
Inversion of a glacier hydrology model

Douglas J. BRINKERHOFF,1 Colin R. MEYER,2 Ed BUELER,1 Martin TRUFFER,1

Timothy C. BARTHOLOMAUS3

1Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
E-mail: dbrinkerhoff@alaska.edu

2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
3Institute for Geophysics, University of Texas at Austin, Austin, TX, USA

ABSTRACT. The subglacial hydrologic system exerts strong controls on the dynamics of the overlying ice,
yet the parameters that govern the evolution of this system are not widely known or observable. To gain a
better understanding of these parameters,we invert a spatially averagedmodel of subglacial hydrology from
observations of ice surface velocity and outlet stream discharge at Kennicott Glacier, Wrangell Mountains,
AK, USA. To identify independent parameters, we formally non-dimensionalize the forward model. After
specifying suitable prior distributions, we use a Markov-chain Monte Carlo algorithm to sample from the
distribution of parameter values conditioned on the available data. This procedure gives us not only the
most probable parameter values, but also a rigorous estimate of their covariance structure. We find that
the opening of cavities due to sliding over basal topography and turbulentmelting are of a similarmagnitude
during periods of large input flux, though turbulent melting also exhibits the greatest uncertainty. We also
find that both the storage of water in the englacial system and the exchange of water between englacial and
subglacial systems are necessary in order to explain both surface velocity observations and the relative at-
tenuation in the amplitude of diurnal signals between input and output flux observations.

KEYWORDS: glacier hydrology, glacier modelling, ice dynamics, jökulhlaups (GLOFs), subglacial
processes

INTRODUCTION
The sub- and englacial hydrologic systems strongly influence
the dynamics of glaciers (e.g. Iken and others, 1983; Jansson,
1995; Fischer and Clarke, 1997). Observations of this linkage
span a continuum from small mountain glaciers (Jansson,
1995; Flowers and others, 2002; Harper and others, 2007),
to much larger valley glaciers (Truffer and Harrison, 2006;
Bartholomaus and others, 2008), to the large polar glacier
and ice streams of Greenland and Antarctica (Engelhardt and
Kamb, 1998; Zwally and others, 2002). In particular, multiple
studies have indicated that subglacial water pressure, particu-
larly effective pressure (the difference between ice overburden
and water pressure), is dominant in explaining glacier sliding
velocities (Iken and Bindschadler, 1986; Willis and others,
1995; Iken and Truffer, 1997). Theoretical analysis of ice
flow over bedrock asperities in the presence of liquid water
also suggests a dependence between sliding velocity and ef-
fective pressure (Lliboutry, 1968; Fowler, 1986; Schoof,
2005; Gagliardini and others, 2007). This dependence is pri-
marily due to the filling of subglacial cavities (and drowning
of bedrock asperities) with pressurizedwater, leading to a rela-
tive decrease in frictional forces between the ice and bedrock.

Despite the available theoretical and observational conclu-
sions, predictive models of sliding due to subglacial hydrology
aredifficult to formulate, andmoredifficult to validate. The spe-
cific relationship between effective pressure and sliding is not
fully understood. Initial theoretical results postulated an
inverse power-law relationship (Fowler, 1986). This type of
sliding law has been shown to produce good correspondence
with observations, often with model parameters being remark-
ably consistent between locations (Jansson, 1995; Sugiyama

and Gudmundsson, 2004). However, such a model is singular
at vanishing effective pressures, a statewhich is observed rather
frequently (e.g. Amundson and others, 2006; Harper and
others, 2007). Additional theoretical work by Schoof (2005)
andGagliardini and others (2007) suggests a phenomenologic-
al sliding law that satisfies ‘Iken’s bound’ (Iken, 1981), which
predicts a maximum finite shear stress in the limit of vanishing
effective pressure. Nonetheless, identifying the appropriate
parameters for such a law, which generally depend upon the
specifics of small-scale bed geometry, remains problematic.

Simultaneously, the estimation of effective pressure pre-
sents difficulties. Far from being static in time, it is widely
believed that the configuration of the subglacial drainage
system can evolve rapidly and on subseasonal scales, often
changing its qualitative configuration from an inefficient
network of linked cavities and perhaps sheet flow (Kamb,
1987; Hubbard and Sharp, 1995), to an efficient channelized
system more analogous to fluvial systems (Nienow and
others, 1998; Sugiyama and Gudmundsson, 2004). The com-
bination of these interesting dynamics has inspired several
models that have sought to capture the evolution of the sub-
glacial hydrologic system. Arnold and others (1998) pre-
sented a semi-distributed subglacial hydrology model
that explicitly allowed the evolution of the channelized
drainage system. Flowers and Clarke (2002a) developed
a model that accounted for exchanges between the
surface, englacial, subglacial and groundwater systems to
Trapridge Glacier, AK, USA (Flowers and Clarke, 2002b), suc-
cessfully capturing seasonal evolution of subglacial routing
efficiency, and also suggested the possible importance of en-
glacial storage. Schoof (2010) more recently modelled a
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spontaneously generated channelized subglacial system, and
showed that the transition between the dominant modes of
cavities and channels exhibits hysteresis. Importantly, he also
showed that an increase in mean water supply does not neces-
sarily translate into an increase in glacier flux and that the rate
at which input flux changes is a more dominant control on
glacier dynamics. More recently, Schoof and others (2012)
addressed the issue of bounds on water pressure, both above
and below, by casting the problem as a variational inequality.
Werder and others (2013) extended the model of Schoof
(2010) by introducing a novel unstructured edge-based discret-
ization scheme, which allowed for an unbiased simulation of
channel orientation.

