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Non-equilibrium wall turbulence with mean-flow three-dimensionality is ubiquitous in
geophysical and engineering flows. Under these conditions, turbulence may experience
a counter-intuitive depletion of the turbulent stresses, which has important implications
for modelling and control. Yet, current turbulence theories have been established
mainly for statistically two-dimensional equilibrium flows and are unable to predict
the reduction in the Reynolds stress magnitude. In the present work, we propose
a multiscale model that captures the response of non-equilibrium wall-bounded
turbulence under the imposition of three-dimensional strain. The analysis is performed
via direct numerical simulation of transient three-dimensional turbulent channels
subjected to a sudden lateral pressure gradient at friction Reynolds numbers up to
1000. We show that the flow regimes and scaling properties of the Reynolds stress
are consistent with a model comprising momentum-carrying eddies with sizes and
time scales proportional to their distance to the wall. We further demonstrate that the
reduction in Reynolds stress follows a spatially and temporally self-similar evolution
caused by the relative horizontal displacement between the core of the momentum-
carrying eddies and the flow layer underneath. Inspection of the flow energetics reveals
that this mechanism is associated with lower levels of pressure–strain correlation,
which ultimately inhibits the generation of Reynolds stress, consistent with previous
works. Finally, we assess the ability of the state-of-the-art wall-modelled large-eddy
simulation to predict non-equilibrium three-dimensional flows.

Key words: turbulence simulation, turbulence theory, turbulent boundary layers

1. Introduction
Our current understanding of wall turbulence is largely rooted in studies of

equilibrium boundary layers with two-dimensional (2-D) mean velocity profiles
(i.e. contained in a plane). However, non-equilibrium turbulence with mean-flow
three-dimensionality is the rule rather than the exception in most geophysical and
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engineering flows. Prominent examples of the former are flows in complex terrain,
tornadoes and river bends, while industrial flows include flow over swept-wing
aircrafts and hulls of marine vehicles, around buildings and obstacles, within
turbomachines, etc. Despite the ubiquity of such flows, fundamental questions
remain unanswered regarding the structural changes of wall turbulence under
three-dimensional (3-D) non-equilibrium conditions, challenging our intellectual ability
to comprehend and predict wall turbulence in broader scenarios. In the present work,
we study the transition of statistically stationary 2-D turbulence to non-stationary
3-D states induced by the sudden application of a spanwise pressure gradient. Our
emphasis is on the multiscale structure of wall-bounded turbulence at moderately high
Reynolds numbers.

The vast majority of the fundamental studies on wall turbulence have focused on
a narrow subset of equilibrium 2-D wall-bounded flows (two-dimensional turbulent
boundary layers; 2DTBL) such as turbulent channels (Kim, Moin & Moser 1987;
Lee & Moser 2015), pipes (Wu et al. 2015; Pirozzoli et al. 2018) and flat-plate
boundary layers (Spalart 1988; Sillero, Jiménez & Moser 2013, 2014; Wu et al.
2017). These studies have unravelled constitutive characteristics of the near-wall
turbulence, including its self-sustaining nature (Jiménez & Moin 1991; Jiménez &
Pinelli 1999; Panton 2001; Flores & Jiménez 2010; Hwang & Cossu 2011; Hwang
2015; Farrell et al. 2016; Farrell, Gayme & Ioannou 2017), the coherent structure and
geometry of the flow (del Álamo & Jiménez 2006; Kawahara, Uhlmann & van Veen
2012; Lozano-Durán, Flores & Jiménez 2012; Dong et al. 2017; McKeon 2017), the
life cycle of the momentum-carrying eddies (Hwang & Cossu 2010; Lozano-Durán &
Jiménez 2014b; Cossu & Hwang 2017) and the wall-attached structure of the flow in
the logarithmic layer (Marusic et al. 2013; Hwang & Bengana 2016; Chandran et al.
2017; Cheng et al. 2019; Marusic & Monty 2019), among others. Unfortunately,
theories built upon equilibrium wall turbulence have had limited impact on our
ability to predict 3-D boundary layers (three-dimensional turbulent boundary layers;
3DTBL) and to grasp the physics underlying the extensive collection of numerical
and experimental observations. This is principally due to the violation of the temporal
and/or spatial homogeneity of the flow and the unidirectionality of the mean shear,
which are foundational assumptions of 2DTBL absent in 3DTBL. Consequently,
the knowledge established largely for equilibrium 2DTBL, such as the law of the
wall (Prandtl 1925; Millikan 1938; Coles & Hirst 1969), the scaling laws for the
velocity and energy spectra (Perry & Abell 1975, 1977; Zagarola & Smits 1998; del
Álamo et al. 2004; Morrison et al. 2004; Hoyas & Jiménez 2006; Klewicki et al.
2007; Marusic et al. 2013; Vallikivi, Ganapathisubramani & Smits 2015; Chandran
et al. 2017), structural models of the flow (Townsend 1976; Adrian, Meinhart &
Tomkins 2000; Meneveau & Marusic 2013; Agostini & Leschziner 2017; Jiménez
2018; Lozano-Durán & Bae 2019; Marusic & Monty 2019) and reduced-order models
(Rowley & Dawson 2017; Bose & Park 2018; Durbin 2018), cannot be generalised
trivially to non-canonical 3DTBL.

Often, 3DTBL are classified according to their state as either in equilibrium or in
non-equilibrium. Townsend (1961) was the first to coin the term ‘equilibrium layer’ to
define a portion of the boundary layer in which the rates of production and dissipation
of turbulent kinetic energy are equal. De Graaff & Eaton (2000) suggested a more
restrictive definition in which the total shear stress is balanced by the shear stress at
the wall. A comprehensive theory of equilibrium and self-similar flow motions in the
outer region of turbulent boundary layers can also be found in the works by Castillo
& George (2001), Maciel, Rossignol & Lemay (2006) and Maciel et al. (2018). Here,
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we refer to equilibrium flow simply as that in a statistically stationary state. Despite
equilibrium 3DTBL, such as the Ekman layer, being of paramount importance (see
e.g. Spalart 1989; Coleman, Ferziger & Spalart 1990; Littell & Eaton 1994; Wu &
Squires 1997), the subject of the present work is the non-equilibrium response of
3DTBL, which is one of the most challenging cases for the current turbulence theories.
In addition to their equilibrium state (or lack thereof), 3DTBL are also classified
according to the mechanisms by which the three-dimensionality is incorporated into
the flow. In this respect, 3DTBL can be labelled as ‘viscous-induced’ when the three-
dimensionality is a direct consequence of the viscous effects propagating from the
solid boundaries (e.g. moving walls, accelerating frames of reference, . . . ), or as
‘inviscid-induced’ when the 3-D flow is the result of space-varying body forces or
pressure gradients (such as those triggered by the presence of complex geometries or
by baroclinic effects in atmospheric flows). These two mechanisms are usually referred
to as shear-driven and pressure-driven in the literature, although such a nomenclature
may lead to confusion in some situations. Here we are concerned with the first kind,
i.e. ‘viscous-induced’ 3DTBL, which are relevant for turbomachinery applications and
large-scale wind farms, to mention just two examples, albeit it is worth noting that in
many real-life scenarios three-dimensionality is induced by a combination of the two
mechanisms.

From the early works by Bradshaw & Terrell (1969) and van den Berg & Elsenaar
(1972), it was readily noted that 3DTBL exhibit a response contrary to the common
expectations from their 2-D counterparts. Such counter-intuitive effects manifest
themselves in the reduction of the tangential Reynolds stress and the misalignment of
the Reynolds stress and mean shear ‘vectors’. These observations have been reported
for both equilibrium and non-equilibrium 3DTBL, albeit the effects are exacerbated in
the latter. The pioneering studies on 3DTBL were laboratory experiments. Bradshaw
& Terrell (1969) presented the first set of Reynolds stress measurements in a yawed
flat plate as a surrogate of an ‘infinite’ swept wing. They observed a lag between
the Reynolds stress angle and the mean velocity gradient angle despite the mild
three-dimensionality of the flow. Subsequent experiments by Johnston (1970), van den
Berg et al. (1975) and Bradshaw & Pontikos (1985) confirmed the aforementioned
behaviour in similar set-ups. In a succeeding series of studies, van den Berg &
Elsenaar (1972), Elsenaar & Boelsma (1974) and van den Berg et al. (1975) further
showed that the intensity of the Reynolds stress for a given amount of turbulent
kinetic energy (also known as Townsend’s structure parameter) dropped below the
commonly reported value in 2-D flows, establishing the second main counter-intuitive
effect of 3DTBL.

Over the past decades, a variety of additional experimental studies on 3DTBL have
been performed, each characterised by the different mechanism utilised to induce
three-dimensionality in the flow. Among them, we can highlight 3DTBL over wedges
(Anderson & Eaton 1987, 1989; Compton & Eaton 1997), rotating cylinders (Furuya
& Fujita 1966; Bissonnette & Mellor 1974; Lohmann 1976; Driver & Hebbar 1987,
1989, 1991), rotating disks (Littell & Eaton 1994), flow within the bend of ducts
(Flack 1993; Schwarz & Bradshaw 1993, 1994; Flack & Johnston 1994), swept steps
and bumps (Flack 1993; Webster, De Graaff & Eaton 1996) and wing–body junctions
(Ölçmen & Simpson 1992, 1995). More recently, Kiesow & Plesniak (2002, 2003)
used particle image velocimetry (PIV) to acquire detailed information of the flow
structure at varying degrees of cross-flow generated by moving belts. The large body
of literature on experimental 3DTBL until the 1990s is summarised in the reviews
by Fernholz & Vagt (1981), van den Berg et al. (1988), Eaton (1995) and Johnston
& Flack (1996).
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The advent of direct numerical simulation (DNS) and large-eddy simulation (LES)
led to an increase in the number of numerical investigations of 3DTBL. Computational
studies carried out to date include channel flows subject to transverse pressure
gradients (Moin et al. 1990; Sendstad 1992; Coleman, Kim & Le 1996a; He et al.
2018), flat plates with time-dependent free-stream velocity (Spalart 1989), rotating
disks (Littell & Eaton 1994; Wu & Squires 2000), Couette flows with spanwise
pressure gradient (Holstad, Andersson & Pettersen 2010) and concentric annulus
with rotating inner wall (Jung & Sung 2006), among others. Coleman et al. (1996a)
and Coleman, Kim & Spalart (1996b, 2000) computed DNS of initially 2-D fully
developed turbulence subjected to mean strains, emulating the effect of spatially
varying changes of the pressure gradients in ducts or diffusers. Wu & Squires (1997,
1998) performed LES of the swept bump proposed experimentally by Webster et al.
(1996), while other numerical investigations have introduced three-dimensionality in
flow by the impulsive motion of walls in the spanwise direction (Howard & Sandham
1997; Le 1999; Le, Coleman & Kim 1999), by spanwise oscillating walls (Jung,
Mangiavacchi & Akhavan 1992) and by a sustained lateral displacement of a finite
section of the wall (Kannepalli & Piomelli 2000).

