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Physical interpretation of probability density
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A stochastic model is presented for the probability density function (p.d.f.) of the
liquid velocity fluctuations generated by high-Reynolds-number rising bubbles. It
considers three elementary sources of fluctuations: the potential flow disturbance
around each bubble; the average bubble wakes, which are assumed to decay
exponentially; and the turbulent agitation resulting from the flow instability, which is
assumed to be isotropic, homogeneously distributed all over the flow and statistically
independent of the two others. The model reproduces well and explains the
characteristics of the experimental p.d.f.s: exponential tails, asymmetry of vertical
fluctuations and evolution with the gas volume fraction. The model involves two
a priori unknown parameters: the volume of the wake and the velocity scale of
the turbulent agitation. Because some parts of the probability functions depend only
on a single contribution, these two parameters can be uniquely and independently
determined from experimental p.d.f.s. This defines an objective method to separate
the various kinds of fluctuations and allows one to determine the contribution of each
of them to the total agitation.

Key words: gas/liquid flow, multiphase and particle-laden flows, turbulent flows

1. Introduction

Gas bubbles rising in a liquid generate a peculiar kind of agitation, sometimes called
pseudo-turbulence or bubble-induced turbulence. Probability density functions (p.d.f.s)
of the liquid velocity components in a homogeneous swarm of high-Reynolds-number
rising bubbles have been reported in several experimental works (Zenit, Koch &
Sangani 2001; Risso & Ellingsen 2002; Martínez Mercado, Palacios-Morales &
Zenit 2007; Martínez Mercado et al. 2010; Riboux, Risso & Legendre 2010). They
have also been obtained in direct numerical simulations (Roghair et al. 2011) and
large-eddy simulations (Riboux, Legendre & Risso 2013). In contrast to classic
shear-induced turbulence, the p.d.f.s are clearly non-Gaussian. When a grid is used to
generate additional fluctuations in a bubble column, the shape of the p.d.f. depends
on the energy ratio between bubble-induced agitation and shear-induced turbulence
(Rensen, Luther & Lohse 2005; Prakash et al. 2016). As the relative intensity of the
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FIGURE 1. The p.d.f.s of liquid velocity fluctuations measured in a homogeneous swarm
of bubbles for various gas volume fractions by Riboux et al. (2010) for case C (Re= 760)
defined in table 1. (The reference volume fraction is α0 = 0.01.)

shear-induced turbulence is increased, the p.d.f. progressively takes a Gaussian form.
The present work focuses on the case where only bubble-induced agitation is present,
with the objective to discuss the nature of the liquid fluctuations from the analysis of
their p.d.f.s.

Figure 1 presents a typical example of p.d.f.s of liquid velocity fluctuations
measured in a homogeneous swarm of air bubbles rising in water at a Reynolds
number of several hundred by Riboux et al. (2010). These results correspond to case
C defined in table 1, with a bubble equivalent diameter d = 2.5 mm and a bubble
rise velocity V = 305 mm s−1 (Re = Vd/ν = 760). Various gas volume fractions α
from 0.34 % to 8.2 % are considered and the velocity fluctuations are normalized by
V(α/α0)

0.4, which was found to provide the best scaling. Note that a semilog scale
is used to highlight the main features. Figure 1(b) shows the horizontal fluctuations.
The normalized p.d.f.s of all gas volume fractions are similar. They are maximum
at the origin and symmetric. They show a first exponential decay followed by a less
steep second one. At the lower considered gas volume fraction (α = 0.34 %), the
maximum is more rounded and the second exponential decay is reached for larger
fluctuations. For α > 0.54 %, all p.d.f.s are in rather good agreement, with perhaps a
tendency to become sharper at the origin when α is increased. Figure 1(a) shows the
vertical fluctuations. The vertical p.d.f.s are clearly asymmetric, with large positive
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242 F. Risso

Case d (mm) V (mm s−1) Re ξ L̃ w̃ L̃w̃2 ṽt

A 1.6 335 540 1.4 4.8 0.40 0.768 0.073
B 2.1 320 670 1.7 3.7 0.55 1.12 0.080
C 2.5 305 760 2.0 3.0 0.60 1.08 0.090

TABLE 1. Parameters of the three considered cases. The parameters d, V , Re=Vd/ν and
ξ are the bubble diameter, the average rise velocity of an isolated bubble, the Reynolds
number and the aspect ratio corresponding to the experiments of Riboux et al. (2010). In
addition, L̃=L/d and w̃=w/d are the normalized wake and width parameters of the wake
model; and ṽt = vt/V is the normalized velocity scale of the turbulence model.

