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Abstract

Pliocene-Quaternary faults are relevant structures with which to constrain the seismotectonic
context and contribute to the evaluation of the seismic hazard of a region. Many of these faults,
however, do not show clear surface evidence even when releasing earthquakes. For these reasons
they can be extremely dangerous as they receive relatively little attention and can be difficult to
identify. From among the various surface geology studies and/or palaeoseismological investi-
gations, we focus our attention on the integration of different datasets such as seismic reflection
profiles, surface kinematic data and the relocation of seismological data, which make it possible
to identify and characterize active faults whose dimension and earthquake potential would other-
wise not be large enough to make them identifiable. We take as an example the Montespertoli NE-
trending fault in southern Tuscany (central Italy) with which we associate the 2016 M=3.9
Castelfiorentino earthquake. This structure is part of a wider (in the order of 15-20km)
crustal-scale shear zone, which may be responsible for strong historical earthquakes in the area.

1. Introduction

Active faults capable of generating earthquakes may be blind, not reaching the ground surface,
and/or be masked by continuous burial/erosion processes at the surface (e.g. Lettis et al. 1997).

Nevertheless, depending on their dimensions and depths, such structures may provide
relevant surface or co-seismic effects, when activated. In some cases, faults can be capable of
producing damaging earthquakes also generating surface primary ruptures. In some other cases,
fault segments are too small to produce large-magnitude events and co-seismic surface effects,
but are large enough to cause significant ground shaking and be clearly felt by the population.
In both cases, these elusive faults represent structures that may prove very dangerous in
populated areas, especially those with high vulnerability due to the presence of historic build-
ings. Several damaging earthquakes that have occurred in the recent past are interpreted as
having been generated by blind faults (Whittier Narrows 1987 Los Angeles California (USA)
M =5.9 - Hauksson et al. 1988; Haiti 2010 M =7.0 - Hayes et al. 2010; Christchurch 2010
New Zealand M =7.1 - Li et al. 2014; Van 2011 Turkey M=7.1 - Dogan & Karaka, 2013;
Po Plain 2012 Italy M = 5.8 — Burrato et al. 2012). In some cases, such faults never ruptured
the surface but show signs of surface activity such as evidence of folding (e.g. Ventura anticline
in California — Shaw & Suppe, 1994; Montello anticline in Italy - Benedetti et al. 2000). In many
cases, no detailed information on the potential danger posed by such structures was given prior
to the seismic events.

Other faults, though potentially active and seismogenic, are called ‘hidden’, their recent
geological and morphological evidences being limited and hence difficult to identify or infer.
For example, the M =4.9 earthquake in 2019 in France occurred on a reactivated Oligocene
thrust fault with no geomorphic evidence of cumulative compressional deformation along
the fault for several thousand or tens of thousands of years (Ritz et al. 2020). Such hidden struc-
tures can have important impacts on society because they are hard to find, for want of geological
or morphological evidence. This implies the existence of active faults that have not yet been
identified but that, at least in historical times, gave rise to considerable seismic events. These
faults, not showing clear surface evidence of activity, remain mostly unidentified, most studies
being focused on indirect surface evidence of their existence and activity.

In order to characterize the earthquake potential of these faults, different approaches are
available which range from morphotectonic evidence to palacoseismological investigations
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(e.g. Hancock et al. 1999; Piccardi et al. 1999, 2017; Burrato et al.
2012; Brogi et al. 2017; Nirta et al. 2021).

Other approaches were also developed aiming at the integration
of both surface and subsurface datasets including seismic interpre-
tation, and borehole data, compared with seismological data to
infer fault geometry and slip rates. In fact, the increasing
availability of subsurface geological and geophysical information
has afforded the opportunity to identify and map faults in the
subsurface in great detail (e.g. Armijo et al. 1996; Pratt et al.
1998; Di Bucci et al. 2006; Mirabella et al. 2008; Bell et al. 2009;
Toscani et al. 2009; Brogi et al. 2014). In some cases, comparison
of geomorphic anomalies mapping with subsurface reconstruc-
tions results in effective identification of potentially active faults
(e.g. Toscani et al. 2009 and references therein).

In this paper we focus on a fault system, active since the
Neogene, affecting a sector of southern Tuscany (Valdelsa Basin,
Fig. la). It generated low-magnitude earthquakes in 2014
and 2016 (Castelfiorentino and Certaldo earthquakes, M =3.9
(25 October 2016) and M = 3.4 (9 August 2014) (Fig. 1b) in an area
where the occurrence of active faults has never been documented
before.

Notwithstanding the low magnitude of the events and the
absence of important damage, these earthquakes occurred in an
area where historically stronger events are documented (equivalent
magnitude Me =5.5) and which has high vulnerability due to
the presence of both high population density and historic and
art-heritage buildings.

After an introduction to the geological and tectonic setting, we
present a new interpretation of seismic reflection profiles, acquired
for hydrocarbons exploration by the Agip oil company during the
1980s, and calibrated with borehole logs and surface fault
kinematic data, and integrate them with an accurate relocation
of the seismological data. We conclude that the Castelfiorentino
and Certaldo earthquakes and their minor sequences are associated
with a NE-trending fault system which belongs to a much wider
crustal-scale structure, orthogonal to the main trend of the
Valdelsa Basin. We discuss the role of these faults in controlling
earthquakes, their detection by means of subsurface data and
the possible correlation with geomorphological observations,
and we frame their evolution in the Neogene-Quaternary tectonic
setting of the inner Northern Apennines.

