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1. Introduction

This article is part of the program pioneered by Darmon and Rotger in [7], [8] devoted to

studying the p-adic variation of arithmetic invariants for automorphic representations on

higher rank groups, with the aim of shedding some light on the relation between p-adic

L-functions and Euler systems with applications to the equivariant BSD-conjecture.

Given a totally real number field F , the starting point of the program is to find

a reductive group G having GL2,F as a direct factor together with an automorphic

L-function for which there is an explicit formula for the central L-value. The expectation

is that there exists a transcendental period for which the ratio between the special value

and the period becomes a meaningful algebraic number varying p-adically. More precisely,

these modified central L-values should determine a rigid-analytic meromorphic function

by interpolation. In the present work, we consider the group GL×F = ResL×F/F (GL2,L×F )

for L/F a quadratic extension of totally real number fields. Piatetski-Shapiro and Rallis

[31] studied the analytic properties of the twisted triple product L-function attached to

cuspidal representations of GL×F and Ichino [18] proved a formula for its central value,

generalizing earlier work of Harris–Kudla [12]. The first part of the paper is devoted to

the construction of a p-adic L-function, called twisted triple product p-adic L-function.

Several far-reaching conjectures suggest a strong link between automorphic L-functions

and algebraic cycles: relevant cycles should live on a Kuga–Sato variety whose

étale cohomology realizes the Galois representation (conjecturally) attached to the

automorphic representation of G, out of which one constructs the L-function.

Furthermore, as the central L-values should vary p-adically after a modification by an

appropriate period, by tinkering with these cycles it should be possible to produce Galois

cohomology classes that p-adically interpolate into a big cohomology class, giving rise to

the p-adic L-function via Perrin-Riou’s machinery. Note that such p-adic L-function and

big cohomology class are defined using completely different inputs, an automorphic and

a geometric one; the sole fact that in certain cases it is possible to prove these approaches

produce the same object is in itself an amazing confirmation of the power of the existing

conjectures.

The relation between p-adic L-functions and algebraic cycles, as we just sketched it,

can be very hard to prove since it requires, among various things, a deep understanding

of the cohomology of semistable models of Shimura varieties. Therefore, we decided to

dedicate the second part of this work to the more humble goal of showing that the

p-adic L-function, built using the automorphic input, encodes geometric information

of some kind. More precisely, we compute some values of the p-adic L-function in

terms of the syntomic Abel–Jacobi image of generalized Hirzebruch–Zagier cycles.
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Our result is evidence that the twisted triple product p-adic L-function and the

generalized Hirzebruch–Zagier cycles are the right objects to consider in the framework

determined by GL×F and the twisted triple product L-function.

In the remaining of the introduction we present our results in more detail. We fix,

once and for all, a p-adic embedding ιp : Q ↪→ Qp for every rational prime p, and a

complex embedding ι∞ : Q ↪→ C. Given a number field E/Q we let IE be the set of field

embeddings of E into Q and tE =
∑
τ∈IE

τ ∈ Z[IE ]. For k, k′ ∈ Z[IE ] we write k > k′ if

kτ > k′τ for all τ ∈ IE , and k > k′ if k > k′ and ∃τ◦ with kτ◦ > k′τ◦ .

1.0.1. The p-adic L-function. Let L/F be a quadratic extension of totally

real number fields, Q GOL and N GOF ideals. Consider primitive eigenforms

g◦ ∈ S`◦,x◦(Q; L;Q) and f◦ ∈ Sk◦,w◦(N; F;Q), whose weights satisfy n◦tL = `◦− 2x◦
and m◦tF = k◦− 2w◦ for n◦,m◦ ∈ Z, generating irreducible cuspidal automorphic

representations π, σ of GL(A),G F (A) respectively. We denote by πu , σ u their

unitarizations and define a representation of GL2(AL×F ) by 5 = πu
⊗ σ u . Let ρ : 0F →

S3 be the homomorphism mapping the absolute Galois group of F to the symmetric

group over 3 elements associated with the étale cubic algebra (L × F)/F . The L-group
L(GL×F ) is given by the semi-direct product Ĝ o0F where 0F acts on Ĝ = GL2(C)×3

through ρ. One can define the twisted triple product L-function L(s,5, r) of 5 via the

representation r of L(GL×F ) on C2
⊗C2

⊗C2, which restricts to the natural 8-dimensional

representation of Ĝ and through which 0F acts via ρ permuting the vectors. We assume

the central character ω5 of 5 satisfies ω5|A×F
≡ 1, so that the twisted triple product

L-function has a functional equation and we can talk about its central value.

Definition 1.1. We say that weights (`, x) ∈ Z[IL ]
2, (k, w) ∈ Z[IF ]

2 are F-dominated if

there exists r ∈ N[IL ] with k = (`+ 2r)|F and w = (x + r)|F . In particular, F-dominated

weights satisfy k− 2w = (`− 2x)|F .

Let η : A×F → C× be the idele character attached to the quadratic extension L/F by

class field theory. Suppose that the weights of g◦ and f◦ are F-dominated and that the

local ε-factors satisfy

εv

(
1
2 ,5v, rv

)
ηv(−1) = +1 ∀v finite place of F.

Then Theorem 3.2 and Lemma 3.4 show that the non-vanishing of the central L-value

L( 1
2 ,5, r) is equivalent to the existence of test vectors ğ◦, f̆◦ in π, σ , respectively, of some

level V11(A) such that the prime factors of A are among those dividing N ·NL/F (Q) · dL/F .

More precisely, ğ◦ and f̆◦ are cuspforms such that the Petersson inner product

I(φ) =
〈
ζ ∗
(
δr ğ◦

)
, f̆∗◦
〉
, (1)

for some r ∈ N[IL ], does not vanish. In other words, we can take (1) as an avatar of the

central L-value and use it to construct the p-adic L-function.
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Remark. The assumption on local ε-factors at the finite places of F can be satisfied by

requiring the ideals NL/F (Q) · dL/F and N to be coprime and by asking all prime ideals

dividing N to split in L/F .

Definition 1.2. Let (`, x) ∈ Z[IL ]
2, (k, w) ∈ Z[IF ]

2 be weights and θ ∈ Z[IL ] be an element

satisfying θ|F = 0 · tF . If θ ≡2 w holds, i.e., θµ ≡2 wµ|F for all µ ∈ IL , we define

r(θ) =
∑
µ∈IL

[
wµ|F + θµ

2
− xµ

]
·µ ∈ Z[IL ].

Let p be a rational prime unramified in L, coprime to the levels Q,N. We write

P (respectively Q) for the set of prime OL -ideals (respectively OF -ideals) dividing p.

We choose an element θ ∈ Z[IL ] such that θ|F = 0 · tF and θ ≡2 w◦, and we let r̄ =∑
µ∈IL

r̄µ ·µ, with r̄µ ∈ Z/(qpµ − 1)Z, denote the reduction of r◦ = r◦(θ). We suppose g◦,
f◦ are p-nearly ordinary and we denote by G ∈ Sn.o.

L (Q, χ; IG ) and F ∈ Sn.o.
F (N, ψ; IF )

the Hida families passing through nearly ordinary p-stabilizations g(p)◦ and f(p)◦ . We

have χ|ZL (Q)tor = χ◦N
n◦
L and ψ|Z F (N)tor = ψ◦N

m◦
F for characters χ◦ : cl+L (Q)→ C×, ψ◦ :

cl+F (N)→ C× and we suppose that χ◦|F ·ψ◦ ≡ 1. We let F ∗ ∈ Sn.o.
F (A, ψ−2

◦ ψ; IF ∗)
[14, § 7F] be the twisted Hida family, where IF ∗ ∼= IF (ψ−2

◦ ) as an 3F,ψ−2
◦ ψ

-algebra.

Definition 1.3. Let W =WG ,F ∗ be the rigid-analytic space Spf(IG ⊗̂OIF ∗)rig. The

subset of F-dominated crystalline points with respect to (θ, r̄), denoted by Cθ,r̄F , is the

subset of arithmetic points (P,Q) ∈W whose weights are F-dominated, r(θ) ∈ Z[IL ] is

a lift of r̄ , and such that the specialization of the Hida families is old at p; that is, they

are the p-stabilization of eigenforms of prime-to-p level: GP = g(p)P and FQ = f(p)Q .

Set KG ,F ∗ = (IG ⊗̂OIF ∗)⊗Q, KG = IG ⊗Q and KF ∗ = IF ∗ ⊗Q. We define a KG -adic

cuspform Ğ (respectively KF ∗ -adic cuspform F̆ ∗) passing through the nearly ordinary

p-stabilization of the test vectors ğ◦, f̆∗◦ as in [7, § 2.6]. Then Lemma 3.7 ensures the

existence of a meromorphic rigid-analytic function r̄L θ
p (Ğ , F̆ ) :W −→ Cp whose value

at crystalline points (P,Q) ∈W , with r(θ) ∈ Z[IL ] a lift of r̄ , is

r̄L
θ
p
(
Ğ , F̆

)
(P,Q) =

1
E(f∗Q)

〈
en.o.ζ

∗
(
dr(θ)ğ[P]P

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉 .

Here the number E(f∗Q) is defined by E(f∗Q) = (1−βf∗Qα
−1
f∗Q
) for αf∗Q , βf∗Q the inverses of

the roots of the Hecke polynomial for T (p). We are justified in calling r̄L θ
p
(
Ğ , F̆

)
a

p-adic L-function because it interpolates the algebraic avatar (1) of central L-values

L( 1
2 ,5P,Q, r) at points (P,Q) ∈ Cθ,r̄F , as the next theorem shows.

Theorem 1.4. Consider the partition Qinert
∐

Qsplit of the set of OF -prime ideals above

p determined by the splitting behavior of the primes in the quadratic extension L/F.

The value of the twisted triple product p-adic L-function r̄L θ
p (Ğ , F̆ ) :W −→ Cp at any
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(P,Q) ∈ Cθ,r̄F satisfies

r̄L
θ
p (Ğ , F̆ )(P,Q) = ±

1
E(f∗Q)

 ∏
℘∈Qinert

E℘(gP, f∗Q)
∏

℘∈Qsplit

E℘(gP, f∗Q)

E0,℘(gP, f∗Q)


×

〈
ζ ∗
(
δs(w−x|F )ğP

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉 ,

where s : IF → IL is any section of the restriction IL → IF , µ 7→ µ|F , and the Euler

factors appearing in the formula are defined in Lemmas 3.9 and 3.11.

1.0.2. A p-adic Gross–Zagier formula. The second part of the paper deals with

the evaluation of the p-adic L-function outside the range of interpolation. From now on,

we assume L/Q to be a real quadratic number field.

Definition 1.5. A triple of integers (a, b, c) ∈ Z3, is said to be balanced if none among

a, b, c is greater or equal than the sum of the other two. We say that the weights (`, x) ∈
Z[IL ]

2, (k, w) ∈ Z[IQ]2 are balanced if there exists r ∈ N[IL ], r 6= 0, such that k = |`− 2r |,
w = |x − r | and the triple of integers (`1, `2, k) is balanced.

Definition 1.6. The set of balanced crystalline points with respect to (θ, r̄), denoted by

Cθ,r̄bal, is the subset of arithmetic points (P,Q) ∈W , whose weights are balanced, r(θ) ∈
Z[IL ] is a lift of r̄ , and such that the specialization of the Hida families are old at p. This

set is a disjoint union, indexed by balanced triples (`, k), of subsets Cθ,r̄bal(`, k) consisting

of points whose weights have the form (`, x) ∈ Z[IL ]
2, (k, w) ∈ Z[IQ]2.

For a balanced crystalline point (P,Q) ∈ Cθ,r̄bal, the global sign of the functional equation

of L(s,5P,Q, r) is −1. This forces the vanishing of the central value, which one expects to

be accounted for by the family of generalized Hirzebruch–Zagier cycles. Interestingly, the

twisted triple product p-adic L-function is not forced to vanish on Cθ,r̄bal and we can try to

compute its values there. Let (`, k) be a balanced triple such that either ` is not parallel

or (`, k) = (2tL , 2). Let A→ ShK (G∗L) be the universal abelian surface over the Shimura

variety for G∗L and let E → ShK ′(GL2,Q) be the universal elliptic curve over the modular

curve, both defined over some open subset of Spec(OE ), where E/Q is a large enough

finite Galois extension. For all but finitely many primes p, let ℘ GOE be the prime above

p induced by the fixed p-adic embedding ιp, and consider U`−4×OE,℘ Wk−2 a smooth

and proper compactification of A|`|−4
× Ek−2. The generalized Hirzebruch–Zagier cycle

of weight (`, k) is a De Rham null-homologous cycle

1`,k ∈ CHγ+2(U`−4×OE,℘ Wk−2)0⊗Z L

of dimension γ + 2 = |`|+k−2
2 . Given a pair of eigenforms ğP ∈ S`,x (V1(AOL); L; E) and

f̆Q ∈ Sk,w(V1(A); E) we can produce cohomology classes ωP and ηQ, as in Definition 5.5,

such that π∗1ωP ∪π
∗

2 ηQ ∈ F|`|−2−s H |`|+k−3
dR

(
U`−4×E℘ Wk−2

)
where s = |`|−k−2

2 ; that is,

the cohomology class π∗1ωP ∪π
∗

2 ηQ lives in the domain of the syntomic Abel–Jacobi
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image of 1`,k ,

AJp(1`,k) : F
|`|−2−s H |`|+k−3

dR

(
U`−4×E℘ Wk−2

)
−→ E℘,

and we can compute the number AJp(1`,k)(π
∗

1ωP ∪π
∗

2 ηQ) as follows.

Theorem 1.7. Let L/Q be a real quadratic field and (`, k) a balanced triple. Let p be a

prime splitting in L for which the generalized Hirzebruch–Zagier cycle 1`,k is defined.

Then for all (P,Q) ∈ Cθ,r̄bal(`, k) we have

r̄L
θ
p (Ğ , F̆ )(P,Q) =

±1
s!E(f∗Q)

Ep(gP, f∗Q)

E0,p(gP, f∗Q)
AJp(1`,k)(π

∗

1ωP ∪π
∗

2 ηQ).

Remark. The assumption on the splitting behavior of p in L/Q should not be necessary.

It could be dispensed with by showing the overconvergence of the p-adic cuspform

d1−`µ
µ (ğ[p]P ) for µ ∈ IL . It seems reasonable to believe that by generalizing the recent

work of Andreatta and Iovita [1] one could prove such a result.

Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of

conductor N, both without complex multiplication over Q. We denote by (MA,B)p the

Galois representation AsVp(A)(−1)⊗Qp Vp(B) of the absolute Galois group of Q. We can

use Theorem 1.7 to give a criterion for the Bloch–Kato Selmer group H1
f (Q, (MA,B)p) to

be of dimension one in terms of the non-vanishing of a value of one of our twisted triple

product p-adic L-functions. We build on the recent work of Liu [26], where he computes

the dimension of H1
f (Q, (MA,B)p) assuming the non-vanishing of the étale Abel–Jacobi

map of certain cycle closely related to our Hirzebruch–Zagier cycle of weight (2tL , 2). Let

gA ∈ S2tL ,tL (V1(Q); L;Q), fB ∈ S2,1(V1(N);Q) be the newforms attached to A and B by

modularity and p a rational prime coprime to N ·NL/Q(Q) · dL/F . If gA, fB are p-nearly

ordinary, we denote by G ,F the Hida families passing through the p-nearly ordinary

stabilizations GPA = g(p)A and FQB
= f(p)B , respectively.

Corollary 1.8. Suppose that N and NL/Q(Q) · dL/Q are coprime ideals and that all the

primes dividing N split in L. For all but finitely many primes p that are split in L and

such that gA, fB are p-nearly ordinary we have

r̄L
θ
p (Ğ , F̆ )(PA,QB) 6= 0 H⇒ dimQp H1

f (Q, (MA,B)p) = 1,

where θ = −µ+µ′ ∈ Z[IL ], r̄ = −µ.

The arithmetic setting of this paper has recently been considered by several

independent groups: [4, 10, 19]. Ignacio Sols and I.B. computed syntomic Abel–Jacobi

images of some Hirzebruch–Zagier cycles in terms of p-adic modular forms, while Ishikawa

constructed twisted triple product p-adic L-functions over Q following the refined

approach of Hsieh [17]. Given the similarities between the computations of syntomic

Abel–Jacobi images in the work of B.-Sols and M.F., the two groups agreed to publish

together.
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2. Automorphic forms

2.1. Adelic Hilbert modular forms

Let F/Q be a totally real number field and let IF be the set of field embeddings of F
into Q. We denote by G F the algebraic group ResF/QGL2,F . We choose a square root

i ∈ C of −1 which allows us to define the Poincaré half-plane H, we consider the complex

manifold HIF which is endowed with a transitive action of G F (R)+ ∼=
∏

IF
GL2(R)+ and

contains the point i = (i, . . . , i). For any K 6 G F (A∞) compact open subgroup we denote

by Sk,w(K ; F;C), or simply Sk,w(K ;C) when there is no risk of confusion, the space of

holomorphic Hilbert cuspforms of weight (k, w) ∈ Z[IF ]
2, k− 2w = mtF for some m ∈ Z,

and level K . It is defined as the space of functions f : G F (A)→ C that satisfy the following

list of properties:

• f(αxu) = f(x) jk,w(u∞, i)−1 where α ∈ G F (Q), u ∈ K ·C+∞ for C+∞ the stabilizer of i in

G F (R)+ and the automorphy factor is jk,w
((

a b
c d

)
, z
)
= (ad − bc)−w(cz+ d)k for

(
a b
c d

)
∈

G F (R), z ∈ HIF ;

• for every finite adelic point x ∈ G F (A∞) the well-defined function fx : HIF → C given

by fx (z) = f(xu∞) jk,w(u∞, i) is holomorphic, where for each z ∈ HIF we choose u∞ ∈
G F (R)+ such that u∞i = z.

• for all adelic points x ∈ G F (A) and for all additive measures on F\AF we have∫
F\AF

f
((

1 a
0 1

)
x
)

da = 0.

• If the totally real field is just the field of rational numbers, F = Q, we need to impose

the extra condition that for all finite adelic point x ∈ GQ(A∞) the function |Im(z)
k
2 fx (z)|

is uniformly bounded on H.

Definition 2.1. We denote by G∗F the algebraic group ResF/QGL2,F ×ResF/QGm,F Gm . By

replacing G F by G∗F in the previous definition, we define S∗k,ν(K ;C) to be the space of

cuspforms for G∗F of weight (k, ν) ∈ Z[IF ]×Z and level K , for any K 6 G∗F (Q) compact

open subgroup.

Note that for all pairs of weights (k, ν), (k, ν′) ∈ Z[IF ]×Z there is a natural

isomorphism

9ν,ν′ : S∗k,ν(K ;C)
∼
−→ S∗k,ν′(K ;C) (2)

given by f(x) 7→ f(x)|det(x)|ν
′
−ν

AQ
.