(upward) fluctuations, which are commonly attributed to the bubble wakes. On the
one hand, negative (downward) fluctuations again follow an exponential decay and
match for all gas volume fractions. On the other hand, the normalization does not
allow the collapse of large positive fluctuations, which follows a slow exponential
decay that starts from increasingly low fluctuations as α is increased.

The p.d.f.s of liquid velocity fluctuations induced by bubbles rising at high Reynolds
number thus possess three general properties: (i) exponential decay, (ii) partial
self-similarity when varying the gas volume fraction and (ii) strong asymmetry
between upward and downward fluctuations. It is interesting to know whether
these characteristics still hold at lower Reynolds numbers. Velocity fluctuations
of particle velocity in a sheared suspension have been computed numerically in the
limit of vanishing Reynolds number (Drazer et al. 2002; Abbas et al. 2006). (No
significant drift is expected in this case and particle velocity fluctuations are expected
to be similar to fluid velocity fluctuations.) In this situation where neither wakes
nor turbulence can develop, the p.d.f.s of all components of the particle velocity
fluctuations are symmetric. For particle volume fractions from 1 % to 10 %, p.d.f.s
normalized by their standard deviation are remarkably similar to those presented
in figure 1(b), with exponential tails and rather good matching of the various
volume fractions. At large volume fraction (35 %), the p.d.f.s lose their exponential
behaviour and take a Gaussian shape. Liquid velocity fluctuations induced by a
homogenous swarm of rising bubbles at moderate Reynolds number (Re ≈ 10) have
been investigated experimentally by Cartellier, Andreotti & Sechet (2009) for gas
volume fraction from 0.2 % to 10 %. In this situation, a wake is present behind each
bubble but turbulence does not develop. The p.d.f.s of the vertical fluctuations possess
the three aforementioned properties and resemble those of figure 1(a). The fact that
some important statistical characteristics of the fluctuations induced by rising bubbles
are observed for such a large range of flow regime raises questions about the nature
of these fluctuations. Even if this work focuses on the large-Reynolds-number case,
it will also shed some light on the underlying mechanisms at lower Re.

A first elementary approach to model the fluctuations is to consider the sum
of the velocity disturbances generated by individual bubbles. By considering the
potential flow generated by a spherical bubble rising at constant velocity and assuming
random bubble positions independent of each other, Biesheuvel & Wijngaarden (1984)
calculated the variances of the three components of the velocity fluctuations generated
in the liquid phase. Because high-Reynolds-number rising bubbles take an oblate shape
and because of interface contamination, strong wakes develop behind them (Ellingsen
& Risso 2001), which account for a major part of the liquid fluctuations. Parthasarathy
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& Faeth (1990) investigated a very dilute homogeneous swarm of solid spheres
falling in water (solid volume fraction less than 0.01 %) and modelled the liquid
fluctuations by considering both the potential flow and the wake generated by each
individual sphere. Their model considered the turbulent wake of an isolated sphere
and accounted for both the mean flow and the turbulent fluctuations. Unfortunately,
the sum of randomly distributed wakes diverges as the size of the swarm increases.
They dealt with this problem by arbitrarily stopping the wake at a length where it was
expected to lose its coherence in the turbulent field. By this method, they found the
measured variances and concluded that the wake contribution represented 90 % of the
energy of the fluctuations. However, it is worth mentioning that both their prediction
and their measurements led to Gaussian p.d.f.s. For large-Reynolds-number rising
bubbles, Lance & Bataille (1991) also interpreted the bubble-induced fluctuations as
the sum of the contribution of the potential flows generated around the bubbles and
that of the turbulent fluctuations generated within the wakes. However, they limited
their discussion to the variances of the fluctuations and did not consider p.d.f.s.