The current consensus among the experimental and numerical studies above is
that three-dimensionality of the mean flow is typically accompanied by a decrease
of the tangential Reynolds stress, the reduction of drag, and the misalignment of
the mean Reynolds stress vector and mean shear vector. Given that equilibrium 2-D
turbulence is commonly enhanced by the addition of mean shear, the previous results
are non-trivial to interpret. Accordingly, there have been multiple attempts to reconcile
the non-intuitive flow response with the traditional structural organisation of near-wall
turbulence (Jiménez & Moin 1991; Jiménez & Pinelli 1999; Schoppa & Hussain 2002).
Most structural studies of 3DTBL depart from the premise that 2DTBL are structurally
‘optimal’ for the generation of Reynolds stress, and that 3DTBL are essentially a
distorted, less efficient version of the former. Lohmann (1976) postulated one of the
first structural pictures of the flow by suggesting that transverse shear was responsible
for the breakup of quasi-streamwise vortices into smaller structures. Bradshaw &
Pontikos (1985) further hypothesised that eddies were tilted away from their preferred
alignment by the spanwise strain, which impeded the production of Reynolds stress.
Eaton (1991) stated that low-speed streaks are inhibited by the mean cross-flow, which
reduces the number of ejections (and hence Reynolds stress) generated via streak
instability and breakdown. Kannepalli & Piomelli (2000) also observed significant
disruption of the near-wall streaks at both the leading and trailing edge of the
moving wall section as the flow adjusts to the new wall boundary conditions. Later
PIV measurements by Kiesow & Plesniak (2002) confirmed a significant alteration of
the near-wall flow physics, with significant disruption of the streak length compared
to 2DTBL. On the other hand, the works by Anderson & Eaton (1989), Sendstad
(1992), Littell & Eaton (1994), Eaton (1995) and Chiang & Eaton (1996) have
centred attention on the strong asymmetry between vortices of different sign rather
than on streaks as the main cause for stress reduction. They argued that the intrinsic
structure of 3DTBL favour either a sweep or an ejection, which reduces the efficiency
of the boundary layer to produce Reynolds stress. The LES by Wu & Squires (1997)
supported the structural model proposed by Littell & Eaton (1994). However, Jung &
Sung (2006) rendered the latter scenario invalid in a concentric annulus by analysing
the distinctive flow features using conditional analysis.

Previous numerical studies on 3DTBL focused on relatively low Reynolds numbers
in which half or a larger portion of the boundary layer is dominated by viscous effects.
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Experimental studies are capable of attaining higher Reynolds numbers, but the
current measurement techniques have limitations in accessing the near-wall region
and generating fully resolved datasets in space and time. To date, it is unclear
whether distinctly different mechanisms are at work at Reynolds numbers in which
the inviscid core region occupies more than 80 % of the boundary layer thickness.
Moreover, important questions remain unanswered at high Reynolds numbers, such
as the scaling properties of the Reynolds stress reduction under 3-D non-equilibrium
effects, the structural modifications in the flow responsible for these changes, and
the formulation of a structural model consistent with the previous observations which
accounts for the multiscale nature of turbulence. Therefore, the rich information
provided by high-fidelity simulations at higher Reynolds numbers is needed for
a detailed understanding of 3DTBL present in most real-world applications. In
the present work, we address these questions and show that our higher Reynolds
numbers, even if moderate, allow us to unravel the scaling laws and multiscale
structural changes in the flow previously obscured by the lack of scale separation.

Finally, it is worth mentioning that the peculiarities of 3DTBL are expected
to undermine the performance of modelling techniques built on and validated for
2DTBL. Especially concerning is the development and testing of wall models for LES,
motivated by the need to bypass the inner wall region in order to reduce computational
costs (Chapman 1979; Choi & Moin 2012). Early wall models relying on equilibrium
assumptions have yielded fair predictions in simple flows, but are known to be
suboptimal in more complex configurations (Larsson et al. 2016). This has motivated
recent efforts to develop new wall models accounting for non-equilibrium effects
(Balaras, Benocci & Piomelli 1996; Wang & Moin 2002; Park & Moin 2014; Yang
et al. 2015), free of tunable parameters (Bose & Moin 2014; Lozano-Durán et al.
2017; Bae et al. 2018a) and capable of delivering robust predictions for non-canonical
flow settings (see for instance the recent review by Bose & Park (2018)). Note that,
in general, wall models are not effective at transferring information of the flow
structure from the inner to the outer layer (Piomelli & Balaras 2002). Hence, the
current flow set-up characterised by a spanwise boundary layer growing from the
wall is a challenging testbed for wall-modelled large-eddy simulation (WMLES).

The primary foci of this work are the investigation of the scaling properties
of 3DTBL, absent in previous numerical studies at low Reynolds numbers, and the
elucidation of the structural mechanisms responsible for Reynolds stress deficit during
the initial transient. The insight gained is used to envision a multiscale structural
model consistent with the scalings and structural changes observed. We also inspect
the implications of three-dimensionality and non-equilibrium state for WMLES. A
preliminary version of this work can be found in Giometto et al. (2017). The current
paper is organised as follows. The numerical set-up and database are presented in § 2.
The analysis of the scaling and flow structure of the flow is discussed in § 3. In § 4,
we focus on the comparison of selected quantities for DNS and WMLES. Finally,
conclusions are offered in § 5.

2. Problem set-up and numerical database

We perform a series of DNS of incompressible turbulent channel flow subjected to a
sudden imposition of a transverse pressure gradient (Moin et al. 1990). The problem
set-up is sketched in figure 1. This flow configuration, despite its simplicity, has
proven successful in capturing the essential features of non-equilibrium 3DTBL. The
calculation is initialised with a 2-D fully developed equilibrium channel flow. At t= 0,
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x2 x1

x3 dP
dx1

- dP
dx1

- dP
dx3

-

t < 0 t > 0(a) (b)

FIGURE 1. Schematic of the numerical set-up of a 2-D fully developed turbulent channel
flow subjected to a sudden transverse pressure gradient at t = 0. The profiles in blue
and red represent the streamwise and spanwise mean velocity profiles, respectively. The
channel flow is driven by a streamwise dP/dx1 and spanwise dP/dx3 mean pressure
gradient applied in the streamwise and spanwise direction, respectively.

a mean spanwise pressure gradient is applied, inducing a sudden acceleration of the
flow in the spanwise direction. During this process, the channel flow is driven in the
streamwise direction by the usual mean streamwise pressure gradient. The current
set-up is formally equivalent to the sudden application of an in-plane spanwise
acceleration to the walls in the opposite direction (Panton 1984, p. 253). Our focus is
on the initial transient succeeding the application of the transverse pressure gradient.

Two Reynolds numbers are considered, namely Reτ = huτ/ν ≈ 500 and Reτ ≈ 1000,
both defined at t= 0, where h is the channel half-height, uτ is the friction velocity at
t= 0 and ν is the kinematic viscosity. The density of the fluid is ρ. The streamwise,
wall-normal and spanwise directions are represented by x1, x2 and x3, respectively,
and the corresponding velocities are u1, u2 and u3. The pressure is denoted by p.
The size of the computational domain is L1 × L2 × L3 = 4πh × 2h × 2πh for
cases at Reτ ≈ 500, and 8πh × 2h × 3πh for cases at Reτ ≈ 1000. According to
a previous study (Lozano-Durán & Jiménez 2014a), these domain sizes should suffice
to accommodate the largest structures populating the region x2 < 0.4h (Marusic et al.
2013), which is the main focus of this study. Wall (or inner) units, (·)+, are obtained
by normalising flow quantities by uτ and ν, and outer units, (·)∗, are defined in
terms of uτ and h. Note that (·)+ and (·)∗ are referred to t = 0. The streamwise
and spanwise mean pressure gradients are dP/dx1 = ρu2

τ/h and dP/dx3, respectively.
A campaign of simulations at different Reτ and multiple spanwise mean pressure
gradients are performed with spanwise-to-streamwise mean pressure gradient ratios
ranging from Π = (dP/dx3)/(dP/dx1)= 1 to 100. Several runs (NR) are considered for
each Reτ and Π by initialising the simulations with various temporally uncorrelated
2-D equilibrium turbulent channel flows. The set of simulations is summarised in
table 1. Examples of the instantaneous streamwise velocity at two time instants are
shown in figure 2 for Π = 60 at Reτ ≈ 1000.

The simulations are performed by discretising the incompressible Navier–Stokes
equations with a staggered second-order-accurate centred finite difference method
(Orlandi 2000) in space, and an explicit third-order-accurate Runge–Kutta method
(Wray 1990) for time advancement. The system of equations is solved via an operator
splitting approach (Chorin 1968). Periodic boundary conditions are imposed in the
streamwise and spanwise directions, and the no-slip condition is applied at the walls.
The code has been validated in turbulent channel flows (Lozano-Durán & Bae 2016;
Bae et al. 2018b) and flat-plate boundary layers (Lozano-Durán, Hack & Moin 2018).
The validation for channel flows under the sudden imposition of a lateral mean
pressure gradient is presented in appendix A. The streamwise and spanwise grid
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FIGURE 2. Instantaneous x1–x3 planes of the streamwise velocity at x∗2=0.25 for (a) t∗=0
and (b) t∗ = 0.6. The data are for Π = 60 at Reτ ≈ 1000. The colour bars show the
magnitude of the streamwise velocity normalised in wall units. The arrows represent the
direction of dP/dx1 in blue and dP/dx3 in red, but note that lengths of the arrows are
not to scale.

Reτ L∗1 L∗3 ∆+1 ∆+3 ∆+2,min ∆+2,max N2 T∗ Π NR

546 4π 2π 8.92 4.46 0.26 6.51 385 1 0, 5, 10, 20, 30, 40, 60, 80 10
934 8π 3π 7.36 4.29 0.35 6.72 401 1 0, 10, 30, 60, 100 5

TABLE 1. Geometry and parameters of the DNS runs: Reτ is the friction Reynolds number;
L∗1=L1/h and L∗3=L3/h are the streamwise and spanwise dimensions of the numerical box,
respectively, with h the channel half-height; ∆+1 and ∆+3 are the spatial grid resolutions
in wall units for the streamwise and spanwise direction, respectively; ∆+2,min and ∆+2,max
are the finer (closer to the wall) and coarser (further from the wall) grid resolutions in
the wall-normal direction in wall units; and N2 is the number of wall-normal grid points.
The simulations are integrated for a time T∗ equal to one eddy turnover time defined as
T∗= Tuτ/h= 1, where uτ is the friction velocity at t= 0. Finally, Π = (dP/dx3)/(dP/dx1)
is the spanwise-to-streamwise mean pressure gradient ratio driving the channel flow; and
NR is the total number of runs performed per each case given by the pair (Reτ , Π ).

resolutions are uniform and denoted by ∆1 and ∆3, respectively. The wall-normal
grid resolution, ∆2, is stretched in the wall-normal direction following a hyperbolic
tangent. The time step is such that the Courant–Friedrichs–Lewy condition is always
below 0.5 during the run. Details on the parameters of the numerical set-up are
included in table 1. The sensitivity of the results to the grid resolution and size of
the computational domain are discussed in appendix B.
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3. Analysis of non-equilibrium 3DTBL
The present section is devoted, first, to the identification of universal scaling laws

for the tangential Reynolds stress in the 3-D transient channel flow described in § 2,
and, second, to the scrutiny of the structural and energetic alterations of the flow
during the transient. A large number of studies have been dedicated to the scaling
of quantities of interest in fully developed 2DTBL (see e.g. Millikan 1938; Klewicki
et al. 2007; Monkewitz, Chauhan & Nagib 2008). Recent efforts have been facilitated
by the increased availability of numerical data at high Reynolds numbers with an
appreciable scale separation between the inner and outer layers. In contrast, advances
in non-equilibrium 3DTBL have been hindered by the lack of high-Reynolds-number
flow datasets. Similar limitations apply to the analysis of structural changes on the
flow.

The next subsection offers an overview of the evolution of the one-point statistics
during the transient period, followed in § 3.2 by a discussion on the role of the
no-slip wall. Then, in § 3.3 we classify the flow regimes and analyse the scaling
laws concerning the history of the tangential Reynolds stress. The time-dependent
3-D structural changes undergone by the flow are discussed in § 3.4, and in the last
subsection (§ 3.5) we propose a structural model consistent with our observations.