2. Geological and seismotectonic setting

The Northern Apennines originated from the convergence and
collision (late Cretaceous - early Miocene) between the Adria
promontory and the European plate, represented by the
Sardinia-Corsica massif (Molli, 2008 and references therein).
In the inner zone of the Northern Apennines this process gave rise
to the stacking of several tectonic units derived from different
palaeogeographic domains (Vai & Martini, 2001), namely, from
top to bottom (Carmignani et al. 1994): (a) Ligurian units, derived
from the Ligurian-Piedmont Domain, and consisting of remnants
of Jurassic oceanic crust and its late Jurassic - Cretaceous, mainly
clayey, sedimentary cover; (b) Sub-Ligurian units (Sub-Ligurian
Domain), made up of Cretaceous—Oligocene turbidites; and
(c) Tuscan units forming a duplex system and composed of
high-pressure metamorphic and sedimentary units ranging from
the Palacozoic to the early Miocene (Pandeli et al. 1991;
Carmignani et al. 1994; Rossetti et al. 2002; Brogi & Giorgetti,
2012; Bianco et al. 2015) (Fig. 2a). The Ligurian and Sub-
Ligurian units were thrust eastward over the Tuscan Nappe during
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the late Oligocene - early Miocene. After nappe stacking, eastward-
migrating extension affected the inner Northern Apennines,
i.e. northern Tyrrhenian Basin and Tuscany (e.g. Lavecchia,
1988; Patacca et al. 1990; Doglioni, 1991; Carmignani et al.
1994; Molli, 2008; Barchi, 2010; Rossetti et al. 2015) since the
Miocene (Carmignani et al. 1994; Dallmeyer & Liotta, 1998;
Liotta et al. 1998; Brogi & Liotta, 2008; Brogi, 2011) and deter-
mined the development of mainly eastward-dipping normal faults,
which produced: (a) the lateral segmentation of the more compe-
tent levels within the previously stacked tectonic units (Decandia
et al. 1993); (b) the consequent westward rotation of their hanging-
walls (Brogi, 2004); (c) the direct superimposition of the Ligurian
units on the late Triassic evaporite and/or on the Palaeozoic
phyllites, both representing regional detachment levels (Brogi &
Liotta, 2008); and (d) an extension of at least 120 %
(Carmignani et al. 1994; Brogi, 2006). The youngest extensional
event (Dallmeyer & Liotta, 1998; Barchi, 2010), active since
the early Zanclean (Martini et al. 2021), is characterized by
NW-trending normal faults cross-cutting the previously developed
structures (Mazzanti, 1966; Calamai et al. 1970; Lazzarotto &
Mazzanti, 1978) and defining tectonic depressions where
Pliocene to Quaternary marine to continental sediments were
deposited (Bossio et al. 1993a; Martini & Sagri, 1993). The amount
of extension associated with this event is estimated in the order of
6-7 % (Carmignani et al. 1994). These depressions are coeval with
NE-trending fault zones (Liotta, 1991) that controlled the
volcanism and the emplacement of magmatic bodies at shallow
crustal levels (Fig. 1a) (Acocella & Funiciello, 2006; Dini et al.
2008; Brogi et al. 2010; Farina et al. 2010; Liotta et al. 2015).
These SW-NE-trending fault zones (e.g. the Livorno-Sillaro line
(Fig. 1b)), recognized by many authors since the 1960s through
satellite image analyses (Ambrosetti et al. 1978; Boccaletti et al.
1985), are characterized by strike- to oblique-slip kinematics
and associated horizontal displacements (see Basili & Valensise,
2001; Brogi et al. 2013; Liotta & Brogi, 2020). The origin and role
of these structures is not well established, and they are variously
interpreted as transfer zones, lateral ramps of thrusts and
segmenting features of the NW-SE-trending extensional systems
(Ghelardoni 1965; Boccaletti & Dainelli 1982; Fazzini & Gelmini
1982; Rosenbaum & Piana Agostinetti 2015). One of these main
fault zones (referred to as the ‘Piombino-Faenza line’) crosses
the study area (Fig. 1b) and interrupts the continuity of the
Valdelsa Basin and of other basins (the Firenze (Florence),
Casino -CSN and Volterra basins in Fig. 1b) (Canuti et al. 1966;
Bossio et al. 2002).

The Neogene extensional setting and evolution, confirmed by
many field and laboratory studies (among others, Lavecchia,
1988; Jolivet et al. 1990; Carmignani et al. 1994; Bartole, 1995;
Barchi et al. 1998; Gualtieri et al. 1998; Liotta et al. 1998;
Negredo et al. 1999; Rossetti et al. 1999; Di Bucci & Mazzoli,
2002; Pera et al. 2003; Collettini et al. 2006; Brogi, 2008) has been
challenged by alternative interpretations (e.g. Bonini & Moratti,
1995; Finetti et al. 2001; Bonini & Sani, 2002; Finetti, 2006;
Bonini et al. 2014). A discussion of the reasons why an extensional
setting better explains the regional geological features of Tuscany is
provided in Brogi et al. (2005), Brogi & Liotta (2008) and Brogi
(2011, 2020), to which we address the reader for further
information.

The inner zone of the Northern Apennines is characterized
by low-magnitude seismic events (M < 4.5) mainly confined to
the shallow crust, at depths ranging between 3 and 10km
(Selvaggi & Amato, 1992; Cameli et al. 1993; Batini et al. 1985;
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Fig. 1. (Colour online) (a) Tectonic sketch of the Inner Northern Apennines (Central Italy) showing the relationships between the SW-NE lineaments, the Neogene-Quaternary
basins and the intrusive magmatic bodies. (b) Geological map of the Valdelsa Basin with the main SW-NE-trending lineaments, the historical seismicity (equivalent magnitude
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Fig. 2. (Colour online) (a) Sketch of the tectonic units of the inner Northern Apennines and of their relationship with the Valdelsa Basin infill. TM: Triassic Verrucano siliciclastics
Group and Jurassic-Eocene metasedimentary cover; Ta: Late Triassic evaporite; Tc-Td: Cretaceous - early Miocene clayey and arenaceous succession; La: Jurassic oceanic crust
(peridotites, gabbros and basalts); Lb: sedimentary cover made of Jurassic radiolarite and Cretaceous shale, clayey marl and limestone; Lc: S. Fiora unit composed of Cretaceous-
Eocene clayey-marly and arenaceous succession. (b) Sequence-stratigraphic subdivision of the Neogene succession present in Valdelsa Basin and based on the distinctions
proposed by Pascucci et al. (2007). Results composed by the superposition of marine (Seq. 1, 4, 5) and continental (Seq. 2, 3, 6) sequences characterized by variable thickness
and lithological composition. To the right the sequences are grouped in relation to the seismic units (SU) shown later in the paper. Sequences are locally divided by unconformities

(thicker undulated lines).

Di Bucci & Mazzoli, 2002; Braun et al. 2018a). The majority of
earthquakes are concentrated in the geothermal areas of
Tuscany, south of the study area (Larderello-Travale and
Mount Amiata) and Northern Latium (Batini et al. 1985;
Buonasorte et al. 1987; Cameli et al. 1993; Console & Rosini,
1998; Albarello et al. 2005; Braun et al. 2018a, b; Lisi et al.
2019), where some of them could probably be ascribed to the
extraction and reinjection of geothermal fluids. Relatively low
seismicity characterizes the other areas of Tuscany.

In terms of seismic hazard, southern Tuscany, as well as the
inner Northern Apennines, was considered of modest interest
and seismogenically less energetic, in contrast to outer zones
(e.g. the Umbria—Marche and Abruzzo Regions and the Adriatic
Sea), where earthquakes recorded in the last century reached
magnitudes up to 6.8 (Avezzano earthquake, 1915; 32 000 victims
(Console et al. 1993; De Luca et al. 1999; Galadini & Galli, 2000;
Alessandrini et al. 2001; Chiarabba et al. 2005; Pace et al. 2006;
Faenza & Pierdominici, 2007)).

Nevertheless, the available information on the historical
seismicity of both the Valdelsa and Chianti areas in southern
Tuscany (i.e. DBMI15, Locati et al. 2021) highlights a different
scenario where damaging seismic events were documented
(Boschi et al. 1997; Camassi et al. 2011) (Fig. 1b).

3. The Valdelsa Basin

The Valdelsa Basin (Fig. 3, location in Fig. 1b) is part of a broad
Neogene NNW-SSE-oriented tectonic depression, crossing
southern Tuscany from the Arno river (to the north) to the
Bolsena lake (to the south) and comprehending the Siena and
the Casino basins (Fig. 1b). The 70 km long Valdelsa Basin shows
an articulated width, ranging from 30 km in its northern portion
(Certaldo sub-basin) to less than 15km in its southern sector
(Colle Val d’Elsa sub-basin), with the threshold located in corre-
spondence to a NE-SW-oriented tectonic lineament known as
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the Piombino-Faenza line (Fig. 1b) (Ambrosetti et al. 1978;
Boccaletti et al. 1985; Liotta, 1991).

