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1. Introduction

This article is part of the program pioneered by Darmon and Rotger in [7], [8] devoted to
studying the p-adic variation of arithmetic invariants for automorphic representations on
higher rank groups, with the aim of shedding some light on the relation between p-adic
L-functions and Euler systems with applications to the equivariant BSD-conjecture.

Given a totally real number field F, the starting point of the program is to find
a reductive group G having GL; r as a direct factor together with an automorphic
L-function for which there is an explicit formula for the central L-value. The expectation
is that there exists a transcendental period for which the ratio between the special value
and the period becomes a meaningful algebraic number varying p-adically. More precisely,
these modified central L-values should determine a rigid-analytic meromorphic function
by interpolation. In the present work, we consider the group Grxr = Respxr/r(GL2 1 x F)
for L/F a quadratic extension of totally real number fields. Piatetski-Shapiro and Rallis
[31] studied the analytic properties of the twisted triple product L-function attached to
cuspidal representations of G« r and Ichino [18] proved a formula for its central value,
generalizing earlier work of Harris-Kudla [12]. The first part of the paper is devoted to
the construction of a p-adic L-function, called twisted triple product p-adic L-function.

Several far-reaching conjectures suggest a strong link between automorphic L-functions
and algebraic cycles: relevant cycles should live on a Kuga—Sato variety whose
étale cohomology realizes the Galois representation (conjecturally) attached to the
automorphic representation of G, out of which one constructs the L-function.
Furthermore, as the central L-values should vary p-adically after a modification by an
appropriate period, by tinkering with these cycles it should be possible to produce Galois
cohomology classes that p-adically interpolate into a big cohomology class, giving rise to
the p-adic L-function via Perrin-Riou’s machinery. Note that such p-adic L-function and
big cohomology class are defined using completely different inputs, an automorphic and
a geometric one; the sole fact that in certain cases it is possible to prove these approaches
produce the same object is in itself an amazing confirmation of the power of the existing
conjectures.

The relation between p-adic L-functions and algebraic cycles, as we just sketched it,
can be very hard to prove since it requires, among various things, a deep understanding
of the cohomology of semistable models of Shimura varieties. Therefore, we decided to
dedicate the second part of this work to the more humble goal of showing that the
p-adic L-function, built using the automorphic input, encodes geometric information
of some kind. More precisely, we compute some values of the p-adic L-function in
terms of the syntomic Abel-Jacobi image of generalized Hirzebruch—Zagier cycles.
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Our result is evidence that the twisted triple product p-adic L-function and the
generalized Hirzebruch—Zagier cycles are the right objects to consider in the framework
determined by Gpxfr and the twisted triple product L-function.

In the remaining of the introduction we present our results in more detail. We fix,
once and for all, a p-adic embedding ¢, Q— @p for every rational prime p, and a
complex embedding (s : Q < C. Given a number field E/Q we let Ig be the set of field
embeddings of E into Q and rg = ZreIE 7 € Z[1g]. For k, k' € Z[1g] we write k > k' if
ke > k. for all v € Ig, and k > k' if k > k" and 37, with k;, > k/ro.

1.0.1. The p-adic L-function. Let L/F be a quadratic extension of totally
real number fields, Q<Op and M<Op ideals. Consider primitive eigenforms
Jo € Se,.x,(Q; L Q) and f, € Sko.w, O F Q), whose weights satisfy nor; = £o — 2,
and motp = ko —2w, for n.,m, € Z, generating irreducible cuspidal automorphic
representations m,0 of Gr(A), Grp(A) respectively. We denote by n%, o their
unitarizations and define a representation of GLy(Azxr) by 1 = n* @ o¥. Let p : ' —
S3 be the homomorphism mapping the absolute Galois group of F to the symmetric
group over 3 elements associated with the etale cubic algebra (L x F)/F. The L-group
L(GrxF) is given by the semi-direct product G % I'r where I'r acts on G = GL,(C)*3
through p. One can define the twisted triple product L-function L(s, IT, 1) of IT via the
representation r of LGrxr)onC2@C2® (Cz, which restricts to the natural 8-dimensional
representation of G and through which I'r acts via p permuting the vectors. We assume
the central character wry of Il satisfies O px = 1, so that the twisted triple product
L-function has a functional equation and we can talk about its central value.

Definition 1.1. We say that weights (¢, x) € Z[I. 1%, (k, w) € Z[Ig]* are F-dominated if
there exists r € N[Ip] with k = (¢ +2r)|r and w = (x +r)|r. In particular, F-dominated
weights satisfy k —2w = (£ —2x)|F.

Let n: Az — C* be the idele character attached to the quadratic extension L/F by
class field theory. Suppose that the weights of g, and f, are F-dominated and that the
local e-factors satisfy

€v<%» ,, rv)ﬂv(—l) = +1 Vo finite place of F.

Then Theorem 3.2 and Lemma 3.4 show that the non-vanishing of the central L-value
L(2, I1, r) is equivalent to the existence of test vectors go,f in 7, o, respectively, of some
level V11 () such that the prime factors of 2 are among those dividing 91Ny, r(Q) - dr/F.

More precisely, g, and fo are cuspforms such that the Petersson inner product

1¢) = (¢ (5'8.) . F2). (1)

for some r € N[I], does not vanish. In other words, we can take (1) as an avatar of the
central L-value and use it to construct the p-adic L-function.
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Remark. The assumption on local e-factors at the finite places of F can be satisfied by
requiring the ideals Nz ,r(Q) -dr;r and 9 to be coprime and by asking all prime ideals
dividing 91 to split in L/F.

Definition 1.2. Let (£, x) € Z[IL]Z, (k,w) € Z[1r]? be weights and 6 € Z[I;] be an element
satisfying 0| = 0-tp. If 6 =, w holds, i.e., 8, => Wy p for all u € Iy, we define

0
r@ =y [w”—” —xu] e ZIL ).

2
nelp

Let p be a rational prime unramified in L, coprime to the levels £, 91. We write
P (respectively Q) for the set of prime Op-ideals (respectively Op-ideals) dividing p.
We choose an element 6 € Z[I;] such that 6 =0-tr and 6 = w,, and we let r =
ZueIL - w, with r, € Z/(qp, — 1)Z, denote the reduction of ro =r.(0). We suppose Jo,
f, are p-nearly ordinary and we denote by ¢4 € SL ‘Q, x;Iy) and F € SF NOIRTE Py
the Hida families passing through nearly ordinary p-stabilizations gSf’ ) and f(p ). We
have X1z, (Q)ior = XoN7° and ¥z, )0, = YoNp° for characters xo : clf (D) - C*, ot
cl+(‘ﬁ) — C* and we suppose that xoF - ¥s _1 We let F* € S (QJ., v zw,lg*)
[14, § 7TF] be the twisted Hida family, where Iz+ = 1 £ (%) as an A s w—algebra.

Definition 1.3. Let W = Wy 2+ be the rigid-analytic space Spf(Iy®oLz+)"8. The
subset of F-dominated crystalline points with respect to (@, 1), denoted by Ci-’f, is the
subset of arithmetic points (P, Q) € VYW whose weights are F-dominated, r(0) € Z[1.] is
a lift of r, and such that the specialization of the Hida families is old at p; that is, they
are the p-stabilization of eigenforms of prime-to-p level: ¥p = gg ) and FqQ = fg) .

Set Ky 7+ = (Iy®0l7)®Q, Ky =Iy ® Q and K 7+ = Iz ® Q. We define a Ky-adic
cuspform 9 (respectively K z+-adic cuspform T *) passing through the nearly ordinary
p-stabilization of the test vectors go, fl‘ as in [7, §2.6]. Then Lemma 3.7 ensures the
existence of a meromorphic rigid-analytic function ;.,?1? . 7): W — C p whose value
at crystalline points (P, Q) € W, with r(0) € Z[1;] a lift of r, is

1 fenot*(@@gT). ¥
E(fy) (f6: 1)

P LG, F)(P.Q) =

Here the number E(f ) is defined by E(f )= (1 —ﬂfaafg) for afe, ,Bfa the inverses of

the roots of the Hecke polynomial for T(p). We are justified in calling ;fg (g7 , e?v) a
p-adic L-function because it mterpolates the algebraic avatar (1) of central L-values
L(2, ITp g, 1) at points (P, Q) € C , as the next theorem shows.

Theorem 1.4. Consider the partition Qinert [ [ Qsplit of the set of Op-prime ideals above

p determined by the splitting behavior of the primes in the quadratic extension L/F.
The value of the twisted triple product p-adic L-function ;fﬁ @, 7#): W — C, at any
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P,Q) € C%? satisfies

X ! Ep(@p, 1)
FD‘ZQ(%, g\)(Pa Q) = 4+ 1_[ 5 (gP,f ) 1_[
p » 0
E(fQ) ©€Qinert peQq plit @@0 @(gP fQ)
(¢ 6 g0) )
(f*Q f*Q)

where s : Ip — Iy is any section of the restriction I — Ip, u v wr, and the Euler
factors appearing in the formula are defined in Lemmas 3.9 and 3.11.

1.0.2. A p-adic Gross—Zagier formula. The second part of the paper deals with
the evaluation of the p-adic L-function outside the range of interpolation. From now on,
we assume L/Q to be a real quadratic number field.

Definition 1.5. A triple of integers (a, b, ¢) € Z?, is said to be balanced if none among
a, b, c is greater or equal than the sum of the other two. We say that the weights (¢, x) €
Z[IL]z, (k,w) € Z[IQ]2 are balanced if there exists r € N[I.], r # 0, such that k = |£ —2r|,
w = |x —r| and the triple of integers (€1, €3, k) is balanced.

Definition 1.6. The set of balanced crystalline points with respect to (@, r), denoted by
Cf) rl, is the subset of arithmetic points (P, Q) € W, whose weights are balanced, r(0) €
Z[11] is a lift of 7, and such that the specialization of the Hida famlhes are old at p. This
set is a disjoint union, indexed by balanced triples (£, k), of subsets Cbal(ﬁ k) consisting

of points whose weights have the form (¢, x) € Z[I.]?, (k, w) € Z[IQ]Q.

For a balanced crystalline point (P, Q) € Cb 1> the global sign of the functional equation
of L(s, Ip,q, 1) is —1. This forces the vanishing of the central value, which one expects to
be accounted for by the family of generalized Hirzebruch—Zagier cycles Interestingly, the
twisted triple product p-adic L-function is not forced to vanish on C ba) a0d we can try to
compute its values there. Let (£, k) be a balanced triple such that either £ is not parallel
or (¢, k) = (2t1,2). Let A — Shg(G7) be the universal abelian surface over the Shimura
variety for G7 and let & — Shg/(GL3 @) be the universal elliptic curve over the modular
curve, both defined over some open subset of Spec(Og), where E/Q is a large enough
finite Galois extension. For all but finitely many primes p, let ¢ <Of be the prime above
p induced by the fixed p-adic embedding ¢, and consider %4 xo , #k—2 a smooth
and proper compactification of A¥I=* x £k=2. The generalized Hirzebruch-Zagier cycle
of weight (£, k) is a De Rham null-homologous cycle

Agk € CHy 2o (%i-4 x0p , Wk—2)0 @z L
of dimension y +2 = w Given a pair of eigenforms gp € S¢,(V1(A0); L; E) and
fQ € Sk,w(V1(RD); E) we can produce cohomology classes wp and nq, as in Definition 5.5,

such that mfwpUning € F'l‘_2_SH(‘fP|{+k_3(Ug_4 XE, Wk_z) where s = H=k=2 k 2. ; that is,
the cohomology class mwp Uminqg lives in the domain of the syntomic Abel Jacobi
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image of Ay,
AJp(Ag) s FU2S B Uy x g, Wiia) — Eg,

and we can compute the number AJ,(Ag ) (w{wp Un;ng) as follows.

Theorem 1.7. Let L/Q be a real quadratic field and (€, k) a balanced triple. Let p be a
prime splitting in L for which the generalized Hirzebruch-Zagier cycle Agy is defined.
Then for all (P, Q) € Cebgl(ﬁ, k) we have

1 6p(@p.fg)
SIE(TG) €0.p(gp. T5)

P LG, F)P.Q) = AJp(Ae i) (Tfwp Uming).

Remark. The assumption on the splitting behavior of p in L/Q should not be necessary.
It could be dispensed with by showing the overconvergence of the p-adic cuspform
di_e“ (gj[Pf7 ]) for u € Ip. It seems reasonable to believe that by generalizing the recent
work of Andreatta and Tovita [1] one could prove such a result.

Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of
conductor M, both without complex multiplication over Q. We denote by (M4, B)p the
Galois representation AsV,(A)(—1) ®q, Vp(B) of the absolute Galois group of Q. We can
use Theorem 1.7 to give a criterion for the Bloch-Kato Selmer group H } (Q, M4, B)p) to
be of dimension one in terms of the non-vanishing of a value of one of our twisted triple
product p-adic L-functions. We build on the recent work of Liu [26], where he computes
the dimension of H} (Q, (M4,B)p) assuming the non-vanishing of the étale Abel-Jacobi
map of certain cycle closely related to our Hirzebruch—Zagier cycle of weight (2t7,2). Let
94 € S2, .1, (VI(Q); L; Q), fp € S2.1(VI(O); Q) be the newforms attached to A and B by
modularity and p a rational prime coprime to - Nz ,0(Q) -dr/r. If ga, fp are p-nearly
ordinary, we denote by ¥,.# the Hida families passing through the p-nearly ordinary
stabilizations %p, = gff ) and FQ, = fg’), respectively.

Corollary 1.8. Suppose that 9 and N ,0(Q)-dr g are coprime ideals and that all the
primes dividing N split in L. For all but finitely many primes p that are split in L and
such that ga,fp are p-nearly ordinary we have

PLNG. F)PAQp) A0 = dimg, HHQ, Ma.p)p) = 1,
where 0 = —u+u' € Z[IL], ¥ = —pu.

The arithmetic setting of this paper has recently been considered by several
independent groups: [4, 10, 19]. Ignacio Sols and I.B. computed syntomic Abel-Jacobi
images of some Hirzebruch—Zagier cycles in terms of p-adic modular forms, while Ishikawa
constructed twisted triple product p-adic L-functions over Q following the refined
approach of Hsieh [17]. Given the similarities between the computations of syntomic
Abel-Jacobi images in the work of B.-Sols and M.F., the two groups agreed to publish
together.
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2. Automorphic forms

2.1. Adelic Hilbert modular forms

Let F/Q be a totally real number field and let Iz be the set of field embeddings of F

into Q. We denote by G the algebraic group Resp/pGLa . We choose a square root

i € C of —1 which allows us to define the Poincaré half-plane ), we consider the complex

manifold $F which is endowed with a transitive action of Gp(R)T = HIF GL>(R)* and

contains the point i = (i, ..., ). For any K < G (A*) compact open subgroup we denote
by Sk.w(K; F; C), or simply Sk, (K; C) when there is no risk of confusion, the space of

holomorphic Hilbert cuspforms of weight (k, w) € Z[IF]2, k —2w = mtp for some m € Z,

and level K. It is defined as the space of functions f : Gr(A) — C that satisfy the following

list of properties:

o f(axu) = f(x) jiw(Uoo, ) ™! Where @ € Gr(Q), u € K -CL for CL the stabilizer of i in
Gr(R)T and the automorphy factor is jk,w((? Z), z) = (ad — bc) ™" (cz + d)* for (? Z) €
Gr(R), z € H'F;

o for every finite adelic point x € G (A®) the well-defined function f, : $F — C given
by fy(2) = f(xtoo) jk,w (#oo, 1) is holomorphic, where for each z € 917 we choose uq €
Gr(R)* such that usi = z.

e for all adelic points x € Gr(A) and for all additive measures on F\Afr we have

/F\AF f( ((1) 611) x) da =0.

o If the totally real field is just the field of rational numbers, F = QQ, we need to impose
the extra condition that for all finite adelic point x € Gg(A*) the function |Im(z)%fx (2)]
is uniformly bounded on $.