Despite advances in hydrologic modelling, validation
against observations of hydrologic variables such as water
pressure or subglacial drainage geometry remains difficult
due both to a sparsity in observations of sub- and englacial
hydrology and also uncertainty in the many controlling
model parameters, which are generally unknown, ranging
from englacial porosity and bedrock asperity size to factors
controlling the semi-empirical relationships used to specify
water fluxes. The lack of in situ observations of these control-
ling parameters is a limiting factor in the operational use of
subglacial hydrology models in predicting water pressures
and in predicting the influence of water on glacial dynamics.

In this work, we take an inverse approach, and seek to
quantify parameter values in a coupled subglacial hydrology
and sliding model from observations of surface velocity and
terminal discharge. To simplify matters, we utilize the simplest
possible model of subglacial and englacial hydrology that can
still be reasonably expected to capture observed dynamics. In
particular, we adopt the ‘lumped’model of Bartholomaus and
others (2011), who proposed to treat both englacial storage
and subglacial storage in a spatially averaged sense, thus col-
lapsing the model into a set of coupled ordinary differential
equations. The relationship between the lumped model and
a spatially distributed one was demonstrated by Bueler
(2014). The linkage between the spatially averaged model
used in this work and several other contemporary models
that do not explicitly account for channel processes was
demonstrated by Bueler and Van Pelt (2015). We extend the
model both by non-dimensionalization to identify the true par-
ameter ratios controlling model dynamics, and also by intro-
ducing a Manning relation to predict output flux, a feature
that the model previously lacked.

As a test case we adopt the Kennicott Glacier, Wrangell
Mountains, AK, which is the same glacier for which the
Bartholomaus and others (2011) model was initially devel-
oped. Kennicott Glacier is ∼43 km long and covers ∼400
km2. The maximum thickness is not precisely known, but is
believed to be at least 450 m. It experiences an annual
flood due to the outburst of a marginal lake, which reorga-
nizes the subglacial hydrologic system. For summer 2006,
both discharge and surface velocity measurements are avail-
able, as well as a well-constrained estimate of input flux
resulting from both surface melt and marginal lake drainage
(Bartholomaus and others, 2008).

As an inversion strategy, we adopt a Bayesian perspective
as a means to estimate distributions of unknown model para-
meters (Tarantola, 2005). In particular, we formulate a likeli-
hood function by considering the misfit between modelled
and observed surface velocities and output fluxes, subject
to assumed observational and model uncertainties. Using ex-
plicit prior assumptions about parameters, we can then draw

samples from the posterior probability distribution of each
model parameter. Not only does this procedure provide esti-
mates of the most probable set of parameters, it also provides
the covariance structure of the joint distribution of model
parameters, which is necessary for assessing both the uncer-
tainty and uniqueness of each parameter.

DATA
The three datasets utilized in this work are shown in red in
Figure 1. They span ∼75 d, beginning in mid-May 2006 and
ending at the end of July 2006. At Julian day 185 (correspond-
ing to non-dimensional time t̂ ¼ 32:5 in Fig. 1), a marginal
lake 15 km from the glacier terminus drained, producing
both an outburst flood and a large speed-up event. Velocity
data were derived from a differential GPS located near the
glacier center line ∼14 km from the glacier terminus. Output
flux was assessed with sonic ranger measurements of stage
on the Kennicott River, the primary outlet stream of the
glacier. Input flux was computed using a positive degree-
day model (e.g. Hock, 2005) calibrated using temperatures
and specific mass-balance measurements at five stake loca-
tions located near the glacier center line at various elevations.
Bartholomaus and others (2011) provide further details
regarding the specifics of each of these datasets.

MODEL DESCRIPTION
The model of the subglacial hydrologic system considered
here, treats the subglacial/englacial hydrologic system as
area-averaged quantities over the extent of the glacier. It is
fashioned after that proposed by Bartholomaus and others
(2011), with a few adaptations. Additionally, we have
adopted the notation used by Bueler (2014). It consists of
two linked elements. First, storage of water in the englacial
system is parameterized by its proxy water pressure P(t). In
particular, under the assumption of an englacial drainage
system that is macroporous and well connected to the sub-
glacial system, storage in the englacial system defines a
water table, which corresponds directly to subglacial water
pressure. Thus, the water pressure in the englacial system is
given by a simple mass budget

Fig. 1. Observed (red) and modelled (black) non-dimensionalized
velocity, input flux and output flux. Gray envelopes correspond to
the 1σ credibility interval. Blue line indicates approximate time, at
which marginal lake outburst flood occurred.
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dP
dt

¼ ρwg
LWf

QinðtÞ �QoutðtÞ � fLW
h

dAc

dt

� �
; ð1Þ

where L andW are the glacier length and width, respectively,
ϕ the englacial porosity, h an average bedrock bump height
and f a geometric factor related to the geometry of bedrock
bumps. The essential statement of this equation is that the
change in water pressure is governed by the flux into the
system from the surface minus the flux out the terminus,
less the change in capacity of the subglacial system.

Average cavity size Ac(t) (a proxy for subglacial storage) is
governed by the opening of cavities due to sliding, the
melting of cavities due to turbulent heat generation and
creep closure (Nye, 1976)

dAc

dt
¼ ubh

þ 1� γr
ρiLf

� �
λx
W

QoutðtÞ
� �

∇P

� CcAcðP0 � PÞn;

ð2Þ

where ub is the sliding velocity, γr the Röthlisberger constant
(Röthlisberger, 1972), Cc= 2/(Bn)n an effective ice softness
and ∇P the hydraulic gradient, which we henceforth approxi-
mate as ∇P ≈ ðP=‘Þ, where ‘ is a water pressure gradient
length scale. P0 denotes the ice overburden pressure. Ac(t)
is constrained to be positive, which reflects the fact that a
cavity cannot possess negative cross-sectional area. P(t) is con-
strained to lie between zero and P0. The lower bound reflects
that, it is unlikely for a subglacial cavity to hold a vacuum (e.g.
Schoof and others, 2012). Properly, the upper bound on pres-
sure should be (ρw/ρi)P0, where ρw and ρi are water and ice
density, respectively. This bound is the limit at which the en-
glacial water table would overtop the glacier itself, assuming a
well-connected englacial cavity network, as is thought to be
the case at Kennicott Glacier (Bartholomaus and others,
2011). Nonetheless, our chosen sliding law becomes singular
at pressures greater than overburden (which reflects the entire
glacier reaching flotation), as it was developed without the
consideration of either well-connectedness or more exotic
mechanisms by which overburden pressure can be exceeded
such as hydrofracturing (Tsai and Rice, 2010). As such, we
impose this more restrictive constraint.