3.1. Overview of one-point statistics
We select the channel flow at Reτ ≈ 500 with Π = 60 as a representative case
to illustrate the non-equilibrium response of the flow succeeding the imposition
of the lateral pressure gradient. The systematic analysis for various Reτ and Π is
presented in § 3.2. For t → ∞, the system attains a new statistically steady state
corresponding to a 2-D channel flow at higher Reτ and mean-flow direction parallel
to the vector (dP/dx1, 0, dP/dx3). We focus on the initial transient dominated by 3-D
non-equilibrium effects for t∗ < 1. The statistical quantities of interest are computed
by averaging the flow in the homogeneous directions, over the top and bottom
halves of the channel, and among different runs. The averaging operator is hereafter
denoted by 〈·〉, and velocity fluctuations are signified by (·)′. Fluctuating velocities are
measured with respect to the time-evolving mean velocity profiles in the streamwise
and spanwise direction, 〈u1〉(x2, t) and 〈u3〉(x2, t), respectively.

The mean velocity profiles are shown in figure 3 at several times. The streamwise
mean velocity undergoes mild changes in shape (figure 3a), and the main outcome
of the lateral pressure gradient is the development of a spanwise boundary layer of
thickness δ3 (figure 3b). The growth of δ3 is initially governed by viscous diffusion,
i.e. δ3 ∼

√
νt for t < tν . A rough estimation of tν is given by t+ν ≈ 70 (Moin et al.

1990), such that the initial viscous growth period becomes a smaller fraction of T
as Reτ increases. For t > tν , turbulent diffusion prevails and δ3 ∼

√
νet, where νe is

the turbulent eddy viscosity. Assuming the mixing-length hypothesis, νe ∼ uτδ3, then
δ3∼ uτ t, i.e. the spanwise boundary layer grows linearly in time regardless of dP/dx3
in first-order approximation. The agreement of the approximation δ+3 ≈ 0.445t+,
included in figure 3(b), with δ3 highlights the validity of the previous assumptions
after the initial viscous phase. The inertial core of the channel, 〈·〉∞, is accelerated
by the mean spanwise pressure gradient such that ρ〈u3〉∞≈ (dP/dx3)t, which controls
the additional spanwise shear, ∂〈u3〉/∂x2 ∼ 〈u3〉∞/δ3 ∼ (dP/dx3)/(ρuτ ). In summary,
the sudden imposition of dP/dx3 results in the emergence of a spanwise boundary
layer diffusing upwards from the wall linearly in time, δ3 ∼ uτ t, accompanied by an
additional mean shear proportional to dP/dx3.
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FIGURE 3. Mean velocity profile in (a) the streamwise direction and (b) the spanwise
direction for t+ = 12, 72, 132, 192, 252, 312, 372 and 432. Colours indicate time from
t+= 0 (black) to t+= 432 (red). The vertical dotted lines are the boundary layer thickness
δ3 defined by the wall-normal distance at which 〈u3〉 = 0.99〈u3〉∞= 0.99〈u3〉(h, t), and the
vertical dashed lines are the estimated boundary layer thickness given by δ+3 = 0.445t+.
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FIGURE 4. Mean Reynolds stress for Π = 60 at Reτ ≈ 500. Different lines correspond to
different times t+= 12, 72, 132, 192, 252, 312, 372 and 432. Colours indicate time from
t+ = 0 (black) to t+ = 432 (red). The arrows indicate the direction of time.

The evolution of the mean Reynolds stresses is shown in figure 4. Considering
that the flow is subjected to the additional strain ∂〈u3〉/∂x2, the classic theory
anticipates an increase of the Reynolds stresses under the equilibrium assumption
−〈u′iu

′

j〉 + (1/3)〈u′ku
′

k〉δij ∝ νe〈Sij〉, where Sij is the rate-of-strain tensor and δij is
the Kronecker delta. Figure 4 shows that the behaviour of 〈u′iu

′

j〉 is consistent with
the equilibrium prediction for large times. However, during the first stages of the
transient, 〈u′1u′1〉 and −〈u′1u′2〉 experience a vigorous depletion, whereas 〈u′2u′2〉 and
〈u′3u′3〉 remain roughly constant. Thus, the initial transient exhibits a counter-intuitive
behaviour of Reynolds stresses, inconsistent with the equilibrium assumption. The
reduction in magnitude of those stresses comprising u′1 hints at a deficiency in the
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FIGURE 5. (a) Angle of the mean Reynolds stress direction γτ (solid) and mean shear
direction γS (dotted) with respect to x1. (b) Mean tangential Reynolds stress in the
wall-normal and time-dependent frame of reference F̃ aligned with the mean shear
direction γS. The arrow in panel (b) indicates the direction of time. Different lines
correspond to different times t+= 12, 72, 132, 192, 252, 312, 372 and 432. In both panels,
the colours denote time from t+ = 0 (black) to t+ = 432 (red). The data are for Π = 60
at Reτ ≈ 500.

streak generation cycle triggered during the transient; the structural origin of such
a deficiency is discussed in § 3.4. A similar equilibrium argument applies to the
angle of Reynolds stress direction, γτ = atan[〈u′2u′3〉/〈u

′

1u′2〉], and mean shear direction,
γS = atan[(∂〈u3〉/∂x2)/(∂〈u1〉/∂x2)], which are expected to satisfy γτ ≈ γS in an
equilibrium 2DTBL. As seen from figure 5(a), the equilibrium condition is not met
for the angles; the Reynolds stress direction lags behind the mean direction closer to
the wall and leads further away. We will focus most of our attention on the tangential
Reynolds stress, −〈u′1u′2〉, because the initial non-equilibrium response is most vividly
manifested on that component, although other coordinate-dependent metrics can be
defined to measure non-equilibrium effects. In particular, it was assessed that the
conclusions drawn below are also valid when non-equilibrium effects are quantified
in terms of the classic Townsend (1976) structure parameter as shown in appendix C.

It could be argued that the drop in −〈u′1u′2〉 in figure 4(d) is an artefact of the
static frame of reference F : (x1, x2, x3). The direction given by F is no longer
coplanar with the mean shear vector, which is the primal source responsible for the
injection of kinetic energy into the turbulence intensities. To show that the depletion
of −〈u′1u′2〉 is not the consequence of observing the flow from the point of view of F ,
we define the wall-normal and time-dependent frame of reference F̃ : (x̃1, x2, x̃3) such
that x̃1 points in the direction of the local mean shear vector (∂〈u1〉/∂x2, 0, ∂〈u3〉/∂x2)

at each wall-normal location and time instant. The angle between x̃1 and x1 is
given by γS (figure 5a). The velocity components in the frame of reference F̃ are
denoted by ũ1, ũ2 (≡u2) and ũ3. Figure 5(b) demonstrates that the shear-aligned
tangential Reynolds stress, −〈ũ′1ũ′2〉, also experiences a strong reduction in magnitude.
An alternative frame of reference is that aligned with the principal Reynolds stress
direction defined by the angle γτ (Moin et al. 1991). The difference between γS

and γτ is small (figure 5a), and the history of the Reynolds stresses in the frame
of reference of the principal Reynolds stress direction (not shown) is similar to the
results from figure 5(b).
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3.2. Flow regimes
We quantify the flow regimes of the transient response of the momentum-carrying
eddies (responsible for −〈u′1u′2〉) subjected to non-equilibrium effects. It is assumed
that the Reynolds number of the channel flow is sufficiently high to develop a
multi-scale collection of randomly distributed momentum-carrying motions with their
roots attached to the wall, as first conjectured by Townsend (1976) and currently
supported by a growing number of studies (e.g. Davidson, Nickels & Krogstad 2006;
Lozano-Durán et al. 2012; Hwang 2015; Hellström, Marusic & Smits 2016; Hwang
& Bengana 2016; Baars, Hutchins & Marusic 2017; Dong et al. 2017; Hwang &
Sung 2018; Cheng et al. 2019; Yang, Willis & Hwang 2019). We can anticipate that,
for low values of Π , the perturbation introduced by the lateral forcing is very gentle
and eddies evolve in a quasi-equilibrium state irrespective of their size and lifespan.
Conversely, large values of Π are expected to drive the entire population of eddies
at all scales across the boundary out of equilibrium. The non-dimensional parameters
governing these flow regimes are Reτ and Π .

The level of non-equilibrium endured by the momentum-carrying eddies can
be estimated by assuming that, prior to the application of Π , the boundary layer is
populated by a collection of wall-attached self-similar eddies with sizes le proportional
to the distance to the wall, le ∼ x2, and characteristic velocity uτ (Townsend 1976).
Consequently, the characteristic lifetime of eddies of size le is te∼ x2/uτ . The smallest
momentum-carrying eddies are found close to the wall at x2∼ ν/uτ due to the limiting
effect of viscosity, and their lifetimes reduce to te ∼ ν/u2

τ . The largest eddies are
constrained by the channel height x2 ∼ h, with lifetimes te ∼ h/uτ . The lateral mean
pressure gradient introduces an additional time scale associated with the spanwise
acceleration of the flow, tp ∼ ρuτ/(dP/dx3). The condition for non-equilibrium is
tp < te, i.e. the characteristic time to accelerate the flow in the spanwise direction is
shorter than the lifetime of the momentum-carrying eddies in order to shove the latter
out of the equilibrium state. A similar conclusion is drawn by reasoning in terms of
the minimum strength of the lateral shear layer ∂〈u3〉/∂x2 necessary to disturb the
local-in-x2 mean shear of the wall-attached eddies ∂〈u1〉/∂x2. The former was shown
to be ∂〈u3〉/∂x2 ∼ (dP/dx3)/(ρuτ ) in § 3.1, while the latter can be approximated
by assuming a logarithmic mean velocity profile of the form 〈u1〉 ∼ (uτ/κ) log(x+2 )
such that ∂〈u1〉/∂x2 ∼ uτ/x2. Then, the lateral mean shear required to overcome the
mean streamwise shear is uτ/x2 < (dP/dx3)/(ρuτ ), which is equivalent to time-scale
argument, tp < te, discussed above.

Based on the flow scales discussed above, we differentiate three flow regimes as
sketched in figure 6(a). For Π < O(1) (tp > te), the spanwise pressure gradient is
categorised as weak, and all flow scales relax instantly to a quasi-equilibrium state
during the transient period. Conversely, for Π > O(Reτ ) (tp < te), the momentum-
carrying eddies are unable to adjust to the prompt imposition of the shear regardless
of their size. For intermediate values of Π , eddies coexist in both quasi-equilibrium
and non-equilibrium states, the former being the eddies located in the region closer
to the wall.

The analysis above is corroborated in figure 6(b,c), which shows the maximum
percentage drop of the tangential Reynolds stress during the transient period after
the imposition of the lateral mean pressure gradient, mint{Dτ (x2, t)}, where Dτ is
defined as

Dτ (x2, t)=
〈ũ1ũ2〉(x2, t)− 〈ũ1ũ2〉(x2, 0)

〈ũ1ũ2〉(x2, 0)
× 100. (3.1)
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FIGURE 6. (a) Schematic of self-similar, wall-attached, momentum-carrying eddies, and
different flow regimes as a function of the spanwise-to-streamwise mean pressure gradient
ratio Π . The eddies coloured in green are in a quasi-equilibrium state, whereas the eddies
coloured in red are out of equilibrium. (b,c) The percentage drop of tangential Reynolds
stress, mint{Dτ }, in the frame of reference of the mean shear F̃ as a function of the
spanwise-to-streamwise mean pressure gradient ratio Π and wall-normal distance x∗2 for
(b) Reτ ≈ 500 and (c) Reτ ≈ 1000. The vertical lines in panel (b) represent flow states
ranging from the equilibrium regime (green) to non-equilibrium regime (red).

Note that the Reynolds stress in (3.1) is referred to the frame of reference F̃ aligned
with the mean shear. Similar conclusions are drawn when the stress is referred to F .
The results in figure 6(b) reveal that the relative reduction in the Reynolds stress
attains up to 30 %, and that the drop accentuates for increasing Π and x∗2. Figure 6(c)
confirms that the trend holds at higher Reτ .

