disturbance, then, from (2.5), it is reasonable
to argue that

∂ΦL

∂x
(x, y, 0) =

1
π

∫ ∞
−∞

hL(ξ)
[−(x − ξ)2 + y2]
[(x − ξ)2 + y2]2 dξ,

after using integration by parts and making use of the fact that the bottom disturbance
hL(ξ) is zero outside the interval −α < ξ < α. We take the Fourier transform of this
expression and use the convolution theorem to obtain

ikΦ̃L(k; y, 0) = h̃L(k)|k| exp(−|k|y),

so that, when (3.9) is taken into account, the second initial condition is obtained in the
form

2ik[C1(k) + C2(k)] cosh(ky) + kh̃L(k)
cosh(k(y − 1)) + kF2 sinh(k(y − 1))

sinh k − kF2 cosh k
= h̃L(k)|k| exp(−|k|y).

A careful analysis of this equation for the two cases k < 0 and k > 0 shows
that, remarkably, the function cosh(ky) is common to each term and so cancels,
leaving

2i[C1(k) + C2(k)] = −e−|k|h̃L(k)
1 + |k|F2

sinh k − kF2 cosh k
(3.12)

as the second initial condition in the Fourier space. These two equations, (3.11) and
(3.12), are now solved for the two functions C1(k) and C2(k).

After some algebra, the linearized free-surface elevation is obtained from (3.8) and
(3.10) to be

ηL(x, t) =
F2

√
2π

∫ ∞
−∞

h̃L(k)
sinh k − kF2 cosh k

[keik(x−t) cos(P(k)t)

+ ieik(x−t) sin(P(k)t)e−|k|P(k)(1 + |k|F2) cosh k − keikx] dk. (3.13)
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Qualitatively similar expressions are given in a recent paper by Wang [51]. The
linearized potential ΦL in (3.7) can also be determined, but is not given here in the
interests of space.

There is a crucial difference between the steady-state expression (3.5) and the
unsteady formula (3.13) for the surface elevation. Whereas the integrand in the steady
case (3.5) has a pole singularity in the path of integration, this is not true for the
unsteady formula (3.13), even though they both share the same denominator, which is
indeed zero at the point k0 given by (3.6) when F < 1.

This is most easily seen for a symmetric bottom obstacle, for which h(x) = h(−x),
since, in that case, the corresponding result h̃L(k) = h̃L(−k) also holds in the Fourier
space. Then the linearized surface elevation (3.13) is given by the real expression

ηL(x, t) = F2

√
2
π

∫ ∞
0

h̃L(k)
sinh k − kF2 cosh k

[kΛ1(k; x, t)

− e−|k|P(k)(1 + |k|F2)Λ2(k; x, t) cosh k] dk, (3.14)

where we have defined the auxiliary functions

Λ1(k; x, t) = cos(k(x − t)) cos(P(k)t) − cos(kx),
Λ2(k; x, t) = sin(k(x − t)) sin(P(k)t)

(3.15)

for convenience. Now, in the limit k → k0, it follows from (3.6) that P(k)→ k0.
As a result, it is straightforward to show from (3.15) that Λ1(k0; x, t) = Λ2(k0; x, t).
Furthermore, the identity exp(k0) = cosh k0 + sinh k0 combined with (3.6) gives the
result

exp(−k0) =
1

exp(k0)
=

1
(1 + k0F2) cosh k0

and, consequently, the numerator in (3.14) also becomes zero as k → k0. Thus the
linearized free-surface expression (3.14) has a removable singularity at k0 for all t < ∞.

The behaviour of the unsteady solution (3.14) is thus very different from that of the
classical steady solution (3.5), and it is by no means obvious that the steady-state result
(3.5) is necessarily obtained from (3.14) in the limit t → ∞, as would be expected from
the physics. Furthermore, although it is possible to derive an asymptotic form of the
unsteady solution (3.14) valid for large t, using the method of stationary phase, the
resulting equation is complicated and unenlightening on this issue.

It is interesting to observe that, from the linearized steady-state solution (3.5), the
exact cancellation of the downstream wave train may occur for many different obstacle
types in the subcritical case F < 1. For a symmetric bottom profile h(−x) = h(x),
it follows that h̃L(k) = h̃L(−k), as discussed previously, and so the interpretation of
the singular integral in (3.5), required to satisfy the upstream radiation condition,
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necessarily results in a steady downstream wave train of the form

η(x) = 1 − β 4πk0h̃L(k0)

(1 − F2 − k2
0F4) cosh k0

sin(k0x) + O(β2). (3.16)

Thus, for quite general bottom shapes, the amplitude of the downstream wave train in
(3.16) becomes precisely zero whenever h̃L(k0) = 0.

To fix some of the ideas, we consider the symmetrical obstacle shape

h(x) =

⎧⎪⎪⎨⎪⎪⎩−β(x
2/α2 − 1)3 if − α < x < α,

0 if |x| > α.
(3.17)

This has the Fourier transform

h̃L(k) =
96α

√
2π(kα)7

[(kα)3 cos(kα) − 6(kα)2 sin(kα) − 15(kα) cos(kα) + 15 sin(kα)].