The forcing functionQin(t) is specified by data. Bartholomaus
and others (2011) also consider Qout(t) as known, but this
amounts to the specificationof both an influxandoutfluxbound-
ary condition. This is problematic from a physical perspective
and amounts to the odd conceptual situation of a fixed volume
pump being attached to both ends of the hydrologic system.
Such a configuration implies that the model is permanently sen-
sitive to the initial pressure, as there is nomechanism for the self-
correction of over- and under-pressure, which has serious impli-
cations for the interpretation of recovered parameter values.

Here we take an alternative approach: rather than specify
the output flux, we use a generalized Manning relationship
relating water pressure and channel size to output flux (e.g.
Walder, 1986), namely

QoutðtÞ ¼ rAα
c

P
‘

� �β�1

; ð3Þ

where the hydraulic gradient has again been approximated as
proportional to water pressure over a gradient length scale ‘.

To close the model, we require a constitutive relationship
for basal velocity. After Bartholomaus and others (2011), we
adopt the commonly used sliding law

ub ¼ kτnb
ðP0 � PÞγ ; ð4Þ

where k is a constant, and τb is the basal shear stress (e.g.
Bindschadler, 1983; Jansson, 1995). Despite notable limita-
tions, this sliding law is simple and has been used extensively
in the literature, allowing the specification of reasonable
prior information about the value of its flow exponent.

Non-dimensionalization
The model described above has 23 parameters. Many of
these are well constrained (e.g. physical constants like g).
However, many are not. For example, the value of the geo-
metric factor f, which describes the ratio of asperity size to
spacing, is not practically observable. Simultaneously, it
multiplies another under-constrained parameter ϕ, the en-
glacial porosity. This is problematic: these two parameters
could take on vastly different values, but so long as their
product remained the same, the model would produce the
same result. Stated another way, these parameters are not in-
dependent: the value of one depends on the other. Many
such dependent pairings of parameters exist in models of
subglacial hydrology. Given that their behavior cannot be in-
dependently deduced, it makes sense to treat them as a single
parameter.

A formal process of non-dimensionalization indentifies in-
dependent parameters, while simultaneously scaling the
value of the state variables to be Oð1Þ. We denote non-
dimensional parameters with a hat, and their associated
scaling factor with a tilde. We introduce the following
relations:

Ac ¼ eAÂ; P ¼ ePP̂; t ¼et̂t;
Qi ¼ eQQ̂i; ub ¼ euûb; k ¼ ekk̂; r ¼ er̂r: ð5Þ

Some scaling factors emerge naturally from data. We defineeP ¼ P0, such that pressure scales from 0 at atmospheric pres-
sure to unity at overburden. We scale the flux terms byeQ ¼ E½Qobs�, where E½Qobs� is the mean of the available
output flux data (and due to mass conservation, quite near
the mean of the input flux data). Similarly, we scale basal vel-
ocity by choosing eu to be the mean of the observed surface
velocities. With these scales fixed, we choose the remaining
ones such that the number of parameters remaining in the
model is minimized. Although several parameterizations
exist, we choose to use the following scaling:

et ¼ 1
CcPn

0

eA ¼eteuh
er ¼ eQeAαðP0=lÞβ�1

ek ¼ Pγ
0euτ�n

b : ð6Þ
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Substituting these non-dimensional parameters and substitut-
ing the constitutive relationships for flux and velocity into the
state equations produces the following non-dimensional
model:

dÂ
d̂t

¼ k̂

ð1� P̂Þγ
þΨr̂ÂαP̂β � Âð1� P̂Þn ð7Þ

dP̂
d̂t

¼ χ Q̂inð̂tÞ � r̂Â
α
P̂
β�1 �Π

dÂ
d̂t

 !
; ð8Þ

where we have introduced the non-dimensional parameters

Ψ ¼ ð1� γrÞ
P0
ρi‘Lf

� �
λx
W

� � eQeteA ð9Þ

χ ¼ ρwg
LWf

� � eQet
P0

ð10Þ

Π ¼ fLW
h

� � eAeteQ : ð11Þ

Each of these groups acts to scale a particular term: Ψ serves
to determine the relative importance of turbulent heat gener-
ation on cavity opening, χ gives the degree to which changes
in englacial storage modulate fluxes, and Π governs the ex-
change rate between englacial and subglacial systems.

In addition to the parameters derived from non-dimensio-
nalization, the model has two constitutive parameters k̂ and r̂
that linearly scale the velocity and flux terms, respectively. k̂
in particular can be thought of as a non-dimensional basal
traction. Note that it would be possible to choose a scaling
that eliminates k̂, and reduces the number of parameters by
one. However, in so doing we would lose the means to redi-
mensionalize velocity, which is critical for inverse methods
involving velocity data.

Finally, the model depends on three exponents. γ is the
nonlinear dependence of sliding speed on effective pressure,
while α and β relate average cavity size and pressure to dis-
charge via the Manning relation.