The basin is delimited by the Middle-Tuscan Range and
Chianti Hills to the SW and NE, respectively (Fig. 1b), where
metamorphic and non-metamorphic units, forming the
remnants of the Northern Apennines tectonic pile, are exposed.
These units are, from the top (Fig. 2a): (a) the Ophiolitic Unit (the
uppermost tectonic unit belonging to the Ligurian Complex)
consisting of remnants of the Jurassic oceanic crust (serpenti-
nized harzburgite, gabbro and basalt; La in Fig. 2a), and the sedi-
mentary cover, mainly composed of Jurassic radiolarite and
Cretaceous shale, clayey marl and limestone (Lb in Fig. 2a);
(b) the S. Fiora Unit composed of Cretaceous-Eocene clayey—
marly and arenaceous succession deposited on the oceanic crust
of the Neo-Tethys (Lc in Fig. 2a); (c) the Canetolo Unit (Argille e
calcari Auct.) composed of Eocene clayey-carbonate succession
deposited in a transitional crustal sector passing from the oceanic
crust to the Adria continental margin (SL in Fig. 2a); (d) the
Tuscan Nappe representing the deepest non-metamorphic
tectonic units of the Northern Apennines, composed of Late
Triassic evaporite (Ta in Fig. 2a), Jurassic—-Cretaceous
carbonate-siliceous (Tb in Fig. 2a) and Cretaceous - early
Miocene clayey (Tc in Fig. 2a) and arenaceous (Td in Fig. 2a)
succession; (e) the Tuscan Metamorphic Unit consisting of a
metamorphic succession composed of the Palaeozoic phyllite—
quarzitic Group, the Triassic Verrucano metasiliciclastics
Group and Jurassic-Eocene metasedimentary cover (marble,
calcschist and phyllite; TM in Fig. 2a).

Boreholes and indirect subsurface data analyses in the basin
highlight buried structural highs, both longitudinal and transversal
to the basin (Mariani & Prato, 1988; Pascucci et al. 2007; Benvenuti
et al. 2014), separating the depocentre, infilled with more than
1km of sediments and located in a narrow sector comprised
between the western basin shoulder and the valley of the Elsa river
(Pascucci et al. 2007).
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3 = Certaldo3; 4 = Certaldo4; 5 = Certaldol; 6 = CertaldoSud1.

The whole study area is affected by both NW- and NE-striking  the basin. The fault segments separating the Neogene deposits from

faults of regional relevance (Fig. 1b). A mostly continuous the pre-Neogene units are mostly buried, but parallel segments can
SW-dipping normal fault system occurs in the eastern border of  be recognized within the substratum units (Fig. 1b). Nevertheless,
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Table 1. Mainshocks within the study area

F Mirabella et al.

Date Time Lat. (°N) Long. (°E) Depth (km) Magnitude Location

9 Aug 2014 13:47:49 43.5367 11.0358 9.9 Mw 34 1. Certaldo

19 Dec 2014 10:36:31 43.6058 11.2405 8.6 Mw 4.1 2. Greve in Chianti

4 Mar 2015 00:00:04 43.6038 11.1753 9.2 Mw 3.7 3. Tavarnelle Val di Pesa
13 Sep 2015 01:04:35 43.6047 11.2303 8.9 ML 3.8 4. Tavarnelle Val di Pesa
25 Oct 2016 16:53:01 43.6063 11.0007 10.2 Mw 3.9 5. Castelfiorentino

ML, local magnitude; Mw, moment magnitude. Relevant mainshocks occurring in the period August 2014 to November 2016 in the study area (after http:/terremoti.ingv.it). The ‘Certaldo’ (1) and
‘Castelfiorentino’ (5) events are discussed in more detail in the text and their focal solution is shown in Figure 9.

the prolongation of this fault system, as well as of the basin itself
toward the SE, is interrupted in correspondence to the NE-striking
Piombino-Faenza tectonic lineament.

The Valdelsa Basin is characterized by heat flow values locally
reaching 100 mW m™2 (Mongelli and Zito, 1991), in the range of
the average value of the southern Tuscany geothermal anomaly
(Della Vedova et al. 2001). The whole Valdelsa Basin is therefore
characterized by geothermal manifestations, consisting of tectoni-
cally controlled thermal springs and gas vents (Bencini et al. 1979;
Fazzuoli et al. 1983; Minissale, 2004) mainly concentrated in the
Gambassi Terme — Certaldo area and the Montespertoli-Firenze
area (Fig. 3) and located along a dominant SW-NE trend.
The physico-chemical characteristics of the thermal waters
allow some different compositional groups to be recognized.
According to several authors (Bencini et al. 1979; Celati et al.
1990; Fazzuoli et al. 1983; Minissale, 2004), the most homogeneous
group consists of alkaline-chloride type waters that seem to be
mainly controlled by evaporitic processes possibly related to
Triassic Burano Fm. Other types of waters, such as the alkaline-
bicarbonate type, may reflect interaction with different rocks,
from carbonate successions (Ligurian and/or Tuscan units) to
Neogene clays.

3.a. Stratigraphy of the Neogene deposits

The sediments cropping out in the Valdelsa Basin consist of Plio-
Pleistocene marine and continental deposits. The marine Pliocene
sediments, mostly consisting of clay, marl, sand, gravel and
conglomerate, are unconformably overlaid by fluvio-lacustrine
Pleistocene gravel, sand, clay and locally by Middle-Late
Pleistocene continental carbonate (Capezzuoli et al. 2005;
Capezzuoli et al. 2009). The stratigraphic setting of the Valdelsa
Basin was classically described through informal lithostratigraphy
of an overall regressive trend (Lotti, 1900; Lotti et al. 1908; Canuti
et al. 1966; Merla & Bortolotti, 1967; Merla et al. 1967) and biostra-
tigraphically constrained by markers such as planktonic forami-
nifera, nannofossils (Bossio et al. 1993b; Capezzuoli et al. 2005)
and continental micromammals (Benvenuti et al. 1995; Abbazzi
et al. 2008).

A detailed revision of the tectono-stratigraphic setting was
performed by Benvenuti & Degl'Innocenti (2001) and Benvenuti
et al. (2014), who divided the upper Messinian - Pliocene infilling
succession into seven unconformities-bounded stratigraphic units
(51-S7).

We refer to the subdivision of units proposed by Pascucci et al.
(2007) schematized in Figure 2b as more directly connected to the
seismic units described later in the text. According to Pascucci et al.
(2007), the basin results infilled with up to 1000 m of Late Miocene
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and 1000 m of Pliocene deposits (Seq.2 to Seq.5). A deeper Late
Serravallian succession (Seq.1) formed by continental to shallow
marine sandstone and conglomerate (Ponsano Sandstone Fm;
Foresi et al. 2003 and references therein), unconformably resting
on the basin substratum represented by Ligurian units, was
described in discontinuous exposures in the SE portion of the basin
(Lazzarotto & Sandrelli, 1977; Pasini & Sandrelli, 1977).