(3.18)

If this quantity is zero at k = k0, then the amplitude of the steady-state downstream
waves in (3.16) is zero and the waves vanish.

For a fixed Froude number F < 1, the wavenumber k0 of the downstream waves
is determined uniquely by the transcendental equation (3.6). For ease of reference,
this relationship has been plotted in Figure 3(a). Equation (3.18) then shows that the
amplitude of the linearized downstream wave train is zero whenever

tan(k0α)
(k0α)

=
15 − (k0α)2

15 − 6(k0α)2 . (3.19)

This expression (3.19) thus gives the bottom half-length α at which wave-free
subcritical solutions may be found. Since (3.19) is a transcendental equation, it would
need to be solved for this α using an iterative numerical method, but to understand
the structure of this equation, we have plotted in Figure 3(b) the left-hand side (blue
online) and the right-hand side (red online) of (3.19) as functions of k0α. Where these
two sets of curves intersect is the value of k0α at which a wave-free solution would
occur. Thus, in a simple graphical understanding, the Froude number F determines the
downstream wavenumber k0 from Figure 3(a) and the obstacle half-length α required
for wave-free solutions is then obtained from Figure 3(b).

4. The solution algorithm applied to the linearized problem

It is instructive to apply the semianalytic solution algorithm of Section 2 to the
linearized problem of Section 3, since the exact solution (3.14) is already known in
closed form and thus serves as a check on the numerical results. In addition, some
analytical insights are available from this approach that are not obvious from the purely
numerical scheme.
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FIGURE 3. (a) The relationship (3.6) between the Froude number and the downstream wavenumber for
the linearized solution; and (b) the left- and right-hand sides of equation (3.19). Where these two curves
intersect gives values of k0α at which the downstream wave train vanishes (colour available online).

Following developments in Section 2, we take, for the linearized potential function
ΦL(x, y, t) in (3.1), a representation of the corresponding form

ΦL(x, y, t) =
∞∑

n=1

[
AL

n(t) cos
(nπx

L

)
+ BL

n(t) sin
(nπx

L

)]
cosh
(nπy

L

)

+

∞∑
m=1

QL
m(t)
∫ α
−α

sin
(mπ(ξ + α)

2α

)
ln
√

(x − ξ)2 + y2 dξ (4.1)
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over the computational window −L < x < L. The perturbed free-surface shape is
similarly assumed to be

ηL(x, t) =
∞∑

n=1

[
HL

n (t) cos
(nπx

L

)
+ KL

n (t) sin
(nπx

L

)]
(4.2)

in this linearized approximation (3.1) to the solution.
The linearized bottom condition (3.2) is now applied, and it at once yields

∞∑
m=1

QL
m(t) lim

y→0+

∫ α
−α

sin
(mπ(ξ + α)

2α

) y
(x − ξ)2 + y2 dξ =

dhL(x)
dx

. (4.3)

In order to evaluate the limit in this expression, we make the change of variables
ξ = x + y tan θ. The integral term in (4.3) therefore becomes

lim
y→0+

∫ arctan(α−x)/y

arctan(−α−x)/y
sin
[mπ

2α
(x + α + y tan θ)

]
dθ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if x < −α,

π sin
(mπ(x + α)

2α

)
if − α < x < α,

0 if x > α.

The linearized bottom condition (3.2) thus gives

PL
S(x, t) =

∞∑
m=1

QL
m(t) sin

(mπ(x + α)
2α

)
=

1
π

dhL(x)
dx

(4.4)

for the linearized source strength on the plane y = 0 over the interval −α < x < α. The
function PL

S has been introduced here, as the linearized counterpart to the quantity
defined in (2.7).

As a consequence of (4.4), the linearized potential function (4.1) now has the
equivalent representation

ΦL(x, y, t) =
∞∑

n=1

[
AL

n(t) cos
(nπx

L

)
+ BL

n(t) sin
(nπx

L

)]
cosh
(nπy

L

)

+
1
π

∫ α
−α

dhL(ξ)
dξ

ln
√

(x − ξ)2 + y2 dξ. (4.5)

The coefficients AL
n(t), BL

n(t) in this expression, along with HL
n (t) and KL

n (t) for the free
surface in (4.2), remain to be determined, and they are found by using the expression
(4.5) in the linearized kinematic and dynamic conditions in Section 3.

The linearized kinematic condition (3.3) is Fourier analysed, and its even and odd
components give the two equations

θSAL
� (t) =

dhL
� (t)
dt
+

(
�π

L

)
KL
� (t) − K̂CL

�

θSBL
� (t) =

dkL
� (t)
dt
−
(
�π

L

)
HL
� (t) − K̂SL

�
.

(4.6)

https://doi.org/10.1017/S1446181121000341 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000341


[23] Flow over submerged obstacle 399

Similarly, the linearized dynamic condition (3.4) is likewise subject to Fourier
decomposition, and it yields the further two equations

F2 dAL
� (t)

dt
+ F2
(
�π

L

)
BL
� (t) + θCHL

� (t) + F2θCŜCL
�
= 0

F2 dBL
� (t)

dt
− F2
(
�π

L

)
AL
� (t) + θCKL

� (t) + F2θCŜSL
�
= 0.