Risso et al. (2008) proposed to make a clear distinction between two kinds
of fluctuations of different nature. The first corresponded to the strong spatially
localized inhomogeneities generated in the vicinity of each bubble, and was called
spatial fluctuations. The second corresponded to the turbulent fluctuations resulting
from the flow instability, and was called time fluctuations. The decomposition of
the bubble-induced agitation into these two contributions is straightforward provided
the bubbles have no motion relative to each other, which allows one to consider the
flow in the frame where the bubbles are fixed. This has been achieved numerically
by means of large-eddy simulations (Riboux et al. 2013) of the flow through a
random array of immobile bubbles and experimentally from the investigation of the
flow through a random array of fixed spheres (Amoura 2008; Risso et al. 2008). It
turned out that both contributions had exponential p.d.f.s and were weakly dependent
on the gas volume fraction when normalized by their variances. However, spatial
fluctuations are anisotropic and strongly asymmetric in the vertical direction, whereas
time fluctuations are isotropic and symmetric in both the horizontal and vertical
directions. Moreover, numerical simulations have shown that, contrary to spatial
fluctuations, time fluctuations are not localized in the vicinity of the bubbles and
result from a collective instability of the flow through a random array of obstacles.

The present work aims to understand the nature of the liquid-induced agitation
from the interpretation of their p.d.f.s. In particular, we seek to find the reasons for
the exponential decay, the partial self-similarity and the different levels of anisotropy
that are observed when the gas volume fraction is changed. Also, we would like to
find a method to distinguish between the different contributions to the fluctuations
in the case of real bubble swarms where bubbles are rising in the laboratory frame
and moving relative to each other. For that purpose, we will first examine the p.d.f.s
resulting from each possible mechanism and then try to combine them in order
to describe the experimental results. Section 2 focuses on the agitation resulting
from local disturbances generated by the bubbles, considering first the wake and
then potential flow. Section 3 considers the fluctuations resulting from the flow
instability. In § 4, the different contributions are added and the results of the model
are discussed by comparison with experiments. Conclusions and prospects for future
works are presented in § 5.
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2. Agitation resulting from the addition of individual disturbances
2.1. General formulation

In this section, we consider that the liquid fluctuations u generated in a bubble swarm
are described by the sum of the velocity disturbances v generated by each individual
bubble. A bubble located at location xi and rising at velocity V induces a velocity
field Vṽ(xi) at the origin.

We assume that the swarm is dilute enough to neglect any interactions between
the bubbles. Consequently, (i) the flow disturbance ṽ is a given function of only
the bubble location, and (ii) the bubble positions xi are random variables that are
statistically independent from each other and uniformly distributed in space. For N
bubbles in a volume ϑ , the total velocity fluctuation

u= V
N∑

i=1

ṽ(xi) (2.1)

is a random variable. In the limit of ϑ tending towards infinity, the statistical
distribution of u is fully characterized by the knowledge of its cumulants, which can
be obtained from the summation over space of the flow disturbance generated by a
single bubble (Rice 1944),

kn = ÑVn
∫

x∈ϑ
ṽ

n
(x) dϑ, (2.2)

where Ñ=N/ϑ is the bubble number density. This result is valid provided the velocity
disturbance ṽ generated by each bubble decays fast enough with the distance to the
bubble such that the integrals in (2.2) converge. Physically, that means that the kinetic
energy of the steady flow induced by a single moving bubble has to be finite.