The Late Miocene continental succession unconformably over-
lies Seq.1 and encompasses Late Tortonian — Messinian fluvial-
lacustrine sediments (Seq.2), mainly consisting of clayey-sandy
levels and conglomerate with interbedded lignite-level beds
(‘Serie Lignitifera’), and late Messinian lacustrine clays (Seq.3;
S1 of Benvenuti et al. 2014) with layers of sandstone and conglom-
erates occurring mainly in the SE area (Casino Basin; Lazzarotto &
Sandrelli, 1977).

Seq.3 is overlain by the Zanclean Seq.4 (S2, S3 of Benvenuti et al.
2014) mostly composed of marine clays with a few interstratified
conglomeratic layers. Clay dominates the centre of the basin, with
the coarser clastic deposits occurring on the margins. The
Piacenzian Seq.5 (S4, S5, S6 of Benvenuti ef al. 2014) is composed
of marine clays; thin sandstone units occur at its base and top,
where there are also local, thin biocalcarenites.

The above units are overlain by an Early Pleistocene (Gelasian)
deposition (S7 of Benvenuti et al. 2014) of fluvial drainages
deriving from the Chianti Hills.

3.b. Historical and instrumental seismicity

Widespread low-magnitude seismicity characterizes the whole
inner zone of the Northern Apennines. The seismic events are
mainly confined to the upper crust, at depths ranging from 3 to
10 km (Selvaggi & Amato, 1992; Cameli et al. 1993; Di Bucci &
Mazzoli, 2002). The Istituto Nazionale di Geofisica e
Vulcanologia (INGV) earthquake catalogues CPTI-15 (Rovida
et al. 2016) and DBMI15 (Locati et al. 2021) indicate that the
historical seismicity in the area was characterized by several
moderate earthquakes, with magnitudes in the Valdelsa Basin
up to Me =5.1 (Fig. 1b).

The strongest seismic event ever reported in the area between
Chianti and Valdelsa occurred on 18 May 1895 and had a magni-
tude of Me 5.5. The intensity reached VIII (MCS) and caused four
casualties. In the aftermath, the small locality Sant’Andrea changed
its name to Sant’Andrea in Percussina (name derived from ‘percus-
sion’ to testify to ground shaking). However, recent seismic events
with epicentres inside the study area (Castelfiorentino-Certaldo)
have not exceeded M =4.7. Recently, four relevant seismic
sequences (3.4 < M < 4.1) occurred in the area between Valdelsa
and Chianti (Table 1).
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4. Methods

We integrate available surface structural and kinematic data in the
substrate, the interpretation of a set of seismic reflection profiles
calibrated with boreholes and the relocation of seismicity to iden-
tify possible surface and subsurface evidence of the faults respon-
sible for the most recent seismic sequences. We performed
fieldwork along bedrock-hosted fault segments in order to gain
information on the fault geometry and kinematics. Fieldwork data
were gathered at three main structural sites located in Figure 3.

Based on a detailed revision of the Neogene deposits stratig-
raphy, we interpreted a set of seismic reflection profiles which cross
the Valdelsa basin and which were calibrated with both surface
geology and the Monterappolil borehole, the closest and most
relevant in the area (Fig. 3). The seismic profiles interpretation
allowed us to draw a subsurface image of the relevant tectonic
structures and to identify and map the Neogene basin depocentre
throughout the area.

We relocated the 2014 Certaldo and 2016 Castelfiorentino
main shocks of the seismic sequences and plotted the events onto
two cross-sections obtained from the depth-converted seismic
reflection profiles.

We compared the above-mentioned datasets and interpreted
the results into a comprehensive picture of the elusive active faults
of the area.

5. Data
5.a. Structural and kinematic data

As the epicentral distribution of the earthquakes is mostly concen-
trated along a SW-NE-trending tectonic lineament, detailed struc-
tural analyses were carried out on a wide area comprehending the
central-eastern part of the Valdelsa Basin and its eastern shoulder.
Here, structural and kinematic data were collected in a few (due to
the scarcity of significant outcrops), though noteworthy, exposures
(seelocations in Fig. 3). The clay and silt filling the basin, in fact, are
not suitable for the development and preservation of fault scarps,
as well as the related kinematic indicators. Despite this limitation,
mesoscopic faults were analysed in a few exposures made up of
unconsolidated clayey deposits, belonging to the Piacenzian
marine succession, and on the pre-Neogene units (i.e. Tuscan
Nappe and Ligurian units) of the basin substratum, in order to
obtain more exhaustive geometric and kinematic information.
The collection of these data took place mostly in the substratum,
with a few also being collected in the basin infill, and was aimed at
avoiding kinematic data derived from pre-Neogene deformational
events. Using this approach, independently of the deformed lith-
otype, rock age and kinematic indicators, the orientation of the
analysed mesoscopic faults follows the main trend of the
regional-scale structures (Fig. 1b), thus displaying both NW-
and NE-striking fault systems.

Kinematics was analysed overall for the NE-trending structures,
which are the most recurring structures in the study area.
Exposures suitable for kinematic analyses are rare, due to the litho-
logical composition of the Ligurian units mainly formed by shale
with interbedded limestone beds. Nevertheless, continuous expo-
sures of sandstone and marl levels were found on fresh cuts along
the main roads or within river incisions. More than 50 kinematic
data points were collected from three structural stations in three
fieldwork areas (see locations in Fig. 3).

In the sandstone and marly rocks of the Tuscan Nappe and
Ligurian units, respectively, the bulk of the mesoscale faults are
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characterized by a core zone up to 40 cm in size, derived from
the comminution of the damaged lithotypes (Fig. 4). The fault
damage zone is characterized by well-organized fracture networks
defining metre-sized domains, with different amounts of deforma-
tion that decrease with distance from the core zone. Kinematic
indicators are given by slicken-lines, calcite fibre steps and chatter
marks (Fig. 4), arrays of extensional jogs and T-fractures.
Kinematic indicators on the NE-striking fault system show at least
three superposed movements, at a few structural stations (Fig. 5).
Movements range from strike-slip to oblique-slip even if dominant
oblique to normal components were recognized. In the basin fill,
fault slip surfaces are less widespread due to the dominant clayey
and sandy composition of the Neogene sediments. Fault surfaces
with clear kinematic indicators were not recognized, but clear
NE-striking fault segments were analysed in an abandoned
quarry near Castelfiorentino (Fig. 6). Here, the bulk of the
meso-faults affecting the unconsolidated sediments are character-
ized by apparent offsets of a few decimetres and by a thin core
(c. 1 cm). Data on fault geometry and kinematics are reported in
Figure 5.

Kinematic data from the measured fault surfaces can be used for
palaeo-stress analysis, graphically represented by double-couple
fault-plane solution diagrams (Angelier, 1979).