(4.7)

In these four equations (4.6) and (4.7) we have defined constants

θC =
1

cosh(�π/L)

θS =
(
�π

L

)
sinh
(
�π

L

)
.

Four additional constants have also been defined for convenience. Two of these are

K̂CL
�
=

1
πL

∫ α
−α

dhL(ξ)
dξ

∫ L

−L

cos(�πx/L)
(x − ξ)2 + 1

dx dξ

ŜCL
�
=

1
πL

∫ α
−α

dhL(ξ)
dξ

∫ L

−L

(x − ξ) cos(�πx/L)
(x − ξ)2 + 1

dx dξ,

� = 1, 2, . . . .

(4.8)

The constants K̂SL
�

can be obtained from K̂CL
�

by replacing the cosine term in the second

integrand with the corresponding sine term. Similarly, ŜSL
�

is obtained by replacing the

cosine with sine in the expression for ŜCL
�

in (4.8).
It is straightforward, although lengthy, to solve the system of four equations (4.6)

and (4.7) in closed form. After some algebra, the general solution is found to be

HL
� (t) = C1eiω1t + C2e−iω1t + C3eiω2t + C4e−iω2t

+
1
ω1ω2

[
θSθCŜCL

�
−
(
�π

L

)
K̂SL
�

]
KL
� (t) = −iC1eiω1t + iC2e−iω1t − iC3eiω2t + iC4e−iω2t

+
1
ω1ω2

[
θSθCŜSL

�
+

(
�π

L

)
K̂CL
�

]
(4.9)

for the coefficients in expression (4.2) for the linearized free-surface elevation.
The four sets of constants C1, . . . , C4 are arbitrary, and their values are ultimately
determined by initial conditions. The remaining coefficient functions are

θSAL
� (t) =

i
F

√
θSθC[C1eiω1t − C2e−iω1t − C3eiω2t + C4e−iω2t]

+
θSθC
ω1ω2

[(
�π

L

)
ŜSL
�
+

1
F2 K̂CL

�

]
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θSBL
� (t) =

1
F

√
θSθC[C1eiω1t + C2e−iω1t − C3eiω2t − C4e−iω2t]

− θSθC
ω1ω2

[(
�π

L

)
ŜCL
�
− 1

F2 K̂SL
�

]
.

In these general solutions, we have defined further sets of constants

ω1 =
1
F

[
F
(
�π

L

)
+
√
θSθC

]
and ω2 =

1
F

[
F
(
�π

L

)
−
√
θSθC

]
.

These quantities arise naturally, since the four sets of constants ±iω1 and ±iω2 are the
four eigenvalues of the homogeneous system of differential equations associated with
(4.6) and (4.7).

Consistent with (2.23) in Section 2, we choose to impose initial conditions

HL
� (0) = KL

� (0) = 0, AL
� (0) = BL

� (0) = 0 � = 1, 2, . . . .

This then enables the determination of the four sets of constants C1, . . . , C4 in the
general solution. These are then inserted into (4.9) and (4.2) to give the linearized
free-surface function in its final (real) form

ηL(x, t) =
∞∑
�=1

{ 1
2ω1

[K̂CL
�

sin(ω1t − �πx/L) + K̂SL
�

cos(ω1t − �πx/L)]

+ F
√
θSθC

2ω1
[ŜCL
�

cos(ω1t − �πx/L) − ŜSL
�

sin(ω1t − �πx/L)]

+
1

2ω2
[K̂CL
�

sin(ω2t − �πx/L) + K̂SL
�

cos(ω2t − �πx/L)]

− F
√
θSθC

2ω2
[ŜCL
�

cos(ω2t − �πx/L) − ŜSL
�

sin(ω2t − �πx/L)]

+
θSθC
ω1ω2

[ŜCL
�

cos(�πx/L) + ŜSL
�

sin(�πx/L)]

− (�π/L)
ω1ω2

[K̂SL
�

cos(�πx/L) − K̂CL
�

sin(�πx/L)]
}
. (4.10)

For a symmetric bottom obstacle, for which hL(−x) = hL(x), it is straightforward to
show from (4.8) that K̂CL

�
= 0 and ŜSL

�
= 0, so that the lengthy expression (4.10)

simplifies substantially in that case.

5. Results

In this section, results generated from the three previous theories in Sections 2–4
are presented. Although we have investigated several different bottom shapes, we shall
present results here only for the single case (3.17) of a smooth, symmetric profile with
a single bump.
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FIGURE 4. Solution for F = 0.7, α = 1, β = 0.01, using 288 modes on the body and on the free surface.
(a) Nonlinear surface elevation η(x, t) at different times; and (b) comparison of the linear solution (dashed,
black online) and the nonlinear results (solid, red online) at time t = 160.