INVERSION
As discussed in the section Model Description, our chosen
glacier hydrology model has eight parameters describing its
dynamical evolution, and we seek to estimate these para-
meters with the given observations, described in the
section Data. We approach the matter of parameter estima-
tion from the perspective of Bayesian inference. Bayes’
theorem (e.g. Tarantola, 2005) provides a means to
compute the distribution of parameter values, given prior
assumptions about parameter values coupled with data
according to the following formula:

PðmjdÞ∝ PðdjmÞPðmÞ; ð12Þ

where m is the vector of model parameters, d is the vector of
observations and P( · ) denotes a probability density. The first
term on the right-hand side is known as the likelihood. This
quantifies the probability of observing the data given a par-
ticular value of m. The second term is a prior probability
(or simply ‘prior’), or the presupposed distribution of

parameter values prior to the consideration of the data. The
left-hand side of Bayes’ theorem is referred to as the posterior
probability, or the probability distribution of a given param-
eter after having considered the data. With this probability
distribution in hand, it is trivial to determine the most likely
parameters, and under certain assumptions, this procedure
is equivalent to minimizing a least-squares misfit function.
However, possessing the complete distribution also gives
us a rigorous assessment of parameter covariance.

To specify a likelihood model, we assume that observa-
tions of both discharge and surface velocity are independent
and normally distributed around the true value at each data
point with pointwise variances σ2

Q;i and σ2
u;j. Thus the likeli-

hood is

PðdjmÞ∝
Y
i∈n

exp �ðQ̂outð̂ti;mÞ � Q̂obs;iÞ
2

2σ2
Q;i

 !

×
Y
j∈k

exp �ðûsð̂tj;mÞ � ûobs;jÞ2
2σ2

u;j

 !
;

ð13Þ

where n and k are the number of discharge and velocity
measurements.

Selection of the data variances is somewhat subjective.
While the measurements themselves are sufficiently precise
to be considered nearly error-free, we note that these measure-
ments are necessarily point measurements, and that the model
produces only area-averaged quantities. As such, the specified
variances should be interpreted as including the uncertainty
induced by extrapolating from a point measurement to the
area average over the glacier. We suppose uncertainties
similar to the magnitude of the diurnal fluctuations. For the vel-
ocity estimate this is∼σu= 0.4, and for discharge σQ= 0.6.We
also note here that we do not consider the velocity data during
the flood and the enhanced diurnal signals leading up to it, as
we would not expect the assumed sliding law to remain valid
during such an event, where pressures are likely at or exceed-
ing overburden (Bartholomaus and others, 2011).

We also need to specify priors. For the non-dimensional
groups Ψ, χ and Π, we adopt a positively constrained
uniform distribution, which effectively contributes no prior
information aside from positivity. We truncate the prior distri-
bution at ten. Experimentation has shown that this choice of
upper bound does not affect the computed posterior distribu-
tions. We use the same prior for the velocity and flux scaling
factors k̂ and r̂.

Conversely, the value of the constitutive exponent γ is fairly
well constrained by previous studies (Jansson, 1995; Sugiyama
and Gudmundsson, 2004). We choose to model γ as

γ∼lnN ðμ ¼ �0:95; σ ¼ 0:3Þ; ð14Þ

where the log-normal distribution is given by

lnN ðx; μ; σÞ ¼ 1

xσ
ffiffiffiffiffiffi
2π

p exp �ðln x� μÞ2
2σ2

" #
: ð15Þ

This distribution has a mean of E½γ� ≈ 0:4 and variance Var
(γ)≈ (2/125). α and β are similarly constrained by theory,
and we model these as log-normally distributed as well:

α∼lnN ð0:35; 0:32Þ ð16Þ
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β � 1∼lnN ð�0:78; 0:43Þ; ð17Þ

which have expected values of E½α� ≈ ð3=2Þ and E½β� ≈ ð3=2Þ,
respectively, corresponding to common literature values (e.g
Fowler, 1986; Werder and others, 2013). The variance for
each of these distributions is Var(α)≈ (1/4) and Var(β)≈ (1/
20). We note that, while themean of each of these distributions
was chosen to correspond to published values, the variances
were specified heuristically; in the absence of any rigorous em-
pirical estimates of variance, we chose values that seemed to
provide a plausible estimate of values that these parameters
might assume.

In addition to the eight governing parameters, we must
also include uncertainty in the input function Q̂in and in
converting from basal velocity ûb, which is modelled, to
surface velocity ûs, which is observed by estimating the
deformational velocity ûd. Effectively, this means that we
must assign prior distributions to each of these quantities
and include them as additional parameters in the
inversion.

We model uncertainty in Q̂inð̂tÞ as a multivariate
normal distribution with a mean given by value from a
positive degree-day model and a Gaussian covariance
with correlation timescale τ= 1 (i.e. random variations
occur smoothly and over the characteristic timescale of
the differential equation), which in dimensional time cor-
responds to τ≈ 1.4 d. We assume a standard deviation
of σin= 0.2.

Basal velocities produced by the forward model are not
directly comparable with the surface velocity data, and we
do not know a priori the proportion of the surface velocity
accounted for by deformational velocity ûd. To account for
this, we assume that

ûs ð̂tÞ ¼ ûbð̂tÞ þ ûd; ð18Þ

where ûd is given by

ûd∼Unifð0; minðûobsÞÞ: ð19Þ

This implies that the surface velocity is the sum of a modelled
time-varying basal velocity, and a constant but unknown de-
formational velocity. The deformational velocity may, as
end-member cases, account for either none of the surface
velocity or all of the velocity signal minus the time-varying
component. This is a more conservative assumption than
modelling deformational velocities; the shallow-ice approxi-
mation would not yield an accurate result in this context, and
we have insufficient geometric information to model higher-
order stresses.