In Figure 5, NE-striking oblique-slip faults with right- and left-
lateral movements were analysed separately. Right-lateral faults
display a maximum compressional axis trending about E-W.
The minimum compressional axis is always almost sub-horizontal
and trending about N-S. Left-lateral faults display a maximum
compressional axis trending about N-S and a minimum compres-
sional axis almost sub-horizontal and trending about W-E.

5.b. Interpretation of seismic lines and basin architecture

We considered a dataset of c. 150 km of seismic data composed of
12 seismic reflection profiles acquired in the 1980s by the Agip oil
company (presently ENI), and six boreholes (see locations in
Fig. 3). Some of these seismic profiles have been interpreted in
the past and some are already published (Pascucci et al. 2007;
Benvenuti et al. 2014). The seismic lines are both longitudinal
(NW-SE) and transversal (SW-NE) with respect to the trend of
the basin and main geological structures and reach c. 4 s two-
way travel time (TWT), corresponding to c. 6 km on the basis of
the average subsurface velocities.

The quality of the seismic lines is very good in the upper 2 s
TWT due to good penetration of the seismic signal and to the litho-
logical characteristics of the basins infill being mostly made up of
both marine and continental sandy and clayey successions.

We interpreted the complete dataset and present the four most
representative seismic profiles, which image the subsurface
geological setting of the area (Figs 7 and 8). The interpretation
of the seismic data was calibrated with the Monterappolil well,
which is the closest to the study area (location in Fig. 3). The most
representative wells in the area (Certaldol, Certaldo2, Certaldo3,
CertaldoSudl and Certaldo4) were also considered, in order
to have a better control on the later continuity of the drilled
successions. The Monterappolil borehole (publicly available
in the VIDEPI PROJECT database - https://www.videpi.com/
videpi/pozzi/consultabili.asp) was projected onto the closest
seismic profile (L17 in Fig. 3), and the main lithological boundaries
were associated with the corresponding reflectors. The association
between the contacts encountered in the borehole and the seismic
profile was made by using the stacking interval velocities, which
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Fig. 4. (Colour online) Examples of mesoscopic-scale fault analysed north of San Casciano Val di Pesa (see Fig. 3 for location): (a) SE-dipping transtensional left-lateral fault
affecting late Oligocene sandstone of the Tuscan Succession; (b) outcrop-scale transtensional left-lateral NW-dipping fault affecting alternated limestone beds and shale of the
Ligurian units; (c) detail of the kinematic indicators in (b) showing transtensional left-lateral kinematics; (d) NW-dipping right-lateral oblique-slip fault zone showing a core ¢. 50 cm
thick surrounded by metres-thick damage zone affecting marly limestone of the Ligurian units. Stereographic diagrams (lower hemisphere, equal area) indicate fault and striae

measured in the fault surfaces shown in the photographs.

were compared with the available data for these units (Bally et al.
1986; Buonasorte et al. 1988; Barchi et al. 1998). On this basis we
consider two main velocity bodies, the Pliocene (Vp ~ 2.6 km s™")
and the Miocene (Vp ~ 3.5km s7!). Thus, we use these interval
velocities to estimate the depth and thickness of the sedimentary
infill of the basin.

We identify three main seismic units of the Valdelsa Basin
(Fig. 2b), which are easy to identify in the seismic profiles and
which we relate to the stratigraphic sequences described above
and represented in Figure 2b. From top to bottom, these are:
(i) Seismic Unit A (SU-A, Fig. 2b), corresponding to the late
Serravallian, continental-to-shallow marine Seq.l sequence
(Ponsano Fm); (ii) Seismic Unit B (SU-B, Fig. 2b), including the
Seq.2 and Seq.3 Tortonian-Messinian continental succession;
and (iii) Seismic Unit C (SU-C, Fig. 2b), includeing Seq4, 5, 6
and corresponding to the Pliocene marine deposits and the
Gelasian continental deposits.
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Based on the extrapolation of the boundaries between the
seismic units along the seismic profiles and the corresponding
seismic profile intersections, we were able to derive a consistent
interpretation of the subsurface geological setting of the area,
synthesized in two transversal SW-NE-trending seismic reflection
profiles (line 8 and line 12; Fig. 7a and b) and two longitudinal
NW-SE-trending profiles (line 16 and line 17; Fig. 8a and b).

The oldest seismic unit is Seismic Unit A (SU-A), which in the
seismic profiles is represented by light seismic facies with a series of
easily recognizable and continuous reflectors and a few higher-
amplitude horizons (Fig. 8c).

The intermediate seismic unit (Seismic Unit B, SU-B) is repre-
sented by a less light and transparent seismic facies and an upper
part characterized by a set of well-bedded and higher-amplitude
reflectors (Fig. 8c) possibly representative of the more clayey upper
Miocene lacustrine unit (Seq.3 in Fig. 2b). The uppermost seismic
unit (Seismic Unit C, SU-C) is represented by an alternation of
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Fig. 5. (Colour online) (a) Superposed kinematics indicators on a fault surface in late Oligocene sandstone north of San Casciano Val di Pesa (see Fig. 3 for location); (b) detail of
three generations of movements; (c) stereographic diagrams (lower hemisphere, equal area) indicating the representative fault and striae measured in the measured fault;
(d) density contours of fault poles; (e) fault strikes rose diagrams; (f, g) palaeo-strain analysis using the right-diedra method (Angelier, 1979) obtained with Faultkin application
(Marrett and Allmendinger, 1990; Allmendinger et al. 2012) showing fault-plane solutions and main kinematic axes.
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Fig. 6. (Colouronline) NE-striking fault segments in an abandoned quarry near Castelfiorentino (see Fig. 3 for location). The apparent offsets in the unconsolidated sediments are
of a few decimetres and from a c. 1 cm thin core.
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Fig. 7. (Colour online) Geological interpretation of seismic lines L8 (a) and L12 (b) (see Fig. 3 for location) showing the deep geometry of the Valdelsa Neogene deposits and their
relationships with the main extensional structures of the area.
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Fig. 8. (Colour online) Geological interpretation of seismic lines L16 (a) and L17 (b) (see Fig. 3 for location) showing the longitudinal deep geometry of the Valdelsa Neogene
deposits and their relationships with two main faults (Castelfiorentino and Montespertoli), which controlled the most recent thickness of the Valdelsa infill. The position of the
intersections with seismic lines L8 and L12 (Fig. 6) is also reported. The Castelfiorentino and Montespertoli faults interrupt the depth trace of the main normal faults of seismic lines
L8 and L12 post-dating them. (c) Seismic stratigraphy of the Monterappoli-1 well and association with the seismic units (SU).

continuous high-amplitude layers and layers that are still
continuous but are lighter than the underlying deposits (Fig. 8c).

The transversal profiles provide an image of the architecture of
the extensional basins showing the presence of an ENE-dipping
extensional detachment with associated synthetic splays and
subordinate antithetic faults. The oldest unit at the normal faults
hangingwall is represented by the Serravallian Seq.1, which uncon-
formably overlies the pre-Neogene substrate (Fig. 7a). This
sequence is not always present in the subsurface, as shown by line
12 (Fig. 7b) where in the central part of the section the substrate is
overlaid directly by SU-B (probably only the upper Miocene lacus-
trine Seq.3).