Each irreducible automorphic representation π spanned by some form in Sk,w(K ;C) has

central character equal to |−|−m
AF

up to finite order characters. The twist πu
:= π ⊗ |−|

m
2
AF

is called the unitarization of π . Note that there is an isomorphism of function spaces (not

of G F (A)-modules)

π
∼
−→ πu

f 7→ fu
where fu(x) = f(x)|det(x)|

m
2
AF
. (3)
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Let dx be the Tamagawa measure on [G F (A)] = A×F G F (Q)\G F (A), for any two cuspforms

f1, f2 ∈ Sk,w(K ;C), with k− 2w = mtF , we define their Petersson inner product to be

〈f1, f2〉 =
∫
[G F (A)]

f1(x)f2(x)|det(x)|mAF
dx = 〈fu1, f

u
2〉. (4)

For an OF -ideal N we consider the following compact open sugroups of G F (Ẑ):

– U0(N) =
{(

a b
c d

)
∈ G F (Ẑ)

∣∣ c ∈ NÔF
}
,

– V1(N) =
{(

a b
c d

)
∈ U0(N)

∣∣ d ≡ 1 (mod NÔF )
}
,

– V11(N) =
{(

a b
c d

)
∈ V1(N)

∣∣ a ≡ 1 (mod NÔF )
}
,

– U (N) =
{(

a b
c d

)
∈ V11(N)

∣∣ b ≡ 0 (mod NÔF )
}

For any prime p coprime to N and any compact open subgroups satisfying V1(N) 6

K 6 U0(N), we set K (pα) = K ∩ V11(pα) and Z F (K ) = A×F/F× det K (p∞)F×∞,+. One can

decompose the ideles of F as

A×F =
h+F (N)∐

i=1

F×ai det V11(N)F×∞,+

where ai ∈ A∞,×F and h+F (N) is the cardinality of cl+F (N) := F×+ \A
∞,×
F / det V11(N). The

ideles decomposition induces a decomposition of the adelic points of G F

G F (A) =
h+F (N)∐

i=1

G F (Q)tiU (N)G F (R)+ for ti =
(

a−1
i 0
0 1

)
.

2.1.1. Adelic q-expansion. The Shimura variety ShK (G F ), determined by G F and a

compact open subgroup K , is not compact, therefore there is a notion of q-expansion for

Hilbert modular forms. Even more, Shimura found a way to package the q-expansions of

each connected component of ShK (G F ) into a unique adelic q-expansion. Fix dF ∈ A∞,×F
such that dFOF = dF is the absolute different ideal of F . Let FGal be the Galois closure

of F in Q and write V for the ring of integers or a valuation ring of a finite extension F0
of FGal such that for every ideal a of OF , for all τ ∈ IF , the ideal aτV is principal. Choose

a generator {qτ } ∈ V of qτV for each prime ideal q of OF and by multiplicativity define

{av} ∈ V for each fractional ideal a of F and each v ∈ Z[IF ]. Given a Hilbert cuspform

f ∈ Sk,w(V11(N);C), one can consider for every index i ∈ {1, . . . , h+F (N)}, the holomorphic

function fi : HIF → C

fi (z) = y−w∞ f
(

ti

(
y∞ x∞
0 1

))
=

∑
ξ∈(aid

−1
F )+

a(ξ, fi )eF (ξ z)

for z = x∞+ iy∞, ai = aiOF and eF (ξ z) = exp
(
2π i

∑
τ∈IF

τ(ξ)zτ
)
. Every idele y in

A×F,+ := A∞,×F F×∞,+ can be written as y = ξa−1
i du for ξ ∈ F×+ and u ∈ det U (N)F×∞,+;

the following functions

a(−, f) : A×F,+ −→ C, ap(−, f) : A×F,+ −→ Qp
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are defined by

a(y, f) := a(ξ, fi ){yw−tF }ξ tF−w|ai |AF and ap(y, f) := a(ξ, fi )y
w−tF
p ξ tF−wNF (ai )

−1

if y ∈ ÔF F×∞,+ and zero otherwise. Here NF : Z F (1)→ Q×p is the map defined by

y 7→ y−tF
p |y∞|−1

AF
. Clearly, the function ap(−, f ) makes sense only if the coefficients

a(ξ, fi ) ∈ Q are algebraic ∀ξ, i . For each V-algebra A contained in C we denote by

Sk,w(K ; A) the A-module
{
f ∈ Sk,w(K ;C)

∣∣ a(y, f) ∈ A ∀y ∈ A×F,+
}
.

Theorem 2.2 [14, Theorem 1.1]. Consider the map eF : CIF −→ C× defined by eF (z) =
exp

(
2π i

∑
τ∈IF

zτ
)

and the additive character of the ideles χF : AF/F −→ C× which

satisfies χF (x∞) = eF (x∞). Each cuspform f ∈ Sk,w(V11(N);C) has an adelic q-expansion

of the form

f
((

y x
0 1

))
= |y|AF

∑
ξ∈F+

a(ξ ydF , f){(ξ ydF )
tF−w}(ξ y∞)w−tF eF (iξ y∞)χF (ξ x)

for y ∈ A×F,+, x ∈ A×F , where a(−, f) : A×F,+ −→ C vanishes outside ÔF F×∞,+ and depends

only on the coset y∞ det V11(N).

2.1.2. Nearly holomorphic cuspforms. For any K compact open subgroup

satisfying V11(N) 6 K 6 G F (A∞) we denote by Nk,w,q(K ; F;C), or Nk,w,q(K ;C) when F
is clear, the space of nearly holomorphic cuspforms of weight (k, w) ∈ Z[IF ]

2 and order less

than or equal to q ∈ N[IF ] with respect to K . It is the space of functions f : G F (A)→ C
that satisfy the following list of properties:

• f(αxu) = f(x) jk,w(u∞, i)−1 where α ∈ G F (Q), u ∈ K ·C+∞;

• for each x ∈ G F (A∞) the well-defined function fx (z) = f(xu∞) jk,w(u∞, i) can be written

as

fx (z) =
∑

ξ∈L(x)+

a(ξ, fx )((4πy)−1)eF (ξ z)

for polynomials a(ξ, fx )(Y ) in the variables (Yτ )τ∈I of degree less than qτ in Yτ for each

τ ∈ IF and for L(x) a lattice of F .

As before fi stands for fti and we consider adelic Fourier coefficients

a(y, f)(Y ) = {yw−tF }ξ tF−w|ai |AF a(ξ, fi )(Y ), ap(y, f)(Y ) = yw−t
p ξ tF−wNF (ai )

−1a(ξ, fi )(Y )

if y = ξa−1
i dF u ∈ ÔF F×∞,+ and zero otherwise. The adelic Fourier expansion of a nearly

holomorphic cuspform f is given by

f
((

y x
0 1

))
= |y|AF

∑
ξ∈F+

a(ξ ydF , f)(Y ){(ξ ydF )
tF−w}(ξ y∞)w−tF eF (iξ y∞)χF (ξ x)

for Y = (4πy∞)−1 and for A a subring of C one can consider the A-module Nk,w,q(K ; A)
defined by {f ∈ Nk,w,q(K ;C)| a(y, f) ∈ A[Y ] ∀y ∈ A×F,+}.
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There are Maass–Shimura differential operators for r ∈ N[IF ], k ∈ Z[IF ] defined as

δr
k =

∏
τ∈IF

(δτkτ+2rτ−2 ◦ · · · ◦ δ
τ
kτ ) where δτλ =

1
2π i

(
λ

2iyτ
+

∂

∂zτ

)
. (5)

They act on a nearly holomorphic cuspform f ∈ Nk,w,q(K ;C) via the expression

a(y, δr
k f)(Y ) = {yw−tF+r

}ξ tF−w−r
|ai |AF a(ξ, δr

k fi )(Y ). Suppose that Q ⊂ A, then Hida

showed [14, Proposition 1.2] the differential operator δr
k maps Nk,w,q(K ; A) to

Nk+2r,w+r,q+r (K ; A) and if kτ > 2qτ ∀τ ∈ IF , then there is holomorphic projector 5hol
:

Nk,w,q(K ; A) −→ Sk,w(K ; A).

2.1.3. Hecke theory. Consider a compact open subgroup K 6 G F (A∞) of the finite

adelic points of G F that satisfies V11(N) 6 K 6 U0(N). Suppose that V is the valuation

ring corresponding to the fixed embedding ιp : FGal ↪→ Qp, so that we may assume

{ytF−w} = 1 whenever the ideal yOF generated by y is prime to pOF . Let $ be a

uniformizer of the completion OF,q of OF at a prime q. We are interested in Hecke

operators defined by the following double cosets

T0($) = {$
w−tF }

[
V11(N)

(
$ 0
0 1

)
V11(N)

]
if q - N,

U0($) = {$
w−tF }

[
V11(N)

(
$ 0
0 1

)
V11(N)

]
if q | N,

and for a ∈ O×F,N :=
∏

q|NO×F,q the double coset

T (a, 1) =
[

V11(N)

(
a 0
0 1

)
V11(N)

]
.

If the prime q is coprime to the level, then the Hecke operator T0($) acting on modular

forms is independent of the choice of the uniformizer $ and we simply denote it T0(q). For

any finite adelic point z ∈ ZG(A∞) of the center of G F we define the diamond operator

associated to it by f|〈z〉(x) = f(xz), for any modular form f. For a prime ideal q such that

GL2(OF,q) ⊂ K , we write 〈q〉 for the operator 〈$ 〉, where $ is a uniformizer of OF,q.

The action of the operators on adelic q-expansion is given by the following formulas. If

q - N one can compute

ap(y, f|T0(q)) = ap(y$, f){$w−tF }$ tF−w
p

+NF/Q(q){q
2(w−tF )}ap(y$−1, f|〈q〉){$ tF−w}$w−tF

p

and

a(y, f|T0(q)) = a(y$, f)+NF/Q(q){q
2(w−tF )}a(y$−1, f|〈q〉).

If q | N one can compute

ap(y, f|U0($)) = ap(y$, f){$w−tF }$ tF−w
p

and

a(y, f|U0($)) = a(y$, f).

Finally, for a ∈ O×F,N one finds ap(y, f|T (a,1)) = ap(ya, f)atF−w
p . It follows that if $ ∈ OF,q

is a uniformizer and a ∈ O×F,q then U0(a$) = T (a, 1)U0($).
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The Hecke algebra hk,w(K ;V) is defined to be the V-subalgebra of EndC
(
Sk,w(K ;C)

)
generated by the Hecke operators T0(q)’s for primes outside the level q - N, U0($)’s for

primes dividing the level q | N, T (a, 1)’s for a ∈ O×F,N and the diamond operators. For

each V-algebra A contained in C one defines hk,w(K ; A) = hk,w(K ;V)⊗V A.

Theorem 2.3 [14, Theorem 2.2]. For any finite field extension L/FGal and any

V-subalgebra A of L, there is a natural isomorphism Sk,w(K ; L) ∼= Sk,w(K ; A)⊗A L.

Moreover, if A an integrally closed domain containing V, finite flat over either V
or Zp, then Sk,w(K ; A) is stable under hk,w(K ; A) and the pairing ( , ) : Sk,w(K ; A)×
hk,w(K ; A)→ A given by ( f, h) = a(1, f|h) induces isomorphisms of A-modules

hk,w(K ; A) ∼= Sk,w(K ; A)∗ and Sk,w(K ; A) ∼= hk,w(K ; A)∗,

where (−)∗ denotes the A-linear dual HomA (−, A).

Every idele y ∈ ÔF ∩A×F can be written as y = a
∏

q$
e(q)
q u with u ∈ det U (N) and

a ∈ O×F,N. Write n for the ideal
(∏

q-N$
e(q)
q

)
OF , then the Hecke operator

T0(y) = T (a, 1)T0(n)
∏
q|N

U0($
e(q)
q ) (6)

depends only on the idele y. A cuspform that is an eigenvector for all the Hecke

operators is called an eigenform and it is normalized when a(1, f) = 1. Shimura proved

[37, Proposition 2.2] that the eigenvalues for the Hecke operators are algebraic numbers,

hence a normalized eigenform f ∈ Sk,w(K ;C) is an element of Sk,w(K ;Q) since the

T0(y)-eigenvalue is a(y, f) for every idele y. For an idele y ∈ ÔF ∩A×F , let T (y) =
T0(y){ytF−w}.

Definition 2.4. Let p | p be a prime of OF coprime to the level K and (k, w) ∈ Z[IF ]

with k > 2tF . A normalized eigenform f ∈ Sk,w(K ;Q) is nearly ordinary at p if the

T0(p)-eigenvalue is a p-adic unit with respect to the specified embedding ιp : Q ↪→ Qp.

If f is nearly ordinary at p for all p | p we say that f is p-nearly ordinary.

Definition 2.5. For every idele b ∈ A×F there is an operator V (b) on cuspforms defined by

f|V (b)(x) = NF/Q(bOF )f
(

x
(

b−1 0
0 1

))
that acts on p-adic q-expansions as ap(y, f|V (b)) = bw−tF

p ap(yb−1, f) (this operator is

denoted by [b] in [14, § 7B]). Its normalization [b] = {btF−w}V (b) acts on q-expansions

by a(y, f|[b]) = a(yb−1, f).

Remark. We have U0($) ◦ [$ ] = U ($) ◦ V ($) = 1.

Let f ∈ Sk,w(K ,Q) be a normalized eigenform of level prime to p. Set 〈p〉0 :=

{$
2(w−tF )
p }〈p〉, then the 〈p〉0-eigenvalue of f is ψf,0(p) = {$

2(w−tF )
p }ψf(p) for ψf(p) the

〈p〉-eigenvalue of f. The T0(p)-Hecke polynomial for f is given by

1−a(p, f)X +NF/Q(p)ψf,0(p)X
2
= (1−α0,pX)(1−β0,pX).
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If f is nearly ordinary at p, a(p, f) is a p-adic unit and we can assume that α0,p is a p-adic

unit too. The nearly ordinary p-stabilization of f is the cuspform f(p) = (1−β0,p[$p])f
that has the same Hecke eigenvalues of f away from p and whose U0($p)-eigenvalue is

α0,p. For S a finite set of prime OF -ideals, the S-depletion of a cuspform f is the cuspform

f[S] =
∏

p∈S
(
1− V ($p) ◦U ($p)

)
f whose Fourier coefficient ap(y, f[S]) equals ap(y, f) if

yS ∈ O×F,S and 0 otherwise.

Lemma 2.6. For all pairs of weights (k, ν), (k, ν′) ∈ Z[IF ]×Z we have the equality V (p) ◦
9ν,ν′ = pν

′
−ν9ν,ν′ ◦ V (p) of maps from S∗k,ν(K ,C) to S∗k,ν′(K ,C).

Proof. Follows directly from the definitions.

2.2. Hida families

We consider compact open subgroups that satisfy V1(N) 6 K 6 U0(N). The group Z F (K )
has a finite torsion, so we can fix a prime p coprime to N and the order of Z F (K )tor. Let

O be a valuation ring in Qp finite flat over Zp containing ιp(V). Consider the space of

p-adic cuspforms

Sk,w(K (p∞); O) = lim
α,→

Sk,w(K (pα); O)

on which the p-adic Hecke algebra

hk,w(K (p∞); O) = lim
←,α

hk,w(K (pα); O)

naturally acts. The Hecke operators defined by T(y) = lim← T (y)yw−tF
p play an important

role in the theory. There is a p-adic norm on the space of p-adic cuspforms

Sk,w(K (p∞); O) defined by |f|p = supy{|ap(y, f)|p}; the resulting completed space is

denoted by Sk,w(K (p∞); O) and it has a natural perfect O-pairing with the p-adic

Hecke algebra [14, Theorem 3.1]. Each element f ∈ Sk,w(K (p∞); O) induces a continuous

function f : J −→ O, defined by y 7→ ap(y, f), on the topological semigroup

J = ÔF
×F×∞,+/ det V11(p∞)F×∞,+,

isomorphic to O×F,p ×IF for IF the free semigroup of integral ideals of F . Hence,

there is a continuous embedding Sk,w(K (p∞); O) ↪→ C(J; O) of the completed space

of p-adic cuspforms into the continuous functions from J to O. The image of the

embedding SF (K ; O) is independent of the weight (k, w) since there exists a canonical

algebra isomorphism hk,w (K (p∞); O) ∼= h2tF ,tF (K (p
∞); O) which takes T(y) to T(y)

[13, Theorem 2.3]. Hence, we write hF (K ; O) for hk,w(K (p∞); O). From now on, SF (N, O)
and hF (N; O) stand respectively for SF (V1(N); O) and hF (V1(N); O).

Remark. Nearly holomorphic cuspforms can be seen as p-adic cuspforms. For each nearly

holomorphic cuspform f ∈ Nk,w,q(K (pα); F; O) one can define a p-adic cuspform by

setting c(f) = NF (y)−1∑
ξ∈F×+

ap(ξ ydF , f)(0)qξ ∈ SF (K ; O) [14, Proposition 7.3].

One can decompose the compact ring hF (K ; O) as a direct sum of algebras hF (K ; O) =
hn.o.

F (K ; O)⊕hss
F (K ; O) in such a way that T(p) is a unit in hn.o.

F (K ; O) and it
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is topologically nilpotent in hss
F (K ; O). Furthermore, the idempotent en.o. of the

nearly ordinary part hn.o.
F (K ; O) has the familiar expression en.o. = limn→∞ T(p)n!. Let

Sn.o.
F (K ; O) = en.o.SF (K ; O) be the space of nearly ordinary p-adic cuspforms.

Consider the topological group GF (K ) = Z F (K )×O×F,p equipped with the continuous

group homomorphism GF (K ) −→ hn.o.
F (K ; O)× given by 〈z, a〉 7→ 〈z〉T (a−1, 1). As p is

prime to the order of GF (K )tor, there is a canonical decomposition GF (K ) ∼= GF (K )tor×

WF for a Zp-torsion free subgroup WF . Then WF ∼= Zr
p for r = [F : Q] + 1+ δ, where

δ is Leopoldt’s defect for F , and we denote by OJWFK ∼= OJX1, . . . , Xr K the completed

group ring.

Theorem 2.7 [13, Theorem 2.4]. The universal nearly ordinary Hecke algebra hn.o.
F (K ; O)

is finite and torsion-free over 3F = OJWFK.

One can write OJGF (K )K =
⊕

χ 3F,χ as a direct sum ranging over all the characters of

GF (K )tor where 3F,χ ∼= 3F , and obtain a similar decomposition of the universal nearly

ordinary Hecke algebra hn.o.
F (K ; O) =

⊕
χ hn.o.

F (K ; O)χ .

Definition 2.8. Let K be a compact open subgroup satisfying V1(N) 6 K 6 U0(N) for

an OF -ideal N prime to p. Given a character χ : G(K )tor→ O× and a 3F,χ -algebra I,
we define the space of nearly ordinary I-adic cuspforms of tame level K and character

χ to be Sn.o.
F (K , χ; I) = Hom3F,χ -mod(hn.o.