Definition 2.1. We denote by G7% the algebraic group Resr,oGLa, r X RespqCm. G- By
replacing Gr by G} in the previous definition, we define S,’:’v(l(; C) to be the space of
cuspforms for G} of weight (k,v) € Z[Ir] x Z and level K, for any K < G}(Q) compact
open subgroup.

Note that for all pairs of weights (k,v), (k,v’) € Z[Ig] x Z there is a natural
isomorphism

Wy Si (K C) — Si (K ©) (2)

V—v

given by f(x) — f(x)|det(x)|AQ
Each irreducible automorphic representation w spanned by some form in Sk, (K; C) has
central character equal to |—|;;" up to finite order characters. The twist 7% ;=7 ® |—|§F

is called the unitarization of 7. Note that there is an isomorphism of function spaces (not
of G r(A)-modules)

T — 7t

where (x) = f(x)|det(x)| . (3)
f r
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Let dx be the Tamagawa measure on [G g (A)] = A;G FQ\GF(A), for any two cuspforms
f1,f2 € Sk.w(K; C), with k — 2w = mtp, we define their Petersson inner product to be

(fi,f2) = / fLof (0 ldet) [, dx = (ff, ). (4)
[GFr(A)]

For an Op-ideal M we consider the following compact open sugroups of G F(Z):
Uo) = |(¢2) € Gr(@)| ¢ € NOFY,

- Vi) ={(¢h) € Us(W| d =1 (mod NOp)},

-V ={@5) e i) a=1 (mod NOF)},

~ UM ={@%) e viuM)| b =0 (mod NOF)}
For any prime p coprime to 9t and any compact open subgroups satisfying V() <

K < Up(M), we set K (p¥) = KN Vi (p*) and Zp(K) = Ap/F>* det K(p>®)F, .. One can
decompose the ideles of F as

RO
A;i = ]_[ F*a; det Vll(‘ﬁ)Fgé‘Jr
i=1

where a; € A7 and 7} (M) is the cardinality of clIf (M) := FI\AY ™/ det Vi1 (M). The
ideles decomposition induces a decomposition of the adelic points of GF

hE O

-1
Grid) = || Gr@uUMGFr®)T  for “:(a'b ?>
i=l1

2.1.1. Adelic g-expansion.  The Shimura variety Shg (G ), determined by Gr and a
compact open subgroup K, is not compact, therefore there is a notion of g-expansion for
Hilbert modular forms. Even more, Shimura found a way to package the g-expansions of
each connected component of Shg (Gr) into a unique adelic g-expansion. Fix dp € A%O’X
such that dpOF = 0 is the absolute different ideal of F. Let FG2l be the Galois closure
of F in Q and write V for the ring of integers or a valuation ring of a finite extension Fp
of FGal such that for every ideal a of OF, for all T € I, the ideal a’V is principal. Choose
a generator {q°} € V of 'V for each prime ideal q of Of and by multiplicativity define
{a’} € V for each fractional ideal a of F and each v € Z[I¢]. Given a Hilbert cuspform
f € Sk.w(Vi1(D); C), one can consider for every indexi € {1, ..., h}t(‘ﬂ)}, the holomorphic
function f; : HF — C

fie) =yt (ri (yg° x;")>= > aG.fer)
ge(a;0; )y

for z = Xeo +1ys0, @ = a;Of and ep(£z) = exp(27ri Z,EIF ‘L’(S)Zr) Every idele y in
AyY  :=APFX , can be written as y = £a; 'du for € € F{ and u € detUODFY
the followmg functions

a(—hH:Ap, —C, apy(—NH:Ap, — @p
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are defined by
a(y. ) :==a@E YV FIETVai|a, and ap(y.f)=aE )y, TEFTUNp(a)!

if ye @FS;HF and zero otherwise. Here Nr : Zp(1) — @; is the map defined by
y y;tF|y°°|;x;. Clearly, the function a,(—, f) makes sense only if the coefficients

a(g, f;) € Q are algebraic V&,i. For each V-algebra A contained in C we denote by
Sk.w(K; A) the A-module {f € Skw(K; (C)| a(y,fe AVvye A;f-ﬂ_}.

Theorem 2.2 [14, Theorem 1.1]. Consider the map e : clr — ¢x defined by ep(z) =
exp(27ri ZteIF z,) and the additive character of the ideles xr :Ap/F — C* which

satisfies xF(Xoo) = €F(Xe0). Each cuspform f € Sk (Vi1(N); C) has an adelic q-expansion
of the form

f(@ f)) = Iylar D aEydr. HIEYARF "} Eyoo) " Fer (& yoo) xr (Ex)

§eFy

fory e Ap |, x € Ap, wherea(—,f) : Af | —> C vanishes outside @Fo)é,+ and depends
only on the coset y*° det Vi1 (N).

2.1.2. Nearly holomorphic cuspforms. For any K compact open subgroup
satisfying V11 (OM) < K < Gr(A™) we denote by Ny y,4(K; F; C), or Ni y 4(K; C) when F
is clear, the space of nearly holomorphic cuspforms of weight (k, w) € Z[Ir]? and order less
than or equal to g € N[Ir] with respect to K. It is the space of functions f: Gg(A) — C
that satisfy the following list of properties:
o f(axu) = f(x) jik.w (oo, ) ™' where @ € Gr(Q), u € K-CZL;
o for each x € G (A™) the well-defined function f, (z) = f(xto) jk,w (Moo, 1) can be written

as

@ = Y aEf)(@ry) DerE)
§eL(x)+
for polynomials a(&, f,)(Y) in the variables (Y;);<y of degree less than g, in Y; for each
t € IF and for L(x) a lattice of F.

As before f; stands for f, and we consider adelic Fourier coefficients
a(y, H(y) = (" FYEF Yailapa &, Y),  a,(y, HY) = y,'f_tgtp_wNF(ai)_la(g, f)(Y)

if y="%a; ldpu € (/’)?Fg; 4 and zero otherwise. The adelic Fourier expansion of a nearly
holomorphic cuspform f is given by

f(@ T)) = Iylay Y aEyde, HOOEVDR)T "} (Evo)" " er (i8 yoo) 1 (Ex)
§eFy

for Y = (47ys)~! and for A a subring of C one can consider the A-module Ni,w,q(K; A)

defined by {f € Newq(K: O)] a(y,f) € A[Y]Vy € A ).
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There are Maass—Shimura differential operators for r € N[Ir], k € Z[Ir] defined as

1 A a
8 = l;[ (51;+2rr—2 o...o8,§r) where §} = 300 (2in + 3Zr) . ()
TELF

They act on a nearly holomorphic cuspform fe Ni, 4(K;C) via the expression
a(y, §pH(Y) = (Y ETNEF T a5 pa(§, 81F)(Y). Suppose that Q C A, then Hida
showed [14, Proposition 1.2] the differential operator §; maps N 4(K:;A) to
Nigorwirqg+r(K; A) and if k; > 2g; V1 € If, then there is holomorphic projector r1hol .
Nk,w,q(K§ A) —> Sk w(K; A).

2.1.3. Hecke theory. Consider a compact open subgroup K < Gg(A™) of the finite
adelic points of G that satisfies Vi1 (0M) < K < Up(DN). Suppose that V is the valuation
ring corresponding to the fixed embedding ¢, : FGal <y @p, so that we may assume
{(y’F~%} =1 whenever the ideal yOp generated by y is prime to pOp. Let @ be a
uniformizer of the completion Of 4 of Of at a prime q. We are interested in Hecke
operators defined by the following double cosets

w 0

To(w) = {w " 'F} [Vn(‘n) (0 1) Vll(m)} if g1 M,

w 0

Up(@) = {ow"7'F} [Vll(‘ﬁ) (0 ]

) Vit | ifq | M,

and for a € Of o :=[]qm OF , the double coset

T =vuew (§ 7) vuen].

If the prime q is coprime to the level, then the Hecke operator To(w) acting on modular
forms is independent of the choice of the uniformizer @ and we simply denote it To(q). For
any finite adelic point z € Zg(A™®) of the center of G we define the diamond operator
associated to it by f|(;)(x) = f(xz), for any modular form f. For a prime ideal g such that
GL2(OF,q) C K, we write (q) for the operator (=), where @ is a uniformizer of O q.
The action of the operators on adelic g-expansion is given by the following formulas. If
q 19 one can compute

w

ap,(y, firyq) = 8y, Ho " "o~
+Nro@{a® " a, o~ fg)laF o)
and
aw, fin) = ah@, )+ Npo@ g "Mayo ™", fiq)-
If g | 9t one can compute

ap(y, fiug@)) = ap(yo, Mo Mo~

and

aly. fuyw)) = aly=, .
Finally, fora € O;,‘ﬁ one finds a, (v, firw, 1)) = ap(ya, f)aﬁfﬁw. It follows that if o € OF 4
is a uniformizer and a € O;’q then Up(aw) = T (a, 1) Uy(w).
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The Hecke algebra hy ,,(K; V) is defined to be the V-subalgebra of Endc (Sk,w(K; (C))
generated by the Hecke operators Tp(q)’s for primes outside the level q {91, Up(ew)’s for
primes dividing the level q | N, T(a, 1)’s for a € O3 F.or and the diamond operators. For
each V-algebra A contained in C one defines hg ,(K; A) = hg (K; V) @y A.

Theorem 2.3 [14, Theorem 2.2]. For any finite field extension L/FS and any
V-subalgebra A of L, there is a natural isomorphism Sk, (K; L) = Sgw(K; A)®@a L.
Moreover, if A an integrally closed domain containing V, finite flat over either V
or Zp, then Siw(K; A) is stable under hy ,,(K; A) and the pairing (,) : Skw(K; A) x
hiw(K; A) — A given by (f, h) = a(l, fin) induces isomorphisms of A-modules
hew (K5 A) = Sk w(K; A and  Sew(K; A) = hy (K5 A,

where (—)* denotes the A-linear dual Homy (—, A).

Every idele y € @FHA; can be written as y =a ]_[q wg(q)u with u € detU(DM) and
aeOr o Write n for the ideal (]_[qjm wé(q))(’)p, then the Hecke operator

To(y) = T(a. DTo(m) [ | Uo(@®) (6)
q|N

depends only on the idele y. A cuspform that is an eigenvector for all the Hecke
operators is called an eigenform and it is normalized when a(l, f) = 1. Shimura proved
[37, Proposition 2.2] that the eigenvalues for the Hecke operators are algebraic numbers,
hence a normalized eigenform fe S, (K;C) is an element of Sk,w(K;@) since the
To(y)-eigenvalue is a(y,f) for every idele y. For an idele y E@HA;, let T(y)=
To(M{y'F "}

Definition 2.4. Let p | p be a prime of Of coprime to the level K and (k, w) € Z[Ir]
with k > 2tF. A normalized eigenform fe S, (K; Q) is nearly ordinary at . p if the
To(p)-eigenvalue is a p-adic unit with respect to the specified embedding ¢ : ‘Q— Qp
If f is nearly ordinary at p for all p | p we say that f is p-nearly ordinary.

Definition 2.5. For every idele b € A% there is an operator V (b) on cuspforms defined by

—1
flvpy (x) = NpodOp)f (x (bo ?))

that acts on p-adic g-expansions as a,(y,fivp) = b}‘,)_tFap(yb’l,f) (this operator is
denoted by [b] in [14, § 7B]). Its normalization [b] = {(b'F~*}V (b) acts on g-expansions
by a(y, fip) = a(yb~", f).

Remark. We have Up(w)o[w]=U(w)o V(w) = 1.

Let fe Skw(K,@) be a normalized eigenform of level prime to p. Set (p)g:=

{@, " }(p), then the (p)o-eigenvalue of f is Yro(p) = {m, """ Iy(p) for Ys(p) the
(p)-eigenvalue of f. The Ty(p)-Hecke polynomial for f is given by

1—a(p, HX +Npo@) ¥ro@X> = (1 —ao p X)(1 — o.p X).
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If f is nearly ordinary at p, a(p, ) is a p-adic unit and we can assume that «g p is a p-adic
unit too. The nearly ordinary p-stabilization of f is the cuspform f® = (1 — Bo,pl@p DI
that has the same Hecke eigenvalues of f away from p and whose Up(wy)-eigenvalue is
ag,p- For S a finite set of prime Op-ideals, the S-depletion of a cuspform f is the cuspform
flST = HpeS (l —V(zp)o U(wp))f whose Fourier coefficient a,(y, flS1) equals ay(y,f) if
ys € O 5 and 0 otherwise.

Lemma 2.6. For all pairs of weights (k, v), (k,v") € Z[1r] x Z we have the equality V (p) o
v,y = p”/_“\llv,,/ o V(p) of maps from S,f)U(K, C) to Sz"v,(K, O).

Proof. Follows directly from the definitions. O

2.2. Hida families

We consider compact open subgroups that satisfy Vi(M) < K < Up(). The group Zr(K)
has a finite torsion, so we can fix a prime p coprime to 91 and the order of Zg(K)tor. Let
O be a valuation ring in @p finite flat over Z, containing ¢, (V). Consider the space of
p-adic cuspforms

Skw(K(p™); 0) = lim S (K (p®); O)
on which the p-adic Hecke algebra
hi,w (K (p%); 0) = lim hy,, (K (p%); 0)

naturally acts. The Hecke operators defined by T(y) = lim T (y) ypw_’F play an important
role in the theory. There is a p-adic norm on the space of p-adic cuspforms
Sk.w(K(p™); O) defined by [f|, = sup,{la,(y,fl,}; the resulting completed space is
denoted by Ekyw(K(poo); 0) and it has a natural perfect O-pairing with the p-adic
Hecke algebra [14, Theorem 3.1]. Each element f € Ek’w(K(poo); 0) induces a continuous
function f: J — O, defined by y = a,(y, f), on the topological semigroup

J=0r"F} /detVii(p®)F ..

isomorphic to Ox p X S for FF the free semigroup of integral ideals of F. Hence,

there is a continuous embedding Ek,w(K(poo); 0) — C(J; O0) of the completed space
of p-adic cuspforms into the continuous functions from J to O. The image of the
embedding Sr(K:; 0) is independent of the weight (k, w) since there exists a canonical
algebra isomorphism hg , (K (p™); O) = hosp 4 (K(p®©); O) which takes T(y) to T(y)
[13, Theorem 2.3]. Hence, we write hy(K; O) for hy , (K (p®°); 0). From now on, Sy (9, 0)
and hr(O; 0) stand respectively for Sg(V1(91); O) and hx(Vi(D); 0).

Remark. Nearly holomorphic cuspforms can be seen as p-adic cuspforms. For each nearly
holomorphic cuspform f e Ni ., 4(K(p*); F; O) one can define a p-adic cuspform by
setting ¢(f) = Np(y)~! Yeerx ap(Eydr, H)(0)¢° € SF(K; 0) [14, Proposition 7.3].