Finally, we also specify log-normally distributed priors for
the initial conditions on P̂ and Âc

P̂ð̂t ¼ 0Þ∼lnN ð�1:12; 0:64Þ ð20Þ

Âcð̂t ¼ 0Þ∼lnN ð0:49; 0:64Þ; ð21Þ

which enforce non-negativity but otherwise provide relative-
ly little information. Experimentation has shown that the
choice of initial conditions has a minimal effect on model
results, and that after a short (≈ t̂ ¼ 1) equilibration period,
even extremely improbable initial conditions yield very
similar solutions to more reasonable ones.

Sampling
The posterior distribution cannot be computed directly, and
must be characterized with samples instead. With a large
number of these in hand, we can then evaluate the statistical
properties of the samples as a proxy for the joint posterior dis-
tribution of the parameters.

There are many choices of sampling algorithm, but we
chose the Adaptive Metropolis Algorithm (AMA) (Haario and
others, 2001), which is a variant of the classic Metropolis–
Hastings (MH) algorithm (Hastings, 1970). The MH algorithm
works by travelling through parameter space, sequentially up-
dating each parameter independently by randomly drawing a
jump from a proposal distribution. If the posterior probability is
greater at the new location than at the present, the new param-
eter value is accepted. Otherwise, it is accepted with probabil-
ity proportional to the ratio of the current posterior probability
and that of the proposed value.

The AMA functions identically, except that the proposal
distribution is updated by iteratively constructing a covariance
matrix from the previous samples, and proposing a new par-
ameter set en masse, rather than individually. This variant is
particularly suited for this problem, where parameters tend
to be strongly correlated and the covariance matrix can help
to identify suitable proposal steps. Simultaneously, by block
updating the parameters, the number of forward model eva-
luations is reduced, increasing efficiency. We use the imple-
mentation of these algorithms available in the PyMC
package (Patil and others, 2010).

We drew 5 × 105 samples from the joint posterior distribu-
tion of the parameters given in Table 2, repeated three times
in order to assess consistency between sample populations.
In order to assess convergence, we relied upon a heuristic
examination of the history of each parameter as it was
sampled; well-converged sample populations typically

Table 1. Dimensional constants and their values as used by
Bartholomaus and others (2011)

Parameters Value Unit Description

ρw 1000 kg m−3 Water density
ρi 917 kg m−3 Ice density
G 9.81 m s−2 Gravitational

acceleration
L 15 km Glacier length
W 4 km Glacier width
H 400 m Glacier thickness
‘ – m Pressure gradient length

scale
ϕ 2 × 10−3 Englacial porosity
f 0.05 Bedrock form factor
h 2 Bedrock bump height
λx 10 m Bedrock bump

wavelength
γr 0.303 Röthlisberger constant
Lf 3.35 × 105 J kg−1 Latent heat of fusion
n 3 Glen’s flow law exponent
Cc 1.77 ×

10−25
(Pa s)−n Creep parameter

α 5/4 Cavity flux exponent
β 3/2 Pressure flux exponent
r – Pa1−β s−1 mβ+2

(1−α)
Flux constant

kτnb 8 × 10−4 m a−1 Paγ Scaled driving stress
P0 3.6 MPa Ice overburden pressure
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traverse the feasible parameter space many times (Fig. 2a).
Additionally, we compared sample histograms between
populations to assess whether the posterior distribution was
unique (Fig. 2b). As a numerical convergence test, we com-
puted the Gelman–Rubin statistic (Gelman and Rubin, 1992),
which compares the intra-population variance with the inter-
population variance. In the limit as the sample size goes to
infinity, the Gelman–Rubin statistic R converges to unity. A
well-converged sample set that exhibits limiting statistical be-
havior should also have an R value near one. In our case, for
each parameter tested R≪ 1.1, which is typically taken to in-
dicate adequate convergence.

RESULTS AND DISCUSSION

State variables
Figure 1a shows the posterior distribution of velocity along
with velocity observations. It is immediately evident that
the model reproduces the long-timescale variability in vel-
ocity observations well. Additionally, we see that the
model is also capable of reproducing diurnal variability
in both magnitude and duration. The good fidelity to
diurnal timing should not be surprising: these features
are forced by the input data, and the input data exhibit
the same structure, as seen in Figure 1c. Adequately repro-
ducing the magnitude of velocity fluctuations is more dif-
ficult and more important, as this imposes strong
constraints on pressure.

One case where the model does not reproduce the vel-
ocity observations well is during and before the flood that
occurred at t̂ ≈ 32. Although it is not well shown in
Figure 1a, the model predicts velocities of approximately
twice those observed, with a broader peak. Two observa-
tions seem relevant here. First, this misfit is likely due to in-
adequacies in the sliding law both in the sense that it is not
well equipped to handle pressures very near overburden,
and also because it is unable to include effects that
would serve to mitigate the velocity increase, such as lon-
gitudinal and transverse stresses. Secondly, the large
diurnal fluctuations evident before the main velocity peak
indicate that processes occur that are either not captured

by the input data or are not captured by the model
physics. An example of the former would be an additional
pre-emptive lake drainage or other anomalous source of
extra water. This seems unlikely, as such an input would
appear in the output flux data, which it does not. An
example of the latter could be the inability of the model
to capture local hydraulic jacking effects due to the lake
partially draining and subsequently refilling, without over-
coming the necessary pressure barrier to route excess
water into the greater subglacial drainage system.

Figure 1b shows the posterior distribution of modelled
output flux along with observations. Once again, the model
effectively captures both the long-term variability in output
flux, as well as the frequency and magnitude of diurnal vari-
ability. However, as with the modelled velocity, some limita-
tions are evident. First, the modelled output fluxes are offset
by around half a diurnal period. This is the result of the spa-
tially averaged nature of the model, particularly the fact that
pressure is assumed to propagate instantaneously through the
system, and output flux responds immediately to variations in
input flux. In reality, pressure changes induced in the upper
reaches of the system would take some amount of time to
propagate downgradient, and this propagation time would
be dependent upon the state of the hydrologic system.