The moments mn of the statistical distribution are related to the cumulants by the
classic recurrence relation,

kn =mn −
n−1∑
i=1

Cn−1
i−1 kimn−i, (2.3)

where C j
i denotes the binomial coefficients. This relation is particularly simple for the

moments of the first three orders: the mean is equal to the first cumulant (m1 = k1),
the variance to the second cumulant (σ 2 =m2 −m2

1 = k2), and the third-order centred
moment to the third cumulant (µ3=m3−3m1m2+2m3

1= k3). Even if the cumulants (or
the moments) are sufficient to fully define the statistical distribution, we are presently
interested by obtaining the p.d.f. This is particularly simple in the limiting case where
Ñ tends towards infinity. Equation (2.2) shows that all kn are proportional to Ñ and
hence kn/k

n/2
2 tends towards zero for all n greater than 2. Consequently, only the first

two cumulants of the limit distribution are non-zero, which means that it is Gaussian.
The fact that the statistics tend towards a Gaussian distribution as the number density
is increased can be seen as a direct consequence of the central limit theorem.

In reality, the finite size of the bubbles limits the value of Ñ because bubbles
cannot penetrate into each other. Gaussian distributions are therefore not expected to
be observed. To be approximated by a Gaussian distribution, the velocity at a given
point must result from the addition of a large enough number of random bubble

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.690


Probability density functions of bubble-induced agitation 245

disturbances. A good parameter to quantify the convergence towards a Gaussian
distribution is hence the fraction of the total volume that is disturbed by the bubbles,
which is proportional to both the number density Ñ and the volume of the region
perturbed by a single bubble. At low Reynolds number, the slow decay of the
velocity disturbance allows long-range interactions. That is probably the reason
why a Gaussian distribution has been predicted for particle volume fractions of
approximately 35 %. Except that the maximum of the p.d.f.s becomes slightly more
rounded, the convergence towards a Gaussian distribution is not observed in figure 1
for a swarm of large-Reynolds-number bubbles at volume fractions up to 8 %.

We therefore need to determine the shape of the p.d.f.s for finite values of
Ñ. Unfortunately, the p.d.f. cannot be easily obtained analytically even when the
expressions of all the cumulants are known. In particular, it is worth recalling that
a truncated sequence of cumulants does not represent a valid probability law and
therefore cannot be used as a relevant approximation (except for either the uniform
or the Gaussian distribution, for which only the first two cumulants are non-zero). In
the following, we will determine the p.d.f.s numerically by adding disturbances that
are randomly distributed over space.

2.2. Contribution of the average wakes

Let us consider an isolated axisymmetric body rising at constant velocity. In the
laminar regime, the flow profile in the wake is Gaussian in the radial direction r and
decreases as the reciprocal of the distance z to the body: ṽz(r, z)∝ (L/z) exp(−r2/w2),
where L and w are two length scales that depend on the body size, drag coefficient
and Reynolds number (Batchelor 1967). For a turbulent wake, the decrease is even
slower (Tennekes & Lumley 1972): ṽz(r, z) ∝ (L/z)2/3 exp(−r2/w2). As remarked by
Parthasarathy & Faeth (1990), if we sum the wakes of randomly distributed bodies,
integral (2.2) diverges for n = 2, leading to an infinite velocity variance in both the
laminar and turbulent cases. However, it has been observed (Risso & Ellingsen 2002)
that the wake of a high-Reynolds-number bubble belonging to a swarm of bubbles
vanishes at a distance of a few bubble diameters provided the volume fraction is at
least a few tenths of one per cent. The wake of an isolated bubble is therefore not
relevant for bubbly flows. Indeed, at large Reynolds number, the wake behind a body
immersed in a swarm of similar bodies turns out to decrease exponentially with the
distance (Risso et al. 2008): ṽz(z)∝ exp(−z/L).

The mechanism responsible for this strong wake attenuation is not an enhanced
diffusion induced by the turbulent fluctuations that develop within the swarm. First,
it has been observed that the wakes do not spread significantly before they vanish
(Amoura 2008). Second, the action of an external turbulence leads to a power-law
decay (Wu & Faeth 1994, 1995; Bagchi & Balachandar 2004; Legendre, Merle &
Magnaudet 2006; Risso et al. 2008), which is not able to cause the strong exponential
attenuation observed in bubbly flows. The wake cancellation is caused by interactions
between the wakes and can probably be explained by the mechanisms proposed by
Hunt & Eames (2002).