One can decompose the compact ring hr(K; O) as a direct sum of algebras hg(K; O) =
hii(K; O) ®hF(K; O) in such a way that T(p) is a unit in h}°(K; O) and it
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is topologically nilpotent in h%(K; O). Furthermore, the idempotent eno of the
nearly ordinary part hiz®(K; O) has the familiar expression en.o. = lim, 0o T(p)". Let
51;0’(1(; 0) = en.o.Sr(K; O) be the space of nearly ordinary p-adic cuspforms.

Consider the topological group Gr(K) = Zp(K) x (9;’ » equipped with the continuous
group homomorphism Gr(K) — hix°(K; 0)* given by (z, a) — ()T (@', 1). As p is
prime to the order of Gz (K )tor, there is a canonical decomposition Gr(K) = Gg(K)tor X
W for a Z,-torsion free subgroup Wr. Then Wgr = Z; for r =[F : Q]+ 1+34, where
3 is Leopoldt’s defect for F, and we denote by O[Wr] = O[Xy, ..., X;] the completed
group ring.

Theorem 2.7 [13, Theorem 2.4]. The universal nearly ordinary Hecke algebra h® (K; O)
is finite and torsion-free over Ap = O[Wp].

One can write O[Gr(K)] = D, Ar,x as a direct sum ranging over all the characters of
GF(K)tor where Ar , = Af, and obtain a similar decomposition of the universal nearly
ordinary Hecke algebra hiz®(K; O) = @X hi;:%(K; 0)y.

Definition 2.8. Let K be a compact open subgroup satisfying Vi(91) < K < Up(M) for
an Op-ideal M prime to p. Given a character x : G(K)tor = O and a Af ,-algebra I,
we define the space of nearly ordinary I-adic cuspforms of tame level K and character
x to be Sp” (K, x:1) = Homy, -moah®(K; 0),.T). We call Hida families those
homomorphisms that are homomorphisms of A F,x-algebras.

Given (k, w) € Z[I]?, with k —2w = mtF, and finite order characters ¥ : Zp(K) —
ox, vy O;p — O* one can define a homomorphism Gpg(K) — O* by (z,a)H—
Y ()Y (@NF(Z)"aF~", which determines an O-algebra homomorphism Prwyy :
O[GFr(K)] — O. Let us fix an algebraic closure L of the fraction field L of Af , with
an embedding @p < L. Suppose A : h%°(K; 0), — L is an Af y-linear map; since the
universal nearly ordinary Hecke algebra is finite over Ar ,, the image of A is contained
in the integral closure I, of Ar , in a finite extension K, of L.

Definition 2.9. Let I be a finite integrally closed extension of Ar,. We denote by
Ay (@) the set of arithmetic points, i.e., the subset of Homp-ag(I, Q,) consisting of
homomorphisms that coincide with some Py y, y s (With k > 2tF, w < tr) on Ap .

If Pe Ay, Piar, =Pruwy.y/|Ar,, the composite Ap = P oA induces a @p—linear
map Ap : hi‘"g'(l((p“);@p) —> @p for some « > 0 [13, Theorem 2.4]. Therefore, the
duality between Hecke algebra and cuspforms produces a unique p-adic cuspform fp €
S,?,';'(K(p"‘); @p) that satisfies a,(y, fp) = Ap(T(y)) for all integral ideles y. Furthermore,
if A is an algebra homomorphism, each specialization at an arithmetic point is an
eigenform and so classical, i.e., an element of S,g'g'(l((p“);@). On the other hand, if
fe Skuw(K(p®); Q) is an eigenform for all Hecke operators and its Uy(p)-eigenvalue is a
p-adic unit with respect to the fixed p-adic embedding ¢,, then there is character x, a
finite integrally closed extension I# of Af , and a nearly ordinary I #-adic Hida family
Z W% (K; 0) — 1 passing through f [13, Theorem 2.4].
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Definition 2.10. We define the set of crystalline points, A;’( (@), to be the subset of
arithmetic points P € Ay (I) such that Pa,, = Pruwy.1ap, for ¥ factoring through
(/38 cl';(‘ﬁ) — 0 and the eigenform fp is p-old.

Specializations of Hida families with trivial nebentype at p are automatically p-old
when k > 2t [13, Lemma 12.2].

2.3. Diagonal restriction

If L/F is an extension of totally real fields, there is a restriction map Iy — Ip
which induces a group homomorphism Z[I;] — Z[Ir] denoted by £ — £|r and satisfies
(tr)F =[L : F]-tr. Let 91 an ideal of OF, the natural inclusion ¢ : GLo(Afr) — GL2(Ar)
defines by composition a diagonal restriction map ¢*: Sp(Vi1(MOL); L; C) —
Seipxr (ViI(O); F; C).

Proposition 2.11. Let b € A;ﬁ. For any cuspform g € Sp.x(V11(MOL); L; C) we have

c*@va) = NegbOr) T EF(*g) 1y ).
Proof. Follows directly from the definitions. O

Definition 2.12. Let L/F be an extension of totally real number fields and
let 9 be an Op-ideal. For every prime p coprime to 91 and the orders of
Zr(ViOM)tor, ZL (VI(NOL))tor, diagonal restriction of cuspforms induces by O-duality
a map between universal Hecke algebras ¢ : hp(9T; O) — hy (NMOr; 0). The element
Z(T(y)) is determined by the equality

a,(1, gieryn) =ap(1, € Pirey)) V9 € SLNOL; 0).

We endow O[GL(Vi(NOL))] with the O[Gp(Vi(D))]-algebra structure given by
[(z,a)] — [(z,a)]la”'F. The homomorphism ¢ is also O[Gp(V;(M))]-linear because
diamond operators and operators T (a, 1) for a € O}(, , commute with diagonal restriction:

C*Di) = ¢*Qz), and (C*D 7@, 1) = QT @.1)-

2.3.1. On differential operators. For each u € I there is an operator on p-adic
cuspforms dy, : S.(9Q; 0) — S1.(Q; 0) given on g-expansions by a,(y, d,9) = ygap(y, a9).

The definition can be extended to all r € N[I.] by setting d” =[], dy 14, §6G].

Lemma 2.13. Let r € N[I.] and let g € Se.x(V1(Qp*); L; O) be a cuspform, then
eno.T™C*(879) = en.o.t™(d"9),
where &) is the Maass—Shimura differential operator (5).

Proof. [14, Proposition 7.3] gives en,O,HhOIg“*((SEg) = en.0.c(£*(8}9)). Since ¢(£*(8;9)) =
¢*c(8,9), we conclude by showing that ¢(8;9) = d"c(g). Indeed,

a,(y, c(8;9)) = a,(y, 8;9)(0) = y3 " Ni(a) " & a(&, 8,9:)(0)
=y T NL@) T E T aE, ) = ap(y,dTe(@). O
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3. Twisted triple product L-functions

3.1. Complex L-functions

Let L/F be a quadratic extension of totally real number fields, Q <Oy and M <« OF ideals.
Two primitive eigenforms g € S¢ (V1(Q); L;Q) and fe Sk.w (V1 (N); F; Q) generate
irreducible cuspidal automorphic representations m,o of Gp(A), Gr(A) respectively.
Let 7" =71 ® |0|X/Lz, o'=0® |°|K,/.~2 their unitarizations, where n, m are the integers
satisfying n-tp =€ —2x, m-tp =k —2w. One can define a unitary representation of
Grxr = Respxr/r(GLopxF) by I =" ®o0". Let p: I'r — §3 be the homomorphism
mapping the absolute Galois group of F to the symmetric group over 3 elements
associated with the etale cubic algebra (L x F)/F The L-group “(Gpxr) is given by
the semi-direct product G x TF where 'y acts on G = GL,(C)*3 through p.

Definition 3.1. The twisted triple product L-function associated with the unitary
automorphic representation IT is given by the Euler product

L(s, T, 1) = [ LoGs, T, 1) 7"

where IT, is the local representation at the place v of F appearing in the restricted tensor
product decomposition IT = ®;} 1, and representation r gives the action of the L-group
of Grxr on C?® C?® C? which restricts to the natural 8-dimensional representation of
G and for which 'z acts via p permuting the vectors.

Let v be a prime of F unramified in L for which IT, is an unramified principal series,
e, vtMN- Nz/r(Q)-dpr. We Write_zer for a uniformizer of F, and ¢, for the cardinality
of the residue field of F,,. If v = ¥ - ¥ splits in L, the GLa(F,)*3-representation IT, can be
written as [Ty = w(x1, 7, x2,7) ® T (X, 7» Xy 7) ® T (Y10, ¥2,v) and the local Euler factor
is given by

Ly(s, Iy, 1) = 1—[ (1 - Xi,V(wv)Xj,7(wv)I//k,v(wv)qv_s)~ (7)
ij.k
If v is inert in L, the GLy(L,) x GLy(Fy)-representation IT, can be written as IT, =
T(X1.0» X2.0) ® (Y1 v, ¥2,,) and the local Euler factor is given by

Ly(s, Ty, 1) = [ [ (1 = xiw @) 0 @0)a, ") x [ [ (1= x10@0) x2n @)V, (@0)a, ).

ij k
(8)
Assume the central character wry of IT is trivial when restricted to A, then the complex
L-function L(s, IT, r) has meromorphic continuation to C with possible poles at 0, ‘1‘ 7.1
and functional equation L(s, IT,r) = e(s, I[1, r)L(1 — s, I1, 1) [31, Theorems 5.1, 5.2, 5.3].

Remark. The relation between Satake parameters of 7#, 0% and Hecke eigenvalues of the
primitive eigenforms g*, f* can be given explicitly as follows. Suppose v { Q and v = V44
splits in L, then
u _ 12 u u o _ 12 _ _
9" irory =42 (r @) + 0,0 @) ¢ ri, =l (0 7@ + 2 7@0) g

(9)
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Moreover, if v{Q and v is inert in L then

gu|T(UOL) =qv (Xl,v(wv) + XZ,v(wv)) g“. (10)

Finally, if v t 91 a finite place of F we have
Fire = 0/ (V1.0@0) + P20 (@) . (11)

3.2. Central L-values and period integrals

Let D;r be a quaternion algebra. We denote by P the irreducible unitary cuspidal
automorphic representation of D* (AL« F) associated with IT by the Jacquet—Langlands
correspondence when it exists. For a vector ¢ € IT? one defines its period integral as

1°(¢) = / ¢ (x) dx
[D*(AF)]

where [D*(AFp)] = A D*(F)\D*(Ar). To simplify the notation we write I(¢) to denote
the period integral for the quaternion algebra M, (F).

Theorem 3.2. Let n: Ay — C* be the quadratic character attached to L/F by class field
theory. Then the following are equivalent:

(1) The central L-value L(%, 1, r) does not vanish, and for every place v of F the local
€-factor satisfies ev(%, Iy, r) - ny(—=1) = 1.

(2) There exists a vector ¢ € T1, called a test vector, whose period integral 1(¢) does not
vanish.

Proof. (1) =— (2) By Jacquet conjecture, as proved in [34, Theorem 1.1], the
non-vanishing of the central value implies that there exist a quaternion algebra D/F
and a vector ¢ € ITP such that its period integral is non-zero, i.e., I?(¢) # 0. We want
to show that the assumption on local e-factors forces the quaternion algebra to be split
everywhere. Ichino’s formula [18, Theorem 1.1] gives an equality, up to non-zero constants,

~ 1
D . D
I -ID=L<§,H,r>-| [1]
v

of linear forms in HomDX(AF)XDX(AF)(HD(X)ﬁD,(C) where T2 is the contragredient
representation and the If’s are local linear forms in HomDX(AFv)XDX(AFv)(HE ® (I1P),,
C). Suppose v is a place of F at which the quaternion algebra D ramifies, i.e.; v | discD.
Requiring the value of the expression ev(%, 11,,, r)-n¢(—1) to be equal to 1 forces the
local Hom-space Hom px (s yx D% (A, (l'[ll)) ® (ITP),, (C) to be trivial [11, Theorem 1.2]; in
particular it forces the local linear form I{? to be trivial. This produces a contradiction
because the LHS of Ichino’s formula is non-trivial. Indeed, choosing the complex
conjugate ¢ € ITP = T2 of the test vector ¢ we compute that

12.10(p @) = \I%)f £0,

Hence, the discriminant of D has to be trivial, i.e., D = M, (F).

https://doi.org/10.1017/51474748019000021 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748019000021

Tivisted triple product p-adic L-functions and Hirzebruch-Zagier cycles 1963

(2) = (1) The existence of a test vector ¢ € Il implies the non-vanishing
of the central value L(%, IT,r) by Jacquet conjecture. Moreover, Ichino’s formula
provides us with non-trivial local linear forms, the I,’s, in the local Hom-spaces
Homar,ap)xGLyag,) (TTy ® (ﬁ)v, C) which force the equality ev(%, Iy, 1) -ny(—1) =1 for
every place v of F [11, Theorem 1.1]. O

Remark. We can give sufficient conditions on the eigenforms g € Sy (V1(Q); L; Q) and
feSkw(Vi); F : Q) such that the local e-factors of the automorphic representation
IT satisfy the hypothesis of Theorem 3.2. The local e-factor at the archimedean places
of F satisfy the hypothesis of the theorem if the weights of g and f are F-dominated
(Definition 1.1). Moreover, the same is true for the e-factors at the finite places if we
assume that Nz /r(Q) -dr,r and 91 are coprime and that every finite prime v dividing 0
splits in L [33, Theorems B, D and Remark 4.1.1].

Proposition 3.3. For all finite places v of F away from the level of T1 and unramified in
L/F, a newvector in I, is a choice of test vector for Ichino’s local linear functional.

Proof. If v is a place splitting in L, the claim follows from [32, Theorem 5.10]. We show
that the proof given by Prasad can be adapted to deal with the inert case as follows.
Our claim is that the image of the spherical vector under the non-trivial linear functional
Y : (%), — (c%),, unique up to scaling, is non-zero. As in [33, §4] we can assume that
("), is the principal series V, for the character of the Borel

X <g 2) = a(a)B(d)~" for unramified characters a, f : L — C*,

so that the representation V, can be realized in the space of functions over IP’ILU and the
spherical vector corresponds to the constant function 11?‘ The projective line IP’ILU can

be decomposed into an open and a closed orbit for the action of GLy(Fy),

]P);fu = (Piv \]P);‘u) ]_[P}:v’

which produces an exact sequence of GLj(Fy,)-modules

.. 1GLy(F, GLy(Fy 1/2
o_>1ndL:2(F)(X/)_>VX _>1ndB(;v()”( 811 —=0 (12)

for x': LY — C* the character defined by x'(x) = a(x)B(x). If IndCB;(LI?()F”)(X{)‘l/Z) is
1somorph1c to the contragradient representation (o), then we are done, because 1]P,1 >
PL # 0. Otherwise, suppose T(1P| ) =0. Let T, be the Hecke operator given by the

double coset

1= [6raor) (3 ) 6a0r) .

then the function
1
(qv+ D x8V*(wy

 (100y) = 903 @) = 0821 /) (13)
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is the constant function 1 on the GL2(OF,)-orbit of IP’}‘U consisting of those points that
reduce to a point in P! (O, /@) \ P! (OF, /@), and the constant function zero everywhere
else. Therefore, the function (13) is an element of 1ndGL2(F )( x) because of the short exact
sequence (12). The function (13) is sent to zero by T by GLj(F,)-equivariance, but at

the same time that is not p0851ble because we can explicitly describe the elements of
Homgy,(F, )(1ndGL2(F”)(X ), (6%),) in terms of integration over GL(OF,)-orbits of ]P’lLU

giving a contradiction. O

3.3. p-adic L-functions

Let g € Sex(Vi(Q); L; E), f € Sk (Vi(N); F; E) be primitive eigenforms defined over a
number field E whose weights are F-dominated. We assume the central character wp
of IT to be trivial when restricted to Ay, that the central L-value L(%, IT, r) does not
vanish, and that for every place v of F we have the condition EU(%, IT,, r)ny(—1) =1 on
local e-factors satisfied. Then there exists a vector ¢ € IT such that the period integral
I(¢) is non-zero (Theorem 3.2). Let J be the element

Ir
3= (‘01 ?) € GLy(R)F.