Another notable instance where the model fails to repro-
duce observations occurs just prior to the flood event. Here
input and output fluxes are out of phase with one another

Table 2. Parameters computed using the constants defined in
Table 1 (column 2) and the maximum a posteriori probability
(MAP) parameter estimates determined using the methods described
in this paper (column 3)

Parameters
Bartholomaus and

others (2011) MAP Description

k̂ – 0.44 Basal traction coefficient
γ 0.22 0.4 Pressure sliding exponent
Ψ 0.018 0.61 Channel melt coefficient
r̂ – 0.02 Linear flux coefficient
χ 0.11 3.41 Englacial storage

coefficient
Π 0.09 0.44 Subglacial/englacial ex-

change coefficient
α 5 / 4 1.98 Cavity/flux exponent
β 3 / 2 1.54 Pressure/flux exponent
Qîn – – Input flux
ud – 0.281 Deformational velocity
P0̂ – 0.2 Initial pressure
A0̂ – 0.9 Initial cavity size

Fig. 2. (a) Sampling history of each state parameter. The fuzzy
appearance is an indicator of the algorithm efficiently and fully
exploring the feasible parameter space. (b) Histograms of each
parameter’s marginal distribution for three independently sampled
parameter populations. The identical posterior distributions
strongly indicate population convergence.
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by around ten diurnal cycles. This too could be a result of the
lack of spatially heterogeneous storage. This misfit is less pro-
nounced or non-existent following the flood. An explanation
for this is that the drainage system has grown more efficient,
causing the implicit assumption of uniform spatial response
times to become a better approximation to reality. This mod-
elled increase in cavity size is evident in Figure 3c, which
shows a marked increase in average cavity size following
the flood. As cavities become larger (and presumably better
connected), we would expect the lumped model to capture
the temporal variability of the system with more fidelity.

The modelled englacial water pressure as a fraction of
overburden is shown in Figure 3a. While no direct observa-
tions of water pressure are available, we observe that the
model reproduces the expected diurnal fluctuations, and
that under non-flood conditions, the glacier tends to oscillate
between ∼40% and 80% of overburden. The magnitude of
the modelled fluctuations is similar to observations in many
mountain glaciers (Amundson and others, 2006; Harper
and others, 2007), lending support to the reliability of predic-
tions. During the flood event, the pressure increases to over-
burden (which it is constrained not to exceed), though the
uncertainty during this event is high.

We can also examine the relative magnitude of each
mechanism contributing to the evolution of the water pres-
sure on a termwise basis. Figure 3b shows the individual con-
tributions of the input flux, output flux and subglacial
exchange terms through time. For dynamic equilibrium to
occur (i.e. no long-term storage change), the three terms,

on average, must sum to zero, which they do less the water
moving out of subglacial storage and into englacial storage.
Input flux and output flux are both uniformly and respectively
positive and negative (by definition). The more interesting
contributor to the evolution of the pressure state is the sub-
glacial/englacial exchange term Π, which acts as a buffer
for the large swings in input flux, while maintaining an ap-
proximately zero mean. This short-term fluctuation in subgla-
cial storage is responsible for the evident attenuation in flux
magnitude between input and output. Note that in
Figure 3b, a positive value of the subglacial exchange term
implies that water is moving into englacial storage from sub-
glacial storage. Predictably, this state occurs when water
pressure is low, and creep closure acts to drive water out of
cavities.

Figure 3b shows the non-dimensional cavity size. While
we cannot compute the dimensional constant eA that would
be necessary to re-dimensionalize the modelled cavity size,
we note that the (known) time and velocity scales imply
that, it is of the same order as the bedrock bump height. As
such, Â is similar to Ac so long as average bedrock asperities
are on the order of meters in height. We first note that the
variance in cavity size distribution is higher than the other
state variables. This implies that the parameters controlling
it cannot be precisely determined given the available data.
Alternatively, it would appear that the specifics of cavity for-
mation play a less critical role in explaining surface velocity
and output flux than does the pressure, commensurately lim-
iting the amount of information that can be used to constrain

Fig. 3. Posterior distributions and observations of non-dimensional pressure (a), magnitude of pressure model terms (b), average cavity size (c),
magnitude of cavity model terms (d).
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its governing parameters. Nonetheless, it remains possible to
make a qualitative assessment of cavity evolution over the
modelled time period. At the beginning of the simulation,
cavities are relatively small. The cavities grow during pres-
sure-driven speed-up events, but the increasingly well-devel-
oped cavities tend to damp this response as time goes on.
During the lake drainage event, the average cavity size
increases significantly. This increase in size decays over the
course of a few days, as the reduced water pressure following
drainage is no longer capable of sustaining large cavities and
creep closure becomes the dominant mechanism of channel
evolution.

Once again, it is useful to examine each modelled
mechanism’s contribution to cavity evolution (Fig. 3d).
Near the beginning of the simulation when cavities are
small, sliding is the dominant mechanism of cavity
opening. During this stage, there is insufficient flux through
the cavities to support the production of much turbulent
heat. Simultaneously, creep closure has yet to act strongly,
because the cavities are still relatively small and the
closure rate scales linearly with cavity area. As the cavities
grow, opening due to bedrock sliding remains relatively con-
stant, while both turbulent dissipation and creep closure
grow in magnitude. Creep closure in particular exhibits
strong diurnal variations as the large variations in water pres-
sure are amplified by the nonlinearity in ice rheology, with
nearly no closure occurring when effective pressures are
near zero. In particular, during the highly pressurized flood
event, creep closure effectively shuts down for several
days, while both enhanced basal sliding and increased
output flux rapidly enlarge subglacial cavities.