The scaling of mint{Dτ } is inspected in figure 7, which contains various cuts of the
(Π, x∗2) maps shown in figure 6(b,c). Within the buffer region (figure 7a), the response
of the flow is controlled by the viscous scales. The momentum equation in inner units
is given by

Du+i
Dt+
=−

∂p′+

∂x+i
−

dP+

dx+i
δi3 +

∂2u+i
∂x+k ∂x+k

, (3.2)

where D denotes material derivative and dP+/dx+1 = O(1/Reτ ) has been neglected.
From (3.2), we conclude that a similar reduction in the Reynolds stress is obtained
across different Reτ for identical values of dP+/dx+3 =Π/Reτ , which is the relevant
spanwise-to-streamwise mean pressure gradient for the buffer region.

For the logarithmic layer, for which the high-Reτ analysis holds (figure 7b), wall-
attached eddies of a given size le∼ x2 experience a similar drop in the Reynolds stress
when the mean spanwise pressure gradient is normalised by the characteristic scales,
x2 and uτ , controlling the eddies. Analysis of the non-dimensional equations obtained
by introducing the similarity variable η = t/te = tuτ/x2 reveals that the condition for
self-similar Reynolds stress depletion at a given wall-normal distance is obtained by
a common value of the compensated spanwise-to-streamwise mean pressure gradient
ratio, Πx∗2, consistent with the results from figure 7(b).
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FIGURE 7. Maximum percentage drop of the tangential Reynolds stress mint{Dτ } in the
frame of reference of the mean shear. Colours are black for cases at Reτ ≈ 500 and red
for cases at Reτ ≈ 1000. In panel (a), solid lines with circles are mint{Dτ } at x+2 = 30, and
the dashed line is mint{Dτ } ≈−160Π/Reτ . In panel (b), lines with symbols are mint{Dτ }

at x∗2 = 0.2 (E) and x∗2 = 0.4 (C), and the dashed line corresponds to mint{Dτ } ≈−Πx∗2.

From the scaling analysis above and the numerical results in figure 7, the
quantitative drop in Reynolds stress for the flow motions free of viscous effects
at a given x2 location is well approximated by

min
t
{Dτ } ≈−Πx∗2. (3.3)

If we further assume that the self-similar scaling of the flow motions with x2 does
not hold below x+2 ≈ 160, the inner-layer scaling law for the Reynolds stress decrease
implied by (3.3) is

min
t
{Dτ } ≈−160

Π

Reτ
, (3.4)

which is valid for the buffer region and serves as an approximation to the trends
observed in figure 7(a).

Finally, a tentative relation delimiting the necessary spanwise forcing to achieve
the fully non-equilibrium regime (eddies out of equilibrium across almost the entire
boundary layer), arbitrarily delimited by mint{Dτ }<−5 %, is given by

Π > 0.03Reτ . (3.5)

Equation (3.5) shows that the lateral mean pressure gradient required to attain the
fully non-equilibrium regime increases proportionally to the Reynolds number. Note
that (3.5) is a non-equilibrium condition for x+2 > 30. Prescribing a lower wall-normal
limit would result in an even more stringent condition than (3.5). The meaning of
Π in this particular flow cannot be unambiguously extrapolated to more general flow
configurations. Nonetheless, the time-scale argument used to derive (3.5) suggests that,
in external aerodynamic applications, the inner layer is most likely to be found in
a quasi-equilibrium state given the high Reynolds numbers typically encountered in
these situations.

3.3. Evolution of the tangential Reynolds stress
In the previous subsection we were concerned with the maximum drop in the
tangential Reynolds stress without consideration of its time response. Here, we discuss
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FIGURE 8. Evolution of the percentage change of tangential Reynolds stress Dτ in the
buffer layer for x+2 = 30 in panels (a) and (b), and for x?2 = 30 in panel (c). The lines
are for Reτ ≈ 500 (——) and for Reτ ≈ 1000 (– – –). For cases at Reτ ≈ 500, colours are
Π = 20, 40 and 60 from dark red to light red. For cases at Reτ ≈ 1000, colours are dark
red for Π = 60 and light red for Π = 100.

the scaling of the evolution of Dτ for 3-D channels in the fully non-equilibrium
regime, i.e. Π > 0.03Reτ , which is the most intriguing case from the physical
viewpoint. As in § 3.2, we perform the analysis separately for the buffer region and
logarithmic layer, although the former can be thought of as the near-wall limit of the
latter.

The evolution of Dτ in the buffer layer is plotted in figure 8 for various pairs
of (Reτ , Π). Three scalings are inspected. Figure 8(a) shows the evolution of Dτ

as a function of time normalised in outer units. Unsurprisingly, both the intensity
of Dτ and the time instant for the maximum drop vary considerably among distinct
combinations of (Reτ , Π). Inasmuch as the near-wall eddies do not scale in outer
units, the results in figure 8(a) are included only to expose the lack of collapse among
cases under an inadequate normalisation. The time scaling using wall units is tested
in figure 8(b). It was argued in § 3.2 that the depletion of Reynolds stress within
the inner layer is proportional to Π/Reτ . Consequently, the results in figure 8(b) are
plotted against the compensated Reynolds stress drop, DτReτ/Π . The new scaling
improves the collapse of the results, especially for t+<150, above which the evolution
of DτReτ/Π diverges among cases. The absence of collapse for t+ > 150 coincides
with the typical lifetime of the momentum-carrying eddies in the buffer layer (Lozano-
Durán & Jiménez 2014b). Thus, uτ (defined at t=0) is representative of the originally-
in-equilibrium near-wall eddies until the generation cycle is restarted and newborn
eddies emerge under different flow conditions. Following the previous reasoning, the
collapse can be further improved under the assumption that the length and time scales
of the newly created eddies are controlled by the local-in-time friction velocity

u? 2
τ (t)=

√(
ν
∂〈u1〉

∂x2

)2

+

(
ν
∂〈u3〉

∂x2

)2
∣∣∣∣∣∣

x2=0

. (3.6)

The local wall units, denoted by (·)?, are analogously defined in terms of ν and u?τ (t),
and the local friction Reynolds number is Re?τ (t)= u?τ (t)h/ν. The results in figure 8(c)
confirm that the local scaling (t? versus DτRe?τ/Π ) holds for longer times.

The evolution of Dτ for the momentum-carrying eddies across the logarithmic layer
is shown in figure 9, where three scaling laws are investigated. The evolution of Dτ in
outer units is included in figure 9(a). Wall-attached eddies follow an ordered response
in time after the sudden imposition of the transverse pressure gradient: eddies closer
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FIGURE 9. Evolution of the percentage change of tangential Reynolds stress Dτ in the
logarithmic layer for x∗2 = 0.15, 0.2, 0.3 and 0.4 represented by lines coloured from dark
red to light red. The lines are for cases at Reτ ≈ 500 (——) and at Reτ ≈ 1000 (– – –),
both for Π = 60. The arrow in panel (a) indicates increasing wall-normal distance.

to the wall react earlier and are the least perturbed, while larger eddies experience a
more acute Reynolds stress reduction at later times. The preceding analysis for the
buffer region is extended to the logarithmic layer by taking into consideration that
the lifetimes of the wall-attached eddies scale as ∼x2/uτ , with a consistent drop in the
Reynolds stress proportional to Πx∗2. The self-similar response of wall-attached eddies
under the lateral force is evidenced by the improved collapse in figure 8(b), at least
for tuτ/x2 . 1. Analogously to the inner layer, uτ stands as the characteristic velocity
scale of the original eddies in the equilibrium state, but does not hold as such for
times longer than the lifespan of individual wall-attached eddies, tuτ/x2 ≈ 1 (Lozano-
Durán & Jiménez 2014b). The collapse among cases is perfected by using the local
time scale tu?τ/x2 (figure 8c), which accounts for variations in the momentum transfer
controlling the eddies during the transient. We close this subsection by highlighting
that the scaling properties of the flow studied above are conspicuous only at moderate
to high Reynolds numbers. The response of the flow at lower Reynolds numbers is
discussed in appendix A, where it is shown that 3-D channels at Reτ ≈ 180 lack the
necessary scale separation to exhibit a multiscale depletion of the Reynolds stress.

3.4. Structural changes in the conditionally averaged flow field
We examine the structural evolution of the flow in the surroundings of the
momentum-carrying eddies. To that end, we identify 3-D structures of the intense
momentum transfer using the methodology introduced by Lozano-Durán et al. (2012)
(see also Lozano-Durán & Jiménez 2014b; Lozano-Durán & Borrell 2016). An
individual structure (or object) of intense momentum transfer at time t is defined as
a spatially connected region in the flow satisfying

−u′1(x1, x2, x3, t)u′2(x1, x2, x3, t) >H〈u′ 21 〉
1/2(x2, t)〈u′ 22 〉

1/2(x2, t), (3.7)

where H is a thresholding parameter (hyperbolic hole size (Bogard & Tiederman
1986)) equal to 1.75 obtained following the analysis by Moisy & Jiménez (2004).
It was tested that varying H within the range 0.5 < H < 3 does not change the
conclusions below. The original frame of reference defined by F is preferred to F̃
in order to avoid artificial distortions in the flow due to the time and space variations
in F̃ . Hereafter, we refer to individual structures of intense −u′1u′2 events as −u′1u′2
structures. Numerically, 3-D structures are constructed by connecting neighbouring
grid points fulfilling (3.7) and using the 6-connectivity criteria (Rosenfeld & Kak
1982). Figure 10 shows the wall-attached −u′1u′2 structures identified before and
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FIGURE 10. Instantaneous −u′1u′2 structures defined by (3.7) for Π = 60 and Reτ ≈ 1000
at (a) t∗= 0 and (b) t∗= 0.5. Only −u′1u′2 structures attached to the bottom wall are shown.
The colours represent the distance to the wall, from yellow (closer to the wall) to blue
(farther from the wall). The box with edges coloured in red is the bounding box of one
individual −u′1u′2 structure with streamwise, wall-normal and spanwise sizes equal to l1, l2
and l3, respectively.

after the imposition of the spanwise pressure gradient. Figure 10 also includes one
individual −u′1u′2 structure highlighted by the box with red edges.

We focus our attention on the channel at Reτ ≈ 1000 and Π = 60, but similar results
are obtained consistently across different Reτ and Π , provided that the latter is large
enough to attain the fully non-equilibrium regime. We select three time instants to
assess the structural changes in the flow, namely, t∗ = 0, t∗ = 0.25 and t∗ = 0.50. The
evolution of Dτ is plotted in figure 11(a), which shows that the maximum drop in the
tangential Reynolds stress occurs at t∗ ≈ 0.50.