F (K ; O)χ , I). We call Hida families those

homomorphisms that are homomorphisms of 3F,χ -algebras.

Given (k, w) ∈ Z[IF ]
2, with k− 2w = mtF , and finite order characters ψ : Z F (K )→

O×, ψ ′ : O×F,p → O× one can define a homomorphism GF (K )→ O× by (z, a) 7→
ψ(z)ψ ′(a)NF (z)matF−w, which determines an O-algebra homomorphism Pk,w,ψ,ψ ′ :

OJGF (K )K→ O. Let us fix an algebraic closure L of the fraction field L of 3F,χ with

an embedding Qp ↪→ L. Suppose λ : hn.o.
F (K ; O)χ → L is an 3F,χ -linear map; since the

universal nearly ordinary Hecke algebra is finite over 3F,χ , the image of λ is contained

in the integral closure Iλ of 3F,χ in a finite extension Kλ of L.

Definition 2.9. Let I be a finite integrally closed extension of 3F,χ . We denote by

Aχ (I) the set of arithmetic points, i.e., the subset of HomO-alg(I,Qp) consisting of

homomorphisms that coincide with some Pk,w,ψ,ψ ′ (with k > 2tF , w 6 tF ) on 3F,χ .

If P ∈ Aχ (Iλ), P|3F,χ = Pk,w,ψ,ψ ′|3F,χ , the composite λP = P ◦ λ induces a Qp-linear

map λP : hn.o.
k,w (K (p

α);Qp) −→ Qp for some α > 0 [13, Theorem 2.4]. Therefore, the

duality between Hecke algebra and cuspforms produces a unique p-adic cuspform fP ∈
Sn.o.

k,w (K (p
α);Qp) that satisfies ap(y, fP) = λP(T(y)) for all integral ideles y. Furthermore,

if λ is an algebra homomorphism, each specialization at an arithmetic point is an

eigenform and so classical, i.e., an element of Sn.o.
k,w (K (p

α);Q). On the other hand, if

f ∈ Sk,w(K (pα);Q) is an eigenform for all Hecke operators and its U0(p)-eigenvalue is a

p-adic unit with respect to the fixed p-adic embedding ιp, then there is character χ , a

finite integrally closed extension IF of 3F,χ and a nearly ordinary IF -adic Hida family

F : hn.o.
F (K ; O)→ IF passing through f [13, Theorem 2.4].
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Definition 2.10. We define the set of crystalline points, A◦χ (I), to be the subset of

arithmetic points P ∈ Aχ (I) such that P|3F,χ = Pk,w,ψ,1|3F,χ for ψ factoring through

ψ : cl+F (N)→ O× and the eigenform fP is p-old.

Specializations of Hida families with trivial nebentype at p are automatically p-old

when k > 2tF [13, Lemma 12.2].

2.3. Diagonal restriction

If L/F is an extension of totally real fields, there is a restriction map IL → IF
which induces a group homomorphism Z[IL ] → Z[IF ] denoted by ` 7→ `|F and satisfies

(tL)|F = [L : F] · tF . Let N an ideal of OF , the natural inclusion ζ : GL2(AF ) ↪→ GL2(AL)

defines by composition a diagonal restriction map ζ ∗ : S`,x (V11(NOL); L;C) −→
S`|F ,x|F (V11(N); F;C).

Proposition 2.11. Let b ∈ A×F . For any cuspform g ∈ S`,x (V11(NOL); L;C) we have

ζ ∗(g|V (b)) = NF/Q(bOF )
1−[L:F](ζ ∗g)|V (b).

Proof. Follows directly from the definitions.

Definition 2.12. Let L/F be an extension of totally real number fields and

let N be an OF -ideal. For every prime p coprime to N and the orders of

Z F (V1(N))tor, ZL(V1(NOL))tor, diagonal restriction of cuspforms induces by O-duality

a map between universal Hecke algebras ζ : hF (N; O) −→ hL(NOL ; O). The element

ζ(T(y)) is determined by the equality

ap
(
1,g|ζ(T(y))

)
= ap

(
1, (ζ ∗g)|T(y)

)
∀g ∈ SL(NOL ; O).

We endow OJGL(V1(NOL))K with the OJGF (V1(N))K-algebra structure given by

[(z, a)] 7→ [(z, a)]a−tF . The homomorphism ζ is also OJGF (V1(N))K-linear because

diamond operators and operators T (a, 1) for a ∈ O×F,p commute with diagonal restriction:

(ζ ∗g)|〈z〉 = ζ ∗(g|〈z〉), and (ζ ∗g)|T (a,1) = ζ ∗(g|T (a,1)).

2.3.1. On differential operators. For each µ ∈ IL there is an operator on p-adic

cuspforms dµ : SL(Q; O)→ SL(Q; O) given on q-expansions by ap(y, dµg) = yµp ap(y,g).
The definition can be extended to all r ∈ N[IL ] by setting dr

=
∏
µ∈IL

drµ
µ [14, § 6G].

Lemma 2.13. Let r ∈ N[IL ] and let g ∈ S`,x (V1(Qpα); L; O) be a cuspform, then

en.o.5
holζ ∗(δr

`g) = en.o.ζ
∗(dr g),

where δr
` is the Maass–Shimura differential operator (5).

Proof. [14, Proposition 7.3] gives en.o.5
holζ ∗(δr

`g) = en.o.c(ζ ∗(δr
`g)). Since c(ζ ∗(δr

`g)) =
ζ ∗c(δr

`g), we conclude by showing that c(δr
`g) = dr c(g). Indeed,

ap(y, c(δr
`g)) = ap(y, δr

`g)(0) = yx−tL+r
p NL(ai )

−1ξ tL−x−r a(ξ, δr
`gi )(0)

= yx−tL+r
p NL(ai )

−1ξ tL−x a(ξ,gi ) = ap(y, dr c(g)).
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3. Twisted triple product L-functions

3.1. Complex L-functions

Let L/F be a quadratic extension of totally real number fields, Q GOL and N GOF ideals.

Two primitive eigenforms g ∈ S`,x (V1(Q); L;Q) and f ∈ Sk,w(V1(N); F;Q) generate

irreducible cuspidal automorphic representations π, σ of GL(A),G F (A) respectively.

Let πu
= π ⊗ |•|

n/2
AL

, σ u
= σ ⊗ |•|

m/2
AF

their unitarizations, where n,m are the integers

satisfying n · tL = `− 2x , m · tF = k− 2w. One can define a unitary representation of

GL×F = ResL×F/F (GL2,L×F ) by 5 = πu
⊗ σ u . Let ρ : 0F → S3 be the homomorphism

mapping the absolute Galois group of F to the symmetric group over 3 elements

associated with the étale cubic algebra (L × F)/F . The L-group L(GL×F ) is given by

the semi-direct product Ĝ o0F where 0F acts on Ĝ = GL2(C)×3 through ρ.

Definition 3.1. The twisted triple product L-function associated with the unitary

automorphic representation 5 is given by the Euler product

L(s,5, r) =
∏
v

Lv(s,5v, r)−1

where 5v is the local representation at the place v of F appearing in the restricted tensor

product decomposition 5 =
⊗
′

v5v and representation r gives the action of the L-group

of GL×F on C2
⊗C2

⊗C2 which restricts to the natural 8-dimensional representation of

Ĝ and for which 0F acts via ρ permuting the vectors.

Let v be a prime of F unramified in L for which 5v is an unramified principal series,

i.e., v - N ·NL/F (Q) · dL/F . We write $v for a uniformizer of Fv and qv for the cardinality

of the residue field of Fv. If v = V ·V splits in L, the GL2(Fv)×3-representation 5v can be

written as 5v = π(χ1,V , χ2,V )⊗π(χ1,V , χ2,V )⊗π(ψ1,v, ψ2,v) and the local Euler factor

is given by

Lv(s,5v, r) =
∏
i, j,k

(
1−χi,V ($v)χ j,V ($v)ψk,v($v)q−s

v

)
. (7)

If v is inert in L, the GL2(Lv)×GL2(Fv)-representation 5v can be written as 5v =

π(χ1,v, χ2,v)⊗π(ψ1,v, ψ2,v) and the local Euler factor is given by

Lv(s,5v, r) =
∏
i, j

(
1−χi,v($v)ψ j,v($v)q−s

v

)
×

∏
k

(
1−χ1,v($v)χ2,v($v)ψ

2
k,v($v)q

−2s
v

)
.

(8)

Assume the central character ω5 of5 is trivial when restricted to A×F , then the complex

L-function L(s,5, r) has meromorphic continuation to C with possible poles at 0, 1
4 ,

3
4 , 1

and functional equation L(s,5, r) = ε(s,5, r)L(1− s,5, r) [31, Theorems 5.1, 5.2, 5.3].

Remark. The relation between Satake parameters of πu , σ u and Hecke eigenvalues of the

primitive eigenforms gu, fu can be given explicitly as follows. Suppose v - Q and v = V V
splits in L, then

gu
|T (V ) = q1/2

v

(
χ1,V ($v)+χ2,V ($v)

)
gu, gu

|T (V ) = q1/2
v

(
χ1,V ($v)+χ2,V ($v)

)
gu .

(9)
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Moreover, if v - Q and v is inert in L then

gu
|T (vOL )

= qv
(
χ1,v($v)+χ2,v($v)

)
gu . (10)

Finally, if v - N a finite place of F we have

fu |T (v) = q1/2
v

(
ψ1,v($v)+ψ2,v($v)

)
fu . (11)

3.2. Central L-values and period integrals

Let D/F be a quaternion algebra. We denote by 5D the irreducible unitary cuspidal

automorphic representation of D×(AL×F ) associated with 5 by the Jacquet–Langlands

correspondence when it exists. For a vector φ ∈ 5D one defines its period integral as

ID(φ) =

∫
[D×(AF )]

φ(x)dx

where [D×(AF )] = A×F D×(F)\D×(AF ). To simplify the notation we write I(φ) to denote

the period integral for the quaternion algebra M2(F).

Theorem 3.2. Let η : A×F → C× be the quadratic character attached to L/F by class field

theory. Then the following are equivalent:

(1) The central L-value L( 1
2 ,5, r) does not vanish, and for every place v of F the local

ε-factor satisfies εv(
1
2 ,5v, r) · ηv(−1) = 1.

(2) There exists a vector φ ∈ 5, called a test vector, whose period integral I(φ) does not

vanish.

Proof. (1) H⇒ (2) By Jacquet conjecture, as proved in [34, Theorem 1.1], the

non-vanishing of the central value implies that there exist a quaternion algebra D/F
and a vector φ ∈ 5D such that its period integral is non-zero, i.e., ID(φ) 6= 0. We want

to show that the assumption on local ε-factors forces the quaternion algebra to be split

everywhere. Ichino’s formula [18, Theorem 1.1] gives an equality, up to non-zero constants,

ID
· ĨD .
= L

(
1
2
,5, r

)
·

∏
v

ID
v

of linear forms in HomD×(AF )×D×(AF )(5
D
⊗ 5̃D,C) where 5̃D is the contragredient

representation and the ID
v ’s are local linear forms in HomD×(AFv )×D×(AFv )

(5D
v ⊗ (5̃

D)v,

C). Suppose v is a place of F at which the quaternion algebra D ramifies, i.e., v | discD.

Requiring the value of the expression εv(
1
2 ,5v, r) · η`(−1) to be equal to 1 forces the

local Hom-space HomD×(AFv )×D×(AFv )

(
5D
v ⊗ (5̃

D)v,C
)

to be trivial [11, Theorem 1.2]; in

particular it forces the local linear form ID
v to be trivial. This produces a contradiction

because the LHS of Ichino’s formula is non-trivial. Indeed, choosing the complex

conjugate φ̄ ∈ 5D ∼= 5̃D of the test vector φ we compute that

ID
· ĨD(φ⊗ φ̄) =

∣∣∣ID(φ)

∣∣∣2 6= 0.

Hence, the discriminant of D has to be trivial, i.e., D = M2(F).
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(2) H⇒ (1) The existence of a test vector φ ∈ 5 implies the non-vanishing

of the central value L( 1
2 ,5, r) by Jacquet conjecture. Moreover, Ichino’s formula

provides us with non-trivial local linear forms, the Iv’s, in the local Hom-spaces

HomGL2(AFv )×GL2(AFv )
(5v ⊗ (5̃)v,C) which force the equality εv(

1
2 ,5v, r) · ηv(−1) = 1 for

every place v of F [11, Theorem 1.1].

Remark. We can give sufficient conditions on the eigenforms g ∈ S`,x (V1(Q); L;Q) and

f ∈ Sk,w(V1(N); F;Q) such that the local ε-factors of the automorphic representation

5 satisfy the hypothesis of Theorem 3.2. The local ε-factor at the archimedean places

of F satisfy the hypothesis of the theorem if the weights of g and f are F-dominated

(Definition 1.1). Moreover, the same is true for the ε-factors at the finite places if we

assume that NL/F (Q) · dL/F and N are coprime and that every finite prime v dividing N

splits in L [33, Theorems B, D and Remark 4.1.1].

Proposition 3.3. For all finite places v of F away from the level of 5 and unramified in

L/F, a newvector in 5v is a choice of test vector for Ichino’s local linear functional.

Proof. If v is a place splitting in L, the claim follows from [32, Theorem 5.10]. We show

that the proof given by Prasad can be adapted to deal with the inert case as follows.

Our claim is that the image of the spherical vector under the non-trivial linear functional

ϒ : (πu)v → (σ̃ u)v, unique up to scaling, is non-zero. As in [33, § 4] we can assume that

(πu)v is the principal series Vχ for the character of the Borel

χ

(
a b
0 d

)
= α(a)β(d)−1 for unramified characters α, β : L×v → C×,

so that the representation Vχ can be realized in the space of functions over P1
Lv and the

spherical vector corresponds to the constant function 1P1
Lv

. The projective line P1
Lv can

be decomposed into an open and a closed orbit for the action of GL2(Fv),

P1
Lv =

(
P1

Lv \P
1
Fv

)∐
P1

Fv ,

which produces an exact sequence of GL2(Fv)-modules

0 // ind
GL2(Fv)
L×v

(χ ′) // Vχ // Ind
GL2(Fv)
B(Fv)

(χδ
1/2
Fv )

// 0 (12)

for χ ′ : L×v → C× the character defined by χ ′(x) = α(x)β(x). If Ind
GL2(Fv)
B(Fv)

(χδ
1/2
Fv ) is

isomorphic to the contragradient representation (σ̃ u)v then we are done, because 1P1
Lv
7→

1P1
Fv
6= 0. Otherwise, suppose ϒ(1P1

Lv
) = 0. Let Tv be the Hecke operator given by the

double coset

Tv =
[
GL2(OFv )

(
$v 0
0 1

)
GL2(OFv )

]
,

then the function

1
(qv + 1)χδ1/2($v)

(
Tv(1P1

Lv
)− qvχδ1/2($v)−χδ

1/2(1/$v)
)

(13)
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is the constant function 1 on the GL2(OFv )-orbit of P1
Lv consisting of those points that

reduce to a point in P1(OLv/$v) \P1(OFv/$v), and the constant function zero everywhere

else. Therefore, the function (13) is an element of ind
GL2(Fv)
L×v

(χ ′) because of the short exact

sequence (12). The function (13) is sent to zero by ϒ by GL2(Fv)-equivariance, but at

the same time that is not possible because we can explicitly describe the elements of

HomGL2(Fv)(ind
GL2(Fv)
L×v

(χ ′), (σ̃ u)v) in terms of integration over GL2(OFv )-orbits of P1
Lv

giving a contradiction.

3.3. p-adic L-functions

Let g ∈ S`,x (V1(Q); L; E), f ∈ Sk,w(V1(N); F; E) be primitive eigenforms defined over a

number field E whose weights are F-dominated. We assume the central character ω5
of 5 to be trivial when restricted to A×F , that the central L-value L( 1

2 ,5, r) does not

vanish, and that for every place v of F we have the condition εv(
1
2 ,5v, r)ηv(−1) = 1 on

local ε-factors satisfied. Then there exists a vector φ ∈ 5 such that the period integral

I(φ) is non-zero (Theorem 3.2). Let J be the element

J =

(
−1 0
0 1

)IF

∈ GL2(R)IF .

For any h ∈ σ u we define hJ
∈ σ u to be the vector obtained by right translation hJ(g) =

h(gJ). If h has weight k ∈ Z[IF ] then hJ(h) has weight −k.

Lemma 3.4. Let r ∈ N[IL ] be such that k = (`+ 2r)|F and w = (x + r)|F . Then there

is an OF -ideal A supported on a subset of the prime factors of N ·NL/F (Q) · dL/F

such that a test vector φ can be chosen to be of the form φ = (δr ğ)u ⊗ (f̆J)u for ğ ∈
S`,x (V11(AOL); L; E) and f̆ ∈ Sk,w(V11(A); F; E). The cuspforms ğ, f̆ are eigenforms for

all Hecke operators outside N ·NL/F (Q) · dL/F with the same Hecke eigenvalues of g and

f respectively.

Proof. By linearity of the period integral we can assume φ to be a simple tensor. We

can also assume φ = δrϑ ⊗ νJ ∈ 5 because the archimedean linear functional appearing

in Ichino’s formula is non-zero if and only if the sum of the weights of the local vectors

is zero. Moreover, Proposition 3.3 allows us to take ϑv and νv newvectors for all finite

places that do not divide N ·NL/F (Q) · dL/F . Note that spherical vectors are mapped to

spherical vectors by the isomorphism π ⊗ σ
∼
→ πu

⊗ σ u as in (3). Therefore we can write

φ = δrϑ ⊗ νJ as (δr ğ)u ⊗ (f̆J)u , for ğ ∈ π and f̆ ∈ σ of levels U (BOL) and U (B) for some

OF -ideal B supported on a subset of the places dividing N ·NL/F (Q) · dL/F . We conclude

by showing that we can assume that ğ ∈ S`,x (V11(AOL); L; E) and f̆ ∈ Sk,w(V11(A); F; E)
for A = B2. Indeed, right translation by

γ =

(
1 0
0 b

)
, bOF = B,
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induces injections

S`,x (U (BOL); L; E) ↪→ S`,x (V11(B
2OL); L; E),

Sk,w(U (B); F; E) ↪→ Sk,w(V11(B
2); F; E)

equivariant for the action of Hecke operators away from the level and that change the

period by a non-zero constant.

When the test vector φ is as in Lemma 3.4, we can rewrite the period integral I(φ) as

a Petersson inner product

I(φ) =

∫
[GL2(AF )]

(δr ğ)u ⊗ (f̆J)u dx =
〈
ζ ∗
(
δr ğ

)
, f̆∗
〉

(14)

where f̆∗ =
(
f̆J
)

is the cuspform in Sk,w(V11(A); F; E) whose Fourier coefficients are

complex conjugates of those of f̆. We conclude the section with a proposition showing

that a good transcendental period for the central L-value of the twisted triple product

L-function is the Petersson norm of the eigenform f∗.