Evaluating the uncertainties associated with each term in
Eqn (7) gives us an understanding of the source of the rela-
tively large degree of uncertainty associated with cavity
size. In particular, we see that the cavity opening rate is
subject to a much larger relative degree of uncertainty than
other terms in Figure 3d, and it is this uncertainty that gener-
ates the large spread evident in Figure 3c. The greater degree
of uncertainty in the magnitude of this term is to be expected;
like opening due to sliding, dissipative heating is directly
associated with one of the observed quantities (namely
output flux). However, unlike opening due to sliding, dissipa-
tive heating is associated with the additional free parameter
Ψ apart from the constitutive flux relation.

Finally, we can look at the posterior distribution of the de-
formation velocity and initial conditions (Fig. 4). In the case
of deformational velocities, the model has a slight tendency
towards predicting deformational velocities near the center
of the admissible range. Due to the insensitivity of model dy-
namics to initial conditions, the posterior distributions of both
initial conditions are very similar to their prior distributions.
In general, the inversion procedure contributes little useful
information towards these parameters, and in this context
they should be viewed primarily as sources of additional un-
certainty with respect to the other model parameters.

CONFIGURATION STABILITY
Because we have in our model included turbulent heat gen-
eration as a mechanism for melting cavity walls, we must also
assess whether or not our envisaged drainage configuration is
compatible with the parameter values that we have recov-
ered from a stability perspective. A well-known result from
Kamb (1987) shows that for water pressures above a

threshold value and a given hydraulic gradient, a linked
cavity system undergoes runaway evolution towards a chan-
nelized system. We note these results, and the similar ones
found in, for example, Schoof (2010) and Hewitt (2011) are
based on linear stability analysis, and only strictly valid for
autonomous systems of equations. The inclusion of a time-
varying influx term clearly makes this system of equations
non-autonomous, and the analysis of the stability of such
systems is beyond the scope of this paper. Nonetheless, we
can find model steady states for a prescribed steady influx
(i.e. a fixed Q̂in as opposed to a time-varying one) in order
to assess the stable states of the model.

In steady state, Eqns (7) and (8) reduce to

Âc ¼ ð1� P̂Þn k̂

ð1� P̂Þγ
þΨQ̂inP̂

" #
ð22Þ

0 ¼ Q̂in � r̂Âα
c P̂

β�1; ð23Þ

the numerical solution of which is straightforward to
compute. Furthermore, we can compute the stability of
each of these points by evaluating the eigenvalues of the
Jacobian matrix of Eqns (7) and (8). Doing so for the para-
meters computed through inversion yields the interesting
result that regardless of the chosen flux, the system has a

Fig. 4. Posterior distributions of peripheral variables deformational
velocity ud, pressure initial condition P̂ð̂t ¼ 0Þ and cavity area
initial condition Âcð̂t ¼ 0Þ.
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unique and stable steady state. This is held in contrast to
the results of Kamb (1987), Schoof (2010) and Hewitt
(2011), which would predict runaway channelization
due to the magnitude of the turbulent melting terms
included here. The reason that this model differs is that
flux is fundamentally limited by the requirement of
global mass conservation; runaway channel growth is
not possible because such growth efficiently evacuates
the water necessary to maintain the low effective pressures
that limit creep closure. This occurs because the lumped
structure of the model requires that this channelization
occur everywhere simultaneously. In a spatially explicit
model (and presumably in reality), spatial heterogeneity
allows distinct channels to remain self-sustainingly pres-
surized by drawing upon local rather than global reser-
voirs. The suppression of the channelizing instability by
the model structure begs the question of whether the dy-
namics induced by such effects can credibly be neglected.
This remains an unresolved issue, and we do not claim to
have the answer here. Our approach is qualitatively sup-
ported by observations at the terminus of Kennicott
Glacier, where there exist no obvious subglacial channels.
The Kennicott terminus is characterized by a linked series
of terminal lakes, none of which has visible subglacial
input. Nonetheless, we imagine that during the lake out-
burst flood, development of large and efficient channels
becomes dominant over a distributed system due to the
high water pressures involved, and the suppression of
creep closure as seen in Figure 3b. During this period
the model tends to overestimate the length of the perturb-
ation in velocity (and so probably water pressure as well)

due to the flood. During the lake drainage, we speculate
that a channel developed, which evacuated water much
more quickly than this model can account for without ex-
plicit channelization.

Parameter covariance
In addition to assessing the feasible model states, possessing
the joint posterior distribution allows us to examine the co-
variance structure of the model parameters as well.
Figure 5 shows the joint sample distribution of each param-
eter pair, as well as the histogram of each.

The first set of strongly correlated parameters are the two,
which govern the sliding speed k̂ and γ. This result is not sur-
prising: given data uncertainty and the flexibility granted by
their priors, there are a variety of combinations that these
two parameters can feasibly adopt due to the inversely corre-
lated relationship built into the sliding law. Nonetheless, it is
worth noting that both parameters have smaller variance than
their priors, indicating that the data provide information
about both (recall, e.g. that the prior on k̂ is uniform). r̂ and
α, which control the magnitude and cavity size dependence
of the flux, are correlated in a similar fashion.

A more interesting negative correlation exists between Π,
the parameter scaling the importance of englacial/subglacial
exchange, andΨ, the parameter controlling the rate of turbu-
lent melting. In particular, this correlation implies that
decreases in the geometric capacity for the subglacial
system to store water can be offset by increases in the rate
at which turbulent melting can occur. Since the magnitude

Fig. 5. Histograms on the diagonal show the marginal posterior distribution of each parameter. The red line indicates the maximum posterior
probability. Scatter plots below the diagonal indicate the relationship between each parameter set. Colored boxes above the diagonal indicate
the correlation coefficient for each pair of parameters: red indicates a negative correlation, while blue indicates a positive one.
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of cavity opening due to bedrock sliding and closing due to
creep are both constrained by the scaling of the problem,
only Π and Ψ can covary. These parameters are positively
and negatively correlated with α, respectively. An increase
in either has the tendency to produce a greater amount of
subglacial storage, but this correlation tells us that an in-
crease in the flux dependence on Âc is more easily offset
by an increase in turbulent melt rates, than by an increase
in the subglacial/englacial transfer rate as a whole.