For any h € o we define h9 € o to be the vector obtained by right translation hJ(g) =
h(gJ). If h has weight k € Z[I¢] then hv(h) has weight —k.

Lemma 3.4. Let r € N[I] be such that k= +2r)r and w= (x+r)r. Then there
is an Op-ideal 2A supported on a subset of the prime factors of M-Np,r(Q)-dr/F
such that a test vector ¢ can be chosen to be of the form ¢ = (8rg)” (f‘j)” for g e
Sex(V11(ROL); L; E) and fe Sk.w(Vi1(R); F; E). The cuspforms @, f are eigenforms for
all Hecke operators outside M- Ny r(Q) -dr/r with the same Hecke eigenvalues of g and
f respectively.

Proof. By linearity of the period integral we can assume ¢ to be a simple tensor. We
can also assume ¢ = 8" @ v¥ € IT because the archimedean linear functional appearing
in Ichino’s formula is non-zero if and only if the sum of the weights of the local vectors
is zero. Moreover, Proposition 3.3 allows us to take 9, and v, newvectors for all finite
places that do not divide 91- Ny ,r(Q) -dr,/r. Note that spherical vectors are mapped to

spherical vectors by the isomorphism 7 ® o :3 7" ®@o" as in (3). Therefore we can write
dp=89®vd as (8QP* Q@ ()", for § € = and f € o of levels U(BOy) and U (B) for some
Or-ideal B supported on a subset of the places dividing M- Nz ,r(Q) - dr;r. We conclude
by showing that we can assume that g € S (V11 (2OL); L; E) and fe Skw(V11(2D); F; E)
for 2 = 9B2. Indeed, right translation by

10
y:<0b>’ bOfF =B,
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induces injections

Sex(U(BOL); Ly E) < Sy (V11(B*0L); L; E),
Sk.w(U(B); F; E) < Siw(V11(B2); F; E)

equivariant for the action of Hecke operators away from the level and that change the
period by a non-zero constant. O

When the test vector ¢ is as in Lemma 3.4, we can rewrite the period integral I(¢) as
a Petersson inner product

=  @gedra=( .7 (14
[GL2(Ap)]

where f* = (fﬁ) is the cuspform in Sk (Vi1(R); F; E) whose Fourier coeflicients are
complex conjugates of those of f. We conclude the section with a proposition showing
that a good transcendental period for the central L-value of the twisted triple product
L-function is the Petersson norm of the eigenform f*.

Proposition 3.5. Let E be a number field and let fe Sk.w(V11(R); F; E) be a vector in
an irreducible cuspidal automorphic representation o spanned by a primitive cuspform
fe Skw(ViiO); F; E). Then for any ¢ € Sk.w(Vi1(); F; E) the Petersson inner product
(o, f) is a E-rational multiple of (f, f).

Proof. We follow the argument of [7, Lemma 2.12]. The Petersson inner product (f, )
depends only on the projection efp of ¢ to o. The E-vector space e;Sk w(Vi1(2); F; E) is
spanned by the cuspforms

10
{fal fa(o) = frsa) gz, sa = (O a), aOF = a

for all ideals a dividing /9% ([29, Proposition 6] and [37, Proposition 2.3]). Thus, it
suffices to prove the statement for fg, and fq, when aj, ay | /9. We prove the claim by
induction on the prime divisors of aj, ay. If ajap = OF then the claim is clear. Suppose
there is a prime ideal p that divides both a; and az, then (fq,, fa,) = (fa;/p, fa,/p) because
the Haar measure is invariant under translation. Thus, without loss of generality, we can
assume p divides ap but not a;. We compute the equalities

T; fa,, far) = + 1) (fy, . f it p Lo
a(ZUmf)(fal»fuz): (O(wp) a1 a2> (Qp )< aj ﬂz/P> 1 pjf

(Uo(@p)ta;, fay) = gqplfa;, fay/p) if p |9,
that show
20D (fay faysp) i p 19T
(fCll s f02> = a(pw_ f) .
q;’ (fay fayp) ifp |,
concluding the inductive step. O
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3.3.1.

Construction. SupposE we are given primitive eigenforms g, € S, », (Vi(Q); L; Q)
and f, € Sk, w, (VIOOD); F; Q) with notp = £o —2x0, motp = ko — 2w, for ne, m, € Z. We
choose an element 6 € Z[I.] such that )p =0-tr, 6 =2 w, and set

o 0
ro=ro®) =y [M - (xo)u} € ZIIL).

2
nelp

Let p be a rational prime unramified in L, coprime to the levels Q, 9. We write P
(respectively Q) for the set of prime Op-ideals (respectively Op-ideals) dividing p.
We suppose @o, f, are p-nearly ordinary and we denote by ¥ € §IL1'0'(Q, x;Ig) and
F € §I;o'(‘ﬁ, ¥; 1#) the Hida families passing through nearly ordinary p-stabilizations
g and 1", We have iz, (@0 = XoNT° and ¥z, oy, = YoN"° for characters
Xo il (Q) — CX, Yo :clE(M) — C* and we suppose that xop-yo=1. Let F* ¢
§IFLO'(Q(, Y2y Ig+) [14, § TF] be the twisted Hida family, where Iz« = I#(¥2) as an
AF’I//o_zw—algebra.

Set Ky 7+ = Ig®0l7+) ® Q, Ky = Iy ® Q and K g+ = Iz« ® Q. We define a Ky-adic
cuspform ¢ (respectively Kz+-adic cuspform F*) passing through the nearly ordinary
p-stabilization of the test vectors o, f* as in [7, §2.6]. Let 7 = > per, Tu iy with
ru € Z/(qp, —1Z, denote the reduction of r,. We define a homomorphism of
O[GL(Vi(AOL))]-modules ;d3%'P) : hy (AOL; O) —> Ky z+ by

60—,

G (T3 [y ®INL/F ) ™2 yp) T () iy, € OF,

otherwise,

dy 9P (2)T(y)) =

where Ky g+ is given the O[Gr (V1 (21Or))]-algebra structure [(z, a)] — g”u((z)T(afl, 1)

—0+1p

[a)"N®[N/r(@)' @) 7 w@ ™ and () : Of , = (Of Dpro-ps @ : Of , = (Of Dtor
are the canonical projections. The composition of the natural maps h}°(A; O) —
hr L, O) > hy(RAOr; O) with the homomorphism ng.gvlp] thp(AO0L; 0) — Ky 7+
defines a nearly ordinary Kg #+-adic cuspform en.o,g“*(;d(;gﬂpl)egrlfio'(Ql, VY
Kg,y*)

Proposition 3.6. Lets : Ir — Ip be any section of the restriction 1, — Ip, pu +— pp. For
any arithmetic point (P, Q) € W, with r(0) a lift of r, we have

en.o.8 (rd§ 9PN (P, Q) = eno.t*(d" L") = ten.o. " (@G,
Proof. For an arithmetic point (P,Q) e W, with r(0) a lift of r, the explicit

description of ;de'g”v”)] produces the equality of modular forms en,o.g*(;de’{i[P])(P, Q) =
en,o,g*(dr(g)g[gj]). Let now p, u' €Ip, u # i, be such that v = ujr = /Ll’F. A direct
computation shows that 0= en.0.d:{*g = en.o0.{*(d, +dy)Q for any g, which implies
en_o_g“*(dﬁg) = (—1)"‘en,0.§*(dz,g) for any o € N. When g = g[P] is P-depleted, we also
have ey 0.0 *(d%g™)) = (—1)aen,0,;*(d5,g[7’l) for any o € lim, Z/p"(gp, — 1) by taking
p-adic limits. Thus, the second equality follows. O
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Lemma 3.7. There is an element J(en_o,f*(;dgg[P]), ﬁ*) € Iy®oFrac(ILz+) such that for
any crystalline point (P, Q) € W, with r(0) € Z[1.] a lift of r, we have

<en.0' c* (d’(e)Q[FZD]), fa(p)>

J(en.o.C*(ngg;[P])’ j*)(P’ Q = (f*(p) f*([’))
Q 'Q

(15)

Proof. We follow the argument of [7, Lemma 2.19]. Both Z* and the F*-isotypic
projection eg«¢*(7d39P") are Iy®oFrac(Iz+)-linear combinations of the Iz-adic
cuspforms F#} for a|A/M. Hence, the element J exists because we can interpolate

expressions of the form . ) )
#(p)  ek(p #(p) ex(p
fara: faal/ Q" 1)

for Q € A°(Iz+) using the explicit computations in the proof of Proposition 3.5 and the
fact that 2l is prime to p. O

Definition 3.8. The twisted triple product p-adic L-function attached to ({!”u, .0, f) is
the meromorphic rigid-analytic function

P LG, F)  Wg 5+ — C,
determined by J(en.o,g*(;dgg”u[m), ﬁ*) € IyQpFrac(Iz+).

Let hpgq = efa,nlo.g*(d’(e)ég)]) with nearly ordinary p-stabilization hg’)Q =(1-

ﬂfa V(p))hpq. By definition en,o,hgé = hg’é, that results in the equality hg’é =

en,oAhgng = (1 By, ozfg)en‘o.hp’Q. More explicitly, if we set E(f) = (1 — ﬂfaafg),

(p)
<[P
<ef’é,n.o.§*(dr(0)g£3 ]))

that allows to rewrite the values of the p-adic L-function at every crystalline point
P, Q) e W, with r(0) € Z[I.] a lift of , as

1 (en.o.f*(dr(e)ggp])f f’é)
E(fy) {f6 o)

= E(f) - e mo. ¢ (@ P30

PL)G . F)P,Q) =

(16)

3.4. Interpolation formulas

The interpolation formulas satisfied by the twisted triple product p-adic L-function
include Euler factors that depend on whether the primes in P are above a prime of
F that is split or inert in the extension L/F. We partition the set of primes of F above
p accordingly to the splitting behavior in L/F, Q = Qinert | [ Qspiit- For every prime
Of-ideal p € Q we denote by g, the cardinality of its residue field.

Inert case. For a prime ideal p € P with p = pNOF € Qipert, We write p = pOf.

Lemma 3.9. Letg € S¢ »(V11(”OL); L; E) be a T (p)-eigenvector, f € Sg»(Vii(M); F; E) a
p-nearly ordinary eigenform. Suppose N | A and that the weights of g, f are F-dominated.
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If we denote by e n.0. = efen.o. the composition of the f-isotypic projection with the nearly
ordinary projector, we have

ein.0.0* (A1) = €59, Detno.t* (d°9)  for £o(0. 1) = (1—agey 'q,") (1 - By g, ).

where ag, Bg are the inverses of the roots of the T (p)-Hecke polynomial of g and ot is
determined by (en,o,f)|U(wp) = qf-enof.

Proof. Let ggf’) = (1 - BgV(wyp))9g, gl(sp) = (1 —agV(wp))g be the two p-stabilizations

of g, they satisfy U(wp)gﬁp) = (.)gﬁp) and g=1/(ag —ﬁg)(agg((f) —ﬂgg/(sp)). Using

Proposition 2.11, we compute

einol*|d" (1= V(@) oU(@y)) 9P | = etno ™| (1 - (0)V(wy))d g
[
= efn.o. (1 — (0)g," V(%)) £ g®)

= (1- @5 ") ernot™@g).

Noting that the p-depletions of the p-stabilizations are equal, (g((f))[pJ = (g/(sp))[pJ =gl
we deduce the claim:

1
ef,nAo.g*(drg) = ,3 (agef,nlo.f*(drgép)) - ﬁgef,n.o.g*(drgit}p)))
—Fg

1
= ef,n.o.g*(drg[p])' O

(1 —(Xg()lf_lqg)l) (1 - ﬂgaf_lq,{;])

g

Split case. For a prime ideal p € P with p = pNOF € Qgplit, we write pOp = pip2.

Lemma 3.10. Let Q be any Op-ideal and g€ Sex(V11(Q); L; E) a cuspform.
If i,je{l,2), i#j, UPe(@PNv,)) =0, which implies eno.l*(@vwy)) =
en.o0.0*(U(@p,)9)|V(wy))- In particular, en.o.0*(9P1P2)) = en.0.0* (@) = en.o.0*(@lP?).

Proof. For any y € (/’)?Fof>+ we can compute that

a,(y, U (@ Dviap))1) = p5 " ap(py, £ (@D v (o))

=C Y a,Eydp'de, @)y, ) (EdL)pET T,
Trp/r)=p

where C is a non-zero explicit constant. Suppose that a,,(éyd}ldL, (g[p-/’])|v(wpi)) #0
for some & € L with Trz/r(§) = p, then &ydp'dr € OLLY ., @y, | (6ydz'dr)p, and
@y, 1 (Syd;ldL)pj. Since p is unramified in L, that is equivalent to @y, | (§y)p, and
@y, J((Sy)pj which implies that @y, { (Trz/r(€)y)p; = (py)p;. This is absurd.
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[p;l,(pi)

Regarding the second claim, for any p;-stabilizations g, we have that

eno0.0*(9P1P?) = eno.0*((1 = V(@y)U (@y,))0e S ))

en.o.¢ ((1 — (‘)V(Wp,))g[p’] J(pi ))
( [Pl (pi ))

én.o.¢

Taking the appropriate linear combination we prove the statement.

1969

O

Lemma 3.11. Let g € S¢x(Vi1(ROL); L; E) be an eigenvector for the Hecke operators
T(p1) and T(p2), f € Skw(Vi1(N); F; E) a p-nearly ordinary eigenform. Suppose I | A
and that the weights of g, f are F-dominated. For «;, B; the inverses of the roots of the

T (pi)-Hecke polynomial for @, i = 1,2, and (en.o.D|v(w,) = - en.o.f we have

tnod(d'g™) = CR)

ef,n.o.g*(drg)s

where

&p(9,f) = H (1 —01*201(161651), 60,09, ) =1 —(11/31@2,32(0!{16151)2.

o xc{a,f}

Proof. Let g(p’ = (1= B V(wyp;))9, g(p’ = (1 —a;V(wyp,;))g be the two p;-stabilizations

(pi) (pi)

of g. They satisfy U(wyp,;)0e
Lemma 3.10 we compute

= (0)Qs

ol [d’ (g(.””)[p"]] = €m0 [d7 (1= @)V (@ g ]

= ‘el‘,n.0.§->|< [drgﬁpi)] - (')ef,n.o.g* I:dr(U(ij)ggpi))\V(wp)]

and g =1/(c; — ) (i — pigff"). Using

= im0 [d9P0] = @00 gy etn 0. [ (T o)) — iV (e e ] (17)

Recall that g(p‘ is an eigenform for the operator T'(p;) of eigenvalue «; 4 8;. The chain

of identities in (17) continues as:

ef,n.o_t*[d’ (ggpn)[p[]} :ef’n.o_g*[drggp»] (o) —1[(a/+ﬁ1)efn0§ [drggpn]Jr

—jBjetnol” [d U@ ] |
= (1 — (@i g (@ + ) + B [(-)af‘q;f) tnod" (4'gP)

— (1= @ a;") (1 - @Bja a5 ) erno” (a76).
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Finally, noting that (gf)}?i))[p"] =

identities to prove the claim:

(gl(g’ji))[pi] =gl we can put together the previous

ef,n.o.g*(drg) = (aief,n.o.g*(dr fxfi)) _ﬁief,n.o.g*(drggi)))

a; i
l—aiﬂiajﬂj((xf_] _1)2 _
= ey efn.0.0 (@ gP). O
[T A—eixjay gp)
o, xc{a, B}

Theorem 3.12. The value of the twisted triple product p-adic L-function éfg(?, F)
W — C, at all (P,Q) e CF satisfies

P LG, F)P.Q) =

E(f )
Sp@p-fy | (6 (" 0g) Ty
| T1 &r.fy T[] * | |
£€Qinert 9€Qepiit (g)O,go(gP,fQ) (f*Q fQ)

where s : 1Ip — Ip is any section of the restriction I — Ip, u+— ur and the Euler
factors appearing in the formula are defined in Lemmas 3.9 and 3.11.