Proposition 3.5. Let E be a number field and let f̆ ∈ Sk,w(V11(A); F; E) be a vector in

an irreducible cuspidal automorphic representation σ spanned by a primitive cuspform

f ∈ Sk,w(V11(N); F; E). Then for any ϕ ∈ Sk,w(V11(A); F; E) the Petersson inner product

〈ϕ, f̆〉 is a E-rational multiple of 〈f, f〉.

Proof. We follow the argument of [7, Lemma 2.12]. The Petersson inner product 〈f̆, ϕ〉
depends only on the projection efϕ of ϕ to σ . The E-vector space efSk,w(V11(A); F; E) is

spanned by the cuspforms

{
fa| fa(x) = f(xsa)

}
a| AN

, sa =
(

1 0
0 a

)
, aOF = a

for all ideals a dividing A/N ([29, Proposition 6] and [37, Proposition 2.3]). Thus, it

suffices to prove the statement for fa1 and fa2 when a1, a2 | A/N. We prove the claim by

induction on the prime divisors of a1, a2. If a1a2 = OF then the claim is clear. Suppose

there is a prime ideal p that divides both a1 and a2, then 〈fa1 , fa2〉 = 〈fa1/p, fa2/p〉 because

the Haar measure is invariant under translation. Thus, without loss of generality, we can

assume p divides a2 but not a1. We compute the equalities

a($p, f)〈fa1 , fa2〉 =

〈T0($p)fa1 , fa2〉 = (qp+ 1)〈fa1 , fa2/p〉 if p - N

〈U0($p)fa1 , fa2〉 = qp〈fa1 , fa2/p〉 if p | N,

that show

〈fa1 , fa2〉 =


a($p,f)
qp+1 〈fa1 , fa2/p〉 if p - N

a($p,f)
qp
〈fa1 , fa2/p〉 if p | N,

concluding the inductive step.
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3.3.1.

Construction. Suppose we are given primitive eigenforms g◦ ∈ S`◦,x◦(V1(Q); L;Q)
and f◦ ∈ Sk◦,w◦(V1(N); F;Q) with n◦tL = `◦− 2x◦, m◦tF = k◦− 2w◦ for n◦,m◦ ∈ Z. We

choose an element θ ∈ Z[IL ] such that θ|F = 0 · tF , θ ≡2 w◦ and set

r◦ = r◦(θ) =
∑
µ∈IL

[
(w◦)µ|F + θµ

2
− (x◦)µ

]
·µ ∈ Z[IL ].

Let p be a rational prime unramified in L, coprime to the levels Q,N. We write P
(respectively Q) for the set of prime OL -ideals (respectively OF -ideals) dividing p.

We suppose g◦, f◦ are p-nearly ordinary and we denote by G ∈ Sn.o.
L (Q, χ; IG ) and

F ∈ Sn.o.
F (N, ψ; IF ) the Hida families passing through nearly ordinary p-stabilizations

g(p)◦ and f(p)◦ . We have χ|ZL (Q)tor = χ◦N
n◦
L and ψ|Z F (N)tor = ψ◦N

m◦
F for characters

χ◦ : cl+L (Q)→ C×, ψ◦ : cl+F (N)→ C× and we suppose that χ◦|F ·ψ◦ ≡ 1. Let F ∗ ∈

Sn.o.
F (A, ψ−2

◦ ψ; IF ∗) [14, § 7F] be the twisted Hida family, where IF ∗ ∼= IF (ψ−2
◦ ) as an

3F,ψ−2
◦ ψ

-algebra.

Set KG ,F ∗ = (IG ⊗̂OIF ∗)⊗Q, KG = IG ⊗Q and KF ∗ = IF ∗ ⊗Q. We define a KG -adic

cuspform Ğ (respectively KF ∗ -adic cuspform F̆ ∗) passing through the nearly ordinary

p-stabilization of the test vectors ğ◦, f̆∗◦ as in [7, § 2.6]. Let r̄ =
∑
µ∈IL

r̄µ ·µ, with

r̄µ ∈ Z/(qpµ − 1)Z, denote the reduction of r◦. We define a homomorphism of

OJGL(V1(AOL))K-modules r̄ d•θ Ğ
[P]
: hL(AOL ; O) −→ KG ,F ∗ by

r̄ d•θ Ğ
[P] (〈z〉T(y)) =

Ğ (〈z〉T(y)) [〈yp〉]⊗ [NL/F 〈yp〉
−1/2
]〈yp〉

θ−tL
2 ω(yp)

r̄ if yp ∈ O×L ,p
0 otherwise,

where KG ,F ∗ is given the OJGL(V1(AOL))K-algebra structure [(z, a)] 7→ Ğ (〈z〉T (a−1, 1))

[〈a〉−1
]⊗ [NL/F 〈a〉1/2]〈a〉

−θ+tL
2 ω(a)−r̄ and 〈 〉 : O×L ,p → (O×L ,p)pro-p, ω : O×L ,p → (O×L ,p)tor

are the canonical projections. The composition of the natural maps hn.o.
F (A; O)→

hF (A; O)→ hL(AOL ; O) with the homomorphism r̄ d•θ Ğ
[P]
: hL(AOL ; O)→ KG ,F ∗

defines a nearly ordinary KG ,F ∗ -adic cuspform en.o.ζ
∗
(

r̄ d•θ Ğ
[P])
∈ Sn.o.

F (A, ψ−2
◦ ψ;

KG ,F ∗).

Proposition 3.6. Let s : IF → IL be any section of the restriction IL → IF , µ 7→ µ|F . For

any arithmetic point (P,Q) ∈W, with r(θ) a lift of r̄ , we have

en.o.ζ
∗
(

r̄ d•θ Ğ
[P])(P,Q) = en.o.ζ

∗
(
dr(θ)ğ[P]P

)
= ±en.o.ζ

∗(ds(w−x|F )ğ[P]P ).

Proof. For an arithmetic point (P,Q) ∈W , with r(θ) a lift of r̄ , the explicit

description of r̄ d•θ Ğ
[P] produces the equality of modular forms en.o.ζ

∗
(

r̄ d•θ Ğ
[P])(P,Q) =

en.o.ζ
∗
(
dr(θ)ğ[P]P

)
. Let now µ,µ′ ∈ IL , µ 6= µ′, be such that τ = µ|F = µ

′

|F . A direct

computation shows that 0 = en.o.dτ ζ ∗g = en.o.ζ
∗(dµ+ dµ′)g for any g, which implies

en.o.ζ
∗(dαµg) = (−1)αen.o.ζ

∗(dα
µ′

g) for any α ∈ N. When g = g[P] is P-depleted, we also

have en.o.ζ
∗(dαµg[P]) = (−1)αen.o.ζ

∗(dα
µ′

g[P]) for any α ∈ lim←,n Z/pn(qpµ − 1) by taking

p-adic limits. Thus, the second equality follows.
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Lemma 3.7. There is an element J (en.o.ζ
∗
(

r̄ d•θ Ğ
[P]), F̆ ∗) ∈ IG ⊗̂OFrac(IF ∗) such that for

any crystalline point (P,Q) ∈W, with r(θ) ∈ Z[IL ] a lift of r̄ , we have

J
(
en.o.ζ

∗
(

r̄ d•θ Ğ
[P]), F̆ ∗)(P,Q) = 〈

en.o.ζ
∗
(
dr(θ)ğ[P]P

)
, f̆∗(p)Q

〉
〈
f∗(p)Q , f∗(p)Q

〉 . (15)

Proof. We follow the argument of [7, Lemma 2.19]. Both F̆ ∗ and the F ∗-isotypic

projection eF ∗ζ
∗
(

r̄ d•θ Ğ
[P]) are IG ⊗̂OFrac(IF ∗)-linear combinations of the IF ∗ -adic

cuspforms F ∗a for a | A/N. Hence, the element J exists because we can interpolate

expressions of the form 〈
f∗(p)a1,Q

, f∗(p)a2,Q

〉
/
〈
f∗(p)Q , f∗(p)Q

〉
for Q ∈ A◦(IF ∗) using the explicit computations in the proof of Proposition 3.5 and the

fact that A is prime to p.

Definition 3.8. The twisted triple product p-adic L-function attached to
(
Ğ , F̆ , θ, r̄

)
is

the meromorphic rigid-analytic function

r̄L
θ
p (Ğ , F̆ ) :WG ,F ∗ −→ Cp

determined by J
(
en.o.ζ

∗
(

r̄ d•θ Ğ
[P]), F̆ ∗) ∈ IG ⊗̂OFrac(IF ∗).

Let hP,Q = ef∗Q,n.o.ζ
∗(dr(θ)ğ[P]P ) with nearly ordinary p-stabilization h(p)P,Q = (1−

βf∗QV (p))hP,Q. By definition en.o.h
(p)
P,Q = h(p)P,Q, that results in the equality h(p)P,Q =

en.o.h
(p)
P,Q = (1−βf∗Qα

−1
f∗Q
)en.o.hP,Q. More explicitly, if we set E(f∗Q) = (1−βf∗Qα

−1
f∗Q
),(

ef∗Q,n.o.ζ
∗(dr(θ)ğ[P]P )

)(p)
= E(f∗Q) · ef∗Q,n.o.ζ

∗(dr(θ)ğ[P]P )

that allows to rewrite the values of the p-adic L-function at every crystalline point

(P,Q) ∈W , with r(θ) ∈ Z[IL ] a lift of r̄ , as

r̄L
θ
p (Ğ , F̆ )(P,Q) =

1
E(f∗Q)

〈
en.o.ζ

∗
(
dr(θ)ğ[P]P

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉 . (16)

3.4. Interpolation formulas

The interpolation formulas satisfied by the twisted triple product p-adic L-function

include Euler factors that depend on whether the primes in P are above a prime of

F that is split or inert in the extension L/F . We partition the set of primes of F above

p accordingly to the splitting behavior in L/F , Q = Qinert
∐

Qsplit. For every prime

OF -ideal ℘ ∈ Q we denote by q℘ the cardinality of its residue field.

Inert case. For a prime ideal p ∈ P with ℘ = p∩OF ∈ Qinert, we write p = ℘OL .

Lemma 3.9. Let g ∈ S`,x (V11(AOL); L; E) be a T (p)-eigenvector, f ∈ Sk,w(V11(N); F; E) a

p-nearly ordinary eigenform. Suppose N | A and that the weights of g, f are F-dominated.
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If we denote by ef,n.o. = efen.o. the composition of the f-isotypic projection with the nearly

ordinary projector, we have

ef,n.o.ζ
∗
(
dr g[p]

)
= E℘(g, f)ef,n.o.ζ

∗
(
dr g

)
for E℘(g, f) =

(
1−αgα

−1
f q−1

℘

)(
1−βgα

−1
f q−1

℘

)
,

where αg, βg are the inverses of the roots of the T (p)-Hecke polynomial of g and αf is

determined by (en.o.f)|U ($℘ ) = αf · en.o.f.

Proof. Let g(p)α = (1−βgV ($p))g, g(p)β = (1−αgV ($p))g be the two p-stabilizations

of g, they satisfy U ($p)g
(p)
• = (•)g

(p)
• and g = 1/(αg−βg)

(
αgg(p)α −βgg(p)β

)
. Using

Proposition 2.11, we compute

ef,n.o.ζ
∗

[
dr (1− V ($p) ◦U ($p)

)
g(p)•

]
= ef,n.o.ζ

∗

[(
1− (•)V ($p)

)
dr g(p)•

]
= ef,n.o.

(
1− (•)q−1

℘ V ($℘)
)
ζ ∗(dr g(p)• )

=

(
1− (•)q−1

℘ α−1
f

)
ef,n.o.ζ

∗(dr g(p)• ).

Noting that the p-depletions of the p-stabilizations are equal, (g(p)α )[p] = (g(p)β )[p] = g[p],
we deduce the claim:

ef,n.o.ζ
∗(dr g) =

1
αg−βg

(
αgef,n.o.ζ

∗(dr g(p)α )−βgef,n.o.ζ
∗(dr g(p)β )

)
=

1(
1−αgαf

−1q−1
℘

) (
1−βgαf

−1q−1
℘

)ef,n.o.ζ
∗(dr g[p]).

Split case. For a prime ideal p ∈ P with ℘ = p∩OF ∈ Qsplit, we write ℘OL = p1p2.

Lemma 3.10. Let Q be any OL -ideal and g ∈ S`,x (V11(Q); L; E) a cuspform.

If i, j ∈ {1, 2}, i 6= j , U (p)ζ ∗
(
(g[p j ])|V ($pi )

)
= 0, which implies en.o.ζ

∗(g|V ($pi )
) =

en.o.ζ
∗((U ($p j )g)|V ($℘ )). In particular, en.o.ζ

∗
(
g[p1,p2]

)
= en.o.ζ

∗(g[p1]) = en.o.ζ
∗(g[p2]).

Proof. For any y ∈ ÔF F×∞,+ we can compute that

ap
(
y,U (p)[ζ ∗

(
(g[p j ])|V ($pi )

)
]
)
= p

tF−x|F
p ap

(
py, ζ ∗

(
(g[p j ])|V ($pi )

))
= C

∑
TrL/F (ξ)=p

ap(ξ yd−1
F dL , (g[p j ])|V ($pi )

)((ξdL)pξ
−1)tL−x ,

where C is a non-zero explicit constant. Suppose that ap(ξ yd−1
F dL , (g[p j ])|V ($pi )

) 6= 0

for some ξ ∈ L×+ with TrL/F (ξ) = p, then ξ yd−1
F dL ∈ ÔL L×∞,+, $pi | (ξ yd−1

F dL)pi and

$p j - (ξ yd−1
F dL)p j . Since p is unramified in L, that is equivalent to $pi | (ξ y)pi and

$p j - (ξ y)p j which implies that $pi - (TrL/F (ξ)y)pi = (py)pi . This is absurd.
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Regarding the second claim, for any pi -stabilizations g[p j ],(pi )
• we have that

en.o.ζ
∗
(
g[p1,p2]

)
= en.o.ζ

∗
(
(1− V ($pi )U ($pi ))g

[p j ],(pi )
•

)
= en.o.ζ

∗
(
(1− (•)V ($pi ))g

[p j ],(pi )
•

)
= en.o.ζ

∗
(
g[p j ],(pi )
•

)
.

Taking the appropriate linear combination we prove the statement.

Lemma 3.11. Let g ∈ S`,x (V11(AOL); L; E) be an eigenvector for the Hecke operators

T (p1) and T (p2), f ∈ Sk,w(V11(N); F; E) a p-nearly ordinary eigenform. Suppose N | A

and that the weights of g, f are F-dominated. For αi , βi the inverses of the roots of the

T (pi )-Hecke polynomial for g, i = 1, 2, and (en.o.f)|U ($℘ ) = αf · en.o.f we have

ef,n.o.ζ
∗
(
dr g[pi ]

)
=

E℘(g, f)
E0,℘(g, f)

ef,n.o.ζ
∗(dr g),

where

E℘(g, f) =
∏

•,?∈{α,β}

(
1−•1 ?2 α

−1
f q−1

℘

)
, E0,℘(g, f) = 1−α1β1α2β2(α

−1
f q−1

℘ )2.

Proof. Let g(pi )
αi = (1−βi V ($pi ))g, g(pi )

βi
= (1−αi V ($pi ))g be the two pi -stabilizations

of g. They satisfy U ($pi )g
(pi )
• = (•)g(pi )

• and g = 1/(αi −βi )
(
αi g

(pi )
αi −βi g

(pi )
βi

)
. Using

Lemma 3.10 we compute

ef,n.o.ζ
∗

[
dr
(
g(pi )
•

)[pi ]
]
= ef,n.o.ζ

∗

[
dr (1− (•)V ($pi ))g

(pi )
•

]
= ef,n.o.ζ

∗

[
dr g(pi )
•

]
− (•)ef,n.o.ζ

∗

[
dr (U ($p j )g

(pi )
• )|V ($℘ )

]
= ef,n.o.ζ

∗

[
dr g(pi )
•

]
− (•)α−1

f q−1
℘ ef,n.o.ζ

∗

[
dr (T (p j )−α jβ j V ($p j ))g

(pi )
•

]
. (17)

Recall that g(pi )
• is an eigenform for the operator T (p j ) of eigenvalue α j +β j . The chain

of identities in (17) continues as:

ef,n.o.ζ
∗

[
dr
(
g(pi )
•

)[pi ]
]
= ef,n.o.ζ

∗

[
dr g(pi )
•

]
− (•)α−1

f q−1
℘

[
(α j +β j )ef,n.o.ζ

∗

[
dr g(pi )
•

]
+

−α jβ j ef,n.o.ζ
∗

[
dr (U ($pi )g

(pi )
• )|V ($℘ )

] ]
=

(
1− (•)α−1

f q−1
℘ (α j +β j )+α jβ j

[
(•)α−1

f q−1
℘

]2
)

ef,n.o.ζ
∗

(
dr g(pi )
•

)
=

(
1− (•)α jα

−1
f q−1

℘

) (
1− (•)β jα

−1
f q−1

℘

)
ef,n.o.ζ

∗

(
dr g(pi )
•

)
.
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Finally, noting that
(
g(pi )
αi

)[pi ]
=
(
g(pi )
βi

)[pi ]
= g[pi ], we can put together the previous

identities to prove the claim:

ef,n.o.ζ
∗(dr g) =

1
αi −βi

(
αi ef,n.o.ζ

∗(dr g(pi )
αi
)−βi ef,n.o.ζ

∗(dr g(pi )
βi
)
)

=
1−αiβiα jβ j (α

−1
f q−1

℘ )2∏
•,?∈{α,β}

(1−•i ? j α
−1
f q−1

℘ )
ef,n.o.ζ

∗(dr g[pi ]).

Theorem 3.12. The value of the twisted triple product p-adic L-function L θ
p (Ğ , F̆ ) :

W → Cp at all (P,Q) ∈ Cθ,r̄F satisfies

r̄L
θ
p (Ğ , F̆ )(P,Q) = ±

1
E(f∗Q)

×

 ∏
℘∈Qinert

E℘(gP, f∗Q)
∏

℘∈Qsplit

E℘(gP, f∗Q)

E0,℘(gP, f∗Q)

 〈
ζ ∗
(
δs(w−x|F )ğP

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉 ,

where s : IF → IL is any section of the restriction IL → IF , µ 7→ µ|F and the Euler

factors appearing in the formula are defined in Lemmas 3.9 and 3.11.