The identification procedure above yields approximately 105 structures at each time
instant after discarding those objects with volumes smaller than 303 wall units. The
sizes of the objects are measured by circumscribing each structure within a box
aligned to the Cartesian axes, whose streamwise, wall-normal and spanwise sizes
are denoted by l1, l2 and l3, respectively. The minimum and maximum distances
of each object to the closest wall are x2,min and x2,max, respectively, and such that
l2 = x2,max − x2,min. An example of an individual −u′1u′2 structure and its bounding
box is included in figure 10(a). The bounding boxes of the structures are aligned
with the original flow direction. At t∗ = 0.5, the mean shear at the centre of gravity
of a −u′1u′2 structure of size x∗2 ≈ 0.4 is rotated by γS ≈ 15◦ (see also figure 10b).
This low turning angle justifies the selection of F to study the flow for short times,
as is the case here, but the investigation of structural changes for longer times
would require a properly chosen rotating frame of reference. We centre our attention
on wall-attached −u′1u′2 structures, defined as those with x+2,min < 25 (del Álamo
et al. 2006). For the value of H selected, wall-attached structures are responsible
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FIGURE 11. (a) Evolution of the percentage change of tangential Reynolds stress Dτ at
x∗2 = 0.25. The vertical lines are the times selected to study the flow structure in addition
to t∗= 0, namely t∗= 0.25 (– – –) and t∗= 0.5 (· · · · · ·). (b) Joint p.d.f.s of the logarithms
of the streamwise l1 and wall-normal l2 sizes of wall-attached −u′1u′2 structures, p(l+1 , l+2 ).
The contours plotted contain 50 % and 99.8 % of the probability. The lines are for t∗ = 0
( ), t∗ = 0.25 ( ) and t∗ = 0.5 ( ). The straight dashed line is l+1 = 3l+2 and
the arrow indicates the direction of time. The results are for Reτ ≈ 1000 and Π = 60.

for more than 60 % of the tangential Reynolds stress at all three times considered.
Figure 11(b) shows the joint probability density function (p.d.f.) of the sizes of the
wall-attached structures, p(l+1 , l+2 ). At t∗ = 0, the distribution of sizes is consistent
with a geometrically self-similar population of structures akin to the wall-attached
eddies envisioned by Townsend (1976) at high Reynolds numbers. The mode of
the p.d.f. follows a reasonably well-defined linear law, l1 ∼ 3l2, consistent with
previous studies (Lozano-Durán et al. 2012). From t∗ = 0 to t∗ = 0.50, the most
pronounced modification in the geometry of the structures is a gradual shortening of
their streamwise length, while their wall-normal heights are barely affected.

Each −u′1u′2 structure can be classified either as an ejection, when the average
wall-normal velocity within its enclosed volume is positive, or as a sweep otherwise.
Sweeps and ejections are known to be spatially organised in pairs side-by-side
along the spanwise direction (Ganapathisubramani 2008; Lozano-Durán et al. 2012;
Wallace 2016; Osawa & Jiménez 2018). This sweep–ejection group, representative of a
streamwise roll, is the predominant logarithmic-layer flow structure responsible for the
generation of tangential Reynolds stress. Consequently, we are interested in examining
the modification of the flow around sweep–ejection pairs during the transient period.
We denote the centre of gravity of the bounding boxes of the nth sweep and its
paring ejection as xn

s and xn
e , respectively. The wall-normal size of the sweep is ln

2,s
and that of the ejection is ln

2,e. The averaged flow field conditioned to the presence of
a sweep–ejection pair is computed by averaging the velocity vector in a rectangular
domain along different nth pairs, whose centre coincides with xn

p = (xn
e + xn

s )/2, and
it edges are r times the average wall-normal height ln

p = (l
n
2,e + ln

2,s)/2. Then, the
conditionally averaged flow around sweep–ejection pairs is given by

{u′i}(r)=
N∑

n=1

u′i(xn
p + ln

pr)
N

, (3.8)
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FIGURE 12. Averaged flow fields conditioned to wall-attached pairs of sweeps and
ejections with wall-normal sizes in the range 0.2 < ln∗

p < 0.3 at (a) t∗ = 0, (b) t∗ = 0.25
and (c) t∗ = 0.50. The panels on the left contain isosurfaces of the low-velocity (blue)
and high-velocity (red) streaks defined by ±α of the maximum positive and negative,
respectively, fluctuating streamwise velocity of the average flow with (a) α= 0.6, (b) α=
0.55 and (c) α = 0.43. The arrows indicate the mean flow direction. The panels on the
right display the cross-flow velocity vector field ({u′2}, {u

′

3}) (arrows) and the fluctuating
velocity {u′1} (colours). The dashed white line shows the wall-normal extension from the
wall of the incoherent streamwise velocity field represented by low values of {u′1} in green.
Velocities are normalised by uτ . Results are for Π = 60 at Reτ ≈ 1000.

where n = 1, . . . , N is the set of sweep–ejection pairs selected to perform the
conditional average, and r = (r1, r2, r3). We also take advantage of the spanwise
symmetry of the flow, and r3 is always chosen to be positive towards the sweep. The
reader is referred to Lozano-Durán et al. (2012) and Dong et al. (2017) for additional
details on the procedure to obtain conditional flow fields.

The averaged flow field conditioned to sweep–ejection pairs with 0.2< ln ∗
p < 0.3 is

plotted in figure 12. At t∗= 0 (figure 12a), the characteristic flow structure consistent
with the statistically-in-equilibrium flow state is a streamwise roll flanked by one
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low-velocity streak and one high-velocity streak. At succeeding times (figure 12b,c),
the roll persists, while the intensity and size of the low-velocity streak have already
decreased at t∗ = 0.5. The high-velocity streak and roll are also weakened, but the
variations are less pronounced. Another observation is the loss of coherence in a
developing layer underneath the low-velocity streak. This effect is demonstrated by
the low values of {u′1} represented by the green regions below the white dashed
lines in figure 12 (right panels). The nearly zero averaged streamwise velocity for
t∗ > 0 is an indication that, from the viewpoint of the larger rolls, the fluid motions
below cancel out and are perceived as incoherent. During the transient, both low-
and high-velocity streaks shorten in the streamwise direction in accordance with
the geometric analysis in figure 11(b). Although not shown, the results above are
also applicable to sweep–ejection pairs across different ranges of ln

p when the times
are appropriately scaled by ln

p/u
?
τ , implying that the modifications in the flow are

self-similar in space and time.
The message from figure 13 is that the main structural alteration during the transient

is the weakening of the low-velocity streaks, which is in turn associated with the loss
of coherence of the flow within a growing layer underneath the streamwise rolls. The
aforementioned loss of coherence may be attributed to (i) the relative displacement
of wall-parallel layers at different heights and (ii) the additional mean spanwise shear
which enhances the generation of smaller-scale momentum-carrying eddies (as shown
by Mizuno & Jiménez (2011), Jiménez (2018) and Lozano-Durán & Bae (2019)). This
is illustrated in figure 13, which contains the instantaneous streamwise velocity at two
wall-normal distances: one closer to the wall at x∗2 = 0.1 influenced by the additional
shear from the lateral boundary layer, and another farther from the wall at x∗2 = 0.3
still unaffected.

3.5. Structural model
On the basis of the above observations, we propose a conceptual model that accounts
for the changes undergone by the flow. The model is sketched in figure 14. The
key elements are the low- and high-velocity streaks and their relative alignment with
respect to the streamwise roll. Although the flow can be conceptually divided into
streaks and rolls, both are interdependent flow entities that interact in a self-sustaining
cycle (Waleffe 1997; Jiménez & Pinelli 1999; Hwang & Cossu 2011; Cossu & Hwang
2017; Lozano-Durán, Bae & Encinar 2020). At a given wall-normal distance x2 and
t = 0, the flow is configured in an equilibrium array of rolls and streaks with their
centres at x2, sizes 2x2 and lifetimes 2x2/uτ (Lozano-Durán & Jiménez 2014b). The
tangential Reynolds stress 〈u′1u′2〉 at x2 is the result of the wall-normal momentum
transport conducted by the rolls and the arrangement of streaks in the equilibrium state.
The momentum transfer at t= 0 can be modelled as the sum of two contributions,

〈u′1u′2〉(x2, t= 0)model
≈ (u′S1 u′R2 )top + (u′S1 u′R2 )bot (3.9)

≈ (uτ )(−uτ/2)+ (−uτ )(uτ/2)≈−u2
τ , (3.10)

where (u′S1 u′R2 )top represents the wall-normal transport of the high-velocity streak, u′S1 ≈
uτ , by the downward motion of the roll, u′R2 ≈−uτ/2, above x2. Conversely, (u′S1 u′R2 )bot
is the wall-normal transport of the low-velocity streak, u′R1 ≈ −uτ/2, by the upward
motion of the roll, u′R2 ≈ uτ , below x2. The intensities of u′S1 and u′R2 are adjusted to
produce a total momentum transfer equal to −u2

τ , although the discussion is extensive
to other values.
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FIGURE 13. (a) Schematic of the channel flow domain with the wall-normal planes shown
in panels (b) and (c). Panels (b) and (c) contain the streamwise velocity at (b) x∗2 = 0.1
and (c) x∗2 = 0.3 at the same time instant t∗ = 0.5 for Π = 60 at Reτ ≈ 1000. The red
straight lines in (b) and (c) indicate the mean flow direction. Velocities are normalised
by uτ .

At half the lifespan of the eddies t ≈ x2/uτ , the spanwise boundary layer extends
up to δν ≈ 0.445x2, based on the estimations in § 3.1, and remains below the centre
of the rolls located at x2. Simultaneously, the upper flow is laterally displaced by
∆r ≈ (1/ρ)(dP/dx3)(x2/uτ )2. For values of ∆r larger than the spanwise coherence of
the roll–streak structure, namely ∆r>2x2, the centre of the rolls is misaligned with the
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FIGURE 14. Structural model of self-similar wall-attached eddies subjected to a sudden
mean spanwise pressure gradient. The figure shows one building block structure that
comprises a streamwise roll flanked by one low-velocity streak and one high-velocity
streak. Note that the complete flow field consists of the superposition of multiple
building block structures of different sizes. (a) Statistically-in-equilibrium wall-attached
momentum-carrying eddies of size 2x2 at t = 0 generating a momentum transfer ≈−u2

τ .
(b) Non-equilibrium wall-attached momentum-carrying eddies at t = x2/uτ after the
imposition of a transverse mean pressure gradient generating a momentum transfer
≈−u2

τ/2(1+λ). In panel (a), (u′S1 u′R2 )top and (u′S1 u′R2 )bot represent the downward and upward,
respectively, wall-normal momentum transfer by the streamwise roll. In panel (b), δν is
the spanwise boundary layer thickness and ∆r is the lateral displacement of the flow
above δν due to the uniform acceleration (1/ρ) dP/dx3 imposed by the mean spanwise
pressure gradient. The smaller-scale low- and high-velocity streaks underneath the larger
roll in panel (b) represent the incoherent fluid motions discussed in § 3.4 (figure 12b,c)
and visualised in figure 13(b). At t= 0, the flow also contains smaller streamwise streaks
underneath the larger roll; although in this case they are aligned with the x1 direction.
However, smaller streaks are not represented in panel (a), as they do not contribute to
the destruction of the near-wall coherence of the rolls above (figure 12a).
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underneath streaks within the lateral boundary layer. The latter streaks are also altered
by ∂〈u3〉/∂x2, which increases the local Reynolds number and triggers the emergence
of smaller scales (as discussed in § 3.4, figure 13). These changes originate a new flow
configuration that is less efficient in producing −〈u′1u′2〉 compared to the equilibrium
state. The rationale behind such a reduction is a loss of flow coherence underneath the
rolls, as supported by figure 12, which weakens the vertical momentum transported by
the rolls from the layers closer to the wall. The new momentum transfer at t≈ x2/uτ
can be modelled similarly to (3.10) by assuming that (u′S1 u′R2 )top is barely affected,
whereas (u′S1 u′R2 )bot provides a deficient momentum transfer such that

〈u′1u′2〉(x2, t= x2/uτ )model
≈ (u′S1 u′R2 )top + (u′S1 u′R2 )bot (3.11)

≈ (uτ )(−uτ/2)+ (−uτλ)(uτ/2)≈−
u2
τ

2
(1+ λ), (3.12)

where λ is a damping factor accounting for the reduction in the Reynolds stress
generation due to the loss of streak coherence within the lateral boundary layer. The
functional form of λ is modelled by assuming that the loss of streak coherence is, in
first-order approximation, linearly proportional to the relative spanwise mean shear,

λ= 1−
∂〈u3〉/∂x2

∂〈u1〉/∂x2
, (3.13)

such that 〈u′1u′2〉 = −u2
τ for ∂〈u3〉/∂x2 = 0. If we consider the approximations

∂〈u3〉/∂x2 ≈ (dP/dx3)/(ρuτ ) and ∂〈u1〉/∂x2 ≈ uτ/(2x2) (see § 3.1), then

〈u′1u′2〉(x2, t= x2/uτ )model
≈−u2

τ

(
1−

x2 dP/dx3

ρu2
τ

)
. (3.14)

Equation (3.14) can be rearranged as mint{Dmodel
τ } ≈−Πx∗2, which coincides with the

maximum Reynolds stress depletion from (3.3).
Additionally, the model above predicts that the condition for non-equilibrium of flow

structures at height x2 is given by ∆r > 2x2, which in non-dimensional form yields
Πx∗2 > 2. In order to disturb the wall-parallel layers at all heights across the boundary
layer, x∗2 should be fixed in wall units and such that Π >O(Reτ ), also consistent with
the estimation of Π > 0.03Reτ provided in § 3.2.