Proof. We use (16) and Proposition 3.6 to obtain an explicit expression for the value of
the p-adic L-function at a point (P, Q) € C%r. Then Lemmas 3.9, 3.11 give us

1 leno g (@G T

P LG, F)P.Q) = £

o )
1 o (9P, Tty
E(fQ) K’JeQinert peQ plit g} KJ(gP fQ)

fenod* (@7 gp). o)
(f*Q f’é)

We conclude the proof applying Lemma 2.13 to compare p-adic and real analytic
differential operators on cuspforms: ep o¢*(d*“™F)gp) = en.onholg*(sﬂw—xw)gp). O

X

Remark. Recall that for every (P, Q) € C%’f there is a unitary automorphic representation
[Tp,q of prime-to-p level. The Euler factors in Theorem 3.12 also appear the expression
for the local L-factor LKJ(%, [p q.1). Indeed, if p € Qjnert by using (11), (10) we compute

Ep(9.f) = (1 —otgafjlqsgl> (1 —ﬁgafilq&;l)
= (1= 010 @i p@)a5 ) (1= 20,0 @) Wi o (@105 1)
Similarly if o € Qgpli¢ by using (11), (9) we obtain
5@ =[] (1-ernea;") =TT(1 = tim @) tip @) o @), ?)

o.x€fa. B} iJ
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4. Geometric theory

4.1. Geometric Hilbert modular forms

Let F be a totally real number field and Gy = Resy,g(GL2, r). For any open compact
subgroup K < Gr(A®) we consider the Shimura variety

Shx (GF)(C) = Gr@QN\&H)' x Gr(A®)/K

where y € Gp(Q) = GLy(F) acts on z = (z¢)r € (HF)F via Moebius transformations
y -z =(t(y)zr)z.- The complex manifold Shx(Gg)(C) has a canonical structure of
quasi-projective variety over its reflex field Q [28, Chapter II, Theorem 5.5]. Let w be the
dual of the tautological quotient bundle on IP’%: with p: o — IP’(%: the natural projection.
The group GL,(C) acts on ]P’(%: via Moebius transformations and there is a natural way
to define a GL(C)-action on w such that the projection p is equivariant. For any weight
(k, w) € Z[1)? such that k —2w = mtp, one can define a line bundle

w®" = ® pry <w®kf ® det m+2kr> (18)

‘L'GIF

on (Pé:)IF with G r(C)-action given as follows. For each 7 € Ir, the action of G¢(C) on
pry (a)‘g’kf ®det%) factors through the t-copy of GL,(C), which in turn acts as the

product of det% and the k;-th power of the natural action on w. One has to twist the
action by such a power of the determinant because it allows the line bundle to descend
to the Galois closure FG2 of F over Q. Indeed, consider the subgroup Z; = Ker(Np/Q :
Resrp/q(Gp) — (Gm) of the center Z = Resr/@(Gy) of G and denote by G the quotient
of G by Zs. The action of G¢(C) on o®™) factors through G%(©), thus w®") descends
to an algebraic invertible sheaf on Shg (G )¢ if K is sufficiently small by [28, Chapter I1I,
Proposition 2.1], and it has a canonical model over F Gal [28, Chapter ITI, Theorem 5.1].

Suppose F # Q, then for every field E, F Gal - F c C, and sufficiently small compact
open subgroup K < Gg(A), one can give a geometric interpretation of Hilbert modular
forms of weight (k, w), level K, defined over E as My (K; E) = HOShg (GFp)E, Q(k’w)).
To deal with cuspforms and treat the case F = Q, one has to consider compactifications
of the Shimura variety Shx (G r)g, which we discuss in §4.2.

4.1.1. Integral models. Fix p a rational prime unramified in F and consider a level
structure of type K = K” K, where K? is an open compact subgroup of G F(@;p ) and
K, = GL2(OfF ® Zp). The determinant map det : Gr — Resr;p(G;,) induces a bijection
between the set of geometric connected components of Shg (Gp) and cl‘; (K), the strict
class group of K, cl;(K) =F} \A;O’X/det(K). Since det(K) C @?X, there is a surjection
Cl-;,:(K ) —» clJIE to the strict ideal class group of F, which one uses to label the geometric

components of the Shimura variety Shg (G ). Fix fractional ideals ¢, ..., €t coprime
to p, forming a set of representatives of cl?. Then by strong approximation there is a
decomposition

Shg (GF)(©) = GO x Gr(A®)/K = [] Shi(Gr)(©),

[cleclf
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where each Sh% (Gr)(C) is the disjoint union of quotients of Hlr by groups of the
form I'(g, K) = gKg ' NG(Q)T. A different choice ¢’ of fractional ideal representing
[c] € cl;E produces a canonically isomorphic manifold Sh;é(G F)(C) = Sh% (GF)(C) [38,
Remark 2.8]. Suppose K?” is sufficiently small so there exists a smooth, quasi-projective
Z(py-scheme M representing the moduli problem of isomorphism classes of quadruples
(A, 1, A, agr);s where (A, 1) is a Hilbert-Blumenthal abelian variety over S of dimension
g =1[F :Q], A a c-polarization and agr a level-K? structure, [38, §2.3].

The group of totally positive units (9; 4 acts on Mp by modifying the c-polarization.
The subgroup (K N OF)? of O, acts trivially, where by K N OF we mean the intersection
of K and OF < Z(A%®) in Gr(A™). Therefore, the finite group O;’+/(K NOF)? acts
on the moduli scheme M and the stabilizer of each geometric connected component is
(det(K)NOF | )/(KNOF)2.

Proposition 4.1. There is an isomorphism between the quotient of M?il((C) by the
finite group (’);4_/(1( ﬁ(’);)2 and Sh (G r)(C). Moreover, if det(K) 0(9;’4_ =(KnN (9;)2,

then the quotient map M?il((C) — Sh% (GFr)(C) induces an isomorphism between any

geometric connected component of M?il (C) and its image.

Proof. This is [38, Proposition 2.4] with a shift in the indices by the absolute different. It
is necessary for the conventions for the complex uniformization used in [15, §4.1.3]. O

Definition 4.2. Let p be a rational prime unramified in F and K = K” K, a compact open
subgroup of G p(A*) such that K7 is sufficiently small, K, = GL2(Of ® Z)) and det(K) N
Op . =(KnN OF)?. The integral model of the Shimura variety Shg (GF) over Z,) is the
quotient of Mg p = ]_[[C]Ed; M by Op /(KN Or)?, which we denote Shg (G F).

Note that the assumptions on the level K in the definition are always satisfied
up to replacing K? by an open compact subgroup [38, Lemma 2.5]. Moreover, by
Proposition 4.1, the scheme Shg (GF) is smooth quasi-projective over Z,) and has an
abelian scheme with real multiplication over it.

Remark. The scheme M?{l is an integral model of the Shimura variety for the algebraic
group G7. of level K N G7.(A™) [35]. We denote it by Shx (G7}.) and we let & : Shg (GF}.) —
Shg (GF) be the natural morphism.

4.1.2. Diagonal morphism. Let L/F be an extension of totally real fields with
[F:Q]=g. Consider the map of algebraic groups ¢ :Gr —> G defined by the
natural inclusion ¢(B) : GL2(B ®g F) — GL2(B ®q L) of groups for any Q-algebra B. For
compact open subgroups K < Gp(A®) and K/ < KNGp(A*®) we have a commutative
diagram
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Shg/(G F)(C) ——= Shg (G1)(C) (19)

det l l det

E(K) — = IF (K)

L |

cl'}; - cl'LIr

hence for every fractional ideal ¢ of F there is an induced map ¢ : Shi/(Gr)(C) —
Sh% (G)(C). Suppose that K < G (A™) and K’ < K NG r(A™) satisfy the assumptions
in Definition 4.2. There is a morphism of Zy)-schemes ¢ :Shg/(Gr) — Shg(GL)
induced by morphisms ¢ : Mg p— Mg, that maps any quadruple [A, ¢, A, agnrl/s
over a Z(p-scheme S to the quadruple c ([A, 0N, a(K’)p]) =[A, /N, al, /s over S
defined as follows. First, the abelian scheme A" is A ®o, Or, then we can describe the
Or-action on O via a ring homomorphism ¢ : Op — M,(OF) by choosing an Ofp-basis
of Op; the choice of basis induces an identification between A ®», O, and A8. Thus, the
ring homomorphism ¢’ : O — Endg(A’) is defined as the arrow that makes the following
diagram commute

0 - L My(OF)

.

M, (En&S(A)) =~ Endg(A")

Following [5, Lemma 5.11], one can compute the dual abelian scheme (A’ )v =
AY ®0, 0 )p and realize that if A : (¢, ¢") > (Homg™ (A, AY), Hom™ (4, AV)") is a
c-polarization of A then ' =A®id is a ¢®p, DZ}F—polarization of A'=A®0, Or.
Finally, it is enough to define ¢ for principal M-level structures, for M an Op-ideal.
A principal M-level structure is an Op-linear isomorphism of group schemes (O /91)2 S
A[N] which induces an isomorphism Of /N > um 7z c_lbgl, using Weil pairing and
polarization. By tensoring such an isomorphism with O over Of we obtain a principal
MN-level structure on A’.

Remark. For any fractional ideal ¢ of F there is a commutative diagram

1

1 = 1 = _
M;(D,FF _f . M?LL ., implying Shg/(GLs g) LI MZLL when F = Q.
ShS,(Gr) —— ShS, (G) Shx (G1)

4.2. Compactifications and p-adic theory

Sometimes we drop part of the decorations from the symbols denoting Shimura varieties
when we believe it does not cause confusion, both to simplify the notation and to state
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facts that hold for both groups G and G*. We denote by Shy the minimal compactification
of Shg which is normal and projective. By choosing some auxiliary data X, one can
construct an arithmetic toroidal compactification ShtKO,rE smooth and projective over Z,).
It comes equipped with a natural map § : Sh%nr —> Sh% and an open immersion Shx —
Sh}?r such that the boundary D = Sh}?r \ Shg is a relative simple normal crossing Cartier
divisor. The Hilbert-Blumenthal abelian scheme A over Shg extends to a semi-abelian
scheme A%% — Sh?r with an Op-action, a K-level structure and a zero section e : Sh}?r —
A% ([35]; [23], Chapter VI). There is a canonical way to extend the rank 2 vector bundle

of relative de Rham cohomology H(liR(.A/ Shk r) to an (OShg(or ®z OF)-module H' locally

free of rank 2 over Sh%”rR together with a logarithmic Gauss-Manin connection and

Kodaira—Spencer isomorphism. If @ = e* (QL\sa /Shtor) is the cotangent space at the origin
K

of the universal semi-abelian scheme, the vector bundle H' has an O p-equivariant Hodge

filtration

0 ® H! Lie((A%)Y) —— 0.
Let R be an Opca (,)-algebra in which the discriminant dr/q is invertible. For a coherent

(OSh}(orR ®7 Op)-module M, we denote by M = @tdF M its canonical decomposition for

the Op-action [21, Lemma 2.0.8]: M; is the direct summand of M on which OF acts via
7:0Fr > R — OSh;O';?' Then the t-component of the Hodge filtration is

0 ) H! ANHH Qe ' —=0.

T

For a weight (k, w) € Z[Ir]*> with k — 2w = mtp, we define the integral model of the line
bundle (18) by

m+kg
0f" = @ ((WHH T g ok)

IEIF

as a sheaf over Sh'}grR (G). The geometric definition of cuspforms is given by Sg ,(K; R) =
HO(Shig"(G)r, 0™ (~D)).

Remark. A general compact open subgroup K < G(A®) of prime-to-p level does not
satisfy the assumptions in Definition 4.2. Anyway, one can work with modular forms
of level K by considering a subgroup K’ that does satisfy them and then take
K /K'-invariants [38, §6.4].

Definition 4.3. Let R be an OFGal’(p)—algebra and let (k,v) € Z[Ir] x Z be any weight.
We fix one 1, € Ir and set /\ZH}) = /\ZHL. We define a line bundle over Sh}?fR(G*) by

wi” = (WHD) M @ R ok

IEIF

It provides a geometric incarnation of cuspforms on G* of weight (k,v) € Z[Ir] x Z by
setting S, (K; R) = HO(Shi¢" (G*)g. 0y (~D)).
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According to [38], a weight (k,w) € Z[If]?, k —2w = mtF, is cohomological if 2 —
m > k; > 2 for all v € Ir. For any cohomological weight we deﬁne the vector bundle
FE on SKEH(G) by FE = @01, FE for FEW 1= (A2HD 7T @ Symbr2HL.

TGIF T
Similarly, a weight (k,v) € Z[Ip]xZ is cohomologlcal if k> 2tp and v > k—tr|.

For any cohomological weight we define the vector bundle Ig‘;”) on ShtKO,rR(G*) by

]:'(k V) . . (/\ZHI)V-HIF k| ® ®r€IF

H' induces by functoriality logarithmic integrable connections V : ]_-ék,w) = f((;k,w) ®
! k) k)

QShtor (G) (log D) and V : ’FG* ‘FG* ® Q

the complexes

Sym**—2H.. The extended Gauss-Manin connection on

ShEE™, (G*) (log D) out of which one can form

DR® 7_- k, 7_— k, v k,
( ( w)) [0 ( w) 7_—( w) ®52§h;€rl€( )(log D) — Oi| s (20)
. k, k, F k Q8 —
DR (.; ( V)) I:O — ]:( V) _) ( U) ® Shtor (G* (log D) 0] <21>

equipped with their natural Hodge filtration. We denote by DR? (fék’w)) (respectively
DR:(]—'(G]Z;U))) the complex obtained from (20) (respectively (21)) by tensoring with
OSh?rR(G)(—D) (respectively OShtlgrR(G*)(—D)). One can associate to DR'(}‘g‘,w))’

DR* (f((;k; v)) and their compactly supported versions, dual BGG complexes. We recall the

definition of BGG(fg;v)) and we refer to [38, §2.15] for the definition of BGG(]—'ék’w)).
The compactly supported version is obtained by tensoring with the sheaf of functions
vanishing at the boundary divisor. For any subset J C If, let s; € {1 HF be the element
whose t-component is —1 if t ¢ J and 1 if t € J. For 0 < j < g we put

BGG/(FE = @@ wih®Ve
JClp #I=j
for ey the Cech symbol and a)” (k) (/\2H y—He\J1= Yreskr @ ®,¢, k@ ®,€J [
There are differential operators d : BGG/ (fék*v)) — BGG/H(]:(k U)) given on local

sections by d : fej Zr¢] Ok, (Her Aey where Oy, —1(f) = _1 ;), ZS 10(&)k (&)
asgc]S if the local section is written as f = ZS asqs.