Proof. We use (16) and Proposition 3.6 to obtain an explicit expression for the value of

the p-adic L-function at a point (P,Q) ∈ Cθ,r̄F . Then Lemmas 3.9, 3.11 give us

r̄L
θ
p (Ğ , F̆ )(P,Q) = ±

1
E(f∗Q)

〈
en.o.ζ

∗
(
ds(w−x|F )ğ[P]P

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉
= ±

1
E(f∗Q)

 ∏
℘∈Qinert

E℘(gP, f∗Q)
∏

℘∈Qsplit

E℘(gP, f∗Q)

E0,℘(gP, f∗Q)


×

〈
en.oζ

∗
(
ds(w−x|F )ğP

)
, f̆∗Q

〉〈
f∗Q, f

∗

Q

〉 .

We conclude the proof applying Lemma 2.13 to compare p-adic and real analytic

differential operators on cuspforms: en.oζ
∗
(
ds(w−x|F )ğP

)
= en.o5

holζ ∗
(
δs(w−x|F )ğP

)
.

Remark. Recall that for every (P,Q) ∈ Cθ,r̄F there is a unitary automorphic representation

5P,Q of prime-to-p level. The Euler factors in Theorem 3.12 also appear the expression

for the local L-factor L℘( 1
2 ,5P,Q, r). Indeed, if ℘ ∈ Qinert by using (11), (10) we compute

E℘(g, f∗) =
(

1−αgα
−1
f∗ q−1

℘

) (
1−βgα

−1
f∗ q−1

℘

)
=

(
1−χ1,p($℘)ψi,℘($℘)q−1/2

℘

) (
1−χ2,p($℘)ψi,℘($℘)q−1/2

℘

)
.

Similarly if ℘ ∈ Qsplit by using (11), (9) we obtain

E℘(g, f∗) =
∏

•,?∈{α,β}

(
1−•1 ?2 α

−1
f∗ q−1

℘

)
=

∏
i, j

(
1−χi,p1($℘)χ j,p2($℘)ψk,℘($℘)q−1/2

℘

)
.
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4. Geometric theory

4.1. Geometric Hilbert modular forms

Let F be a totally real number field and G F = ResL/Q(GL2,F ). For any open compact

subgroup K 6 G F (A∞) we consider the Shimura variety

ShK (G F )(C) = G F (Q)\(H±)IF ×G F (A∞)/K

where γ ∈ G F (Q) = GL2(F) acts on z = (zτ )τ ∈ (H±)IF via Moebius transformations

γ · z = (τ (γ )zτ )τ . The complex manifold ShK (G F )(C) has a canonical structure of

quasi-projective variety over its reflex field Q [28, Chapter II, Theorem 5.5]. Let ω be the

dual of the tautological quotient bundle on P1
C with p : ω→ P1

C the natural projection.

The group GL2(C) acts on P1
C via Moebius transformations and there is a natural way

to define a GL2(C)-action on ω such that the projection p is equivariant. For any weight

(k, w) ∈ Z[IF ]
2 such that k− 2w = mtF , one can define a line bundle

ω(k,w) =
⊗
τ∈IF

pr∗τ

(
ω⊗kτ ⊗ det

m+kτ
2

)
(18)

on (P1
C)

IF with G F (C)-action given as follows. For each τ ∈ IF , the action of G F (C) on

pr∗τ
(
ω⊗kτ ⊗det

m+kτ
2
)

factors through the τ -copy of GL2(C), which in turn acts as the

product of det
m+kτ

2 and the kτ -th power of the natural action on ω. One has to twist the

action by such a power of the determinant because it allows the line bundle to descend

to the Galois closure FGal of F over Q. Indeed, consider the subgroup Zs = Ker
(
NF/Q :

ResF/Q(Gm)→ Gm
)

of the center Z = ResF/Q(Gm) of G F and denote by Gc
F the quotient

of G F by Zs . The action of G F (C) on ω(k,w) factors through Gc
F (C), thus ω(k,w) descends

to an algebraic invertible sheaf on ShK (G F )C if K is sufficiently small by [28, Chapter III,

Proposition 2.1], and it has a canonical model over FGal by [28, Chapter III, Theorem 5.1].

Suppose F 6= Q, then for every field E , FGal
⊂ E ⊂ C, and sufficiently small compact

open subgroup K 6 G F (A∞), one can give a geometric interpretation of Hilbert modular

forms of weight (k, w), level K , defined over E as Mk,w(K ; E) = H0(ShK (G F )E , ω
(k,w)).

To deal with cuspforms and treat the case F = Q, one has to consider compactifications

of the Shimura variety ShK (G F )Q, which we discuss in § 4.2.

4.1.1. Integral models. Fix p a rational prime unramified in F and consider a level

structure of type K = K p K p, where K p is an open compact subgroup of G F
(
ÔF

p)
and

K p = GL2(OF ⊗Zp). The determinant map det : G F → ResF/Q(Gm) induces a bijection

between the set of geometric connected components of ShK (G F ) and cl+F (K ), the strict

class group of K , cl+F (K ) = F×+ \A
∞,×
F / det(K ). Since det(K ) ⊆ ÔF

×
, there is a surjection

cl+F (K )� cl+F to the strict ideal class group of F , which one uses to label the geometric

components of the Shimura variety ShK (G F ). Fix fractional ideals c1, . . . , ch+F
, coprime

to p, forming a set of representatives of cl+F . Then by strong approximation there is a

decomposition

ShK (G F )(C) = G(Q)+\HIF ×G F (A∞)/K =
∐
[c]∈cl+F

Shc
K (G F )(C),
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where each Shc
K (G F )(C) is the disjoint union of quotients of HIF by groups of the

form 0(g, K ) = gK g−1
∩G(Q)+. A different choice c′ of fractional ideal representing

[c] ∈ cl+F produces a canonically isomorphic manifold Shc′

K (G F )(C) ∼= Shc
K (G F )(C) [38,

Remark 2.8]. Suppose K p is sufficiently small so there exists a smooth, quasi-projective

Z(p)-scheme Mc
K representing the moduli problem of isomorphism classes of quadruples

(A, ι, λ, αK p )/S where (A, ι) is a Hilbert–Blumenthal abelian variety over S of dimension

g = [F : Q], λ a c-polarization and αK p a level-K p structure, [38, § 2.3].

The group of totally positive units O×F,+ acts on Mc
K by modifying the c-polarization.

The subgroup (K ∩O×F )
2 of O×F,+ acts trivially, where by K ∩O×F we mean the intersection

of K and O×F ↪→ Z(A∞) in G F (A∞). Therefore, the finite group O×F,+/(K ∩O
×

F )
2 acts

on the moduli scheme Mc
K and the stabilizer of each geometric connected component is(

det(K )∩O×F,+
)
/(K ∩O×F )

2.

Proposition 4.1. There is an isomorphism between the quotient of Mcd−1

K (C) by the

finite group O×F,+/(K ∩O
×

F )
2 and Shc

K (G F )(C). Moreover, if det(K )∩O×F,+ = (K ∩O
×

F )
2,

then the quotient map Mcd−1

K (C)→ Shc
K (G F )(C) induces an isomorphism between any

geometric connected component of Mcd−1

K (C) and its image.

Proof. This is [38, Proposition 2.4] with a shift in the indices by the absolute different. It

is necessary for the conventions for the complex uniformization used in [15, § 4.1.3].

Definition 4.2. Let p be a rational prime unramified in F and K = K p K p a compact open

subgroup of G F (A∞) such that K p is sufficiently small, K p = GL2(OF ⊗Zp) and det(K )∩
O×F,+ = (K ∩O

×

F )
2. The integral model of the Shimura variety ShK (G F ) over Z(p) is the

quotient of MK ,F =
∐
[c]∈cl+F

Mc
K by O×F,+/(K ∩OF )

2, which we denote ShK (G F ).

Note that the assumptions on the level K in the definition are always satisfied

up to replacing K p by an open compact subgroup [38, Lemma 2.5]. Moreover, by

Proposition 4.1, the scheme ShK (G F ) is smooth quasi-projective over Z(p) and has an

abelian scheme with real multiplication over it.

Remark. The scheme Md−1

K is an integral model of the Shimura variety for the algebraic

group G∗F of level K ∩G∗F (A
∞) [35]. We denote it by ShK (G∗F ) and we let ξ : ShK (G∗F )→

ShK (G F ) be the natural morphism.

4.1.2. Diagonal morphism. Let L/F be an extension of totally real fields with

[F : Q] = g. Consider the map of algebraic groups ζ : G F −→ GL defined by the

natural inclusion ζ(B) : GL2(B⊗Q F)→ GL2(B⊗Q L) of groups for any Q-algebra B. For

compact open subgroups K 6 GL(A∞) and K ′ 6 K ∩G F (A∞) we have a commutative

diagram
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ShK ′(G F )(C)
ζ //

det
��

ShK (GL)(C)

det
��

cl+F (K
′)

ζ //

��

cl+L (K )

��
cl+F

ζ // cl+L

(19)

hence for every fractional ideal c of F there is an induced map ζ : Shc
K ′(G F )(C)→

Shc
K (GL)(C). Suppose that K 6 GL(A∞) and K ′ 6 K ∩G F (A∞) satisfy the assumptions

in Definition 4.2. There is a morphism of Z(p)-schemes ζ : ShK ′(G F ) −→ ShK (GL)

induced by morphisms ζ̃ :MK ′,F →MK ,L that maps any quadruple [A, ι, λ, α(K ′)p ]/S
over a Z(p)-scheme S to the quadruple ζ̃

(
[A, ι, λ, α(K ′)p ]

)
= [A′, ι′, λ′, α′K p ]/S over S

defined as follows. First, the abelian scheme A′ is A⊗OF OL , then we can describe the

OL -action on OL via a ring homomorphism ῑ : OL → Mg(OF ) by choosing an OF -basis

of OL ; the choice of basis induces an identification between A⊗OF OL and Ag. Thus, the

ring homomorphism ι′ : OL → EndS(A′) is defined as the arrow that makes the following

diagram commute

OL

ι′

((

ῑ // Mg(OF )

��
Mg

(
EndS(A)

)
∼= EndS(A′)

Following [5, Lemma 5.11], one can compute the dual abelian scheme
(

A′
)∨ ∼=

A∨⊗OF d−1
L/F and realize that if λ : (c, c+)

∼
→ (Hom

sym
OF

(A, A∨),Hom
sym
OF

(A, A∨)+) is a

c-polarization of A then λ′ = λ⊗ id is a c⊗OF d−1
L/F -polarization of A′ = A⊗OF OL .

Finally, it is enough to define ζ̃ for principal N-level structures, for N an OF -ideal.

A principal N-level structure is an OF -linear isomorphism of group schemes (OF/N)
2 ∼
→

A[N] which induces an isomorphism OF/N
∼
→ µN⊗Z c−1d−1

F , using Weil pairing and

polarization. By tensoring such an isomorphism with OL over OF we obtain a principal

N-level structure on A′.

Remark. For any fractional ideal c of F there is a commutative diagram

Mcd−1
F

K ′,F
ζ̃ //

��

Mcd−1
L

K ,L

��
Shc

K ′(G F )
ζ // Shc

K (GL)

, implying ShK ′(GL2,Q)

ζ
&&

ζ̃ //Md−1
L

K ,L

ξ

��
ShK (GL)

when F = Q.

4.2. Compactifications and p-adic theory

Sometimes we drop part of the decorations from the symbols denoting Shimura varieties

when we believe it does not cause confusion, both to simplify the notation and to state
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facts that hold for both groups G and G∗. We denote by Sh∗K the minimal compactification

of ShK which is normal and projective. By choosing some auxiliary data Σ , one can

construct an arithmetic toroidal compactification Shtor
K ,Σ smooth and projective over Z(p).

It comes equipped with a natural map
∮
: Shtor

K −→ Sh∗K and an open immersion ShK ↪→

Shtor
K such that the boundary D = Shtor

K \ShK is a relative simple normal crossing Cartier

divisor. The Hilbert–Blumenthal abelian scheme A over ShK extends to a semi-abelian

scheme Asa
→ Shtor

K with an OF -action, a K -level structure and a zero section e : Shtor
K →

Asa ([35]; [23], Chapter VI). There is a canonical way to extend the rank 2 vector bundle

of relative de Rham cohomology H1
dR(A/ShK ,R) to an (OShtorK

⊗ZOF )-module H1 locally

free of rank 2 over Shtor
K ,R together with a logarithmic Gauss–Manin connection and

Kodaira–Spencer isomorphism. If ω = e∗
(
�1
Asa/ShtorK

)
is the cotangent space at the origin

of the universal semi-abelian scheme, the vector bundle H1 has an OF -equivariant Hodge

filtration

0 // ω // H1 // Lie((Asa)∨) // 0.

Let R be an OFGal,(p)-algebra in which the discriminant dF/Q is invertible. For a coherent

(OShtorK ,R
⊗ZOF )-module M , we denote by M =

⊕
τ∈IF

Mτ its canonical decomposition for

the OF -action [21, Lemma 2.0.8]: Mτ is the direct summand of M on which OF acts via

τ : OF → R→ OShtorK ,R
. Then the τ -component of the Hodge filtration is

0 // ωτ // H1
τ

// ∧2
(H1

τ )⊗ω
−1
τ

// 0 .

For a weight (k, w) ∈ Z[IF ]
2 with k− 2w = mtF , we define the integral model of the line

bundle (18) by

ω
(k,w)
G :=

⊗
τ∈IF

(
(∧2H1

τ )
−

m+kτ
2 ⊗ωkτ

τ

)
as a sheaf over Shtor

K ,R(G). The geometric definition of cuspforms is given by Sk,w(K ; R) =

H0(Shtor
K (G)R, ω

(k,w)
G (−D)

)
.

Remark. A general compact open subgroup K 6 G(A∞) of prime-to-p level does not

satisfy the assumptions in Definition 4.2. Anyway, one can work with modular forms

of level K by considering a subgroup K ′ that does satisfy them and then take

K/K ′-invariants [38, § 6.4].

Definition 4.3. Let R be an OFGal,(p)-algebra and let (k, ν) ∈ Z[IF ]×Z be any weight.

We fix one τ◦ ∈ IF and set ∧2H1
◦ := ∧

2H1
τ◦

. We define a line bundle over Shtor
K ,R(G

∗) by

ω
(k,ν)
G∗ := (∧

2H1
◦)
ν−|k|
⊗

⊗
τ∈IF

ωkτ
τ .

It provides a geometric incarnation of cuspforms on G∗ of weight (k, ν) ∈ Z[IF ]×Z by

setting S∗k,ν(K ; R) = H0(Shtor
K (G∗)R, ω

(k,ν)
G∗ (−D)

)
.
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According to [38], a weight (k, w) ∈ Z[IF ]
2, k− 2w = mtF , is cohomological if 2−

m > kτ > 2 for all τ ∈ IF . For any cohomological weight we define the vector bundle

F (k,w)
G on Shtor

K ,R(G) by F (k,w)
G :=

⊗
τ∈IF

F (k,w)
τ for F (k,w)

τ := (∧2H1
τ )

2−m−kτ
2 ⊗ Symkτ−2H1

τ .

Similarly, a weight (k, ν) ∈ Z[IF ]×Z is cohomological if k > 2tF and ν > |k− tF |.

For any cohomological weight we define the vector bundle F (k,ν)
G∗ on Shtor

K ,R(G
∗) by

F (k,ν)
G∗ := (∧

2H1
◦)
ν+|tF−k|

⊗
⊗

τ∈IF
Symkτ−2H1

τ . The extended Gauss–Manin connection on

H1 induces by functoriality logarithmic integrable connections ∇ : F (k,w)
G → F (k,w)

G ⊗

�1
Shtor

K ,R(G)
(log D) and ∇ : F (k,ν)

G∗ → F (k,ν)
G∗ ⊗�

1
ShtorK ,R(G

∗)
(log D) out of which one can form

the complexes

DR•
(
F (k,w)

G
)
=

[
0→ F (k,w)

G
∇
−→ · · ·

∇
−→ F (k,w)

G ⊗�
g
ShtorK ,R(G)

(log D)→ 0
]
, (20)

DR•
(
F (k,ν)

G∗
)
=

[
0→ F (k,ν)

G∗
∇
−→ · · ·

∇
−→ F (k,ν)

G∗ ⊗�
g
Shtor

K ,R(G
∗)
(log D)→ 0

]
(21)

equipped with their natural Hodge filtration. We denote by DR•c
(
F (k,w)

G
)

(respectively

DR•c
(
F (k,ν)

G∗
)
) the complex obtained from (20) (respectively (21)) by tensoring with

OShtor
K ,R(G)

(−D) (respectively OShtor
K ,R(G

∗)(−D)). One can associate to DR•
(
F (k,w)

G
)
,

DR•
(
F (k,ν)

G∗
)

and their compactly supported versions, dual BGG complexes. We recall the

definition of BGG(F (k,ν)
G∗ ) and we refer to [38, § 2.15] for the definition of BGG(F (k,w)

G ).

The compactly supported version is obtained by tensoring with the sheaf of functions

vanishing at the boundary divisor. For any subset J ⊂ IF , let sJ ∈ {±1}IF be the element

whose τ -component is −1 if τ 6∈ J and 1 if τ ∈ J . For 0 6 j 6 g we put

BGG j (F (k,ν)
G∗ ) =

⊕
J⊂IF ,#J= j

ω
sJ ·(k,ν)
G∗ eJ

for eJ the Cech symbol and ω
sJ ·(k,ν)
G∗ = (∧2H1

◦)
ν−|IF\J |−

∑
τ∈J kτ ⊗

⊗
τ 6∈J ω

2−kτ
τ ⊗

⊗
τ∈J ω

kτ
τ .

There are differential operators d : BGG j (F (k,ν)
G∗ )→ BGG j+1(F (k,ν)

G∗ ) given on local

sections by d : feJ 7→
∑
τ 6∈J 2τ,kτ−1(f)eτ ∧ eJ where 2τ,kτ−1(f) = (−1)kτ−2

(kτ−2)!
∑
ξ τ0(ξ)

kτ−1(ξ)

aξqξ if the local section is written as f =
∑
ξ aξqξ .

Theorem 4.4 ([38, Theorem 2.16]; [25, Remark 5.24]). Let R be an FGal-algebra, then

for S = F (k,w)
G (respectively F (k,ν)

G∗ ) there are canonical quasi-isomorphic embeddings

BGG•
(
S
)
↪→ DR•

(
S
)
, BGG•c

(
S
)
↪→ DR•c

(
S
)

of complexes of abelian sheaves on

Shtor
K ,R(G) (respectively Shtor

K ,R(G
∗)). Moreover, the Hodge spectral sequences for both

complexes degenerate at the first page.

4.2.1. p-Adic theory. Katz’s idea for a geometric theory of p-adic modular forms

[20] consists in removing from the relevant Shimura variety the preimages, under the

specialization map, of those points in the special fiber that correspond to non-ordinary

abelian varieties.