For a homogeneous swarm of rising bubbles, L has been found to scale as the ratio
between the bubble diameter and its drag coefficient, and to be independent of the gas
volume fraction in the range ∼0.5–10 % (Risso et al. 2008). It is therefore reasonable
to model the velocity disturbance generated by each individual bubble located at the
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point of coordinates (x, y, z) by

ṽx(x, y, z)= 0,
ṽy(x, y, z)= 0,
ṽz(x, y, z)= 0 for z< 0,
ṽz(x, y, z)= exp(−z/L) exp(−(x2 + y2)/w2) for z > 0,

 (2.4)

where the characteristic length L and width w of the wake are independent of α. It
is important to stress that expression (2.4) represents the wake of a bubble within
the bubble swarm and accounts for the attenuation due to interactions with the other
wakes.

Substituting this expression in (2.3) yields the expression of the cumulants of the
fluctuations generated by summing randomly distributed wakes,

kn = Ñ
πLw2

n2
Vn. (2.5)

The corresponding p.d.f.s can be estimated analytically in the limits of Ñ tending
towards either zero or infinity. In the limit of vanishing bubble number density, the
probability that two wakes intersect is very low. Consequently, we can assume that the
liquid velocity at a given point is due only to the wake of a single bubble. Under this
assumption, the analytical expression of the probability density fz of the normalized
vertical velocity fluctuations, ũz = uz/V , is found to be

fz(ũz)= κ 1
ũz +M

log
(

1
ũz +M

)
for ε −M 6 ũz 6 1−M, (2.6)

where κ = 6αw̃2L̃, ε = exp(−√2/κ), M = κ(1 − ε − ε√2/κ), and L̃ = L/d and w̃ =
w/d are the normalized length and width of the wake (see appendix A for a detailed
derivation).

In the limit of large bubble number density, the p.d.f. tends towards a Gaussian
function,

fz(ũz)= 1

σ̃w

√
2π

exp
(
− ũ2

z

2σ̃w
2

)
, (2.7)

with a variance σ 2
w obtained by taking n= 2 and α =πd3Ñ/6 in (2.5),

σ̃ 2
w =

(σw

V

)2 = 3
2
α w̃2L̃. (2.8)

For intermediate gas volume fractions, the p.d.f. has been obtained numerically by the
following method. A cubic domain ϑT of size L= 40d is considered. The coordinates
(xi, yi, zi) of N = 6αL3/πd3 bubbles are chosen randomly and independently of each
other such that their distribution be uniform over ϑT . The velocity induced by each
bubble, given by (2.4), is computed at the middle of the domain. (Note that, because
the wakes only develop behind the bubbles, only the bubbles located in the upper
half of the domain contribute to the fluctuation.) A velocity sample is obtained by
summing the contributions of the N bubbles. The operation is repeated a large number,
Ns, of times in order to build a statistically representative ensemble of samples. The
average velocity is then subtracted from each sample to get the fluctuating velocity.
Several values of Ns have been tested. For all cases considered in this work (figure 2
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FIGURE 2. (Colour online) The p.d.f.s of liquid velocity fluctuations induced by average
bubble wakes described by (2.4). (a,b) Results at various gas volume fractions for a bubble
of 2.5 mm (case C in table 1). The two light (red) curves in (a) correspond to the
analytical solution for low bubble number density (2.6) for α = 0.34 % and α = 0.91 %.
The two light (red) curves in (b) correspond to the Gaussian solution valid at large bubble
number density (2.7) and (2.8) for α = 40 % and α = 80 %. (c) Results for various wake
parameters at a single gas volume fraction. (d) Effect of bubble path inclination.

and following), increasing Ns beyond 105 no longer changes the global shape of
the p.d.f.s but only reduces the amplitude of the high-frequency scattering around
this global shape, which is a residue of an imperfect statistical convergence. Finally,
we have chosen Ns = 5 × 105, which was found to be a good compromise between
computation time and the smoothness of the numerical curves.