Figure 4 shows the results produced from the nonlinear solution algorithm in
Section 2 for the subcritical case F = 0.7 and for a bottom bump of half-length α = 1
and height β = 0.01. The evolution of the free surface is shown in Figure 4(a); the
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x-axis is directed from left to right, the y-axis is vertical and the time axis t points
into the page. As time progresses, a train of waves is formed downstream of the bump,
for x > 0, and after some time has elapsed, these waves begin to adopt a permanent,
time-independent profile. This is as predicted by the steady-state linearized solution
(3.5) of Lamb [34]. At early times, there is also a weak disturbance that moves
upstream of the bump, and this is visible in the diagram.

The value β = 0.01 used in Figure 4 is very small and so there should be close
agreement between the linearized and nonlinear results. This serves as an important
check on the accuracy of the algorithm in Section 2. We have undertaken a careful
comparison of the two theories, and a sample result is shown in Figure 4(b), at
the last time t = 160 shown in part (a). The nonlinear solution is sketched with a
solid line (red online). The dashed line (black online) represents the result calculated
from the linearized formula (3.8) obtained analytically using Fourier transforms. In
evaluating this linearized expression for the chosen bottom profile (3.17), it was
found that the exact Fourier transform (3.18) of the bottom shape was subject to
extremely large loss-of-significance error as k → 0, whereas the numerical evaluation
of the transform could be evaluated to very high accuracy. Consequently, this was the
preferred approach to the calculation of the quantity h̃L in (3.8).

As is evident from Figure 4(b), the linearized and nonlinear theories are in excellent
agreement, as is required. In addition, the algorithm applied to the linearized problem,
culminating in the expression (4.10), was also evaluated in this case, and is found to
be indistinguishable from the linearized result (3.8). Figure 4(b) shows the wave train
forming downstream of the bump and also the smaller transient waves present in a
portion ahead of the obstacle at this time.

A solution at the same subcritical Froude number F = 0.7 is presented in Figure 5,
but now for the larger obstacle height β = 0.05. This solution was run with 128 Fourier
modes on the surface and on the body, so that we could continue to the later time
t = 200 within an achievable computer execution time. The development of the wave
train behind the obstacle over time is illustrated in part (a), and the figure shows how
a steady-state pattern of downstream waves is being formed, starting near the bump
and extending further downstream as time increases. There are again smaller upstream
transient waves that move upstream, and their amplitude slowly decreases with time
close to the obstacle.

A portion of the computed free-surface elevation for bump height β = 0.05 is
shown in Figure 5(b), at the last time t = 200 displayed in part (a). The nonlinear
profile is drawn with a solid line (red online) and the dashed (black) line indicates
the interface profile predicted by both the linearized solution (3.14) and the solution
algorithm applied to the linearized equations, for which the surface is given by (4.10).
There is again close agreement between the linearized and nonlinear solutions over
the downstream portion of the flow. Upstream, however, there is slightly more rapid
damping of the waves travelling ahead of the obstacle in the nonlinear case than in
the corresponding linearized solutions in the portion close to the bump, although
the two are in much closer agreement further upstream. (The upstream segment
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FIGURE 5. Solution for F = 0.7, α = 1, β = 0.05, using 128 modes on the body and on the free surface.
(a) Nonlinear surface elevation η(x, t) at different times; and (b) comparison of the two linear solutions
(dashed, black online) and the nonlinear results (solid, red online) at time t = 200.
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FIGURE 6. The velocity vector field q near the bottom bump, for the case F = 0.7, α = 1, β = 0.05 at
time t = 20. The bottom profile is also shown with a thick solid line (red online).

−100 < x < −50 has not been displayed in Figure 5(b) so that the downstream waves
can be seen more clearly in the diagram).

A further check on the reliability of the solution algorithm for the nonlinear
unsteady problem in Section 2 is to compute the velocity vector q = ui + vj = ∇Φ
by direct differentiation of the expression (2.5), since the bottom condition (2.2)
stipulates that the vector q must be parallel to the bottom surface. This is illustrated
in Figure 6 for the same subcritical case F = 0.7, α = 1, β = 0.05 as in Figure 5, in
a smaller region of fluid near the obstacle. The vector field of lines (blue online)
represents the velocity vector and the body itself is sketched with a heavier solid
line (red online). The fluid outside the obstacle clearly moves tangentially to the
bump, as required. In addition, since the obstacle is “created” in the algorithm of
Section 2 by placing a source distribution along the plane y = 0, there is also an
effective movement of fluid inside the bump, out from the bottom sources over the
interval −1 < x < 0 and into the sinks over 0 < x < 1, parallel to the body in its
interior.

The source-strength function PS(x, t) in equation (2.7), required to create the bottom
profile in Figure 6, is illustrated for this same case in Figure 7. In this instance, there is
almost no change in this source profile with time, and so the result shown in Figure 7
has been presented for the initial time t = 0. As expected, the profile is antisymmetric
about x = 0, at least to visual accuracy, with PS > 0 ahead corresponding to sources
there, and PS < 0 downstream representing the existence of sinks in the rear portion
x > 0. This source profile corresponds very closely to the derivative of the bottom
profile, as suggested by the analysis leading to (4.4). We observe, too, that the source
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FIGURE 7. Solution for F = 0.7, α = 1, β = 0.05, for the initial source-strength function PS(x, 0) along
y = 0 required to satisfy the bottom boundary condition at the body y = h(x).

strength PS and its derivative both fall to zero at each end of the bump, at x = ±1, since
the profile (3.17) is smooth there.