Theorem 4.4 ([38, Theorem 2.16]; [25, Remark 5.24]). Let R be an FS®-algebra, then
for S:}"g(’w) (respectively .7-"8(,;”)) there are canonical quasi-isomorphic embeddings
BGG‘(S) — DR'(S), BGG;(S) — DR:(S) of complexes of abelian sheaves on

h}?R(G) (respectively Sh'}grR(G*)). Moreover, the Hodge spectral sequences for both
complezxes degenerate at the first page.

4.2.1. p-Adic theory. Katz’s idea for a geometric theory of p-adic modular forms
[20] consists in removing from the relevant Shimura variety the preimages, under the
specialization map, of those points in the special fiber that correspond to non-ordinary
abelian varieties.

Let E C C be a number field containing FGal The fixed embedding ¢, Qe @p
determines a prime ideal g | p of E. We denote by E, the completion, O the ring
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of integers and « the residue field. Let A}* be the semi-abelian scheme over the

special fiber Sh%)ﬁ( of the Shimura variety. The determinant of the map, induced by

Verschiebung V : (A%)(P) — A2 hetween cotangent spaces at the origin, corresponds to

a characteristic p Hilbert modular form Ha € H O(Sh?ﬁ(, det(w)®P~D), called the Hasse

htor,ord
K.k

invariant. The ordinary locus S is the complement of the zero locus of the Hasse

invariant. Let 5’12‘” denote the formal completion of Sh'}?rop along its special fiber and

j: ]Sh?ﬁ(’ord[ S flt(orrl ¢ the inverse image of the ordinary locus under the specialization

map sp : Y}é‘?ﬁig — Sh%o,rk. Let F be a coherent sheaf on ylt;,);ig; one defines jTF to be the

sheaf whose sections on an admissible open U C Y}é‘?ﬁig are the direct limit of (VN U, F)
computed over strict neighborhoods V of ]Sh'}?ﬁéord[ in 5’[2?; o

For the minimal compactification Sh’}}’ . one can similarly define the ordinary locus
Shy;(’f);d of the special fiber, which is an affine scheme, since det(w) is an ample line

bundle on Sh}‘(’ .- This is a very convenient feature because it implies the existence of a

fundamental system of strict affinoid neighborhoods of ]Sh}}’f’Kr d[.

Theorem 4.5. We recall that overconvergent cuspforms of weight (k, w) € Z[Ir)* are

defined as SZ’w(K;EK,,) :Ho(ﬂ;{"’;g,jT((L)g"w)(—D))). For any cohomological weight

(k,w) € Z[1g]>, k—2w = mtp, the hypercohomology group HSE (Ylg?fig, jTDR; (fg’w)))
can be computed either as

0 to: - ((k,w) g
Slj,w(K; Ey) Hrig (yK,;ig’ J (}-G ® Qy]g?fig(c)))
or .
i : 0 ) -1
ZIEIF Or k-1 (Ssr-(k,w) (K E@)) VHrig(yIt((,);ig’ ]T(]:G Y ngtor ‘(G)))

K. rig

Proof. This is essentially [38, Theorem 3.5]. For completeness we write down

the argument for the second computation. Theorem 4.4 states that we have a

quasi-isomorphism of complexes DRz(]-"((;k ’w)) = BGG;(]—'((;k ’w)), thus the isomorphisms
t : o Tkw)\) ~ : (k,w)\) ~ . .

HE (yK?;ig’ ]TDRC (]:G )) = H¢ (yl?rig’ ]T f* BGGC(]:G )) = HS (yl?rig’ JT f* DRC

(]-"((;k w>)) follow by applying the Leray spectral sequence for the composition Ylt(olfig —

S rig — SpaQ, and the vanishing of the higher derived images of subcanonical

automorphic bundles [24, Theorem 8.2.1.2]. We conclude that

0 b : (k,w) g
H (‘SﬂK?llrrig’ JT(]:G ® legor (G)))

rig rig

12

HE (78 DR (FE))

,rig’

. k, —1
VH( e LT 00 )

because there is a fundamental system of affinoid neighborhoods of the ordinary locus
on the minimal compactification. O

Remark. Replacing the group G by G* in Theorem 4.5, the conclusion still holds for any
cohomological weight (k, v) € Z[If] x Z and the group Hg(ytor ,jTDR:(fék*’v))), if we

K,rig
define overconvergent cuspforms for G* as S;;’I(K; Ey,) = HO(YIE")rrig, jT(gg,}'))(—D))).
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Lemma 4.6. Let p | p be a prime Op-ideal. The partial Frobenius Fry [38, §3.12] acts
on the image of SZ’w(K, E,) in the hypercohomology group HS (ylt(orrlg, jTDRZ (}'ék’w))) as
Frp =NpmVp).

Proof. Taking into account the action of the partial Frobenius on jTQ# the same

5l

computation as in [6, Remark p. 339] shows that Fry, acts on the image of Skqw(K, Ey)
_ Q—m)tp—k
in H8 (5”t K, rig’ J DR (]—"((;k’w))) as wﬁ T [p], since [p] is the operator that acts

on g-expansion by a(y, fip) = a(ywp_l, f). We conclude noting that [p] = tF YV (p) as
operators on S;;w(K, Ey). O

If we denote by U, the operator defined in [38, §3.18], the equality UyFr, = (p*])wff
of [38, Lemma 3.20] implies that U (p) = Uy (p) as operators on SZ,w(K; E). In particular,

we can restate [38, Corollary 3.24] by saying that if f € Séj ew
eigenform for Up(p) with non-zero eigenvalue Ay, then

val, (Ap) > Z (kr — 1) (22)

TGIF_p\J

)(K; Ey) is a generalized

where If is the subset of those embeddings F L)@ that induce the prime p when
composed with the fixed p-adic embedding ¢, : Q — Q,.

Corollarl 4.7. Let F/Q be a real quadratic field in which pOp = p1py splits. Let f e
Sk.w(K; Q) an eigenform of prime to p level. Then the p-adic cuspforms dllfk'(f[p"m]),

51’2171{2 (fler-p2ly are overconvergent.

Proof. We prove the corollary building on an idea of Loeffler et al. [27, Proposition 4.5.3].
Let 1 —a(wyp,, H X + Ef(;tﬁz)ar'fz_”r X2=01- ap2X)(1 — Bo.2X) be the Hecke polynomial of f
for To(p2). We denote by fy,, fg, the two pr-stabilizations of f and without loss of generality
suppose val,(ag2) < val,(Bo2). If we write ©; = ®rl,kr,-fl for i = 1,2, then the classes
of fapzl], f[pl are trivial in the quotient % because they are annihilated by
the invertible operator Up(p1). Consider the Hecke-equivariant projections pr; : Im(®1) +

Im(®,) — Irn((g]n)l(#(()z) for i = 1,2. We immediately see that prz(f[pll) = 0 because of

the lower bound (22) on the slopes of Uy (p2), therefore pr,(fiP1) = %prz (f[pl]) which

implies Up(p2)pr, (fP1) = Boo - pro(flP1)). We claim that [py]pr, (flP1]) = B0 P2 (flely,
Indeed, the equality of Hecke operators Tp(p2) = Uo(p2) + 0.280.2[p2] allows us to
compute that

1
[p2]pr, (flP1l) = [To(p2)pra (P11 — Uy (p2)

£2.0 [p1]
ap,2B0,2 —ayg 2P ]

B2,0

1
[apa, Hpro(1P1)) — o 2prp (F1)] = Eprz(f[m)'

a0,2P0,2

Thus, pr, (fP1-P2l) = 0. By exchanging the roles of the two primes pi, p» we also have that
pr; (fP1-P2ly = 0, which proves fP1-P2] € Im(®1) NIm(O;). O
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5. A p-adic Gross—Zagier Formula

5.1. De Rham realization of modular forms

Let E be a number field, following Voevodsky [39] we consider two categories of motives
over E: the category of effective Chow motives denoted by CHM®f with a natural functor
h: SmProj, p — CHM® from the category SmProj,r of smooth and projective schemes
over E, and the triangulated category DM®T of effective geometric motives with the
natural functor Mgy, : Sm/p — DM from the category Sm/g of smooth schemes over
E. Since number fields have characteristic zero, these two categories are related by a full
embedding CHM® — DM®f that makes the diagram

SmProj,g — Sm/qg

hl lMgm

cuMeft — = pwveft

commute [39, Proposition 2.1.4 and Remark].

Let F be a totally real number field of degree g over Q and let E be any field containing
FGal The Shimura variety Shx (G*)g has a universal Hilbert-Blumenthal abelian scheme
A — Shg (G*), the Op-action induces a ring homomorphism F < Endgy, g+ (A) ®z Q.
We denote by CMH(Shg (G*)) the category of Chow motives over Shg(G*) [9]. Since
the decomposition of the Chow motive h(A/Shg (G*)) = €P; h; (A/Shg (G*)) of A over
Shg (G*) is functorial [9, Theorem 3.1], there is an isomorphism of Q-vector spaces
[22, Proposition 2.2.1]

Endgn, 6+ (A) ®2 Q — Endcamshg ) (b1 (A/Shg (G*))) ®z Q.

One denotes by e; € EndcumShy 6+ i (A/Shx(G*))) @z E, © € If, the idempotents
coming from [[, F = F ® E — Endcumshg 6+) (1 (A/Shk (G¥))) ®z E.

Definition 5.1. Let k € N[If], k > 2tr. The relative motive VK € CHM(Shg (G*)) g is
defined as
VE = (X) Sym* hy (A/Shk (G*))*

IGI[:

following the conventions of [22, p. 72] for the symmetric products. The motive
VK is a direct factor of h(AK=2rl/Shg(G*)), where AK-2Fl denotes the (Jk|—
2g)-fold fiber product of A over Shg(G*), thus it corresponds to an idempotent e €
CHSWKI=28) (AR=217] s gy gy AK=2F1) @7 E such that Mgm (AK=2Fhex = Pk,

Proposition 5.2 [41, Corollary 3.9]. Suppose k > 2tr and let Uy_zg be any smooth
compactification of AKXl then the graded part of weight zero with respect to
the motivic weight structure on CHM%H, GroMgm (A‘k*””)ek, is canonically a direct
factor of the Chow motive Mgm(Uk—2¢). Hence, it corresponds to an idempotent 6y €
CHSUK=28TD (U _» 0 x g Up—24) ®Z E.
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Proposition 5.3. Suppose F =Q and let k>2 be an integer. For any smooth
compactification Wi_p of the (k—2)th-fold product of the universal elliptic curve &
over the modular curve Shg/(GLy @), there exists an idempotent 0y € CHF ' (Wi _s XQ
Wi—2) ®2 Q such that 6] Hip (Wi—2/Q) = Olegr__{l(Wk_g/Q) is functorially isomorphic to
parabolic cohomology par( tl?,r, (f(ktkz_Ql), V)) with its Hodge filtration [2, §2.1].

Proof. Proposition 5.2 provides an idempotent 6; such that 0,: Mgm (Wr—2) =
GroMgm(f,’k—z)ek. We claim that the proof of [2, Lemma 2.2] applies to our situation.
Indeed, the main ingredient of that proof is a result of Scholl [36, Theorem 3.1.0], which
can be applied to any smooth compactification Wi_; since the motive considered by Scholl
is isomorphic to GroMgm(Ek’z)"" by [40, Corollary 3.4(b)]. Note that the idempotent e
in [40, Definition 3.1] acts as the idempotent ex on Mgm(é’k_z) because the action of the
torsion appearing in e is trivial since £5=2 — Shg/(GLy,g) is an abelian scheme. O

Proposition 5.4. Let L/Q be a real quadratic extension and £ € N[Ip],€ > 2tr a
non-parallel weight. For any smooth compactification Ug—g of the (€] — 4)th-fold product
of the wuniversal abelian surface over Shg(G7}), there exists an idempotent 6, €

CH2UU=3D (U, _y4 xQ Ue—4) ®z L such that 6 H '-Hzl 4(U@ 4/Q) is functorially isomorphic
to Hi (Shg, DR'(}'(GK*M tLD)) with its Hodge ﬁltmtzon.
L

Proof. Since the weight £ is not parallel, Proposition 5.2 and [41, Theorem 3.6] provide an
idempotent 6y such that 0 Mgm(Ur—4) = V¢ . Then Kings proved in [22, Corollary 2.3.4]
that the (i 4+ €] — 4)-th cohomology of the de Rham realization of V¢ is isomorphic to
H' (Sh . DR*(Fg: ). O

5.2. Generalized Hirzebruch—Zagier cycles

Let L/Q be a real quadratic extension, K C V11(R0) a small enough (Definition 4.2)
congruence subgroups, K’ = K N GL2(A*), and let & : Shx (G}) — Shg(Gr) be the map
of Shimura varieties derived from the inclusion G} < Gp. Let g€ Sex(Vi1(A0L); L; Q)
be a eigenform of either parallel weight £ = 2¢; or non-parallel weight £ > 2t; such
that £ —2x = nty. Let fe Sk.w (V11 (); @) be an elliptic eigenform for the good Hecke
operators, such that k —2w = m, and we denote by f the newform corresponding to
the system of eigenvalues. We suppose that the weights of g and f are balanced.
We consider E/Q a finite Galois extension containing the Fourier coefficients of g
and f. We want to realize these modular forms in the de Rham cohomology of some
proper and smooth variety. The pullback £*g lives in S} (K; L; E), which by (2) is
isomorphic to SZ -1, (K; L; E). Thanks to Theorem 4.4 we can realize the latter space

tor

as a subgroup of the hypercohomology group H?(Sh x.p» DR® (]-'Z 1= tLl)), which is simply

the de Rham cohomology group H R(Shtor(G )/E) when £ = 2tL Instead, when £ > 21,
is not parallel, let Uy_4 be any smooth compactification of A¢~*: then, we can invoke
Proposition 5.4 to establish that the differential attached to Wy j¢—, |(§*0), where Wy oy, |

is defined in (2), lives in FI=2H\?(Uy_4/E). Similarly, if k = 2, W, 1 () € $2,1(K"; E) C
F! H1 (Shtor(GLz @)/ E), while when k > 2 we can consider any smooth compactification
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Wi_s of EF=2 to see that the class of the differential R lives in Hé(f{l (Wi—2/E), by
Proposition 5.3.

Definition 5.5. Choose a prime p coprime to M. Let E, be the closure of (,(E) in @I, and

suppose that Qf are p-nearly ordinary. We write w for the differential wy,_ ) and

we take 1 to be the class in the Wy, x_(f)-isotypic part of Hgar (Sh%’,r, (]:gi’;:@l), V))u'r'

whose image in the 0-th graded piece, H ](Sh%o,l: Ep,gé_ﬁ;@), is equal to the image of

vol(K")

(R R (O

1 t (k,k—1) u.r. .
The class n € Hpar(ShI?,r, (]:GLZQ , V)) satisfies

Fr,(n) = app”~'n, (23)

where the eigenvalue is a p-adic unit since f* is p-nearly ordinary. Indeed, by definition
n = [c- Wy x—1(fg)] for some non-zero constant c, and applying Lemmas 2.6 and 4.6 we
can compute

Fr,(n) = pV(p)le- Wyi1(p)] = p- pF 17 lc- Wy s 1 (V(p)ip)]
= P e Wy (U(p) o)l = B = ap p" ',

since ;7! = apgr(p) " p = apep
For all s > 0 we want to consider the cohomology class

TL’ika) U 71’;77 € Flti—2=s H(li%+k_3(Ug,4 XE,, kaz).
Our goal is to define a null-homologous cycle on Up_4 xg Wy_» whose syntomic
Abel-Jacobi map can be evaluated at w{wUm;n. Let 24 be a proper smooth model of
Ug—4 x g, Wr—2 over OE@ of relative dimension d, and denote by Z; x its generic fiber. For
all integers i > 0, the syntomic cohomology groups of 2%k sit in a short exact sequence
of the form

0 —— Hip (Zew)/F' —— Hgy (Zix, D) ——=F Hip (Zeo).