The Neogene sediments reach a thickness in the order of 2 km,
progressively diminishing to a few hundred metres.

The longitudinal seismic sections (Fig. 8) provide an excellent
image of the lateral continuity of the Neogene deposits from NW to
SE. Seismic line 16 (Fig. 8a), running SW of line 17 (Fig. 8b) and
hence closer to the present-day Elsa river valley, is the longest and
shows the thinning of the sequences, especially of SU-A corre-
sponding to a pre-Neogene structural high bounded by two sub-
vertical faults. The substrate structural high in the central part
of the section is responsible for the thinning of the sequences, espe-
cially of SU-A, and is bounded by a NW-dipping and a SE-dipping
fault, here named Castelfiorentino and Montespertoli faults,
respectively. The Neogene deposits are much thicker SE of the
substrate high and reach a maximum thickness in the order
of 2 km.

Seismic line 17 (Fig. 8b) shows that the same pre-Neogene
structural high here is higher and causes all the seismic units, espe-
cially SU-A, to thin abruptly towards the SE. The maximum thick-
ness of all the Neogene sediments is c. 1.8 s TWT, corresponding to
c. 2km on the basis of the available information on the seismic
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velocities. The thickness reduces to a few hundred metres in the
southeastern part of the sections.

5.c. Seismological data

We relocated the two most recent moderate earthquakes,
which struck the area in 2014 and 2016, the Certaldo and
Castelfiorentino earthquakes, respectively.

5.c.1. The Certaldo seismic sequence (M = 3.4; 9 August 2014)
After a short foreshock sequence of 8 hours, a seismic event of
M = 3.4 occurred in the central part of the Valdelsa Basin (near
Certaldo; Fig. 3; Table 1) on 9 August 2014 at 13:47 UTC. The main
shock was located at a depth of 9 km and was followed by a short-
lived aftershock sequence of ¢. 40 events, which ceased after less
than a week. Due to the shallow hypocentral depths of 5-10 km,
about a dozen earthquakes were felt by the population. The seismic
source mechanism was calculated by first-motion polarities, as well
as Moment Tensor Inversion (MTI), and resulted as a pure double
couple with the following parameters: strike 74°, slip 88°, rake
170° (Fig. 9).

5.c.2. The Castelfiorentino earthquake (M = 3.9; 25 October
2016)

Two years later, a further seismic sequence of c¢. 160 events
shattered the NW shoulder of the Valdelsa Basin (Fig. 3). After
isolated and sporadic events since January, during October 2016
the seismic activity increased significantly, culminating in
the M = 3.9 main shock on 25 October 2016 at 16:53 UTC. The
epicentre of the main shock was localized at Castelfiorentino,
10 km NNW with respect to the Certaldo sequence, at a hypocen-
tral depth of 9 km. The calculation of the source mechanism, both
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Fig. 9. (Colour online) Distribution of the 2014 Certaldo and 2016 Castelfiorentino seismic sequences relocated in this work, and the mainshock focal mechanisms showing either
a dextral SW-NE-trending or a sinistral NW-SE-trending kinematics. The seismicity distribution at depth is imaged by the P1, P2 and P3 cross-sections.

https://doi.org/10.1017/50016756822000036 Published online by Cambridge University Press


https://doi.org/10.1017/S0016756822000036

Pliocene-Quaternary seismogenic faults in the inner Northern Apennines 865
NW SE NW SE
Line 16 Line 17
2 =2
4 — . — 4
/\ Castelfiorentino fault Montespertoli fault
6 — ) e —6
= Castelfiorentino fault e Montespertoli fault ® . Fy
< X : XS 3
—] ) Ld L e ® |
8 . % .. . % .. 8
o . ° °® o - . ° °® o
10 - 0 g ® o ® * « 2 e ® —10
% o ® S ® L
12_ < [} . [} _1 2
L ] L ]

[ ] [ ]

14+ 14
L ® L J L J

16— . . —16
pre-Neogene undifferentiated bedrock pre-Neogene undifferentiated bedrock

Seq. 4-5-6 Pliocene-early Seq. 2-3 _ Seq. 1 | (Serravallian-early \fault a relocated seismic
Pleistocene late Miocene Tortonian) \base of basin sequence

Fig. 10. (Colour online) Depth conversion of seismic lines L16 and L17 and projection of the relocated seismicity and mainshocks onto the depth-converted cross-sections.

See text for details and data discussion.

by the inversion of first-motion polarities and by MTI, produced a
result similar to that for the Certaldo main shock: strike 260°,
dip 89°, slip 158°.

The two seismic sequences show striking similarities: the
hypocentres of the main shock are located at ¢. 9km and the
fore- and aftershocks are confined to the upper crust. The source
mechanisms of the main shocks are pure double couples,
with a predominant strike-slip mechanism: nearly N—S-
(left lateral, P3) or rather E—W-striking (right lateral P1, P2
in Fig. 3), whose active fault plane cannot be irrefutably deter-
mined (Fig. 9).

6. Results

Using the seismic velocities of the deposits, we converted to depth
the two longitudinal sections and we drew two integrated
geological cross-sections extrapolated down to ¢. 5km depth in
order to compare the subsurface geometries with the earthquake
locations (Fig. 10).

The earthquakes are distributed at c. 10 km depth and do not
show a clear planar geometry, mostly as a consequence of their
low intensity and of the fact that they are not associated with a
moderate or strong event during which a set of hundreds or thou-
sands of aftershocks develop and are often aligned along planes,
which can be associated with the main fault rupture (see e.g.
Latorre et al. 2016; Valoroso et al. 2017; Michele et al. 2020).
Nevertheless, the relocated earthquakes plotted onto the geological
section show that seismicity is located below the Castelfiorentino
and Montespertoli faults at similar depth for both sequences
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(Certaldo 2014, M = 3.4 and Castelfiorentino 2016, M = 3.9), even
if slightly shifted below the Montespertoli fault (Fig. 10).

The resolution of the seismic reflection profiles does not allow
offsets younger than the early Pliocene to be seen, so in order to
verify the possible role of the SW-NE-striking Castelfiorentino
and Montespertoli faults in controlling the Neogene basin dimen-
sion or in displacing its position, we mapped both the Neogene
depocentre throughout the whole seismic lines dataset and the
surface projection of the SW-NE-striking Castelfiorentino and
Montespertoli faults footwall cut-offs (see Fig. 8a and b) with
the substrate (the base of basin deposits).

The results are illustrated in Figure 11. The map shows the
seismic lines dataset and the position of the surface projection
of these two key elements. It can be observed that the faults cut-
offs projection at surface depicts the Castelfiorentino and
Montespertoli faults strike, which is SW-NE, about N40°.

The Castelfiorentino and Montespertoli faults border a struc-
tural high (Castelfiorentino High of Benvenuti et al. 2014) consti-
tuted by the pre-Neogene substrate with a steep to sub-vertical
geometry in cross-section (Fig. 10). At surface, the Certaldo and
Montespertoli faults show a trend of c. N40°, similar to the strikes
of the focal mechanisms of both the Certaldo and Castelfiorentino
earthquakes (Fig. 9).