Let E ⊂ C be a number field containing FGal. The fixed embedding ιp : Q ↪→ Qp
determines a prime ideal ℘ | p of E . We denote by E℘ the completion, O℘ the ring
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of integers and κ the residue field. Let Asa
κ be the semi-abelian scheme over the

special fiber Shtor
K ,κ of the Shimura variety. The determinant of the map, induced by

Verschiebung V : (Asa
κ )

(p)
→ Asa

κ between cotangent spaces at the origin, corresponds to

a characteristic p Hilbert modular form Ha ∈ H0(Shtor
K ,κ , det(ω)⊗(p−1)), called the Hasse

invariant. The ordinary locus Shtor,ord
K ,κ is the complement of the zero locus of the Hasse

invariant. Let S tor
K denote the formal completion of Shtor

K ,O℘
along its special fiber and

j :
]
Shtor,ord

K ,κ
[
↪→ S tor

K ,rig the inverse image of the ordinary locus under the specialization

map sp : S tor
K ,rig→ Shtor

K ,κ . Let F be a coherent sheaf on S tor
K ,rig; one defines j†F to be the

sheaf whose sections on an admissible open U ⊂ S tor
K ,rig are the direct limit of 0(V ∩U,F)

computed over strict neighborhoods V of
]
Shtor,ord

K ,κ
[

in S tor
K ,rig.

For the minimal compactification Sh∗K ,κ one can similarly define the ordinary locus

Sh∗,ord
K ,κ of the special fiber, which is an affine scheme, since det(ω) is an ample line

bundle on Sh∗K ,κ . This is a very convenient feature because it implies the existence of a

fundamental system of strict affinoid neighborhoods of ]Sh∗,ord
K ,κ [.

Theorem 4.5. We recall that overconvergent cuspforms of weight (k, w) ∈ Z[IF ]
2 are

defined as S†
k,w(K ; E℘) = H0(S tor

K ,rig, j†(ω(k,w)G (−D)
))

. For any cohomological weight

(k, w) ∈ Z[IF ]
2, k− 2w = mtF , the hypercohomology group Hg(S tor

K ,rig, j†DR•c
(
F (k,w)

G
))

can be computed either as

S†
k,w(K ; E℘)∑

τ∈IF
2τ,kτ−1

(
S†

sτ ·(k,w)(K ; E℘)
) or

H0
rig

(
S tor

K ,rig, j†(F (k,w)
G ⊗�

g
S tor

K ,rig(G)

))
∇H0

rig

(
S tor

K ,rig, j†
(
F (k,w)

G ⊗�
g−1
S tor

K ,rig(G)

)) .
Proof. This is essentially [38, Theorem 3.5]. For completeness we write down

the argument for the second computation. Theorem 4.4 states that we have a

quasi-isomorphism of complexes DR•c(F
(k,w)
G ) ∼= BGG•c(F

(k,w)
G ), thus the isomorphisms

Hg(S tor
K ,rig, j†DR•c

(
F (k,w)

G
))
∼= Hg(S ∗K ,rig, j† ∮

∗
BGGc(F (k,w)

G
))
∼= Hg(S ∗K ,rig, j† ∮

∗
DR•c(

F (k,w)
G

))
follow by applying the Leray spectral sequence for the composition S tor

K ,rig→

S ∗K ,rig→ SpaQp and the vanishing of the higher derived images of subcanonical

automorphic bundles [24, Theorem 8.2.1.2]. We conclude that

Hg(S tor
K ,rig, j†DR•c

(
F (k,w)

G
))
∼=

H0
rig

(
S tor

K ,rig, j†(F (k,w)
G ⊗�

g
S tor

K ,rig(G)

))
∇H0

rig

(
S tor

K ,rig, j†
(
F (k,w)

G ⊗�
g−1
S tor

K ,rig(G)

))
because there is a fundamental system of affinoid neighborhoods of the ordinary locus

on the minimal compactification.

Remark. Replacing the group G by G∗ in Theorem 4.5, the conclusion still holds for any

cohomological weight (k, ν) ∈ Z[IF ]×Z and the group Hg(S tor
K ,rig, j†DR•c

(
F (k,ν)

G∗
))

, if we

define overconvergent cuspforms for G∗ as S∗,†k,ν (K ; E℘) = H0(S tor
K ,rig, j†(ω(k,ν)G∗ (−D)

))
.
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Lemma 4.6. Let p | p be a prime OF -ideal. The partial Frobenius Frp [38, § 3.12] acts

on the image of S†
k,w(K , E℘) in the hypercohomology group Hg(S tor

K ,rig, j†DR•c
(
F (k,w)

G
))

as

Frp = NF/Q(p)V (p).

Proof. Taking into account the action of the partial Frobenius on j†�
g
S tor

K ,rig(G)
, the same

computation as in [6, Remark p. 339] shows that Frp acts on the image of S†
k,w(K , E℘)

in Hg(S tor
K ,rig, j†DR•c

(
F (k,w)

G
))

as $
k−tF+

(2−m)tF−k
2

p [p], since [p] is the operator that acts

on q-expansion by a(y, f|[p]) = a(y$−1
p , f). We conclude noting that [p] = $ tF−w

p V (p) as

operators on S†
k,w(K , E℘).

If we denote by Up the operator defined in [38, § 3.18], the equality UpFrp = 〈p
−1
〉$

tF
p

of [38, Lemma 3.20] implies that U (p) = Up〈p〉 as operators on S†
k,w(K ; E℘). In particular,

we can restate [38, Corollary 3.24] by saying that if f ∈ S†
sJ ·(k,w)

(K ; E℘) is a generalized

eigenform for U0(p) with non-zero eigenvalue λp, then

valp(λp) >
∑

τ∈IF,p\J

(kτ − 1) (22)

where IF,p is the subset of those embeddings F ↪→ Q that induce the prime p when

composed with the fixed p-adic embedding ιp : Q ↪→ Qp.

Corollary 4.7. Let F/Q be a real quadratic field in which pOF = p1p2 splits. Let f ∈
Sk,w(K ;Q) an eigenform of prime to p level. Then the p-adic cuspforms d1−k1

1 (f[p1,p2]),

d1−k2
2 (f[p1,p2]) are overconvergent.

Proof. We prove the corollary building on an idea of Loeffler et al. [27, Proposition 4.5.3].

Let 1−a($p2 , f)X + εf(p2)$
k−tF
p2 X2

= (1−α0,2 X)(1−β0,2 X) be the Hecke polynomial of f
for T0(p2). We denote by fα2 , fβ2 the two p2-stabilizations of f and without loss of generality

suppose valp(α0,2) 6 valp(β0,2). If we write 2i = 2τi ,kτi−1 for i = 1, 2, then the classes

of f[p1]
α2 , f[p1]

β2
are trivial in the quotient

S†
k,w(K ;E℘ )

Im(21)+Im(22)
because they are annihilated by

the invertible operator U0(p1). Consider the Hecke-equivariant projections pri : Im(21)+

Im(22)→
Im(2i )

Im(21)∩Im(22)
for i = 1, 2. We immediately see that pr2(f

[p1]
α2 ) = 0 because of

the lower bound (22) on the slopes of U0(p2), therefore pr2(f[p1]) =
β2,0

β2,0−α2,0
pr2(f

[p1]
β2
) which

implies U0(p2)pr2(f[p1]) = β0,2 ·pr2(f[p1]). We claim that [p2]pr2(f[p1]) = 1
β0,2

pr2(f[p1]).

Indeed, the equality of Hecke operators T0(p2) = U0(p2)+α0,2β0,2[p2] allows us to

compute that

[p2]pr2(f
[p1]) =

1
α0,2β0,2

[
T0(p2)pr2(f

[p1])−U0(p2)
β2,0

β2,0−α2,0
pr2(f

[p1]
β2
)
]

=
1

α0,2β0,2

[
a(p2, f)pr2(f

[p1])−β0,2pr2(f
[p1])

]
=

1
β0,2

pr2(f
[p1]).

Thus, pr2(f[p1,p2]) = 0. By exchanging the roles of the two primes p1, p2 we also have that

pr1(f[p1,p2]) = 0, which proves f[p1,p2] ∈ Im(21)∩ Im(22).
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5. A p-adic Gross–Zagier Formula

5.1. De Rham realization of modular forms

Let E be a number field, following Voevodsky [39] we consider two categories of motives

over E : the category of effective Chow motives denoted by CHMeff with a natural functor

h : SmProj/E → CHMeff from the category SmProj/E of smooth and projective schemes

over E , and the triangulated category DMeff of effective geometric motives with the

natural functor Mgm : Sm/E → DMeff from the category Sm/E of smooth schemes over

E . Since number fields have characteristic zero, these two categories are related by a full

embedding CHMeff
→ DMeff that makes the diagram

SmProj/Q //

h
��

Sm/Q

Mgm
��

CHMeff // DMeff

commute [39, Proposition 2.1.4 and Remark].

Let F be a totally real number field of degree g over Q and let E be any field containing

FGal. The Shimura variety ShK (G∗)Q has a universal Hilbert–Blumenthal abelian scheme

A→ ShK (G∗), the OF -action induces a ring homomorphism F ↪→ EndShK (G∗)(A)⊗ZQ.

We denote by CMH(ShK (G∗)) the category of Chow motives over ShK (G∗) [9]. Since

the decomposition of the Chow motive h(A/ShK (G∗)) =
⊕

i hi (A/ShK (G∗)) of A over

ShK (G∗) is functorial [9, Theorem 3.1], there is an isomorphism of Q-vector spaces

[22, Proposition 2.2.1]

EndShK (G∗)(A)⊗ZQ ∼
−→ EndCHM(ShK (G∗))

(
h1(A/ShK (G∗))

)
⊗ZQ.

One denotes by eτ ∈ EndCHM(ShK (G∗)) (h1(A/ShK (G∗)))⊗Z E , τ ∈ IF , the idempotents

coming from
∏
τ F = F ⊗ E ↪→ EndCHM(ShK (G∗)) (h1(A/ShK (G∗)))⊗Z E .

Definition 5.1. Let k ∈ N[IF ], k > 2tF . The relative motive Vk
∈ CHM(ShK (G∗))E is

defined as

Vk
=

⊗
τ∈IF

Symkτ−2h1(A/ShK (G∗))eτ

following the conventions of [22, p. 72] for the symmetric products. The motive

Vk is a direct factor of h(A|k−2tF |/ShK (G∗)), where A|k−2tF | denotes the (|k| −
2g)-fold fiber product of A over ShK (G∗), thus it corresponds to an idempotent ek ∈

CHg(|k|−2g) (A|k−2tF |×ShK (G∗)A|k−2tF |
)
⊗Z E such that Mgm(A|k−2tF |)ek = Vk .

Proposition 5.2 [41, Corollary 3.9]. Suppose k > 2tF and let Uk−2g be any smooth

compactification of A|k−2tF |, then the graded part of weight zero with respect to

the motivic weight structure on CHMeff
E , Gr0Mgm

(
A|k−2tF |

)ek , is canonically a direct

factor of the Chow motive Mgm(Uk−2g). Hence, it corresponds to an idempotent θk ∈

CHg(|k|−2g+1)(Uk−2g ×Q Uk−2g)⊗Z E.
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Proposition 5.3. Suppose F = Q and let k > 2 be an integer. For any smooth

compactification Wk−2 of the (k− 2)th-fold product of the universal elliptic curve E
over the modular curve ShK ′(GL2,Q), there exists an idempotent θk ∈ CHk−1(Wk−2×Q
Wk−2)⊗ZQ such that θ∗k H∗dR(Wk−2/Q) = θ∗k H k−1

dR (Wk−2/Q) is functorially isomorphic to

parabolic cohomology H1
par

(
Shtor

K ′ , (F
(k,k−1)
GL2,Q

,∇)
)

with its Hodge filtration [2, § 2.1].

Proof. Proposition 5.2 provides an idempotent θk such that θ∗k Mgm(Wk−2) =

Gr0Mgm(Ek−2)ek . We claim that the proof of [2, Lemma 2.2] applies to our situation.

Indeed, the main ingredient of that proof is a result of Scholl [36, Theorem 3.1.0], which

can be applied to any smooth compactification Wk−2 since the motive considered by Scholl

is isomorphic to Gr0Mgm(Ek−2)ek by [40, Corollary 3.4(b)]. Note that the idempotent e
in [40, Definition 3.1] acts as the idempotent ek on Mgm(Ek−2) because the action of the

torsion appearing in e is trivial since Ek−2
→ ShK ′(GL2,Q) is an abelian scheme.

Proposition 5.4. Let L/Q be a real quadratic extension and ` ∈ N[IL ], ` > 2tF a

non-parallel weight. For any smooth compactification U`−4 of the (|`| − 4)th-fold product

of the universal abelian surface over ShK (G∗L), there exists an idempotent θ` ∈

CH2(|`|−3)(U`−4×Q U`−4)⊗Z L such that θ∗` H i+|`|−4
dR (U`−4/Q) is functorially isomorphic

to Hi (ShK ,DR•(F (`,|`−tL |)
G∗L

)) with its Hodge filtration.

Proof. Since the weight ` is not parallel, Proposition 5.2 and [41, Theorem 3.6] provide an

idempotent θ` such that θ∗`Mgm(U`−4) = V` . Then Kings proved in [22, Corollary 2.3.4]

that the (i + |`| − 4)-th cohomology of the de Rham realization of V` is isomorphic to

Hi (ShK ,DR•(F (`,|`−tL |)
G∗L

)).

5.2. Generalized Hirzebruch–Zagier cycles

Let L/Q be a real quadratic extension, K ⊂ V11(AOL) a small enough (Definition 4.2)

congruence subgroups, K ′ = K ∩GL2(A∞), and let ξ : ShK (G∗L)→ ShK (GL) be the map

of Shimura varieties derived from the inclusion G∗L ↪→ GL . Let ğ ∈ S`,x (V11(AOL); L;Q)
be a eigenform of either parallel weight ` = 2tL or non-parallel weight ` > 2tL such

that `− 2x = ntL . Let f̆ ∈ Sk,w(V11(A);Q) be an elliptic eigenform for the good Hecke

operators, such that k− 2w = m, and we denote by f the newform corresponding to

the system of eigenvalues. We suppose that the weights of g and f are balanced.

We consider E/Q a finite Galois extension containing the Fourier coefficients of g
and f. We want to realize these modular forms in the de Rham cohomology of some

proper and smooth variety. The pullback ξ∗ğ lives in S∗`,x (K ; L; E), which by (2) is

isomorphic to S∗`,`−tL
(K ; L; E). Thanks to Theorem 4.4 we can realize the latter space

as a subgroup of the hypercohomology group H2(Shtor
K ,E ,DR•(F`,|`−tL |

G∗L
)), which is simply

the de Rham cohomology group H2
dR(Shtor

K (G∗L)/E) when ` = 2tL . Instead, when ` > 2tL

is not parallel, let U`−4 be any smooth compactification of A`−4; then, we can invoke

Proposition 5.4 to establish that the differential attached to 9x,|`−tL |(ξ
∗ğ), where 9x,|`−tL |

is defined in (2), lives in F|`|−2 H |`|−2
dR (U`−4/E). Similarly, if k = 2, 9w,1(f̆) ∈ S2,1(K ′; E) ⊂

F1 H1
dR(Shtor

K ′ (GL2,Q)/E), while when k > 2 we can consider any smooth compactification

https://doi.org/10.1017/S1474748019000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000021


1980 I. Blanco-Chacón and M. Fornea

Wk−2 of Ek−2 to see that the class of the differential ω
9w,k−1(f̆)

lives in H k−1
dR (Wk−2/E), by

Proposition 5.3.

Definition 5.5. Choose a prime p coprime to M . Let E℘ be the closure of ιp(E) in Qp and

suppose that ğ, f̆ are p-nearly ordinary. We write ω for the differential ω9x,|`−tL |(ξ
∗ğ) and

we take η to be the class in the 9w,k−1(f)-isotypic part of H1
par

(
Shtor

K ′ , (F
(k,k−1)
GL2,Q

,∇)
)u.r.

whose image in the 0-th graded piece, H1(Shtor
K ′,E℘ , ω

2−k
GL2,Q

), is equal to the image of

vol(K ′)
〈f∗,f∗〉 ·ω9w,k−1(f̆∗)

.

The class η ∈ H1
par

(
Shtor

K ′ , (F
(k,k−1)
GL2,Q

,∇)
)u.r.

satisfies

Frp(η) = αf∗ pw−1η, (23)

where the eigenvalue is a p-adic unit since f∗ is p-nearly ordinary. Indeed, by definition

η = [c ·9w,k−1(f̆β)] for some non-zero constant c, and applying Lemmas 2.6 and 4.6 we

can compute

Frp(η) = pV (p)[c ·9w,k−1(f̆β)] = p · pk−1−w
[c ·9w,k−1(V (p)f̆β)]

= pk−w
[c ·9w,k−1(U (p)−1 f̆β)] = pk−wβ−1

f η = αf∗ pw−1η,

since β−1
f = αfψf(p)−1 p−1

= αf∗ p−m−1.

For all s > 0 we want to consider the cohomology class

π∗1ω∪π
∗

2 η ∈ F|`|−2−s H |`|+k−3
dR

(
U`−4×E℘ Wk−2

)
.

Our goal is to define a null-homologous cycle on U`−4×E Wk−2 whose syntomic

Abel–Jacobi map can be evaluated at π∗1ω∪π
∗

2 η. Let Z`,k be a proper smooth model of

U`−4×E℘ Wk−2 over OE℘ of relative dimension d, and denote by Z`,k its generic fiber. For

all integers i > 0, the syntomic cohomology groups of Z`,k sit in a short exact sequence

of the form

0 // H2i−1
dR (Z`,k)/F i ι // H2i

syn(Z`,k, i) π // Fi H2i
dR(Z`,k).

The syntomic cycle class map [3, Proposition 5.4] is compatible with the de Rham cycle

class map producing a commuting diagram

CHi (Z`,k)
clsyn //

Res
��

H2i
syn(Z`,k, i)

π

��
CHi (Z`,k)

cldR // F i H2i
dR(Z`,k)

where on the left hand side are the Chow groups of algebraic cycles modulo rational

equivalence. The restriction of the syntomic cycle class map clsyn to the subgroup of de
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Rham null-homologous cycles CHi (Z`,k)0, i.e., the kernel of the composition cldR ◦Res,

has image landing in H2i−1
dR (Z`,k)/F i . The syntomic Abel–Jacobi map

AJp : CHi (Z`,k)0 −→
(

Fd−i+1 H2(d−i)+1
d R (Z`,k)

)∨
(24)

is obtained by identifying the target using Poincaré duality.

We determine the positive integer s and make sure the numerology works. The

dimension of the variety U`−4×E Wk−2 is d = 2|`| + k− 7, therefore the cycle we want

has to be of dimension d − i such that 2(d − i)+ 1 = |`| + k− 3, and s > 0 has to satisfy

|`| − 2− s = (d − i)+ 1. Hence

(d − i) =
|`| + k− 4

2
, s =

|`| − k− 2
2

(25)

with s > 0 since the weights are balanced.