The scenario promoted above is self-similar: the continuous depletion in time of the
Reynolds stress in figure 5(b) is the result of the time-ordered disruption of streaks
and rolls from their natural equilibrium by the growth of the spanwise boundary layer.
The present model complements and generalises previous studies formulated in terms
of single-scale near-wall streaks and quasi-streamwise vortices to the analogous log-
layer streaks and rolls of arbitrary size x2. The mechanism above also shares some
similarities with the physical arguments pertaining to the modification of near-wall
turbulence in the presence of oscillating walls characteristic of drag reduction studies
(Jung et al. 1992; Laadhari, Skandaji & Morel 1994; Choi & Clayton 2001; Choi, Xu
& Sung 2002; Ricco & Quadrio 2008), although our model is tailored for multiscale
flows and uniform accelerations.

It is worth noting that the reduction of the Reynolds stress has been mainly
modelled on the basis of non-equilibrium effects rather than on the three-dimensionality
of the mean flow and, therefore, is not constrained to the application of additional
mean pressure gradients only in the spanwise direction. Accordingly, the model
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also predicts that a sudden forcing in the streamwise direction would encompass a
decrease of the Reynolds stress as long as the relative shift between wall-parallel
layers is capable of misaligning the cores of the roll and the streaks underneath. As
it is well known that streaks are longer than wider across the logarithmic layer by
a factor of 3–6, we can anticipate that suddenly imposed streamwise mean pressure
gradients are less efficient in decreasing the Reynolds stress than their spanwise
counterparts. This view is supported by the studies by He & Seddighi (2013, 2015),
Seddighi et al. (2015) and Mathur et al. (2018), who showed that channel flows
subjected to streamwise mean pressure gradients exhibit a similar, but less exacerbated,
counter-intuitive response of flow consistent with the model presented here.

To conclude, we comment on the similarities and differences of the present
structural model with respect to previous models in the literature. We should stress
first that our model relies on the multiscale organisation of the flow, while past
models are usually formulated under the assumption of a single-scale flow at low
Reynolds number. From figure 13, it was argued that the flow structures produced
under the additional mean shear are smaller in size, and that this contributes to the
loss of coherence from the viewpoint of the upper flow layers. The generation of
smaller eddies is supported by the work of Lozano-Durán & Bae (2019), who showed
that the characteristic length scale of the flow structures decreases proportionally to
the mean shear. Our model is also consistent with the generation of smaller flow
features postulated by Lohmann (1976) and corroborated experimentally by Kiesow
& Plesniak (2002) for the near-wall region. Bradshaw & Pontikos (1985) suggested
that the mechanism responsible for the reduction in the Reynolds stress is the tilting
about the streamwise direction of pre-existing flow structures caused by the ‘instant’
introduction of ∂〈u3〉/∂x2 by inviscid skewing. In the present flow configuration,
∂〈u3〉/∂x2 diffuses upwards from the wall in a finite time. Yet, the aforementioned
tilting mechanism is not completely incompatible with the model depicted in figure 14,
as the relative displacement between wall-parallel flow layers still entails some degree
of inclination of the eddies in the x1–x2 plane. Coleman et al. (1996b) noted that the
toppling of eddies dominates when the three-dimensionality is introduced by inviscid
skewing, but its role might be secondary in cases with uniform lateral acceleration
as in the present study. Comparisons with previous models framed in terms of
the evolution of streaks, ejections and sweeps are complicated due to the lack of
interaction between flow structures at different scales. Eaton (1991) and Kannepalli
& Piomelli (2000) hypothesised that the cross-flow could inhibit the intensity of
the low-velocity streaks and, consequently, the associated Reynolds stress from the
streak breakdown. Other works advocate for an asymmetric distribution of sweeps
and ejections as a key requirement for the Reynolds stress reduction (Anderson &
Eaton 1989; Sendstad 1992; Littell & Eaton 1994; Eaton 1995; Chiang & Eaton 1996;
Wu & Squires 1997). Although the weakening of the streaks and the asymmetry of
sweeps and ejections are not necessarily incompatible with our model, they are not
essential components to attain a Reynolds stress reduction.

3.6. Evolution of the tangential Reynolds stress budget
We examine the reduction of −〈u′1u′2〉 from the Reynolds stress budget viewpoint to
complement the physical insight gained from the structural analysis in § 3.4. We use
the static frame of reference F to avoid the complexity of additional terms of the form
∂/∂t in the budget equation. Following Mansour, Kim & Moin (1988), the dynamic
equation for the component 〈u′iu

′

j〉 is given by

D〈u′iu′j〉
Dt

= Pij + εij + Tij + PSij + PDij + Vij, (3.15)
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where the terms on the right-hand side are the Reynolds stress production (Pij),
dissipation (εij), turbulent diffusion (Tij), pressure strain (PSij), pressure diffusion
(PDij) and viscous diffusion (Vij) defined as

Pij = −〈u′iu
′

k〉

〈
∂uj

∂xk

〉
− 〈u′ju

′

k〉

〈
∂ui

∂xk

〉
, (3.16)

εij = −2ν
〈
∂u′i
∂xk

∂u′j
∂xk

〉
, (3.17)

Tij = −

〈
∂u′iu

′

ju
′

k

∂xk

〉
, (3.18)

PSij = −

〈
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

〉
, (3.19)

PDij = −
∂

∂xk

〈
p′u′iδjk + p′u′jδik

〉
, (3.20)

Vij =

〈
∂2u′iu

′

j

∂xk∂xk

〉
. (3.21)

In order to obtain quantities that are only a function of time, we introduce the
average along x2 bands, which is indicated by (·). The wall-normal bands inspected
are x+2 ∈ [5, 50] and x∗2 ∈ [0.2, 0.3], which lie within the buffer region and logarithmic
layer, respectively. The gains produced by the budget components φ̄ij for (i, j)= (1, 2),
(1, 1) and (2, 2) are defined as

Gain−12 =
−φ̄12(t)+ φ̄12(0)
−P12(0)

, (3.22)

Gain11 =
φ̄11(t)− φ̄11(0)

P11(0)
, (3.23)

Gain22 =
φ̄22(t)− φ̄22(0)

PS22(0)
, (3.24)

where Gain−12, Gain11 and Gain22 represent the gain in the Reynolds stress budget
equation for −〈u′1u′2〉, 〈u′1u′1〉 and 〈u′2u′2〉, respectively. Note that Gain−12 is defined
such that −P12>0 contributes to increasing the magnitude of −〈u′1u′2〉. We analyse the
channel flow at Reτ ≈ 500 and Π = 60, in which case the maximum drop in −〈u′1u′2〉
occurs at t+ ≈ 170 and t∗ ≈ 0.7 for the bands in the buffer region and logarithmic
layer, respectively.

The gains are reported in figure 15 as a function of time. We discuss first the
results for the buffer layer region x+2 ∈ [5, 50]. Figure 15(a) shows the evolution of
−P12, −T12 and −PS12. The remaining terms are not significant in magnitude, nor
do they play any relevant role in the discussion below, and so they are omitted for
the sake of simplicity. The main contributor to the destruction of −〈u′1u′2〉 is the drop
in production −P12, which can be traced back to a deficit on the pressure–strain
correlation in the budget equation for 〈u′2u′2〉 (figure 15c). Similarly, the decline of
the streaks is the consequence of a lower production P11 (figure 15e), also caused by
the drop in −〈u′1u′2〉.
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FIGURE 15. Evolution of the gain produced by the different terms of the Reynolds stress
budget for (a,b) −〈u′1u′2〉, (c,d) 〈u′2u′2〉 and (e, f ) 〈u′1u′1〉. Panels (a), (c) and (e) are for
x+2 ∈ [5, 50], and panels (b), (d) and ( f ) are for x∗2 ∈ [0.2, 0.3]. The results are for Π = 60
at Reτ ≈ 500. Zero gain is represented by the horizontal dotted line.

The sequence of events is similar farther away from the wall, as seen in
figure 15(b,d, f ) for x∗2 ∈ [0.2, 0.3]. The main sink of tangential Reynolds stress
arises from the turbulent production −P12. The reduction in −P12 is connected to
the lower pressure–strain correlation PS22 in the budget equation of 〈u′2u′2〉 akin to
the situation described for the buffer region. The decay of the streaks is similarly
governed by the drop in the production of streamwise Reynolds stress P11, with some
additional contribution by the turbulent diffusion T11.
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FIGURE 16. Summary of the sequential process of Reynolds stress reduction from the
sudden imposition of a spanwise pressure gradient up to the final decrease in tangential
Reynolds stress. Time goes from left to right. See text for details.

Wall-modelled LES grid

First grid elements
for wall-modelled LES
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FIGURE 17. (a) Sketch of a typical grid for WMLES of a turbulent boundary layer. The
background colours represent the streamwise velocity from zero velocity (dark blue) to the
free-stream value (dark red). (b) First grid cell of size ∆ at the wall, and (c) comparison
with the potential directional changes in the mean velocity profile along the wall-normal
coordinate in 3DTBL.

The process of Reynolds stress reduction is then sequentially described by (i) the
growth of the spanwise boundary layer ∂〈u3〉/∂x2, which (ii) inhibits the redistribution
of energy to 〈u′2u′2〉 via pressure–strain correlation, followed by (iii) the weakening
of the production of tangential Reynolds stress, which (iv) eventually causes the
drop in −〈u′1u′2〉. The terms involved at each step of the process are summarised
in figure 16. A similar effect has been observed in transitional boundary layer
flows subjected to spanwise wall oscillations (Hack & Zaki 2015). Our findings are
consistent with the previous theory on transversely strained boundary layer flows
by Moin et al. (1990) and Coleman et al. (1996a) and extends the results to the
outer layer of wall-bounded turbulence. The leading role of ∂〈u3〉/∂x2 in the drop
of −〈u′1u′2〉 is also consistent with the structural model promoted in § 3.4, where it
was argued that the deficient transport of momentum by the streamwise rolls has its
origin in the displacement among fluid layers induced by ∂〈u3〉/∂x2.

4. Applications to wall-modelled large-eddy simulations

We study the predictive capabilities of WMLES in non-equilibrium 3-D channel
flows at Reτ ≈ 1000. As discussed in previous sections, this relatively simple flow
set-up entails fundamental features of 3DTBL that may challenge the available
model formulations. The rapid temporal and wall-normal variations in the strain
and vorticity, as illustrated in figure 17, have the potential of rendering turbulence
closure models calibrated to equilibrium turbulence of limited utility. Additionally, the
accurate prediction of the wall-shear angle and Reynolds stress magnitude is also of
paramount importance in external flows over wings or bluff bodies, as it can directly
affect the force exerted on the bodies through modification of circulation, downwash
effects, pressure redistribution and strength of separation.
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Recent studies of WMLES in transient 3-D channel flows include the works by Bae
et al. (2018a), Carton de Wiart, Larsson & Murman (2018) and Yang et al. (2019).
Carton de Wiart et al. (2018) investigated the performance of WMLES in an ample set
of cases including acceleration in the streamwise direction, and showed that WMLES
is capable of predicting the wall stress with a reasonable degree of accuracy. Yang
et al. (2019) also attained good results using wall modelling via physics-informed
neural networks, while Bae et al. (2018a) employed a novel parameter-free dynamic
wall model to predict the wall stress in a flow configuration similar to the present
set-up.