The position of the Neogene depocentre provides interesting
points of discussion. The first thing to observe is that the
present-day Elsa river is systematically shifted to the west with
respect to the Neogene depocentre (Fig. 11). A similar situation
was previously observed for the northeastern Quaternary basins
of the Tiber river (Pucci et al. 2014) and interpreted as due to
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Fig. 11. (Colour online) Surface projection of the pre-Neogene substrate fault footwall cut-offs (blue circles), of the Neogene basin depocentre and the relocated seismicity.
The figure shows the relationship between the distribution of seismicity, the Castelfiorentino earthquake position and dextral shift of the Neogene basin depocentre suggesting
that the Montespertoli fault (thick red dotted dextral fault) was responsible for the 2016 seismic sequence. Both the Castelfiorentino and the Montespertoli fault trends agree with

the other SW-NE trending of the region.

the continuous activity of the basin-bounding normal faults,
and in particular to the NE-dipping normal faults. The second
observation is that the alignment of points corresponding to the
position on the Neogene depocentre in the seismic profiles is
not continuous along a NW-SE direction but is divided into
two parts and shifted right-laterally, corresponding to the valley
connecting the Elsa river and the village of Montespertoli, between
seismic lines L11 and L12 (Fig. 11). This shift also corresponds to
the footwall cut-offs alignment of the Montespertoli fault.
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These observations indicate that: (i) the Valdelsa Basin
Neogene deposition is controlled by the NW-SE-trending normal
faults clearly visible in the seismic reflection profiles (Fig. 7);
(ii) extension was accommodated mostly by the NE-dipping faults,
which were able to progressively drag the depocentre to the NE and
at the same time to maintain the Elsa river at its position, at the
normal-fault hangingwall; (iii) there occurred a later deformation
ascribable to a SW-NE-trending fault, which displaced the
Neogene depocentre original trend. Given the above-mentioned
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points, we suggest that the SW-NE-striking Montespertoli fault is
capable of shifting the depocentre of the basin horizontally by c.
1.2km with right-lateral kinematics (Fig. 11). Given the fault
geometry, which dips to the SE, the resulting movement would
be right-lateral or slightly transtensional.

The observation of the drainage pattern distribution of the
study area seems to be in agreement with a fault control on the river
network. The drainage pattern is mostly oriented SE-NW and
associated with the Elsa and Pesa rivers (Fig. 11). A few areas,
where the rivers show a significant deviation from the dominant
SE-NW trend, differ in terms of drainage orientation and display
tight curves along a SW-NE direction of flow. The three most
evident SW-NE alignments in the study area are along the
previously mentioned Piombino-Faenza line to the south, along
the Certaldo — S. Casciano Val di Pesa area and along the
Castelfiorentino area (Fig. 11).

Given the seismic sequence relocation and the 2016
Castelfiorentino focal mechanism solution, we suggest that the
fault, which ruptured in 2016, strikeing SW-NE with a right-lateral
kinematics, corresponds to the Montespertoli fault. Similarly, we
propose that the 2014 Mw = 3.4 earthquake could have activated
another SW-NE-trending fault belonging to the same fault
segments pertaining to the Piombino-Faenza lineament. The same
fault and/or fault segments may be responsible for the other earth-
quakes in the area, especially for the 2015 Tavarnelle Val di Pesa,
Mw = 3.7 event.

At surface, these faults are parallel to the fault segments
analysed in the eastern shoulder of the basin, in the vicinity of
Impruneta - San Casciano Val di Pesa (Fig. 11). Similarly, the iden-
tified faults are parallel to the ‘Piombino-Faenza’ shear zone,
implying a reasonable genetic relationship between them.

7. Discussion

The widespread seismicity recorded in the SE sector of the Valdelsa
Basin, with hypocentral distribution in the focal depth range from
8 to 12 km (Fig. 10), supports the existence of active NE-striking
fault segments in the central-southern sector of the basin. Faults
related to the seismic events were identified in the presented
seismic profiles (Figs 7 and 8) and delimit a NE-trending structural
high buried underneath the Pliocene sediments. These faults did
not directly rupture the topographic surface, indicating that the
fault segments are characterized by small offsets, as also supported
by the low-magnitude seismicity. The analysed fault segments in
the basin shoulder, in fact, highlight metres or decametres offsets
and show mineralization on the fault planes (e.g. calcite slicken-
fibres, Figs 4-6). This evidence supports a fault activity occurring
at deeper structural levels, implying that the studied fault zones
were progressively uplifted and exhumed after their development,
hence testifying to their long-lasting activity. Nevertheless, these
structures although indicating a variable kinematics through time,
show dominant NE-striking strike- to oblique-slip movements,
comparable to the focal mechanisms of the seismic events
(Fig. 9). This supports the fact that the Certaldo and
Castelfiorentino faults, along which the 2014-16 hypocentres
are localized, are part of a long-lived fault system inherent to
the ‘Piombino-Faenza’ shear zone. In this view, a Neogene—
Quaternary activity under the same regional stress field can be
envisaged to promote exhumation of the basin shoulders
and the segmentation of the basin. In fact, both the NE- and
NW-striking faults controlled the development of the Valdelsa
Basin (Pascucci et al. 1999) as well as the whole Neogene structural
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depressions of the inner Northern Apennines (Martini & Sagri,
1993). NW-striking faults controlled the development of the struc-
tural depression while the NE-striking ones accommodated the
different amount of extension (i.e. transfer zones).

The age and role of transversal lineaments in the Northern
Apennines have long been discussed (e.g. Fazzini & Gelmini,
1982; Bemporad et al. 1986; Liotta, 1991; Pascucci et al. 2007)
and their impact in controlling low-magnitude earthquakes has
also been highlighted for northern Tuscany (e.g. Molli et al.
2021). Many of these ‘lineaments’ are ascribed to the presence
of lithotypes, which react differently to erosion, as could be the case
of the ‘Piombino-Faenza line’. Nevertheless, the Certaldo -
S. Casciano Val di Pesa and Castelfiorentino lineaments docu-
mented here do not show any direct connection with lithology
or bedding attitude and could just be related to the presence of
SW-NE-trending tectonic structures, as also supported by the seis-
micity concentrated along their traces.

On the other hand, both NE- and NW-striking faults seem to
have controlled the orientation of the main river/stream valleys in
the whole basin (Fig. 3). In our case, the two NE-trending linea-
ments correspond to relevant NE-SW river alignments, along
which geothermal manifestations are present (see Fig. 3),
supporting their connection with both a tectonic origin and a
crustal relevance also in controlling geothermal fluids circulation.
Interestingly, a tectonic control on the river network of the same
area was early recognized by Canuti et al. (1975), though not
framed into an active tectonic significance of the river anomalies.