For supercritical flows F > 1, the steady linearized solution (3.5) of Lamb [34]
predicts that the fluid free surface simply rises above the bump, but is otherwise
flat at the undisturbed height y = 1, both upstream and downstream. This is studied
in Figure 8 for F = 1.5, α = 1 and the small bump height β = 0.01. The evolution
of the nonlinear free surface is shown in part (a), and a comparison between the
linearized solution and the nonlinear results obtained from Section 2 is illustrated in
part (b). The development of the free-surface shape in part(a) shows an elevation above
the obstacle and a growing flat region at the undisturbed height y = 1 downstream,
although there is also a train of waves that is clearly being swept away downstream
by the supercritical fluid motion. This strongly suggests that the flow will evolve to
the symmetric steady-state surface shape predicted by the linearized solution (3.5) of
Lamb. Figure 8(b) indicates that there is very close agreement between the unsteady
linearized theory (3.14), sketched with a dashed line, and the numerical nonlinear
result, drawn with a solid curve (red online), as is to be expected.

As the bottom bump height β is allowed to become larger, we have found that the
numerical solution technique described in Section 2 becomes progressively more ill
conditioned, until, at sufficiently large β, it can no longer yield a solution. This is
because we have chosen to simulate the existence of the bottom obstacle with a line of
sources and sinks along y = 0. Therefore, it is not surprising that, as β increases and
the top of the obstacle moves further away from y = 0, the sources and sinks become
less effective at controlling flow details there. In order to overcome this difficulty,
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FIGURE 8. Solution for F = 1.5, α = 1, β = 0.01, using 288 modes on the body and on the free surface.
(a) Nonlinear surface elevation η(x, t) at different times; and (b) comparison of the linear solution (dashed,
black online) and the nonlinear results (solid, red online) at time t = 160.

we have replaced the line of sources on y = 0 by a similar source distribution over
some line y = θh(x) inside the body, for some choice of the parameter θ in the interval
0 < θ < 1. To ensure that v = 0 continues to hold on y = 0, for |x| > α where there is
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FIGURE 9. The velocity vector field q near the bottom bump, for the case F = 1.5, α = 1, β = 0.05. The
bottom profile is shown with a thick solid line (red online), and one of the lines of sources within the
body is shown with a thick dashed line (green online). Here, θ = 0.5.

no bottom obstacle, we have also placed an image line of sources at y = −θh(x). We
have thus generated an alternative version of the algorithm in Section 2 in which the
last (integral) term in (2.5) is replaced with

M∑
m=1

Qm(t)
∫ α
−α

sin
(mπ(ξ + α)

2α

)[
ln
√

(x − ξ)2 + (y − θh(ξ))2

+ ln
√

(x − ξ)2 + (y + θh(ξ))2
]

dξ. (5.1)

The velocity components u, v are obtained, as before, by differentiation of the new
velocity potential Φ into which this new expression (5.1) has been substituted. This
requires that the appropriate changes are made to the quantities in (2.9), after which
the formula (2.11) for the satisfaction of the bottom boundary condition (2.2) proceeds
as before.

A sample quiver plot is shown in Figure 9 for F = 1.5 and α = 1, for the case
β = 0.05. This is taken at time t = 20 for illustrative purposes, although the flow in
this vicinity does not change appreciably with time. This solution has been computed
with the two source lines at y = ±θh(x) and, for ease of viewing, we have chosen to
set θ = 0.5. One of these lines is shown in the diagram, and has been sketched with a
heavy dashed line (green online). The field of short lines (blue online) represents the
fluid velocity vector q computed from the nonlinear numerical solution. Sources are
present over the portion of the (dashed) source line in −1 < x < 0 and sinks occur over
the remaining portion 0 < x < 1. As can be seen from the diagram, the flow vectors are
parallel to the body surface at the body, as is required to satisfy the bottom boundary
condition (2.2). In addition, they can be seen exiting the (dashed) line of sources on
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the left half of that curve and re-entering the curve on the right half, where sinks are
present.

Figure 10 shows the evolving free surface at the same supercritical Froude number
F = 1.5 as in Figure 8, but now for two much larger bump heights, β = 0.2 in part
(a) and β = 0.5 in part(b). These solutions were obtaining using parameter θ = 0.9
and θ = 0.99, respectively, for the positioning of the lines of sources in (5.1). The
solution for β = 0.2 in Figure 10(a) is similar to that in Figure 8, and suggests that
the flow is again evolving towards a steady-state solution, with a raised surface
profile over the bump and a flat region downstream, as in Lamb’s [34] linearized
solution. As the obstacle height β continues to increase, it becomes progressively more
difficult to compute accurate, converged numerical solutions in the unsteady case, and
Figure 10(b) presents a case with β = 0.5, which is about the largest value of the bump
height at which we are able to obtain reliable and consistent results. At this height,
small errors associated with the use of a finite computational window −L < x < L
become apparent, since our representation (2.5) assumes periodicity of period 2L;
consequently, waves associated with the impulsive appearance of the bump at the
initial time t = 0 have travelled downstream and then “wrapped around” to appear
(incorrectly) in the upstream portion of the flow. This can be overcome by increasing
L, for example, but comes at the cost of an even greater computational time. It is
interesting, too, that a large disturbance is evidently created near the bump at time t = 0
and is swept downstream as a wave with almost periodic amplitude; this feature can be
seen in Figure 10(b), and may even prevent the approach to a steady-state solution for
β values much larger than about the one shown here.