5.2.1. Definition of the cycles. We treat separately the case (`, k) = (2tL , 2) and

the general case (`, k) > (2tL , 2) with ` not parallel. Set γ + 1 = |`|+k−4
2 and consider the

finite map

ϕ : Eγ −→ A|`|−4
×E Ek−2,

(x, P1, . . . , Pγ ) 7→ (ζ(x), P ′1⊗ 1, . . . , P ′
|`|−4⊗ 1; x, P ′

|`|−3, . . . , P ′2γ )

where (P ′1, . . . , P ′2γ ) = (P1, . . . , Pγ , P1, . . . , Pγ ) and P ′i ⊗ 1 is the point P ′i ⊗ 1→ E ⊗Z
OF → A. The definition makes sense because 2γ = |`| − 4+ k− 2. The variety Eγ
has dimension equal to γ + 1 and we will define the null-homologous cycle by first

compactifying and then by applying an appropriate correspondence. Let W0 be the

smooth and projective compactification of the modular curve ShK ′(GL2,Q). We consider

Wγ ,U`−4,Wk−2 smooth and projective compactifications of Eγ ,A|`|−4, Ek−2 respectively,

such that Wγ has a map Wγ → W0 extending Eγ → ShK ′(GL2,Q); then the map ϕ defines

a rational morphism ϕ : Wγ
// U`−4×E Wk−2 . Using Hironaka’s work on resolution

of singularities [16, Chapter 0.5, Question (E)], we can assume the rational map ϕ has a

representative ϕ : Wγ −→ U`−4×E Wk−2 defined everywhere, up to replacing the smooth

and projective compactification of Eγ . Furthermore, by desingularizing the fibers over

the cusps, we can assume that Wγ → W0 is smooth. By spreading out, there is an open
of Spec(OE ) over which all our geometric objects can be defined simultaneously and

retain their relevant features: we have smooth and projective models Wγ ,U`−4,Wk−2 of

Wγ ,U`−4,Wk−2 respectively, the map ϕ extends to a map ϕ̃ : Wγ −→ U`−4×Wk−2 and

Wγ → W0 is smooth.

When ` = 2tL and k = 2 we define correspondences on U0×W0 as follows. We

assume the number field E is large enough such that U0/E (respectively W0/E ) is the

disjoint union of its geometrically connected components U0/E =
∐

i U0,i (respectively

W0/E =
∐

j W0, j ) and we pick an E-rational point ai ∈ U0,i (respectively b j ∈ W0, j ) for

every such component. Consider the following morphisms: for every pair (i, j) indexing

a geometrically irreducible component of Z = U0×E W0, we define qi, j : Z → U0,i ×E
W0, j ↪→ Z as the map that restricts to the natural inclusion of U0,i ×E W0, j into Z and
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maps any other geometrically irreducible component to the point (ai , b j ). Similarly, we

define qai , j : Z → {ai }×W0, j ↪→ Z , qi,b j : Z → U0,i ×{b j } ↪→ Z and qai ,b j : Z → {ai }×

{b j } ↪→ Z . Consider Pi, j = graph(qi, j ), Pai , j = graph(qai , j ), Pi,b j = graph(qi,b j ), Pai ,b j =

graph(qai ,b j ), all correspondences in CH6(Z ×E Z). We set

P =
∑
i, j

(
Pi, j − Pai , j − Pi,b j + Pai ,b j

)
,

that acts on CH•(Z) by P∗ = pr2,∗(P ·pr∗1); in particular, for any cycle S ∈ CH•(Z), we

have

P∗(S) =
∑
i, j

[
(qi, j )∗− (qai , j )∗− (qi,b j )∗+ (qai ,b j )∗

]
(S).

For i, j running in the set of indices of the geometrically connected components of U0 and

W0 the correspondences (Pi, j − Pai , j − Pi,b j + Pai ,b j ) are idempotents and orthogonal to

each other, hence P ◦ P = P in CH6(Z ×E Z), i.e., P is a projector. We denote by P̃ the

correspondence on U0×W0 defined over some open of Spec(OE ) obtained by spreading

out P.

When (`, k) > (2tL , 2) with ` non-parallel, we obtain a correspondence on U`−4×Wk−2
by spreading out those correspondences considered in § 5.1. Indeed, the idempotents θ` ∈

CH2(|`|−3)(U`−4×E U`−4)⊗Z L and θk ∈ CH|k|−1(Wk−2×E Wk−2)⊗ZQ extend to elements

θ̃` ∈ CH2(|`|−3)(U`−4×U`−4)⊗Z L and θ̃k ∈ CH|k|−1(Wk−2×Wk−2)⊗ZQ respectively.

Definition 5.6. For all but finitely many primes p, we define the Hirzebruch–Zagier cycle

of weight (2tL , 2) to be

12tL ,2 = P̃∗ϕ̃∗[W0] ∈ CH2(U0×OE,℘ W0).

Proposition 5.7. The Hirzebruch–Zagier cycle 12tL ,2 ∈ CH2(U0×OE,℘ W0) is de Rham

null-homologous.

Proof. To verify that cldR(12tL ,2) is zero in H4
dR(Z/E℘), it suffices to show that

P∗H4
dR(Z/E) = 0 since our cycle starts his life over E . After base-change to C, via the

fixed complex embedding ι∞ : Q ↪→ C, Poincaré duality tells us that it is enough to prove

the projector annihilates the second singular homology, i.e., P∗H2(Z(C)) = 0. By Kunneth

formula and the fact that each connected component of U0(C) is simply connected,

we compute that P∗H2(Z(C)) = P∗(H0(U0(C))⊗ H2(W0(C))⊕ H2(U0(C))⊗ H0(W0(C))),
which we can show to be zero by the explicit definition of the projector P. Indeed, let

[x]⊗ [C] ∈ H0(U0(C))⊗ H2(W0(C)) be a simple tensor for x ∈ U0(C) a point, then for all

i, j we find (
Pi, j − Pai , j − Pi,b j + Pai ,b j

)
([x]⊗ [C])

=
(
(qi, j )∗− (qai , j )∗− (qi,b j )∗+ (qai ,b j )∗

)
([x]⊗ [C])

= [ai ]⊗ [C j ] − [ai ]⊗ [C j ] = 0,

where (qi,b j )∗([x]⊗ [C]) = 0 = (qai ,b j )∗([x]⊗ [C]) because the dimension of the

pushforward drops. Similarly, if [D]⊗ [y] ∈ H2(U0(C))⊗ H0(W0(C)) is a simple tensor

for y ∈ W0(C) a point, then
(
Pi, j − Pai , j − Pi,b j + Pai ,b j

)
([D]⊗ [y]) = 0 for all i, j .
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Definition 5.8. Let ` ∈ Z[IL ], ` > 2tL , be a non-parallel weight and k > 2 an integer

such that (`, k) is a balanced triple. For all but finitely many primes p, the generalized

Hirzebruch–Zagier cycle of weight (`, k) is

1`,k = (θ̃`, θ̃k)∗ϕ̃∗[Wγ ] ∈ CHi (U`−4×OE,℘ Wk−2)⊗Z L .

Proposition 5.9. Let ` ∈ Z[IL ], ` > 2tL , be a non-parallel weight and k > 2 an integer

such that (`, k) is a balanced triple. The generalized Hirzebruch–Zagier cycle 1`,k ∈

CHi (U`−4×OE,℘ Wk−2)⊗Z L is de Rham null-homologous.

Proof. The class cldR(1`,k) belongs to (θ`, θk)∗H2i
dR(U`−4×E℘ Wk−2) and by Poincaré

duality, it is trivial if and only if

(θ`, θk)
∗H2(d−i)

dR (U`−4×E℘ Wk−2) =
⊕

µ+ν=2(d−i)

(θ`)
∗Hµ

dR(U`−4)⊗ (θk)
∗H ν

dR(Wk−2) (26)

is trivial. By Propositions 5.4 and 5.3, we have θ∗` Hµ

dR(U`−4) = Hµ−|`|+4(ShK ,DR•

(F (`,`−t)
G∗L

)
)

and θ∗k H∗dR(Wk−2) = θ
∗

k H k−1
dR (Wk−2) = H1

par

(
Shtor

K , (F (k,k−1)
GL2,Q

,∇)
)
. Hence, ν =

k− 1 forces µ to be µ = |`| − 3 and the group

θ∗` H |`|−3
dR (U`−4) = H1(ShK ,DR•(F (`,`−t)

G∗L
)) (27)

is trivial. Indeed, by [30, A6.20], the cohomology group H1(ShK ,DR•(F (`,`−t)
G∗L

)) is

identified with the intersection cohomology of the Baily–Borel compactification of

ShK (G∗L), that in turn is trivial in degree 1 by computations using Lie algebra cohomology

[30, §§ 5.11, 6.5, 6.6].

5.2.2. Evaluation of syntomic Abel–Jacobi. We are interested in computing

AJp(1`,k)(π
∗

1ω∪π
∗

2 η) and to relate it to some value of the twisted triple product p-adic

L-function outside the range of interpolation. Let ω̃ (respectively η̃) be a lift of ω

(respectively η) to fp-cohomology; since the Hirzebruch–Zagier cycle is null-homologous

the computation is independent of the choice of lifts. We start by treating the case

(`, k) = (2tL , 2):

AJp(12tL ,2)(π
∗

1ω∪π
∗

2 η) = 〈clsyn(12tL ,2), π
∗

1 ω̃∪π
∗

2 η̃〉fp = 〈P̃∗clsyn(ϕ̃∗[W0]), π
∗

1 ω̃∪π
∗

2 η̃〉fp

= 〈clsyn(ϕ̃∗[W0]),
∑
i, j

(P̃i, j − P̃ai , j − P̃i,b j + P̃ai ,b j )
∗(π∗1 ω̃∪π

∗

2 η̃)〉fp

= 〈clsyn(ϕ̃∗[W0]), π
∗

1 ω̃∪π
∗

2 η̃〉fp

[3, Equation (20)] = trW0(ϕ̃
∗(π∗1 ω̃∪π

∗

2 η̃)) = trW0(ζ̃
∗ω̃∪ η̃).

The fourth equality is justified by the vanishing H1
fp(Spec(OE,℘), 0) = 0 = H2

fp

(Spec(OE,℘), 2), which imply that
∑

i, j P̃∗i, j = (idU0×W0)
∗ and that all the other pullbacks

are zero.

To deal with the general case, we first need to analyze the action of the correspondences

θ̃k, θ̃` on fp-cohomology. The exact sequence in [3, (8)] induces a functorial isomorphism

H k−1
fp (Wk−2, 0) ∼= H k−1

dR (Wk−2), we denote by η̃ the preimage of η ∈ θ∗k H k−1
dR (Wk−2) that
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satisfies θ̃∗k η̃ = η̃ since θ∗k η = η. By functoriality of the short exact sequence [3, (8)], there

is a commuting diagram

0 // H |`|−3
dR (U`−4)/F |`|−2−s

θ∗
`
=0

��

ι // H |`|−2
fp (U`−4, |`| − 2− s)

θ̃∗
`

��

π // F|`|−2−s H |`|−2
dR (U`−4)

θ∗
`

��uu

// 0

0 // H |`|−3
dR (U`−4)/F |`|−2−s ι // H |`|−2

fp (U`−4, |`| − 2− s)
π // F|`|−2−s H |`|−2

dR (U`−4)
// 0

where the leftmost vertical arrow is zero because of the vanishing (27). Therefore,

there is a canonical lift ω̃ = θ̃∗`ω to H |`|−2
fp (U`−4, |`| − 2− s) of any class ω ∈

θ∗`F|`|−2−s H |`|−2
dR (U`−4), with the property θ̃∗` ω̃ = ω̃. At this point we can compute

AJp(1`,k)(π
∗

1ω∪π
∗

2 η) = 〈clsyn(1`,k), π
∗

1 ω̃∪π
∗

2 η̃〉fp

= 〈(θ̃`, θ̃k)∗clsyn(ϕ̃∗[Wγ ]), π
∗

1 ω̃∪π
∗

2 η̃〉fp

= 〈clsyn(ϕ̃∗[Wγ ]), π
∗

1 θ̃
∗

` ω̃∪π
∗

2 θ̃
∗

k η̃〉fp

= 〈clsyn(ϕ̃∗[Wγ ]), π
∗

1 ω̃∪π
∗

2 η̃〉fp

= trWγ
(ϕ̃∗(π∗1 ω̃∪π

∗

2 η̃)) = trWγ
(ϕ̃∗1 ω̃∪ ϕ̃

∗

2 η̃),

where ϕ̃i = (πi ◦ ϕ̃). The fundamental exact sequence of fp-cohomology induces an

isomorphism ι : H |`|−3
dR (Wγ )

∼
→ H |`|−2

fp (Wγ , |`| − 2− s), since the filtered piece Fn H j
dR(Wγ )

is trivial for n > dimE℘ Wγ and indeed |`| − 2− s is greater than dimE℘ Wγ = γ + 1.

Therefore, if we write ϕ̃∗1 ω̃ = ιϒ(ω), we can rewrite the quantity we want to evaluate

as

AJp(1`,k)(π
∗

1ω∪π
∗

2 η) = trWγ (ϒ(ω)∪dR ϕ
∗

2η) = 〈ϒ(ω), ϕ
∗

2η〉dR, (28)

for the Poincaré pairing 〈 , 〉dR : H |`|−3
dR (Wγ )× H k−1

dR (Wγ )
∪
−→ H |`|+k−4

dR (Wγ )
trdR
−→ E℘ .

5.3. Description of AJp(1`,k) in terms of p-adic modular forms

Let YK ′ ↪→ ShK ′(GL2,Q)OE℘
be the OE℘ -scheme defined as the complement of the

supersingular points and let E → YK ′ be the universal elliptic curve over it.

Proposition 5.10. There are natural inclusions of parabolic cohomology in the de Rham

cohomology of proper and smooth compactifications of Kuga–Sato varieties

H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1+s)
GL2,Q

,∇)
)
↪→ H |`|−3

dR (Wγ ),

H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1)
GL2,Q

,∇)
)
↪→ H k−1

dR (Wγ ),

compatible with Poincaré duality.

Proof. Let Dγ,κ be the inverse image of cusps and supersingular points under Wγ,κ →

W0,κ ; then Dγ,κ = Wγ,κ \E
γ
κ and it is a smooth and projective subscheme of codimension
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1 in Wγ,κ . Consider the diagram

H |`|−3
rig (Wγ,κ ) // H |`|−3

rig (E
γ
κ )

// H |`|−4
rig (Dγ,κ )(−1)

H1
par

(
ShtorK ′,E℘

, (F (k,k−1+s)
GL2,Q

,∇)
)?�

OO

� � // H1(S tor
K ′,rig, j†DR•(F (k,k−1+s)

GL2,Q
)
)?�

OO

where the top horizontal arrow is exact and comes from excision. The composition

H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1+s)
GL2,Q

,∇)
)
−→ H |`|−4

rig (Dr,k)(−1)

is identically zero because the two cohomology groups are pure of different

weights. Thus, H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1+s)
GL2,Q

,∇)
)
↪→ H |`|−3

rig (Wγ,κ) ∼= H |`|−3
dR (Wγ ). A similar

argument provides the other inclusion H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1)
GL2,Q

,∇)
)
↪→ H k−1

rig (Wγ,κ) ∼=

H k−1
dR (Wγ ).

It is clear that ϕ∗2η ∈ H k−1
dR (Wγ ) is equal to η ∈ H1

par

(
Shtor

K ′,E℘ , (F
(k,k−1)
GL2,Q

,∇)
)
↪→

H k−1
dR (Wγ ), so our task is to describe ϒ(ω) ∈ H |`|−3

dR (Wγ ) using p-adic modular forms.

Let XK ↪→ ShK (G∗L)OE℘
be the OE℘ -scheme defined as the complement of the

supersingular locus and ζ : YK ′ −→XK the diagonal morphism. Let A →XK be the

universal abelian surface, we have a commuting diagram

E γ

ν

��

ϕ̃1 // A |`|−4

υ

��
Wγ

ϕ̃1 // U`−4

that induces θ̃∗
`

H̃ |`|−2
f,Q (U`−4, |`| − 2− s)

υ∗ //

ϕ̃∗1
��

θ̃∗
`

H̃ |`|−2
f,Q (A |`|−4, |`| − 2− s)

ϕ̃∗1
��

H̃ |`|−2
f,Q (Wγ , |`| − 2− s)

ν∗ // H̃ |`|−2
f,Q (E γ , |`| − 2− s)

where we consider the Gros-style version of fp-cohomology [3, § 9] for a suitable choice of

polynomial Q. We choose to work with the Gros-style version because for schemes that

can be embedded in a smooth and proper scheme it is defined using rigid complexes in

place of de Rham ones; in particular, the two versions coincide for proper and smooth

schemes.

The pullback υ∗ω̃ ∈ θ̃∗` H̃ |`|−2
f,Q (A |`|−4, |`| − 2− s) can be directly described in terms of

p-adic modular forms. Indeed, we can write υ∗ω̃ = [ω, f ] for ω ∈ H0(S tor
K ,rig, j†(F (`,`−tL )

G∗L
⊗�2(log D))

)
and f ∈ H0(S tor

K ,rig, j†(F (`,`−tL )
G∗L

⊗�1(log D))
)

satisfying Q(Frp)ω = ∇ f as

the group θ̃∗` H `−i
rig (A

|`|−4
k /E℘) is the same as the cohomology of the rigid realization of the

motive V` over ]ShK (G∗L)
ord
k [, that is, the rigid cohomology Hi (S tor

K ,rig; j†DR•(F (`,`−tL )
G∗L

)
)
,

for i = 1, 2.

To express the class υ∗ω̃ explicitly we need to make a judicious choice of a polynomial.

From now on we assume that p splits in L/Q, pOL = p1p2. By observing the form of the

Euler factors appearing in Theorem 3.12 and the formulas in Corollary 4.7 we are led to

consider the polynomial P(T ) =
∏
•,?∈{α,β}(1−•1 ?2 T ). Following [27, Proposition 4.5.5],

if we set T = T1T2, we can write P(T1, T2) = a2(T1, T2)P1(T1)+ b1(T1, T2)P2(T2) for

https://doi.org/10.1017/S1474748019000021 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000021


1986 I. Blanco-Chacón and M. Fornea

Pi (Ti ) = (1−αi Ti )(1−βi Ti ) and

a2(T1, T2) = α1β1α2β2(α2+β2)T 2
1 T 3

2 −α1β1α2β2T 2
1 T 2

2 −α2β2(α1+β1)T1T 2
2 + 1,

b1(T1, T2) = α
2
1β

2
1α2β2T 4

1 T 2
2 −α1β1(α2+β2)T 2

1 T2−α1β1T 2
1 + (α1+β1)T1.

The index 2 in a2 (respectively the index 1 in b1) is there to remind us that the monomials

composing the polynomial are of the form T a1
1 T a2

2 with a1 6 a2 (respectively T b1
1 T b2

2
with b1 > b2). The polynomial P(T1, T2) is symmetric in the indices 1, 2, hence we can

also write P(T1, T2) = a1(T1, T2)P2(T1)+ b2(T1, T2)P1(T2) where a1(T1, T2) (respectively

b2(T1, T2)) is obtained from a2(T1, T2) (respectively b1(T1, T2)) by swapping all the indices.