A final observation is that the value of χ is Oð1Þ. This par-
ameter relates the size of the flux terms on the right-hand side
of Eqn (8) to the rate of change of the pressure, and is effect-
ively a proxy for englacial porosity. Previous work has sug-
gested that this term is limitingly large, which is to say that
englacial porosity is close to zero. This effectively assumes
that changes in englacial storage occur instantaneously
(Schoof and others, 2012), and that the time derivative
appearing in Eqn (8) is zero. Other models have retained
this term under the auspices of a non-negligible englacial
porosity as a means to regularize a distributed model of sub-
glacial cavity evolution (Werder and others, 2013; Bueler
and Van Pelt, 2015). Clarke (2003), though citing an alterna-
tive physical mechanism of compressibility, also included an
analogous term to improve numerical stability. Our results
suggest that despite the initial numerical motivation, retain-
ing the time derivative in Eqn (8) may also be physically
correct, and also that the inclusion of significant englacial
storage is required to simultaneously explain observed vel-
ocity and output fluxes. This additional storage could take
the form of englacial void space (Fountain and others,
2005), basal crevasses (Harper and others, 2010) or a com-
bination thereof. This further begs the question, what is the
englacial macroporosity corresponding to a χ of Oð1Þ?
Assuming the length and width scales of Bartholomaus and
others (2011) (see Table 2), we find that porosity must be in
the range ϕ= [10−4, 10−3]. The scaling analysis in the
section Non-dimensionalization shows us that even this
modest amount of porosity provides a sufficient amount of
storage to provide an englacial reservoir of equivalent magni-
tude to the subglacial reservoir.

CONCLUSIONS
We have extended the subglacial hydrology model of
Bartholomaus and others (2011) in a few ways, which is
‘lumped’ in the sense that it treats the whole of the subglacial
system using area-averaged quantities. An advantage of this
treatment is that it allows a simple numerical treatment, as
the model consists of a pair of non-homogeneous, nonlinear
ordinary differential equations. Furthermore, the simplicity of
the model allows for the straightforward identification of the
governing parameters.

First, we have discarded the simultaneous specification of
both input and output fluxes in favor of a Manning flow rela-
tion, which relates output flux to both average cavity size and
water pressure. Second, we have formally non-dimensiona-
lized the model to determine the specific parameter ratios
that govern model dynamics. In so doing, we identified
eight parameters. Three are non-dimensional groups control-
ling the relative importance of turbulent melting of cavity
walls (Ψ), the exchange rate between the englacial and sub-
glacial hydrologic systems (Π) and the rate at which the en-
glacial water system can accommodate flux imbalances (χ).
The remaining five parameters describe constitutive

relationships describing both the relationship between effect-
ive pressure and basal ice velocity and the relationship
between average cavity size, water pressure and outflux.

The values of these parameters are known a priori with
varying degrees of certainty.We sought to improve these esti-
mates through inverse modelling. Using flux and velocity
observations from Bartholomaus and others (2011) to con-
struct a likelihood function, and in conjunction with prior
parameter estimates, we used a Markov-chain Monte Carlo
method to sample from the joint posterior probability distri-
bution of the model parameters, conditioned upon velocity
and flux data from Kennicott Glacier. Not only did this
allow us to determine the most probable parameter values,
but also to characterize the covariance within and between
parameters.

Despite the simplicity of the lumped modelling approach,
we were able to reproduce observations with a reasonable
degree of fidelity. The model captures both the magnitude
and timing of diurnal variability in velocity and output flux,
even passably capturing the dynamics of a lake-related flood-
ing event. The model predicted diurnal water pressure varia-
tions between 40% and 80% of overburden, which
corresponds well to prior observations of borehole pressure
records in similar systems. The model also produced reason-
able estimates of average cavity size. Nonetheless, the limita-
tions due to the assumption of spatial uniformity were also
evident, as longer scale temporal variability, particularly in
the less efficient pre-flood configuration, was not captured.
It is possible that adding spatial dimensionality to the
model could help to reduce some of the remaining misfit,
and the way forward in doing this is clear (Bueler, 2014).
However, this would drastically increase the computata-
tional cost of the forward model, making the rigorous estima-
tion of parameter covariance through Monte Carlo methods
less practical. Nonetheless, it would be extremely valuable
to determine whether the conclusions suggested by this
work hold in the presence of more advanced physics, and
if not, the reason for the inconsistency.

The parameter estimates produced by the inverse model-
ling procedure suggested that all of the mechanisms included
in the model were important in explaining observations.
Cavity opening due to basal sliding seems to dominate the
evolution of the subglacial system until cavities grow large
enough to support turbulent heat generation, at which
point the interplay between turbulent melting and creep
closure become important as well. Our results also suggest
that transfer of water into the subglacial hydrologic system
from the englacial system acts to attenuate the input flux
signal, leading to the observed relative reductions in magni-
tude in the diurnal variability of output flux.

Finally, we find that the assumption of negligible englacial
porosity is not compatible with observations under the
assumptions of the model used here, so we suppose that en-
glacial storage plays an important role in the hydrologic
systems of glaciers similar to the one examined here, even
for relatively low absolute values of glacier macroporosity.
Addressing this supposition further will require direct mea-
surements of englacial porosity and connectivity in more gla-
ciers, as well as further numerical investigation through
inverse modelling. If englacial porosity indeed has a ubiqui-
tous influence on glacier dynamics, then further effort
towards quantifying and predicting this value will be
required in order to credibly model the effect of hydrology
on glacier dynamics.
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