We conclude this discussion of results by considering the resonant case F = 1,
for which the steady-state linearized solution (3.5) of Lamb [34] diverges and cannot
yield a steady solution. An unsteady formula in the linearized case, similar to equation
(3.13), was investigated by Cole [10], who demonstrated that free-surface disturbances
grow slowly with time, at a rate proportional to t1/3 for large t. Nonlinear effects
are therefore of great importance in this case, and they must eventually dominate
at sufficiently large times. It remains an open question as to whether nonlinearity is
always sufficient to dampen the wave growth predicted by the linearized solution, and
thus gives rise to the possibility of one or more steady-state solutions at this critical
flow speed F = 1. Forbes and Schwartz [19] speculated that steady-state solutions
at F = 1, with a downstream train of cnoidal waves, might indeed be possible for
certain values α, β of the defining obstacle shape, but this conjecture has never been
confirmed.

In Figure 11(a), we show the results of a time-dependent nonlinear computation
of the free-surface elevation η(x, t) in the resonant case F = 1, for α = 1 and β = 0.1.
This was obtained using 288 Fourier modes over each of the bottom bump and the free
surface and 1, 440 mesh points on each object. As time progresses, a train of waves
is formed downstream, but is slowly being swept away by the flow, and an apparently
uniform region continues to open up between the bottom bump and these downstream
waves. A comparison between the unsteady linearized solution (3.14) and a nonlinear
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(a)

(b)

FIGURE 10. Two large-amplitude supercritical solutions, obtained with F = 1.5 and bump half-length
α = 1. (a) Bump height β = 0.2; and (b) bump height β = 0.5. Each solution was generated using 288
modes on the body and on the free surface.
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FIGURE 11. Solution for the resonant flow case F = 1. Here α = 1 and β = 0.1. This was obtained using
288 modes on the body and on the free surface. (a) Nonlinear surface elevation η(x, t) at different times;
and (b) comparison of the linear solution (dashed, black online) and the nonlinear results (solid, red
online) at time t = 200.

profile extracted from part (a) at the time t = 200 is presented in Figure 11(b). For
smaller values of β, we have verified that there is again good agreement between the
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two theories at early times, but the value β = 0.1 presented here is already sufficiently
large that strong differences have begun to appear by the time t = 200 shown. The most
noticeable difference is that, in the nonlinear case, solitons of significant amplitude
have been generated ahead of the obstacle and continue to propagate upstream. Their
shape is strongly affected by nonlinearity, with sharp pointed crests and broader
troughs. In addition, although both theories predict transient downstream waves, there
is a significant difference here, too, since the nonlinear solution creates a growing
nearly uniform region immediately behind the bottom bump, at approximate height
y ≈ 0.85, but this feature is absent in the linearized case (sketched with a dashed line).
The first few downstream waves are also strongly affected by nonlinearity, since they
again have sharp crests and broader troughs; however, further downstream, there is
almost complete agreement between the linearized and nonlinear waves in the region
of small amplitude.

In Figure 12, we display a further solution at the resonant case F = 1, for the longer
bottom bump α = 5 and at the greater height β = 0.25. Part (a) shows the evolution
of the free-surface shape with time, and Figure 12(b) gives a comparison between the
nonlinear solution and the linearized prediction (sketched with a dashed line) at time
t = 200. This is a more extremely nonlinear example than that shown in Figure 11, and
the evolving free surface shown in part (a) possesses a widening region immediately
behind the obstacle in which the flow is nearly uniform followed by a train of highly
nonlinear waves that are being swept slowly further downstream. Ahead of the obstacle
is a region in which there are, again, large-amplitude solitary waves that appear to be
emitted periodically. The comparison displayed in part (b) at t = 200 highlights the
effects of nonlinearity still further, since the linearized solution ceases to be valid,
predicting surface waves of such large amplitude that they would even pass through
the bottom at y = 0, according to the growth with time first identified by Cole [10].
In the nonlinear case, however, the solution amplitude remains bounded. The effects
of nonlinearity upon the shape of the upstream solitons, in particular, is immediately
evident, as they possess sharp crests and broad troughs.