Therefore,

P(T1, T2)
2
= a1a2 P1 P2+ a2 P1b2 P1+ a1 P2b1 P2+ b1b2 P1 P2

= a1a2 P1 P2+ (P − b1 P2)b2 P1+ (P − b2 P1)b1 P2+ b1b2 P1 P2

= (a1a2− b1b2)P1 P2+ P(b2 P1+ b1 P2)

= P(1−α1β1α2β2T 2)P1 P2+ P(b2 P1+ b1 P2).

We are going to use the handy identity

P(T1, T2) = (1−α1β1α2β2T 2)P1(T1)P2(T2)+ (b2(T1, T2)P1(T1)+ b1(T1, T2)P2(T2)).

The class of ωğ[pi ] is zero in H2(S tor
K ,rig, j†DR•c(F (`,x))), hence there are overconvergent

cuspforms g(i)j ∈ S†
sτ j ·(`,x)

(K ; E℘) such that ğ[pi ] = d`1−1
1 (g(i)1 )+ d`2−1

2 (g(i)2 ). Furthermore,

d1−`1
1 ğ[p1,p2] is overconvergent by Corollary 4.7. It follows we can write P(V (p))ğ as

P(V (p))ğ = (1−α1β1α2β2V (p)2)ğ[p1,p2]+ b2(V (p1), V (p2))ğ[p1]+ b1(V (p1), V (p2))ğ[p2]

= d`1−1
1 (h)+ d`1−1

1 (h1)+ d`2−1
2 (h2),

where h = (1−α1β1α2β2V (p)2)d1−`1
1 ğ[p1,p2], h1 = b2g(1)1 + b1g(2)1 and h2 = b2g(1)2 +

b1g(2)2 .

Proposition 5.11. Let L/Q be a real quadratic extension and g ∈ S†
`,x (K , L; E℘) an

overconvergent cuspform whose class ωg in H2(S tor
K ,rig(GL), j†DR•c

(
F (`,x))) is trivial.

By Theorem 4.5 there are p-adic modular forms g j ∈ S†
s j ·(`,x)

(K ; E℘) for j = 1, 2, such

that g = d`1−1
1 (g1)+ d`2−1

2 (g2), which we can use to explicitly construct sections G j ∈

H0(S tor
K ,rig(GL), j†(F (`,x)

⊗�1
τ j

))
, j = 1, 2, that satisfy the equation ωg = ∇(G1+G2) in

H0(S tor
K ,rig(GL), j†(F (`,x)

⊗�2)).
Proof. For j = 1, 2, let ω j , η j be a local basis of the τ j -part of the first de Rham

cohomology of the universal abelian surface. Set v
(a,b)
j = ωa

jη
b
j , w j = ω j ∧ η j and consider

the sections

G1 =

`1−2∑
i=0

(−1)i
(`1− 2)!

(`1− 2− i)!
d`1−2−i

1 (g1)

×
(
w

2−n−`2
2

2 ⊗ v
(`2−2,0)
2 ⊗w

2−n−`1
2

1 ⊗ v
(`1−2−i,i)
1

)
⊗

dq2

q2
.
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G2 = −

`2−2∑
i=0

(−1)i
(`2− 2)!

(`2− 2− i)!
d`2−2−i

1 (g2)

×
(
w

2−n−`1
2

1 ⊗ v
(`1−2,0)
1 ⊗w

2−n−`2
2

2 ⊗ v
(`2−2−i,i)
2

)
⊗

dq1

q1
,

of H0(S tor
K ,rig(GL), j†(F (`,x)

⊗�1)). Differentiating them we obtain telescopic sums which

collapse to

∇(G j ) = d
` j−1
j (g j )

2⊗
c=1

(
w

2−n−`c
2

c ⊗ v(`c−2,0)
c

)
⊗

(
dq1

q1
∧

dq2

q2

)
.

Therefore, ωg = ∇(G1)+∇(G2) as claimed.

It follows that there are sections Gh,Gh1 ,Gh2 associated with h, h1, h2
respectively, that satisfy P(p−tL Frp)ωg = ∇(Gh+Gh1 +Gh2) since Frp = ptL V (p) in

cohomology (Lemma 4.6). The pullback by the morphism ξ : ShK (G∗L)→ ShK (GL) gives

P(p−tL Frp)ωξ∗g = ∇(Gξ∗h+Gξ∗h1 +Gξ∗h2) and to land in the right cohomology group

we need to change the central character using the isomorphism 9 = 9x,|`−tL |. Lemma 2.6

implies

P(px−`Frp)ω9ξ∗g = ∇(G9ξ∗h+G9ξ∗h1 +G9ξ∗h2).

We set G = G9ξ∗h+G9ξ∗h1 +G9ξ∗h2 and we let ε` :
⊗

τ (H1
τ )
`τ−2
→
⊗

τ Sym`τ−2H1
τ be

the symmetrization projector which identifies the target sheaf with a subsheaf of the

first. Finally, if we set Q(T ) = P(px−`T ), then the cohomology class υ∗ω̃ is represented

by [ω, ε`G] in H̃ |`|−2
f,Q

(
A |`|−4, |`| − 2− s

)
.

Proposition 5.12. The class ν∗(ϕ̃∗1 ω̃) is represented by [0, ϕ̃∗1ε`G] in H̃ |`|−2
f,Q

(
E γ , |`| − 2− s

)
and the image of ϕ̃∗1ε`G under the unit-root splitting is equal to the p-adic modular form

Splur(ϕ̃
∗

1ε`G) = (−1)ss!9w,k−1+sζ
∗
(
d`1−2−s

1 (h)+ d`1−2−s
1 (h1)+ d`2−2−s

2 (h2)
)

in Sp-adic
k,k−1+s(K

′, E℘).
Proof. The class ν∗(ϕ̃∗1 ω̃) = ϕ̃

∗

1υ
∗(ω̃) = [0, ϕ̃∗1ε`G] because ϕ∗1ω = 0 as a section

of ϕ∗1
(
F (`,`−tL )

G∗L
⊗�2)

= 0. The diagonal morphism ϕ̃1 : E γ → A |`|−4 is a map of

XK -schemes, so the pullback ϕ̃∗1 : H |`|−3
rig (A |`|−4

κ )→ H |`|−3
rig (E

γ
κ ) is compatible with the

pullbacks between the terms of the Leray spectral sequences for A |`|−4
→XK →

SpecOE℘ and E γ →XK → SpecOE℘ . Since ζ : YK ′ →XK is a finite morphism, we have

an induced map

ϕ̃∗1 : H
1(S tor

K ,rig; j†DR•(F (`,`−tL )
G∗L

)
)
−→ H1(S tor

K ′,rig; j†DR•(F (k,k−1+s)
GL2,Q

)
)
.

It is possible to describe explicitly the pullback ϕ̃∗1ε`G as in [7, Proposition 2.9] and a

direct calculation reveals that

Splurζ
∗(ε`G j ) = (−1)ss!ζ ∗9x,|`−tL |

(
d`1−2−s

1 (ξ∗h)+ d`1−2−s
1 (ξ∗h1)+ d`2−2−s

2 (ξ∗h2)
)

= (−1)ss!9x−s−1,k−1+sζ
∗
(
d`1−2−s

1 (h)+ d`1−2−s
1 (h1)+ d`2−2−s

2 (h2)
)

= (−1)ss!9w,k−1+sζ
∗
(
d`1−2−s

1 (h)+ d`1−2−s
1 (h1)+ d`2−2−s

2 (h2)
)
,

as p-adic modular forms.
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Remark. We proved that the image of ϒ(ω) under H |`|−3
rig (Wγ,κ)→ H |`|−3

rig (E
γ
κ ) is given

by [ϕ̃∗1ε`G] ∈ H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1+s)
GL2,Q

,∇)
)
⊂ H1(S tor

K ′,rig, j†DR•c(F
(k,k−1+s)
GL2,Q

)
)
.

Lemma 5.13. Let (ω, η) ∈ H1
par

(
Shtor

K ′,E℘ , (F
(k,k−1+s)
GL2,Q

,∇)
)
× H1

par

(
Shtor

K ′,E℘ , (F
(k,k−1)
GL2,Q

,∇)
)

be a pair such that Frpη = αη for α a p-adic unit, then 〈ω, η〉 = 〈en.o.ω, η〉.

Proof. We have the equalities of operators Frp = pV (p) and U0(p) = pr U (p), therefore

the computation

〈ω, η〉 = α−1
〈ω,Frpη〉 = α

−1Frp〈Fr−1
p ω, η〉

= α−1 pr+1
〈Fr−1

p ω, η〉 = α−1 pr+1
〈p−1U (p)ω, η〉 = α−1

〈U0(p)ω, η〉,

implies that 〈ω, η〉 = limn→∞ α
−n!
〈U0(p)n!ω, η〉 = 〈en.o.ω, η〉.

Theorem 5.14. Let L/Q be a real quadratic extension. Consider ğ ∈ S`,x (V11(AOL); L;Q)
a cuspform of either parallel weight ` = 2tL or non-parallel weight ` > 2tL over L and f̆ ∈
Sk,w(V11(A);Q) an elliptic eigenform for the good Hecke operators. Suppose their weights

are balanced and choose a prime p splitting in F, pOF = p1p2, coprime to A, such that

both cuspforms are p-nearly ordinary and the cycle 1`,k is defined. Then

AJp(1`,k)(π
∗

1ω∪π
∗

2 η) = s!(−1)s
1−α1β1α2β2(α

−1
f∗ p−1)2∏

•,?∈{α,β}(1−•1 ?2 α
−1
f∗ p−1)

〈en.o.ζ
∗(d−1−s

1 ğ[p1,p2]), f̆∗〉
〈f∗, f∗〉

,

where ω and η are the classes in Definition 5.5 and s = |`|−k−2
2 .

Proof. Recall that (28) states that AJp(1`,k)(π
∗

1ω∪π
∗

2 η) = 〈ϒ(ω), η〉dR, where the

Poincaré pairing takes values in E℘(−(γ + 1)), a one dimensional space on which Frp

acts as multiplication by pγ+1. The isomorphism ι : H |`|−3
dR (Wγ )

∼
→ H |`|−2

f,Q (Wγ , |`| − 2− s)
is given by ι(−) = [0, Q(Frp)(−)], therefore Q(Frp)ϒ(ω) = ϕ̃

∗

1 (ε`G). On the one hand,

〈Q(Frp)ϒ(ω), η〉dR = Q(pγ+1α−1
f∗ p1−w)〈ϒ(ω), η〉dR, because we computed in (23) that

Frp
(
ν∗ϕ∗2η

)
= αf∗ pw−1(ν∗ϕ∗2η). On the other hand,

〈Q(Frp)ϒ(ω), η〉dR = 〈ϕ̃
∗

1 (ε`G), η〉dR

= s!(−1)s
〈9w,k−1en.o.ζ

∗
(
d`1−2−s

1 (h)+ d`1−2−s
1 (h1)+ d`2−2−s

2 (h2)
)
, 9w,k−1(f̆∗)〉

〈f∗, f∗〉

= s!(−1)s
〈en.o.ζ

∗
(
d`1−2−s

1 (h)+ d`1−2−s
1 (h1)+ d`2−2−s

2 (h2)
)
, f̆∗〉

〈f∗, f∗〉
.

Indeed, the class of ϕ̃∗1 (ε`G) in H1(S tor
K ′,rig, j†DR•c(F

(k,k−1+s)
GL2,Q

)
)

is represented by an

overconvergent cuspform whose nearly ordinary projection is equal to en.o.Splurϕ̃
∗

1 (ε`G)
(see [7, Lemma 2.7]), then Lemma 5.13 justifies the computation.

For j = 1, 2 the nearly ordinary projection en.o.ζ
∗d
` j−2−s
j (h j ) = en.o.ζ

∗
[d
` j−2−s
j

(b2g(1)j + b1g(2)j )] is zero thanks to Lemma 3.10 because the cuspform g(i)j is pi -depleted,
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i = 1, 2 and bι, ι = 1, 2, can be written as a polynomial only in the variables V (p), V (pι)
divisible by V (pι). Moreover,

ef∗,n.o.ζ
∗(d`1−2−s

1 (h)) = ef∗,n.o.ζ
∗(1−α1β2α2β2V (p)2)(d−1−s

1 ğ[p1,p2])

= (1−α1β1α2β2(α
−1
f∗ p−1)2)ef∗,n.o.ζ

∗(d−1−s
1 ğ[p1,p2]).

Finally, the last bit we need to unravel is the polynomial Q(pγ+1α−1
f∗ p1−w); we compute

Q(pγ+1α−1
f∗ p1−w) =

∏
•,?∈{α,β}

(1−•1 ?2 px−` pγ+1α−1
f∗ p1−w)

=

∏
•,?∈{α,β}

(1−•1 ?2 α
−1
f∗ p−n+m

2 −1) =
∏

•,?∈{α,β}

(1−•1 ?2 α
−1
f∗ p−1)

since under our assumptions 2n = m. Hence, putting all together

AJp(1`,k)(π
∗

1ω∪π
∗

2 η) = s!(−1)s
1−α1β1α2β2(α

−1
f∗ p−1)2∏

•,?∈{α,β}(1−•1 ?2 α
−1
f∗ p−1)

〈en.o.ζ
∗(d−1−s

1 ğ[p1,p2]), f̆∗〉
〈f∗, f∗〉

.

Remark. The right-hand side of the equality in Theorem 5.14 is independent of the

particular choice of small enough levels K , K ′ because of the normalization of the

cohomology class η (Definition 5.5).

Corollary 5.15. Let L/Q be a real quadratic field and (`, k) a balanced triple. Let p be

a prime splitting in L for which the generalized Hirzebruch–Zagier cycle 1`,k is defined.

Then for all (P,Q) ∈ Cθ,r̄bal(`, k) we have

r̄L
θ
p (Ğ , F̆ )(P,Q) =

±1
s!E(f∗Q)

Ep(gP, f∗Q)

E0,p(gP, f∗Q)
AJp(1`,k)(π

∗

1ωP ∪π
∗

2 ηQ).

Proof. It follows from the formula (16), Proposition 3.6 and Theorem 5.14.

6. An application to Bloch–Kato Selmer groups

Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of

conductor N, both without complex multiplication over Q. We denote by (MA,B)p the

Galois representation AsVp(A)(−1)⊗Qp Vp(B) of the absolute Galois group of Q. We can

use Corollary 5.15 to give a criterion for the Bloch–Kato Selmer group H1
f (Q, (MA,B)p)

to be of dimension one in terms of the non-vanishing of a value of one of our twisted triple

product p-adic L-functions. This builds on the recent work of Liu [26], where he computes

the dimension of H1
f (Q, (MA,B)p) assuming the non-vanishing of the étale Abel–Jacobi

map of certain cycle 1A,B .

Let gA ∈ S2tL ,tL (V1(Q); L;Q), fB ∈ S2,1(V1(N);Q) be the newforms attached to A and

B by modularity, πA, σB the automorphic representations they respectively generate. Let

p be a rational prime coprime to N ·NL/Q(Q) · dL/F , if gA, fB are p-nearly ordinary we

denote by G ,F the Hida families passing through the p-nearly ordinary stabilizations
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GPA = g(p)A and FQB
= f(p)B . We recall some of the definitions in [26]. Let X be the

minimal resolution of the Baily–Borel compactification of the Hilbert modular surface

over L of 00-level N ·NL/Q(Q), Y the compactified modular curve of 00-level N ·NL/Q(Q)
and ζ : Y → X the diagonal morphism. According to Liu, there are idempotents PA ∈

Corr(X, X), PB ∈ Corr(Y, Y ) acting as projectors

PA,∗ : H∗dR(X)→ H2
dR(X)[πA], PB,∗ : H∗dR(Y )→ H1

dR(Y )[σB].

The null-homologous cycle 1A,B ∈ CH2(X × Y )⊗Q is defined as 1A,B = (PA×PB)∗1

for 1 = graph(ζ ). By spreading out we can consider smooth models X ,Y over Zp for

almost all p, and P̃A× P̃B ∈ Corr(X ×Y ,X ×Y ).

Corollary 6.1. Suppose that N and NL/Q(Q) · dL/Q are coprime ideals and that all the

primes dividing N split in L. For all but finitely many primes p that are split in L and

such that gA, fB are p-nearly ordinary we have

r̄L
θ
p (Ğ , F̆ )(PA,QB) 6= 0 H⇒ dimQp H1

f (Q, (MA,B)p) = 1,

where θ = −µ+µ′ ∈ Z[IL ], r̄ = −µ.

Proof. Let ϕ̃ : Y →X ×Y be the map (ζ̃ , idY ), and set 1̃A,B = (P̃A× P̃B)∗ϕ̃∗[Y ].
For any ω ∈ H2

dR(X)[πA], η ∈ H1
dR(Y )[σB] and lifts ω̃, η̃ to fp-cohomology we can compute

AJp(1A,B)(π
∗

1ω∪π
∗

2 η) = 〈clsyn(1̃A,B), π
∗

1 ω̃∪π
∗

2 η̃〉fp

= 〈clsyn(ϕ̃∗[Y ]), (PA×PB)
∗(π∗1 ω̃∪π

∗

2 η̃)〉fp

= 〈clsyn(ϕ̃∗[Y ]), π
∗

1 ω̃∪π
∗

2 η̃〉fp = trY (ζ̃
∗ω̃∪ η̃)

as in § 5.2.2. If α1 : U0 →X , α2 : W0 → Y are the natural finite degeneracy maps, we

know that AJp(12tL ,2)(π
∗

1 (α
∗

1ω)∪π
∗

2 (α
∗

2η)) = trW0(ζ̃
∗(α∗1 ω̃)∪ (α

∗

2 η̃)). Therefore,

AJp(12tL ,2)(π
∗

1 (α
∗

1ω)∪π
∗

2 (α
∗

2η)) = deg(α1) deg(α2) ·AJp(1A,B)(π
∗

1ω∪π
∗

2 η)

and the LHS vanishes if and only if the RHS vanishes. It follows that the non-vanishing

of the p-adic L-function implies the non-vanishing of the syntomic Abel–Jacobi image

of both 12tL ,2 and 1A,E by Corollary 5.15, which in turn forces the non-vanishing of

the p-adic étale Abel–Jacobi image of the cycle 1A,E [2, § 3.4]. Then Liu’s theorem

[26, Theorem 1.5] gives the dimension of the Bloch–Kato Selmer group.
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