4.1. Wall models
At the coarse near-wall grid resolutions of WMLES, the usual no-slip condition
ceases to produce an accurate estimate of the momentum drain at the wall. Hence,
wall models are responsible for estimating the wall-shear stress. The LES equations
are integrated in time using the wall-shear stress provided by the wall model as
a Neumann boundary condition instead of the no-slip condition. The kinematic
no-penetration condition is maintained for the impermeable walls of the channel.
Three wall models are investigated in the present work: the equilibrium wall model
by Kawai & Larsson (2012), and the non-equilibrium wall models by Park & Moin
(2014) and Yang et al. (2015). We briefly summarise the main characteristics of each
model and the modifications performed in the present work with respect to their
original formulations.

The model by Yang et al. (2015) accounts for non-equilibrium effects while
retaining a moderate complexity. This model assumes a parametric velocity profile
in the near-wall region, where the coefficients are determined by enforcing a set of
physical constraints. These include the continuity of the profile, the LES matching
condition at a specified wall distance, and the compliance with the vertically integrated
momentum equation, among others. The model is usually referred to as the integral
wall model (IWM), since the momentum integral constraint is crucial in accounting for
non-equilibrium effects. In the original formulation, the wall-model input is averaged
in time to regularise the wall-shear stress, which otherwise was found to cause
numerical instabilities. In the present study, given the statistically unsteady nature
of the flow, the time averaging is replaced by spatial averaging along wall-parallel
planes. To comply with the outer LES equations, we modify the original formulation
by Yang et al. (2015) to account for the spanwise pressure forcing.

The non-equilibrium wall model by Park & Moin (2014, 2016) solves the full
Reynolds-averaged Navier–Stokes equations on a separate near-wall mesh with
a mixing-length-type eddy-viscosity closure that dynamically accounts for the
resolved portion of the turbulence in the wall-model domain. This formulation is
the most comprehensive amongst the considered wall-stress models, and accounts for
non-equilibrium effects embedded into the original Navier–Stokes equations. Herein,
this model is termed NEQWM. In order to avoid an overprediction of the skin
friction, the resolved turbulent stress is evaluated on the fly, and it is then subtracted
from the modelled stress. Similarly to the IWM, the formulation by Park & Moin
(2014) was adjusted to account for the spanwise pressure forcing. This turned out to
be particularly important in order to provide the required dominant balance in the
momentum conservation equation for the initial times of the transient.

Lastly, the equilibrium wall model (EQWM) of Kawai & Larsson (2012) is derived
from the NEQWM by retaining only the wall-normal diffusion terms. The model
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involves a simple ordinary differential equation, which is solved along the wall-normal
direction on each wall face (Wang & Moin 2002). Consistent with the one-dimensional
nature of the model, the spanwise mean pressure gradient vector was projected to
the local flow direction at the matching location, and this was added to the EQWM
equation as a momentum source term. A similar term was added to the energy
equation for consistency.

4.2. Numerical set-up
The codes used for wall-modelled calculations are different from the solver presented
for DNS, mainly because the wall models were conveniently available in other
well-validated LES codes. The calculations using the NEQWM and EQWM are
conducted using the code CharLES, which is an unstructured-grid finite-volume LES
code for compressible flows developed at the Center for Turbulence Research and
currently maintained by Cascade Technologies, Inc. The nominal spatial accuracy of
the code is second order, but the reconstruction scheme upgrades to a fourth-order
accuracy on uniform Cartesian grids (Herrmann 2010; Khalighi et al. 2011). The
dynamic Smagorinsky model (Moin et al. 1991; Lilly 1992) is used as subgrid-scale
(SGS) model in the filtered conservation equations. The bulk Mach number is fixed
at 0.2 for comparison with the incompressible DNS solution.

For the IWM, we use the LESGO solver (LESGO 2019). The code solves
the incompressible filtered Navier–Stokes equations in a half-channel with a
staggered grid, using a pseudo-spectral approach in the wall-parallel directions and
a second-order central finite-difference scheme in the wall-normal direction. The
scale-dependent Lagrangian-dynamic Smagorinsky model is used as SGS model
(Bou-Zeid, Meneveau & Parlange 2005). One of the most important impediments
of the wall models considered above is that they rely explicitly or implicitly on a
Reynolds-averaged parametrisation of the flow, usually through an eddy viscosity,
and their coefficients are adjusted by assuming fully developed turbulence that
is statistically in equilibrium. By construction of these models, the imposition of
additional mean shear is accompanied by an increment in the magnitude of the
Reynolds stresses (see the reviews by Piomelli & Balaras (2002) and Bose & Park
(2018)), which might not be case under non-equilibrium conditions.

The LES grid resolution is uniform in the three spatial directions and equal to
(∆+1 , ∆

+

2 , ∆
+

3 ) = (180, 60, 133) or (∆∗1, ∆
∗

2, ∆
∗

3) = (0.2, 0.06, 0.14). The size of the
computational domain is (L∗1, L∗2, L∗3) = (8π, 2, 3π), which yields a total of 265 980
grid cells distributed as (N1, N2, N3) = (130, 31, 66), in the streamwise, wall-normal
and spanwise directions, respectively. The internal grids for EQWM and NEQWM
have 30–40 cells stretched along the wall-normal direction. Additionally, the NEQWM
shares the same wall-parallel resolution as the LES grid. The wall-normal exchange
between the wall model and the LES is located at the centroids of the third grid cell
away from the wall, x∗2 ≈ 0.16.

The calculations are initialised with a 2-D channel flow in a statistically steady state
at Reτ ≈ 1000. Then, a spanwise pressure gradient of Π = 10 is applied to induce a
cross-stream shear layer, as in § 2. The transverse mean pressure gradient selected is
relatively low in order to mimic the fact that, at high Reynolds numbers, the near-
wall layer is in a quasi-equilibrium state, as discussed in § 3.2. The simulations are
run for one eddy turnover time based on the streamwise friction velocity and channel
half-height, t∗≈ 1. The results are averaged in the homogeneous directions and among
runs starting from 10 uncorrelated initial conditions.
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FIGURE 18. Evolution of (a) the mean spanwise wall stress 〈τ3〉 and (b) the mean
streamwise wall stress 〈τ1〉 for WMLES and DNS. The stresses are normalised by
the value of the initial 2-D streamwise wall stress 〈τ1〉,2D. The lines and symbols are:

, DNS;@, WMLES (NEQWM);A, WMLES (IWM);E, WMLES (EWQM); – · – · –,
laminar solution. Note that the variations in the vertical axis of panel (a) are up to 70 %
of 〈τ1〉,2D, while those in panel (b) are only up to 15 %.

4.3. Results and discussion
Figure 18 shows the evolution of the streamwise and spanwise mean wall-stress
components denoted by 〈τ1〉 and 〈τ3〉, respectively. We discuss first the predictions
for 〈τ3〉. A general observation from figure 18(a) is that the NEQWM produces a
fairly accurate prediction of 〈τ3〉 throughout the transient. For short times (t∗ < 0.1),
the NEQWM predictions are closely followed by those from IWM, while the EQWM
results in 50 % to 25 % underprediction of 〈τ3〉 throughout the initial transient. The
EQWM and the IWM still capture correctly the growth rate of 〈τ3〉 for t∗ & 0.1. For
t∗ ≈ 1, the errors by NEQWM and IWM are roughly 2 %, whereas the error for the
EQWM is 10 %. As a reference, the laminar response of the flow is also included
in figure 18(a), which shows that the spanwise wall stress agrees with the laminar
solution for t∗ < 0.1.

The evolution of 〈τ1〉 is plotted in figure 18(b). Note that the variations in 〈τ1〉

are only up to 10 % and well below the changes undergone by 〈τ3〉, which are up
to 70 %. The EQWM and the IWM predict the wall stress throughout the transient
within 5 % and 2 % error, respectively. The NEQWM predicts a relatively faster
variation in 〈τ1〉 for t∗ . 0.4 compared to IWM and EQWM, with deviations from
the DNS up to 7 %. In all cases, the errors decay as time advances. As expected,
none of the wall models is able to reproduce the initial reduction in 〈τ1〉 for t∗. 0.4.
Such a decrease in the streamwise wall-stress component is the result of the complex
flow dynamics discussed in § 3. The wall models investigated are based on the
eddy-viscosity assumption; increasing shear rates in the flow result in additional
strain rates. Hence, it comes as no surprise that WMLES consistently exhibits an
approximately monotonic increase in 〈τ1〉 after the sudden spanwise pressure gradient
is applied due to the additional transverse straining of the flow in the near-wall region.

Evolution of the wall-shear angle, defined as γw = tan−1(〈τ3〉/〈τ1〉), is shown in
figure 19(a). The performance of the wall models resembles the trends reported for
〈τ3〉. This similarity is easily understood by noting that the relative time variations
in 〈τ1〉 are modest compared to the variations in 〈τ3〉. The development of the mean
spanwise velocity over one eddy turnover time is shown in figure 19(b). All the
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FIGURE 19. (a) Evolution of the wall shear-stress angle, γw = tan−1(〈τ3〉/〈τ1〉). (b) Mean
spanwise velocity at t∗ = 0, 0.21, 0.405, 0.615, 0.825 and 1.02 (from bottom to top).
The lines and symbols are: , DNS; @, WMLES (NEQWM); A, WMLES (IWM);
E, WMLES (EWQM); – · – · –, laminar solution; – – –, standard logarithmic law, 〈u3〉

+
=

(1/0.41) ln(x+2 )+ 5.2.

WMLES considered provide an excellent prediction of the boundary layer growth.
The spanwise velocity profile develops its own logarithmic region for t∗ > 0.6,
although the slope is substantially smaller than that of equilibrium channel flows.
The agreement in the spanwise profile is observed in the turbulent flow region, where
contributions from the SGS models and the wall models are expected to play a role
in the mean spanwise momentum balance. These findings highlight the capability of
current WMLES and SGS models to predict the mean spanwise velocity profile that
arises in response to mild transverse pressure perturbations. Although not shown, the
mean streamwise velocity undergoes only minor changes in time from its initial 2-D
state, and good agreement is also found between DNS and WMLES.

In summary, our results show that the expected errors in WMLES under moderate
non-equilibrium 3-D effects are reduced for increasing degree of modelling complexity.
However, factors such as intricacy in model implementation or computational cost can
favour the adoption of the simplest wall models for some flow configurations. Future
efforts should be devoted to enhance the capabilities of wall models to accurately
capture the flow physics in the presence of strong non-equilibrium effects.

5. Conclusions
In the present work, we have investigated the transient response of the tangential

Reynolds stress in a turbulent boundary layer with 3-D mean velocity under non-
equilibrium conditions. We have focused our analysis on the multiscale response of
the self-similar momentum-carrying eddies in the flow, which is the scenario expected
at the Reynolds numbers encountered in real-world applications.

We have performed a series of DNS of fully developed incompressible turbulent
channel flow subjected to a sudden spanwise mean pressure gradient. A variety of
spanwise-to-streamwise mean pressure ratios have been considered ranging from Π =1
to 100. The sudden imposition of the forcing is followed by a continuous change
of the mean-flow magnitude and direction, in which 3-D non-equilibrium effects
prevail. The present set-up is one of the simplest flows enabling the study of 3-D
non-equilibrium wall turbulence, while maintaining homogeneity in the streamwise
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and spanwise directions. We have considered two moderately high Reynolds numbers,
namely Reτ ≈ 500 and Reτ ≈ 1000, to uncover the scaling properties of realistic
3DTBL.