In order to understand better the behaviour of unsteady flows at the critical Froude
number F = 1, we have increased the numbers of modes and mesh points for the
case shown in Figure 12 to generate greater accuracy, and we have expanded the
computational window to L = 300 so that the solution can be continued further in time.
A portion of the solution thus obtained is displayed in Figure 13 and has suggested an
unexpected outcome. Part (a) gives an expanded view of the same situation depicted in
Figure 12(a) over extended domains in both time and space, and part (b) shows the free
surface η as a function of x at the time t = 1200. There is again a train of nonlinear
waves that is being swept slowly downstream, with an almost uniform flow region
downstream, between the obstacle and the slowly receding waves, with height about
y ≈ 0.82. Upstream there is again a train of solitons advancing ahead of the obstacle,
but, at this later, time our results indicate that their amplitude is slowly decreasing with
time. Most strikingly, every point on these solitons lies above the undisturbed depth
y = 1, so they are evidently not converging to this free-stream depth as t → ∞. We have
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(a)

-100 -50 0 50 100
0

1

2

3

(b)

FIGURE 12. Solution for the resonant flow case F = 1. Here α = 5 and β = 0.25. (a) Nonlinear surface
elevation η(x, t) at different times; and (b) comparison of the linear solution (dashed, black online) and
the nonlinear results (solid, red online) at time t = 200.

calculated the average depth of the upstream solitons over the interval −100 < x < 0
and sketched this using a broken (blue) line in Figure 13(b), and we find that the
average upstream depth is about y ≈ 1.18 at this time.
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(a)

(b)

FIGURE 13. Solution for the resonant flow case F = 1, for the same parameter values as in Figure 12. (a)
Nonlinear surface elevation η(x, t) at different times; and (b) comparison of the linear and nonlinear results
at time t = 1200. The broken line (blue online) to the left of the diagram shows the average free-surface
height over the upstream portion −100 < x < 0.
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These numerical results suggest that the unsteady solution in the critical case F = 1
converges to a steady surface profile in which the upstream solitons permanently alter
the upstream fluid depth to some raised level yup > 1; in addition, a uniform flow is
also created behind the obstacle at some lower height ydown < 1. This is, in fact, a
transcritical flow of the type shown in Figure 1.

It is possible to undertake a (very) crude estimate of the expected value of the
free-surface height in the growing patch of uniform flow behind the obstacle in
Figure 13(b), based on the assumption that a transcritical flow is indeed forming.
In these dimensionless variables, if we suppose that the mean upstream depth has
increased from 1 to some new value χ, then, for F = 1, the uniform dimensionless
flow speed must be 1/χ. We denote the depth of the developing downstream
uniform flow region as Hdown so that, by conservation of mass, the downstream
steady speed in that region is Vdown = 1/Hdown. Then it follows from Bernoulli’s
equation that the upstream and downstream depths χ and Hdown are related by the
equation

1
2

1
χ2 + χ =

1
2

1
H2

down

+ Hdown.

The solution of interest to this cubic equation is

Hdown =
1

4χ2

[
1 +
√

1 + 8χ3
]
. (5.2)

This solution (5.2) is related to the celebrated Bélanger equation of civil
engineering [6]. For an upstream depth χ ≈ 1.2, formula (5.2) suggests that
the downstream depth would be about Hdown ≈ 0.84. While not precise, these
estimates show plausible consistency with the diagram in Figure 13(b). Of course,
(5.2) assumes simple one-dimensional flow and a complete steady-state situation,
neither of which will be precisely true in this diagram. Determining the solution
in Figure 13(b) to greater accuracy and over a longer time interval requires a
corresponding increase in computational run time, and has not been pursued here.
Nevertheless, this crude analysis and comparison with the figure does suggest
that a transcritical flow is being formed. The local Froude number upstream of
the obstacle is Fup = 1/χ3/2, giving the approximate subcritical value Fup = 0.76,
and the Froude number downstream can be estimated from (5.2) to have the
supercritical value Fdown ≈ 1.7. For steady-state transcritical flows, the upstream
Froude number Fup < 1 decreases and the downstream Froude number Fdown > 1
increases as the bump height β increases, and a representative curve is given by
Forbes [16]. The relationship between the bump height β and the downstream
depth (5.2) depends sensitively upon details of the flow in the vicinity of the
obstacle, and although we have attempted an asymptotic analysis here, the result
is insufficiently accurate to be of much value, so that a numerical solution is indeed
required.
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6. Conclusion

This paper has presented a review of the state of research into free-surface flow
over submerged cylinders on the bottom of a stream of finite depth. Although this
seems a somewhat specialized topic, and in an area of classical physics and applied
mathematics that has been studied over the past century, there still remain a number of
unresolved questions about these flows of deceptively simple appearance.

A theory for linearized steady-state flow over bottom-mounted obstacles, in
two-dimensional geometry, was described by Lamb [34] nearly a century ago, and
already dealt with the difficult issue of interpreting a singular integral in such a way
that satisfied the radiation condition that there should be no permanent waves in the
upstream portion of the flow. Lamb’s solution (3.5) showed that free-surface waves
are formed downstream of the bump for the slower-speed (subcritical) case F < 1,
and that no waves occurred either upstream or downstream in the faster (supercritical)
situation F > 1. No steady solution existed for the resonant case F = 1. Nonlinear
solutions obtained by numerous authors since have essentially confirmed this picture,
both for F < 1 and F > 1. Nevertheless, it remains an open question as to whether
steady-state solutions are possible precisely at the critical speed F = 1 for obstacles of
positive elevation; however, if the obstruction occurs as a depression in the river bed,
Keeler et al. [30] have shown that an apparently infinite set of steady solutions exists
at F = 1 for that case.