The syntomic cycle class map [3, Proposition 5.4] is compatible with the de Rham cycle
class map producing a commuting diagram

i Clsyn 2; .
CH (Z.0) —22 H2 (Zys 1)

syn

e

. 1 . .
CH' (Zo) —% FIHZ (Zox)

where on the left hand side are the Chow groups of algebraic cycles modulo rational
equivalence. The restriction of the syntomic cycle class map clgyn to the subgroup of de
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Rham null-homologous cycles CHi(%,k)o, i.e., the kernel of the composition clggr o Res,
has image landing in ng ! (Zp 1)/ F'. The syntomic Abel-Jacobi map

. . 71 \4
AJ, : CH (Zi0)0 — (Fd_'HHj;ed )H(Ze,k)) (24)

is obtained by identifying the target using Poincaré duality.

We determine the positive integer s and make sure the numerology works. The
dimension of the variety Uy_4 xg Wi_3 is d = 2|€| +k — 7, therefore the cycle we want
has to be of dimension d —i such that 2(d —i)+ 1 = |£|+k — 3, and s > 0 has to satisfy
|| —2—s = (d—1i)+ 1. Hence

L +k—4 Ll —k—2
oo k=4
2 2

with s > 0 since the weights are balanced.

(25)

5.2.1. Definition of the cycles. @ We treat separately the case (¢, k) = (2t7,2) and

the general case (¢, k) > (2t7,2) with € not parallel. Set y +1 = W and consider the
finite map

p:E — Albl=4 5 p gk=2,
@ Py P > €@, P{® 1, Ply_y® 1%, Py, ..., P3,)

where (P, ..., Pz’y) =(P,...,P,, P1,...,P)) and P/®1 is the point P/®1 > £®z
Or — A. The definition makes sense because 2y = |¢| —4+k —2. The variety &Y
has dimension equal to y +1 and we will define the null-homologous cycle by first
compactifying and then by applying an appropriate correspondence. Let Wy be the
smooth and projective compactification of the modular curve Shg/(GL3 ). We consider
Wy, Ug—4, Wy_2 smooth and projective compactifications of £7, Albl=4 £k=2 regpectively,
such that W,, has a map W, — Wy extending £ — Shg/(GL3 @); then the map ¢ defines
a rational morphism ¢ : W, - > Up_4 X g Wr_2. Using Hironaka’s work on resolution

of singularities [16, Chapter 0.5, Question (E)], we can assume the rational map ¢ has a
representative ¢ : W, —> Up_4 x g Wy defined everywhere, up to replacing the smooth
and projective compactification of £¥. Furthermore, by desingularizing the fibers over
the cusps, we can assume that W, — Wy is smooth. By spreading out, there is an open
of Spec(Og) over which all our geometric objects can be defined simultaneously and
retain their relevant features: we have smooth and projective models #,,, %—4, Wi—> of
W, , Ug—4, Wi_o respectively, the map ¢ extends to a map ¢ : %, — %—4 x Wi—> and
W, — Wy is smooth.

When ¢ =2t; and k=2 we define correspondences on %y x #p as follows. We
assume the number field E is large enough such that Uy g (respectively Wy k) is the
disjoint union of its geometrically connected components Uo/g = [ [; Uo,; (respectively
Wose = L[; Wo,j) and we pick an E-rational point a; € Uy, (respectively b; € Wo,;) for
every such component. Consider the following morphisms: for every pair (i, j) indexing
a geometrically irreducible component of Z = Uy xg Wy, we define g; j : Z — Up; xg
Wo,j <> Z as the map that restricts to the natural inclusion of Up; x g Wy ; into Z and
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maps any other geometrically irreducible component to the point (a;, b;). Similarly, we
define qq;,j : Z = {ai} x Wo,j = Z, qip; : Z — Ui x {bj} — Z and g, »; : Z — {a;} x
{bj} = Z. Consider P; j = graph(q;,j), Py;,j = graph(qq,,;), Pi,p; = graph(qi,p;); Pab; =
graph(qai,bj), all correspondences in CH®(Z x g Z). We set

PZZ(Pi’j_Pdi,j_Pi,bj"i'Pai,bj),
iJ

that acts on CH®*(Z) by Py = pr, (P -pr}); in particular, for any cycle S € CH*(Z), we
have
Pu(8) =D (@i ))x — Gar. s — @ip)s + (Gay 5] ()
ij

For i, j running in the set of indices of the geometrically connected components of Uy and
Wy the correspondences (P; ;j — Py, j — Pip; + Py, p;) are idempotents and orthogonal to
each other, hence Po P = P in CH%(Z xg Z), i.e., P is a projector. We denote by P the
correspondence on %y x # defined over some open of Spec(Of) obtained by spreading
out P.

When (¢, k) > (2t7,2) with £ non-parallel, we obtain a correspondence on %y_4 X #—»
by spreading out those correspondences considered in § 5.1. Indeed, the idempotents 6y €
CH2U=3(Uy_y x g Up_s) @7 L and 6 € CH¥I=N(Wi_y x g Wi_2) ®7 Q extend to elements
6 € CHX =34 x Uy_4) @7 L and 6, € CHN =V (H s x #i—2) @7 Q respectively.

Definition 5.6. For all but finitely many primes p, we define the Hirzebruch—Zagier cycle
of weight (2t7,2) to be

Aoy 2 = Pug[#0] € CHX (% x 0, 70).

Proposition 5.7. The Hirzebruch—Zagier cycle Ay, > € CH2(% XOp Wo) is de Rham
null-homologous.
Proof. To verify that clgr(Az; 2) is zero in Hé‘R(Z/Ep), it suffices to show that
P*H(;‘R(Z /E) = 0 since our cycle starts his life over E. After base-change to C, via the
fixed complex embedding (o : Q < C, Poincaré duality tells us that it is enough to prove
the projector annihilates the second singular homology, i.e., P, H,(Z(C)) = 0. By Kunneth
formula and the fact that each connected component of Up(C) is simply connected,
we compute that PyHy(Z(C)) = Pu(Ho(Up(C)) ® H2(Wo(C)) @ H2(Uo(C)) ® Ho(Wo(C))),
which we can show to be zero by the explicit definition of the projector P. Indeed, let
[x]1®[C] € Hy(Up(C)) ® Hy(Wp(C)) be a simple tensor for x € Uy(C) a point, then for all
i, j we find
(P,,j— Pa;,j— Pip, + Pai,bj) (xI®I[CD

= ((q:',j)* — (Ga;,j)« — (qi,bj)* + (C]a,-,bj)*) ([x]1®[C])

= [a1®(C;1—[a] B1C;1 =0,
where (i p;)«([x]®[C]) = 0 = (g4;,p;)+([x]®[C]) because the dimension of the
pushforward drops. Similarly, if [D]® [y] € Hy(Up(C)) ® Hy(Wp(C)) is a simple tensor
for y € Wy(C) a point, then (Pi’j — Po;j— Pip; + Pa,-,bj) (ID1®[y]) =0 for all i, j. O
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Definition 5.8. Let £ € Z[I1], ¢ > 2t;, be a non-parallel weight and k > 2 an integer
such that (¢, k) is a balanced triple. For all but finitely many primes p, the generalized
Hirzebruch—Zagier cycle of weight (£, k) is

Apk = Or, )Wy € CH (U4 x 0, Wi 2) QL.
Proposition 5.9. Let £ € Z[IL], £ > 2t, be a non-parallel weight and k > 2 an integer

such that (£,k) is a balanced triple. The generalized Hirzebruch—Zagier cycle Agx €
CH (%—4 XOp Wi—2) ®z L is de Rham null-homologous.

Proof. The class clyr(A¢x) belongs to (6, Qk)*Hjﬁ(Ug_4 X E, Wy—2) and by Poincaré
duality, it is trivial if and only if

D (U x g, Wi—2) = P O H R Urs) @ O Hyg (Wi—2)  (26)
A v=2(d—i)

(Ge, 60)* H,

is trivial. By Propositions 5.4 and 5.3, we have QZ‘HQLR(UZ_@ :H“"“H(Sh[(,DR’
(€.e—1) _ k—1 _ gl tor ((k,k—1) _
(F, : )) and OF Hip (Wi—2) = 6f Hyps (Wi—2) = Hp, (Shi ’(]:GLz@ ,V)). Hence, v =

k — 1 forces u to be u = |€| —3 and the group
6; Hyg * (Ur-4) = H'(Shg, DR*(Fi: ™)) (27)

is trivial. Indeed, by [30, A6.20], the cohomology group H!(Shg, DR*(FS)) s
L

identified with the intersection cohomology of the Baily-Borel compactification of

Shg (G7), that in turn is trivial in degree 1 by computations using Lie algebra cohomology
[30, §§5.11, 6.5, 6.6]. O

5.2.2. Evaluation of syntomic Abel-Jacobi. We are interested in computing
AJp(Ag ) (fwUmin) and to relate it to some value of the twisted triple product p-adic
L-function outside the range of interpolation. Let & (respectively #) be a lift of w
(respectively 7) to fp-cohomology; since the Hirzebruch—Zagier cycle is null-homologous
the computation is independent of the choice of lifts. We start by treating the case
€, k) = (2tr,2):

AJ (Ao ) (T Umsn) = (clsyn (Ao, 2), Tf @ U3 ) gp = (Piclsyn(@[#0]), 7@ Uy i)y
= (clsyn(@[70D). Y (Pij = Pay.j = Pip, + Pup))* (T 0 U T3 )
iJ
= (Clsyn(ﬁa*[%])v nik&) U n;ﬁ)fp
[3, Equation (20)] = try, (§*(Tf@URSR)) = try, (C*OUR).

The fourth equality is justified by the vanishing Hflp(Spec(OE,@), 0)=0= Hfzp
(Spec(Ok ), 2), which imply that 3", ; P; = (idgx;)* and that all the other pullbacks
are zero.

To deal with the general case, we first need to analyze the action of the correspondences

6k, B¢ on fp-cohomology. The exact sequence in [3, (8)] induces a functorial isomorphism

Hf];_l(%_z, 0) = Hé‘ﬁl(Wk_z), we denote by 7 the preimage of n € Q:Hgﬁl(Wk_z) that
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satisfies 512‘77 = 7] since 6;'n = n. By functoriality of the short exact sequence [3, (8)], there
is a commuting diagram

0 —— H{l Wea)/FI172s —— B2 g, 10 -2—9) ——FI25 B2 0 _g) ——0

je? =0 lez lez
P

0 —— HY W0/ P12 —— H 12y, 101 -2 - 9) —— P25 12, ) ——0

where the leftmost vertical arrow is zero because of the vanishing (27). Therefore,
there is a canonical lift & =0;w to Hf‘gfz(%—4,|ﬁ|—2—s) of any class w €

QZ‘FW_Z_S H(lﬁl{_z(Ug_A;L with the property é;a”) = @. At this point we can compute

AJ, (A (mioUmsn) = (clsyn(Agr), T Ums g

(Br, O)sClsyn (@[5, D), 7O U TS )
(Cloyn @<[#5 1), w107 @ U 30 T)ey

(lsyn (@[ #5)), TFd U3 )

try, (¢ (rf O Uy 1)) = try, (§TO U G31)),

where @; = (; 09). The fundamental exact sequence of fp-cohomology indupes an
isomorphism ¢ : H(ﬁl{3(Wy) = Hf‘f;lfz(”‘// , || —2 —s), since the filtered piece F”" H(']{R(W),)
is trivial for n > dimg, W), and indeed |£|—2—s is greater than dimg, W), =y +1.
Therefore, if we write ¢j@ = 1Y (w), we can rewrite the quantity we want to evaluate
as

AJp (A i) (fwUmyn) = trw, (Y (@) Ugr 931 = (T (@), 931)dR. (28)

_ _ t
for the Poincaré pairing { , )ar : Hyk ~(Wy) x HiZ (W) —> H{H 4w,y 28

5.3. Description of AJ,(A() in terms of p-adic modular forms

Let % — ShK/(GLz,Q)oEp be the Of,-scheme defined as the complement of the
supersingular points and let & — %k be the universal elliptic curve over it.

Proposition 5.10. There are natural inclusions of parabolic cohomology in the de Rham
cohomology of proper and smooth compactifications of Kuga—Sato varieties

1 t (k,k—14s) [€]-3
Hyor (SHK g, - Falag 7. V) < Hyg T(Wy),
1 t (k,k—1) k—1
Hpar(Sh;’r,Ep’ (]:GLZQ V) = Hyg (W),
compatible with Poincaré duality.

Proof. Let &, . be the inverse image of cusps and supersingular points under %), , —
Woc; then D, =W, \ &Y and it is a smooth and projective subscheme of codimension
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1 in #, .. Consider the diagram

1€]-3 €]-3
Hyo " Pyu) Hyy
A

&) —————— " @ 0D

U
1 t (k,k—1+s) 1( ot . o, —(k,k—1+s)
Hpar (ST £y FGlag V) ——H (ZK g j'DR TGy g )

where the top horizontal arrow is exact and comes from excision. The composition

k,k—14s l|—4
Hyor (SHF (et V) — Hygy (Zri0(=1)

is identically zero because the two cohomology groups are pure of different

. k,k—1 -3 ~ £]-3 I
weights. Thus, Hgar(ShtKo,pr, (]:éLZ,Q +s) V)) < Hr‘ig| Ay i) = H(lifli (W,). A similar

argument provides the other inclusion Hgar(ShJ}?f Ey (fgff;@l), V)) — Hrkigl(%,x) x

HiR' (Wy). 0

It is clear that ¢ine Hgﬁl(Wy) is equal to ne Héar(Sh?pr,(Fgﬂ:@l),V)) —

Hé{ﬁl(W},)7 so our task is to describe Y'(w) € H(;%_3(W,,) using p-adic modular forms.

Let 2% — ShK(Gz)@Ep be the Of,-scheme defined as the complement of the
supersingular locus and ¢ : %k —> 2k the diagonal morphism. Let &/ — 2%k be the
universal abelian surface, we have a commuting diagram

, 91 -4 - 5 F1t=2 VY e gltl=2 sle—4
EY —— o that induces ¢ He o (%p—4, 161 =2 —5) — 0/ H; 0 (of Ll —2—5)

P E E

Wy —= Uy S1e1—2 vt ~1e1-2
A2y 0 =2 —5) ——— A7 10 -2-5)

where we consider the Gros-style version of fp-cohomology [3, § 9] for a suitable choice of
polynomial Q. We choose to work with the Gros-style version because for schemes that
can be embedded in a smooth and proper scheme it is defined using rigid complexes in
place of de Rham ones; in particular, the two versions coincide for proper and smooth
schemes.

The pullback v*® € éz"l:lfl’leq(%m_“, |[£] —2 — ) can be directly described in terms of

p-adic modular forms. Indeed, we can write v*® = [w, f] for w € HO(Y,t(?iig, jT(}'gig_tL)

® Q*(log D))) and f € HO(YIE"’;g, jT(}'(GZiz_tL) ® Q!(log D))) satisfying Q(Frp)w = V f as

the group ég‘ Hrei; (&/Iy‘_4 /E,) is the same as the cohomology of the rigid realization of the

motive V¢ over |Shg (Gi),‘(’rd[, that is, the rigid cohomology H! (5’120; : jTDR® (f(e;e_tL) ),
rig G;
fori =1,2.