The collected kinematics coupled with information from the
focal mechanisms related to the local seismicity indicate that the
two orthogonal faults acted mainly as normal faults (NW-striking)
and strike-slip/oblique-slip faults (NE-striking) and this interplay
accounts for an extensional evolution of the basin (Martini & Sagri,
1993; Pascucci et al. 1999). A different scenario was proposed by
Benvenuti et al. (2014) that, although similarly depicting the occur-
rence of ‘basin-transverse lineaments’ separating the Valdelsa
Basin into two sub-basins, suggests that the whole basin was strictly
controlled by NW-trending regional thrusts that controlled the
depocentres location as well as the sedimentation. The interplay
between compressional tectonics and eustatic sea-level fluctuations
are invoked as dominant factors forcing the deposition of sedimen-
tary cycles at the basin scale. In this scenario, the Valdelsa Basin is
not considered an extensional basin but a thrust-top basin devel-
oped during compressional tectonics since the Late Miocene.
This hypothesis is in line with those advanced by some authors
(e.g. Boccaletti & Dainelli, 1982; Bonini & Sani, 2002; Finetti,
2006), who refer to the Neogene—Quaternary tectonic evolution
of Tuscany as being strictly controlled by unceasing compressional
tectonics active since the late Cretaceous and giving rise to different
generations of thrusts and back-thrusts and associated thrust-top
basins (e.g. Bonini et al. 2001; Finetti et al. 2001).

Our data contrast with the hypothesis of Benvenuti et al. (2014)
and support a different structural and kinematic scenario. The fault
kinematics in the exhumed basin shoulder accounts for Neogene-
Quaternary normal and strike-/oblique-slip faults. Thrusts occur-
rence is only suggested by the stacked units forming the orogenic
pile, but these tectonic contacts, interpreted as low-angle normal
faults by other authors (Carmignani et al. 1994; Liotta et al.
1998), are dissected by both NE- and NW-trending faults occur-
ring at the basin scale and documented in this paper. So, in our
opinion, a Neogene-Quaternary extensional evolution can better
explain the setting of the Valdelsa Basin and therefore its seismo-
tectonic framework and the overall thinned crust well documented
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by geophysical datasets (e.g. Pauselli et al. 2006). Along the same
line, the reasons why the geological evolution of the Valdelsa Basin
and the whole inner Northern Apennines is better framed in an
extensional setting rather than a compressional one is reported
in some papers (Brogi et al. 2005; Brogi & Liotta, 2008; Barchi,
2010; Liotta & Brogi, 2020; Brogi, 2011, 2020) to which the reader
is addressed for a more exhaustive discussion.

The NE-striking faults, both exposed and inferred by seismo-
logical analyses (Fig. 9), are parallel to the Piombino-Faenza line
regional structure (Fig. 1b), a first-order structure crossing the
whole of the Northern Apennines (Ambrosetti et al. 1978;
Boccaletti et al. 1985) and interpreted, in the inner zone, as a
kilometre-wide, crustal-scale transfer zone accommodating exten-
sion since the Late Miocene (Liotta, 1991; Dini et al. 2008; Liotta
et al. 2015). The geometry and kinematics of the fault segments
forming this transfer zone were constrained in the Larderello
geothermal area, to the southwest of the study area (Fig. 1a), where
such a structure plays a fundamental role in controlling fluid flow,
heat flux and magma emplacement at depth (Gola et al. 2017;
Liotta & Brogi, 2020). Similarly to the study area, in the
Larderello geothermal area the fault segments were active during
the Neogene and are still active (Liotta & Brogi, 2020 for a review),
as indicated by the localized low-magnitude seismicity (Batini et al.
1985; Albarello et al. 2005; Bagagli et al. 2020).

The kinematics of this transfer zone is the result of superim-
posed movements through the Neogene-Quaternary, as a conse-
quence of the role of this structure in separating crustal sectors
with different amounts of extension and differentiated uplift
(Liotta & Brogi, 2020). It follows that the fault segments forming
the transfer zone are characterized by multiple kinematics, ranging
from strike-slip to normal, also with intermediate kinematics.
Similar evidences have been documented for several transfer zones
in the whole of the inner Northern Apennines (e.g. Brogi et al.
2013; Liotta et al. 2015), producing seismicity (Buonasorte et al.
1991; Brogi & Fabbrini, 2009; Brogi et al. 2014; Piccardi et al.
2017). We observe the same evidence for the NE-striking faults
exposed in the study area.

This work, even though it deals with relatively small-magnitude
events, evidences the importance of integrating different datasets
and approaches to identify active or potentially active faults.
Their recognition is fundamental in particular for those areas with
a history of earthquakes but without recent events. In these areas,
characterized by high vulnerability, with great exposure of human
lives, infrastructure and historical heritage, the definition of such
potentially active faults plays a fundamental role in the definition
of seismic hazard and in the protection and conservation of
historical and artistic heritage. Examples in Italy are the important
cultural centres of Assisi and Norcia in the Northern Apennines,
which are located close to recognized seismogenic faults and have
historically suffered repeated damages due to strong earthquakes
(see for instance the seismic sequences of Colfiorito in 1997-8,
L’Aquila in 2009, Ferrara in 2012 and Norcia in 2016).

In the study area the city of Florence and its surroundings, a
world-famous UNESCO site, was characterized by a M = 5.4 event
18) May 1895) which, despite its moderate magnitude, caused
significant damage (Cioppi, 1995; Guidoboni & Ferrari, 1995)
and for which no causative fault has yet been mapped.

Our study suggests that the recognized faults could be related to
NE-SW alignments potentially connected to the 1895 event, for
which damage maps indicate a possible SW-NE alignment
(Cioppi, 1995). However, detailed and modern studies would be
needed in order to understand the active tectonics indicators,
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which must be hidden in both surface and subsurface geological
evidence for the area.

8. Conclusions

We identify a long-lived Miocene-Holocene SW-NE-trending
fault system in southern Tuscany, which affects the Neogene
Valdelsa Basin developed at the hangingwall of NW-SE-trending
normal faults. The SW-NE-trending fault system has played the
role of transfer zone since the Miocene and consists of both
exhumed and blind, still active, fault segments. Through a multi-
disciplinary approach, integrating surface kinematic data, subsur-
face geophysical and geological data and the relocation of
seismological data we identify a previously unknown active fault
(Montespertoli faults) not reaching the topographic surface, which
we interpret as responsible for the 2016 Castelfiorentino (M = 3.9)
earthquake (western Northern Apennines of Italy). Despite the
relatively small magnitude of the event, the Montespertoli fault
is part of the much wider SW-NE-striking crustal shear zones
developed across the western part of the Italian peninsula (the
Livorno-Sillaro and Piombino-Faenza tectonic lineaments;
Fig. 1b) that have also controlled the tectono-sedimentary evolu-
tion of the Neogene-Quaternary basins since the Middle-Upper
Miocene (Bossio et al. 1993a). This crustal shear zone has also
controlled the emplacement of felsic magmatic intrusion since
the Pliocene (Farina et al. 2010) and still controls the seismicity
and geothermal circulation in the Larderello area (Liotta &
Brogi, 2020), thus testifying to its seismotectonic relevance.

We suggest that the earthquake that struck the historic city of
Florence in 1895 (M =5.4) and which caused severe damage to
both buildings and works of art may have been linked to the same
NE-striking crustal shear zone.
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