In addition to the classical subcritical and supercritical solution types, there is also
a third type of steady-state flow in the subcritical case F < 1. This is characterized
by a subcritical uniform flow upstream of the bump, followed by a shallower, faster
supercritical uniform flow downstream. Somewhere over the bump, the flow becomes
critical, with local Froude number equal to one. As a result, this is a choking type of
flow, in which conditions at the weir control the value of the upstream Froude number
F at which such a solution can occur, and Figure 1 illustrates a situation of this type.
Weakly nonlinear theory suggests that these transcritical flow types are analytically
connected to the subcritical branch of solutions with downstream waves [42]. This is
by no means certain, however, in the fully nonlinear theory, and so the relation between
these two flow types remains unresolved.

Many ingenious techniques have been developed to obtain nonlinear solutions for
these steady-state flows, and, to a lesser extent, also for the more difficult unsteady
situation. These are surveyed in Section 1. We have also included here a somewhat
novel spectral approach for the solution of the fully nonlinear unsteady inviscid
problem. Our aim is to allow an arbitrary bottom shape to be used in a simple way
that does not require a method based on conformal mapping, such as that used by
Forbes and Schwartz [19] and more recently by Wang [51]. The technique here assumes
that the bottom bump has compact support −α < x < α and requires a (artificial)
computational window −L < x < L for the free surface. It then extends an earlier
free-surface spectral technique [17] by including a source distribution function within
the bottom bump, in order to satisfy the condition (2.2) on the bottom surface y = h(x).
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The source distribution is then also represented as a spectral series, with coefficients
Qm(t) that are time dependent, since the changing position of the free surface has a
smaller (second-order) effect on the source-strength function, even though the bottom
shape itself is independent of time. We have verified this algorithm in Section 4
by applying it directly to the linearized problem and establishing that the results
so obtained are indistinguishable from the linearized solution in Section 3. It is
reasonably straightforward to allow for a time-dependent bottom profile y = h(x, t)
using the same spectral representation (2.5), or a more judicious placement of sources
within the body such as (5.1), since only the bottom boundary condition (2.2) would
change. This would permit the bottom disturbance to be introduced more gently into
the flow, rather than in the impulsive way assumed here, and so could eliminate the
start-up disturbance that propagates through the solution, as, for example, in Figure
10(b). However, this has not been pursued here. One potential limitation of our spectral
method in Section 2 might arise if the bottom obstacle is a depression rather than a
bump of elevation, such as the situation considered by Choi [9], since, in that case, an
array of sources beneath a larger section than just the obstacle itself may be required.

Our unsteady solutions have confirmed the known results reviewed in Section 1 in
both the subcritical and supercritical cases. When F < 1, a train of downstream waves
is generated, and as time progresses it evidently evolves into a permanent semiinfinite
wave train, as predicted by Lamb’s [34] steady-state solution (3.5) for small-amplitude
disturbances. At early times, a train of solitons also moves ahead of the obstacle, as
apparently first reported by Ertekin et al. [11], but moves infinitely far upstream leaving
a time-independent region of almost uniform flow ahead of the bump. This advancing
soliton packet is believed not to alter conditions far ahead of the obstacle, although
this has not been established definitively, and may perhaps be resolved using the
technique of exponential asymptotics, as reviewed by Lustri et al. [36]. An interesting
feature of steady-state subcritical flows is that a bottom bump of appropriate height
and length may give a drag-free flow in which the downstream waves have cancelled
precisely, even in the nonlinear case, as discussed for the linearized solution in Figure
3(b). This would presumably also be observed for time-dependent flow in the limit of
large time, although the enormous demands on computer resources needed to search
for such solutions have prevented us from confirming this directly. These subcritical
flows are difficult and time consuming to compute, principally because they form
permanent downstream waves, many of which need to be obtained in order to progress
suitably far forward in time. It might prove possible to include some sort of absorbing
boundary condition in the numerical algorithm in Section 2, and that could alleviate
this limitation. By contrast, supercritical flows (F > 1) are rather simpler to compute
and evolve eventually to a steady-state configuration free from waves, with a raised
free surface near the obstacle.

In the critical case F = 1, the steady-state equation (3.5) of Lamb [34] does not
give a linearized solution. Cole [10] showed that the corresponding unsteady solution
(3.13) can be expected to grow without bound when F = 1. Nonlinearity damps this
unbounded growth, and, instead, generates a train of solitons that advances ahead of
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the obstacle, similar to the situation for subcritical flow F < 1. Forbes and Schwartz
[19] speculated that large-amplitude solutions containing a downstream wave train
might be possible for some parameter values even for F = 1, similar to the subcritical
flow branch, although they have not been observed. In the present paper, however, we
have obtained some preliminary numerical evidence to suggest that, for F = 1, the flow
is indeed capable of converging to a steady-state solution as t → ∞, but that it does so
by virtue of the fact that the train of solitons that progresses upstream, ahead of the
bottom bump, permanently changes both the upstream depth and speed. In effect, the
obstacle indeed controls conditions upstream, making them subcritical, and forcing the
situation to evolve into a steady-state transcritical flow. This extends previous results
[51] for the critical case F = 1.
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