To express the class v*@® explicitly we need to make a judicious choice of a polynomial.
From now on we assume that p splits in L/Q, pOr = p1p2. By observing the form of the
Euler factors appearing in Theorem 3.12 and the formulas in Corollary 4.7 we are led to
consider the polynomial P(T) = H.’*E{a’ﬁ}(l — o1 xp T). Following [27, Proposition 4.5.5],
if we set T =TT, we can write P(Ty, T>) = ax(T, T>) P1(Ty) + b1 (T}, T») P,(T») for
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Pi(T)) = (1 —o; T})(1 = B; T;) and
ay(Ty, Tr) = a1 fraafalan + B2) TETS — a1 BronfoTETS — anfa(ar + BT TS + 1,
bi(T\, To) = a7 BionfoTy Ty — a1 i(az + BT To — ay i T{ + (g + BT
The index 2 in ay (respectively the index 1 in b;) is there to remind us that the monomials

composing the polynomial are of the form 7;"'T,? with a; < as (respectively le'szz

with by > by). The polynomial P(Ty, 1) is symmetrlc in the indices 1, 2, hence we can
also write P(T1, T2) = a1(T1, T2) Po(T1) + ba(Th, T2) P1(T2) where ai(T1, T») (respectively
by(Ty, Tr)) is obtained from ay (T, T) (respectively by (T1, T»)) by swapping all the indices.
Therefore,
P(T\,T2)* = a1ay P Py + ay P1ba P + a1 Paby Py + b1 by P P

=aiayP1P,+ (P —b1Py)by P+ (P —byP1)b1 P +b1b P1 P>

= (a1a2 —b1by) PPy + P(b2 Py + b1 P2)

=P1- a1ﬂ1a2ﬁ2T2)P1 P+ P(byP1 + b1 P>).
We are going to use the handy identity

P(T1, T2) = (1 — a1 B1aafaT?) Py (T1) Po(T2) + (bo(T1, To) Py (T1) + by (T, T2) Pa(T2)).

The class of (l)g[p- ] is zero in Hz(y]t(";g, j*DR‘ (F®))), hence there are overconvergent
cuspforms g(.i) S, o(K: Ep) such that giPil = Zl 1(911)) —|—d22 l(g(’)) Furthermore,

1 ~hgleipal i overconvergent by Corollary 4.7. It follows we can write P(V(p))g as

P(V(p))g = (1 —a1B1a2B2V(P)HFP1P2 4 by (V(p1), V()P + b1 (V(p1), V (p2))glF?]
a7y +d T (h) + a2 (ho),

where h=(1—a1fiaafaV(p)H)d, 1gPP21 hy = bygl” +b1g7 and hy = bygy” +
2
blg .

Proposition 5.11. Let L/Q be a real quadratic extension and g € Szyx(K, L; Ey) an

overconvergent cuspform whose class wg in Hz(ylt(oﬁlg(GL),jTDR;(}"“”‘))) is trivial.

By Theorem 4.5 there are p-adic modular forms g; € ij.(e,x)(K; Ey) for j =1,2, such
that g—d =g )—}—dlZz !
Ho(ylgoilg(GL), j (}—(z,x) ® Q%j)), J = 1,2, that satisfy the equation wg = V(G1+ G2) in
H (G0, ' (0 @ 2).

Proof. For j=1,2, let wj,n; be a local basis( Ozf) the tj-part of the first de Rham

(g2), which we can use to explicitly construct sections G; €

cohomology of the universal abelian surface. Set v;
the sections

— dnd oy . i
a)jnj,wj—a)]/\nj and consider
012

— | .
Z( D' )'), ' (1)

20 0.0 o T iy o 492
X (w2 ® Uy ® wy ® v, ) ® q—
2
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-2

2) i
Z( D e 42 (%)
2—n—{4 2—n—{y d
x(wl 2 ®v(51 20)®w2 7 ®v(52 211))®ﬂ’

q1

of HY (flt(oﬁlg(GL), jT(]:(e’x) ® Q! )) Differentiating them we obtain telescopic sums which
collapse to
il dqi d92
V(G)=d;/" (g)) ST @ule 0 (

8 ® ) q1 q2

Therefore, wy = V(G1) + V(G2) as clalmed. O

It follows that there are sections G, Gp,, Gp, associated with h, hy, hy
respectively, that satisfy P(p~"LFr,)wg = V(Gh+ Gn, + Gp,) since Fr, = p'LV(p) in
cohomology (Lemma 4.6). The pullback by the morphism & : Shx (G7) — Shg(Gr) gives
P(p~"tFrp)werg = V(Ggsh + Ggsn, + Gg+h,) and to land in the right cohomology group
we need to change the central character using the isomorphism W = W, |1, |. Lemma 2.6
implies

P(p* 'Frp)wuerg = V(Gyerh + Guesh, + Guern,)-
We set G = Gygsh + Gugrh, + Guerh, and we let g : ®T(H£)Z’_2 - Q. Symzf_2H% be
the symmetrization projector which identifies the target sheaf with a subsheaf of the
first. Finally, if we set Q(T) = P(p*~¢T), then the cohomology class v*® is represented
by [w, &G in iy > (1674, 1] =2 = 5).

Proposition 5.12. The class v*(¢]®) is represented by [0, ¢7e¢G] in I:Iwa_2 (éay, 4] —2— s)
and the image of ¢ie¢G under the unit-root splitting is equal to the p-adic modular form

Splye (@1 e0G) = (—1)°s!Wy 1452 *(d 25 (h) +d0 7 (hy) +d52 2 (hy)

. p-adic /
m S 145K’ Ep).

Proof. The class v*(@j®) = ¢jv*(@) = [0, ¢Te¢G] because ¢fw =0 as a section
of ¢j (.7:(” IL)®Q2):O. The diagonal morphism @ : & — =% is a map of

Zx-schemes, so the pullback @7 : Hllfgl; 3(@7"“ 4) HrlfiT 3(cg’y) is compatible with the
pullbacks between the terms of the Leray spectral sequences for &/1=% —» 2% —
SpecOg,, and &7 — Xk — SpecOg,,. Since { : Xk — Zk is a finite morphism, we have
an induced map

o H (A

TDRO(J'_'(e A— fL))) N Hl (yt(/)r

. k,k— 1+ )
rlg’ JTDR (‘F( * ))

rlg’ J

It is poss1ble to describe explicitly the pullback @{e,G as in [7, PrOpOblthH 2.9] and a
direct calculation reveals that
SPlure ™ (60G ) = (= 110" W gy (df T E )+ T E D) + 47T )
= (D' (d) T )+ T () 4y (o)
= (=151 k1 (d) T () +df T () + 2T (o),
as p-adic modular forms. O
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Remark. We proved that the image of T (w) under H|.£|73(7/V’K) Ny (&)) is given

rig rig
~ 1 t (k,k—1+s) 1 . o, (k,k—1+s)
by [@7eeGl € Hyor (S g . (Féit, o+ V) € HU (S SIDRE(FGE, 7))

Lemma 5.13. Let (w,n) € Hgar(Sh?{EW, (fgti;@1+S)’ V)) x H! (Sh'}ngp, (fgﬂ(z,_Ql)’ V))

par
be a pair such that Frpn = an for a a p-adic unit, then (w,n) = (en.o.®, n).

Proof. We have the equalities of operators Fr, = pV(p) and Uy(p) = p"U(p), therefore
the computation

(. n) = N, Frpy) = ot_lFrp(Fr;lw, n)

o p T E o, ) = o (pT U (p)w. ) = o (Un(p)w. ),

implies that (@, n) = lim,— 00 @ " (Up(p)"®, n) = (en.0.®, n). O

Theorem 5.14. Let L/Q be a real quadratic extension. Consider g € Sg»(Vi1(21OL); L; Q)
a cuspform of either parallel weight £ = 2ty or non-parallel weight € > 2t over L and f e
Skew (V11 (A); Q) an elliptic eigenform for the good Hecke operators. Suppose their weights
are balanced and choose a prime p splitting in F, pOf = p1p2, coprime to A, such that
both cuspforms are p-nearly ordinary and the cycle Agx is defined. Then

1— 112 o (dT s gPLRly
AJp(Ae,k)(JTIkCOUJT;U) = si(—1)° Ol1,310lz,32(01f P ) (en.0.6*(d, g ), )

H',*G{a,ﬂ}(l_.l*zalep_l) <f>k’f>k) )
where w and n are the classes in Definition 5.5 and s = IZ‘_ZI‘_Z_

Proof. Recall that (28) states that AJ,(Agp)(mfwoUnin) = (Y (®),n)qr, where the
Poincaré pairing takes values in E,(—(y + 1)), a one dimensional space on which Fr),
acts as multiplication by p¥*!. The isomorphism ¢ : H(lfPl{_S(Wy) = Hf"mQ_2(7/ , el —=2—15)
is given by «(—) = [0, Q(Fr,)(—)], therefore Q(Fr,)Y (w) = ¢} (e,G). On the one hand,
(Q(Fr,) Y (@), n)ar = Q(py+1af;1p1—w)(T(w), n)dRr., because we computed in (23) that
Fr, (u*(p;n) = app?! (v*(p;n). On the other hand,

(Q(Fr,) Y (@), n)ar = (@} (€G), MR
(W k—teno. 0 (d 725y +di 725 (hy) +d32 270 (ho)), Wi (F))
(Fr, )
(eno.C* (A 25 (h) +d 275 (hy) +d22 725 (o)), F)
(f*, f*) ’

=s!(—=1)*

=sl(—1)°

- . , o -k k—1
Indeed, the class of @f(eG) in Hl(ylt(ﬁ”rrig,JTDRc(]:éLz’Q
overconvergent cuspform whose nearly ordinary projection is equal to en.o.Sply,, @] (€¢G)

(see [7, Lemma 2.7]), then Lemma 5.13 justifies the computation.

+S))) is represented by an

For j=1,2 the nearly ordinary projection en_o,g‘*dfj_2_s(hj):en_o,g*[dfj_2_s
@)

(bgg;l) —}—blg(.z))] is zero thanks to Lemma 3.10 because the cuspform g;

; is p;-depleted,
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i =1,2and b, t =1, 2, can be written as a polynomial only in the variables V(p), V (p,)
divisible by V (p,). Moreover,

e 0.0 (@) T () = e o 01 (1 — i faoa oV (p)P)(dy TGP
= (I —a1proafalan ' p™ e no.c*(dy 7 gP1PD),

Finally, the last bit we need to unravel is the polynomial Q( pV'Ha ! p!="); we compute

Q(py+lai;1pl—W) — l_[ (1 B px—ep]/-Fla';lpl—w)

o xc{a,f}
[T =eimax'p™ 2 )= [] —eixep'p™
o x<{a,f} o xc{a, B}

since under our assumptions 2n = m. Hence, putting all together

—a1fraafa(an P2 (eno.*(d] TGP )

AT, (D) (o Umin) = s(—1)°
P ’ no,*e{a,ﬁ}(l_.l*zaf_*lp_l) (f, )

O

Remark. The right-hand side of the equality in Theorem 5.14 is independent of the
particular choice of small enough levels K, K’ because of the normalization of the
cohomology class n (Definition 5.5).

Corollary 5.15. Let L/Q be a real quadratic field and (£, k) a balanced triple. Let p be
a prime splitting in L for which the generalized Hirzebruch—Zagier cycle Ay is defined.
Then for all (P, Q) € Cﬁ’;l(ﬁ, k) we have

+1  €p(9p. 1)
sIE(G) €0.p(9p. f5)

Proof. It follows from the formula (16), Proposition 3.6 and Theorem 5.14. O

P LG F)P,Q) = AJp(Ar ) (rfop Uming).

6. An application to Bloch—Kato Selmer groups

Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of
conductor N, both without complex multiplication over Q. We denote by (M A,B)p the
Galois representation AsV,(A)(—1) ®qg, V), (B) of the absolute Galois group of Q. We can
use Corollary 5.15 to give a criterion for the Bloch—Kato Selmer group H (Q (Ma,B)p)
to be of dimension one in terms of the non-vanishing of a value of one of our tw1sted triple
product p-adic L-functions. This builds on the recent work of Liu [26], where he computes
the dimension of H } (Q, (M4, B)p) assuming the non-vanishing of the étale Abel-Jacobi
map of certain cycle Ay p.

Let ga € Soy, .1, (VI(Q); L; Q), fp € S2,1(V1(O); Q) be the newforms attached to A and
B by modularity, w4, op the automorphic representations they respectively generate. Let
p be a rational prime coprime to M- Nz ,0(Q) -dr/r, if 9a, fp are p-nearly ordinary we
denote by ¢,.%# the Hida families passing through the p-nearly ordinary stabilizations
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9p, = gi{’) and 7q, = f%p). We recall some of the definitions in [26]. Let X be the
minimal resolution of the Baily—Borel compactification of the Hilbert modular surface
over L of T'g-level 91- N (), ¥ the compactified modular curve of Tp-level 91- Nz ,g(Q)
and ¢ : Y — X the diagonal morphism. According to Liu, there are idempotents &4 €
Corr(X, X), #p € Corr(Y, Y) acting as projectors

Pas Hip(X) > Hig(X[mal, P Hig(Y) > Hig(Vlos).

The null-homologous cycle A4 p € CH2(X x Y)®Q is defined as Apap = (P4s X PB)xA
for A = graph(¢). By spreading out we can consider smooth models Z°, % over Z, for
almost all p, and @A X @B € Corr(Z x %, X x%).

Corollary 6.1. Suppose that 9 and Nz ,0(Q)-dr g are coprime ideals and that all the
primes dividing N split in L. For all but finitely many primes p that are split in L and
such that Qa,fp are p-nearly ordinary we have

FLY(G. TP Q) £0 =  dimg, H{(Q, Ma5),) = 1,
where 0 = —u+u' € Z[IL], ¥ = —pu.

Proof. Let ¢ : % — 2 x % be the map (Z,idw), and set AA,B = (@A X 9’73)*@*[@].
For any w € HﬁR(X)[nA], n e HéR(Y)[aB] and lifts @, 7 to fp-cohomology we can compute

AJp(Ap )i Umsn) = (clsyn(Aa p), TF @ U TS )ep
= (Clsyn((ﬁ*[@])s (P4 x gZB)*(ﬂl*(Z)Uffikﬁ))fp
= (clsyn (@5[Z ), Tf DU 3Ty = tray (C*DUT)

asin §5.2.2. oy : 2% — X', ap : #y — ¥ are the natural finite degeneracy maps, we
know that AJ,(Ay, 2) (7] (afw) Um](a3n)) = try, (&*(@f@) U (a37)). Therefore,

Adp(Day 2) (] (o) Uny (e5m)) = deg(ar) deg(a) - AJp(Aa,p) (T Uy n)

and the LHS vanishes if and only if the RHS vanishes. It follows that the non-vanishing
of the p-adic L-function implies the non-vanishing of the syntomic Abel-Jacobi image
of both Ay, 2 and Ay g by Corollary 5.15, which in turn forces the non-vanishing of
the p-adic étale Abel-Jacobi image of the cycle Ax g [2, §3.4]. Then Liu’s theorem
[26, Theorem 1.5] gives the dimension of the Bloch-Kato Selmer group. O
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