Non-equilibrium effects are observed both in the original frame of reference
as well as in the time- and wall-normal-dependent frame of reference aligned
with the mean shear. The non-equilibrium response of the flow is controlled by
the two non-dimensional parameters of the problem, namely Reτ and Π . By
assuming that wall turbulence can be comprehended as a multiscale collection of
wall-attached momentum-carrying eddies with sizes and lifetimes proportional to
x2 and x2/uτ , respectively, we have established that the maximum depletion of
the tangential Reynolds stress is proportional to Πx∗2. Therefore, larger eddies are
more prone to experience non-equilibrium effects than the smaller eddies closer
to the wall. Accordingly, the flow can be classified into three distinctive flow
regimes. For Π < O(1), the sudden spanwise pressure gradient is too modest to
alter the statistical equilibrium of the momentum carrying eddies. Conversely, for
Π > 0.03Reτ , the imposed mean spanwise pressure gradient is strong enough to leave
out-of-equilibrium eddies at all the scales across the boundary layer, i.e. from the
smallest buffer-layer eddies up to the very large-scale motions populating the outer
region. For O(1) < Π < 0.03Reτ , the boundary layer attains an intermediate state in
which eddies closer to the wall evolve in quasi-equilibrium, whereas eddies further
from the wall are influenced by the non-equilibrium effects.

We have examined the history of the tangential Reynolds stress for cases in the
fully non-equilibrium regime. The momentum-carrying eddies undergo an ordered
response in time: first, the smallest eddies (closer to the wall) reduced their Reynolds
stress contribution, followed by the larger eddies (farther from the wall), and so
forth. During the initial transient, the results collapse across several wall-normal
distances and Reynolds numbers when the Reynolds stress drop and time are scaled
by Πx∗2 and x2/uτ , respectively, consistent with the multiscale population of eddies
discussed above. The collapse is further improved for longer times by noting that
the characteristic equilibrium velocity and time scales (uτ and x2/uτ , respectively)
are no longer representative of eddies in a non-equilibrium state, which are instead
controlled by the local-in-time scales u?τ (t) and x2/u?τ (t). Our results unveil for the
first time the self-similar response of non-equilibrium 3DTBL at moderately high
Reynolds numbers and provide the appropriate scaling framework for future flow
comparisons.

We have proposed a structural model for non-equilibrium 3DTBL rooted in
the insight obtained from the physical analysis of the flow. The model comprises
streamwise rolls and streaks at different scales, which are initially in statistical
equilibrium. The imposition of the mean spanwise pressure gradient results in the
misalignment between the core of rolls and the flow underneath, which leads to a
less efficient configuration of the Reynolds stress production. The formulation of the
model is consistent with the self-similar nature of the eddy response, and describes
in a comprehensive manner the findings reported above. The scenario promoted here
is supported by DNS results of the averaged velocity field conditioned to regions
of intense Reynolds stress, which corroborate the loss of coherence of the layer
underneath the core of the rolls. The new structural representation of the flow entails
a quantitative advance of the previous theories on transversely strained boundary
layers by providing specific scaling laws for the time scale and magnitude reduction
of the Reynolds stress at multiple scales. The model also offers a theoretical ground
for the different regimes observed in the flow from the quasi-equilibrium state to the
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Reτ L∗1 L∗3 ∆+1 ∆+3 ∆+2,min ∆+2,max N2 T∗ Π NR

186 4π 2π 9.06 4.53 0.32 6.51 129 1 5, 10, 20, 30, 40, 60, 80

TABLE 2. Geometry and parameters of the additional DNS runs to assess the effect of
low Reynolds number. The parameters are defined as in table 1.

fully non-equilibrium response. Inspection of the Reynolds stress budget reveals that
the effect of pressure–strain correlation is key in the reduction of Reynolds stress
within the additional spanwise shear layer, and that this is the case for all wall-normal
heights.

Finally, the predictive capabilities of three state-of-the-art LES wall-modelling
techniques have been assessed for 3-D channel flows at Reτ ≈ 1000 and Π = 10.
The models investigated are the equilibrium wall model by Kawai & Larsson (2012)
(EQWM), and the non-equilibrium wall models by Park & Moin (2014) (NEQWM)
and Yang et al. (2015) (IWM). As expected, wall models with a higher degree of
complexity yield more accurate predictions of the mean wall shear, although the
overall performance of the three models is similar. For short times, the NEQWM
yields the best prediction of the magnitude of the spanwise wall shear and the angle
of the mean wall-stress vector. The predictions by IWM and EQWM follow in
accuracy those by NEQWM. The larger deviations between wall models are obtained
during the early times of the transient (t∗ < 0.1), while the three models are in
relatively good agreement with the DNS results for longer times (t∗> 1). None of the
wall models considered is able to account for the initial reduction of the Reynolds
shear stress and drag, presumably due to their eddy-viscosity formulations. We have
argued that the near-wall layer remains in a quasi-equilibrium state at high Reynolds
numbers, which explains the fair performance of WMLES based on equilibrium
assumptions in transient 3-D boundary layers.
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Appendix A. Response of non-equilibrium 3DTBL at low Reynolds number
For completeness, we present the results for turbulent channels with a sudden

imposition of a mean spanwise pressure gradient at Reτ ≈ 180. The discussion is
relevant, as a large body of the previous numerical studies have been carried out
at this low Reynolds number. The channels are computed using the same numerical
set-up as in § 2 and the cases are listed in table 2.

Our numerical set-up is first validated in figure 20 against the original results by
Moin et al. (1990) at Reτ ≈ 180 and Π = 10. The differences in the mean velocity
profiles and Reynolds stresses are below 0.5 %, which provides confidence in our
results. The time response of the tangential Reynolds stress for Reτ ≈ 180 and Π = 30
is shown in figure 21(a), which should be compared with the response for Reτ ≈ 500
and Π = 80 from figure 21(b). In spite of the marginal change in Reτ , the evolution of
the tangential Reynolds stress is substantially different from Reτ ≈ 500 to Reτ ≈ 180.
In the former, the drop in −〈u1u2〉 occurs almost simultaneously across the channel
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FIGURE 20. Validation case. Mean velocity profiles and Reynolds stresses for Π = 10 at
Reτ ≈ 180. Solid lines are for the present DNS results and the symbols from Moin et al.
(1990). The results are plotted for time intervals of 0.15h/uτ .
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FIGURE 21. Evolution of the tangential Reynolds stress for (a) Reτ ≈ 180 and Π = 30 and
(b) Reτ ≈ 550 and Π = 80. Different lines correspond to different times with increasing
time from black (t∗ = 0) to red (t∗ = 1). The time intervals are equally spaced. (c) The
percentage drop of tangential Reynolds stress, mint{Dτ }, in the frame of reference of the
mean shear F̃ as a function of the spanwise-to-streamwise mean pressure gradient ratio
Π and wall-normal distance x∗2 for Reτ ≈ 180.

height, while at higher Reτ the stress follows a self-similar response in time as
discussed in § 3.3. Figure 21(c) shows the percentage drop of mint{Dτ } as a function
of Π and x∗2 for Reτ ≈ 180, which is analogous to figure 6(b,c). In contrast to the
results obtained for the moderate Reynolds numbers considered in § 3.2, the Reynolds
stress depletion at Reτ ≈ 180 exhibits a very weak dependence on x2. Consequently,
the higher Reynolds numbers investigated in the present work, although still moderate,
enable the multiscale analysis of 3DTBL, whereas cases at Reτ ≈ 180 do not exhibit
a multiscale response, precluding the elucidation of new potential scaling laws and
physics relevant for high-Reynolds-number wall turbulence.
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FIGURE 22. Mean velocity profiles and Reynolds stresses for Π = 80 at Reτ ≈ 500. Solid
lines are for the baseline case. Dash-dotted lines (greenish) and dashed (bluish) are for
cases Large500 and Finer500, respectively. Lines with different colour intensity correspond
to different times t+ = 12, 72, 132, 192, 252, 312, 372 and 432. Colours indicate time
from t+ = 0 (dark) to t+ = 432 (light).

Case Reτ L∗1 L∗3 ∆+1 ∆+3 ∆+2,min ∆+2,max N2 T∗ Π NR

Large500 546 4π 8π 8.92 4.46 0.26 6.50 385 1 80 10
Finer500 546 4π 2π 3.68 2.15 0.18 3.40 769 1 80 10

TABLE 3. Geometry and parameters of the additional DNS runs to assess the effect of
the computational domain and grid resolution. The parameters are defined as in table 1.

Appendix B. Sensitivity to the size of the computational domain and grid
resolution

As the flow changes direction, the skin friction increases and the flow structures
reorganise to be preferentially elongated in the spanwise direction. The former implies
a reduction of the effective resolution of the simulations as time increases, whereas the
latter could potentially yield spurious results due to the constraint imposed by the
limited spanwise length of the domain. The most critical condition is attained at the
latest time analysed, i.e. t∗ ≈ 1, and the largest values of Π . We have performed
two additional simulations to assess the effect of the computational domain and grid
resolution. We take as baseline case the channel at Reτ ≈500 and Π =80 from table 1.
The details of the two additional numerical set-ups are summarised in table 3.

Simulation Large500 aims at evaluating whether the computational domain is large
enough to avoid non-physical constraints on the flow structures. The parameters
considered are Reτ ≈ 500 and Π = 80. The size of the domain is quadrupled in
the spanwise direction from L∗3 = 2π to L∗3 = 8π. Figure 22 compares the one-point
statistics of Large500 with the original domain from table 1. The results suggest that
our analysis is barely influenced by the size of the computational domain. The effect
of grid resolution is tested in case Finer500 by doubling the number of grid points in
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FIGURE 23. (a) Magnitude of the Reynolds stress vector τm =
√
〈u′1u′2〉2 + 〈u

′

2u′3〉2 and
(b) Townsend’s structure parameter for Π = 60 at Reτ ≈ 500. Different lines correspond to
different times t+= 12, 72, 132, 192, 252, 312, 372 and 432. Colours indicate time from
t+ = 0 (black) to t+ = 432 (red). (c) Maximum percentage drop of Townsend’s structure
parameter (Ds) as a function of the spanwise-to-streamwise mean pressure gradient ratio
Π and wall-normal distance x∗.

each spatial direction while maintaining the original size of the computational domain.
The results, included in figure 22, show differences up to ∼3 % at the latest times,
but the grid resolution of the baseline case still suffices to capture the evolution of
the mean velocity profiles and Reynolds stresses.

Appendix C. Three-dimensional non-equilibrium response in terms of Townsend’s
structure parameter

An alternative marker to quantify 3-D non-equilibrium effects is the magnitude of
the tangential Reynolds stress vector, τm =

√
〈u′1u′2〉2 + 〈u

′

2u′3〉2, which is shown in
figure 23(a). The stress undergoes first a depletion similarly to the trend observed
for 〈u′1u′2〉. To account for the simultaneous growth of turbulent kinetic energy,
the intensity of

√
〈u′1u′2〉2 + 〈u

′

2u′3〉2 is normally quantified by the Townsend (1976)
structure parameter,

Sp(x2, t)=

√
〈u′1u′2〉2 + 〈u

′

2u′3〉2

〈u′1u′1〉 + 〈u
′

2u′2〉 + 〈u
′

3u′3〉
, (C 1)

which measures the intensity of the Reynolds stress for a given amount of turbulent
kinetic energy. The history of Sp also exhibits an initial drop followed by a rapid
increase (figure 23b). The relative drop in Sp can be measured analogously to Dτ in
(3.1) as

Ds(x2, t)=
Sp(x2, t)− Sp(x2, 0)

Sp(x2, 0)
× 100. (C 2)

The maximum reduction in time of Ds(x2, t), shown in figure 23(c), is consistent with
the results in figure 6 using Dτ .
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