Typical p.d.f.s of statistical samples generated by this method are shown in figure 2.
In these examples, the model parameters, L̃ and w̃, have been chosen to correspond
to a bubble of d = 2.5 mm rising in water (case C in table 1). The discussion of
these values will be presented in § 4 when comparing the model with experiments.
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Figure 2(a,b) shows the p.d.f.s for various gas volume fractions from 0.34 % to 80 %
for a fixed pair of parameters L̃= 3 and w̃= 0.6. Considering values of α lower than
a few tenths of one per cent would not be relevant with the assumption that the wake
dimensions are independent of α. Considering values of α much greater than 10 %
is probably not physically relevant because strong hydrodynamic interactions between
bubbles should take place. We have however plotted p.d.f.s up to unreasonably large
values of α to examine the convergence towards a Gaussian function.

As expected, the p.d.f.s are well described by the low-gas-volume-fraction
approximation as long as the probability of occurrence of fluctuations of order
one or greater remains negligible. In the present case, the agreement of the computed
p.d.f.s with (2.6) is excellent at α = 0.34 % and good until ũz = 0.5 at α = 0.91 %.
Conversely, the convergence towards the other asymptotic solution (2.7) and (2.8) for
increasing α is slow. The Gaussian function only starts to be a relevant approximation
for a gas volume fraction as large as 80 %, and has therefore no chance of being
observed in an experiment. At intermediate gas volume fractions (1 % 6 α 6 40 %),
the p.d.f.s are strongly asymmetric. When α is increased, negative fluctuations, which
are initially totally absent, developed very slowly as the p.d.f. maximum gradually
becomes more and more rounded. Conversely, positive fluctuations show a long
exponential tail, which is still present at α = 40 %.

We discuss now how the p.d.f. depends on the wake width and length. Figure 2(c)
shows some results obtained for various values of w̃ and L̃. We observe that increasing
w̃ at constant L̃ has an effect similar to increasing α. Increasing L̃ at constant w̃ (not
shown here) is found to have the same effect. Moreover, it turns out that a similar
p.d.f. is obtained for various values of L̃ and w̃ provided the wake volume, L̃w̃2, is
kept constant. In fact, the p.d.f. depends on the fraction of the total volume that is
occupied by the wake, which is proportional to αL̃w̃2.

Equation (2.4) only accounts for the longitudinal velocity. It is reasonable to neglect
the transverse velocity because a wake is a quasi-parallel flow. However, because of
wake-induced oscillations (Ern et al. 2012), large-Reynolds-number bubbles do not
rise on rectilinear paths. In order to assess a possible effect of bubble path inclinations
on the p.d.f.s, additional computations have been carried out by considering that the
velocity disturbance generated by each bubble is due to a wake that is inclined
relative to the vertical direction. The inclination angles have been randomly chosen
and uniformly distributed in the interval [0, θmax]. The maximum inclination angle
measured by Riboux et al. (2010) was 28◦. Figure 2(d) shows an example of p.d.f.s
of the vertical and horizontal velocity fluctuations obtained for θmax = 30◦. The
vertical p.d.f. is almost indistinguishable from the reference case without inclination.
The p.d.f. of the horizontal fluctuations is a narrow peak centred around zero and
involves fluctuations that are negligible compared to those observed in experiments.
We can therefore conclude that wake inclinations have no significant effect on the
p.d.f.s and we will no longer consider them.

Let us sum up about the p.d.f.s of the fluctuations resulting from the summation
of randomly distributed wakes. For a given bubble rise velocity and a gas volume
fraction, the model essentially depends on a single parameter that characterizes the
wake volume: L̃w̃2. In the relevant range of gas volume fractions in which the
model is expected to be relevant (0.3 % 6 α 6 20 %), an exponential tail is observed
for upward fluctuations, while neither significant horizontal fluctuations nor vertical
downward fluctuations are generated.
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2.3. Contribution of the potential flow
In the flow regime considered here, the shape of a rising bubble can be approximated
as an oblate ellipsoid of revolution. In the close region located above and next to
the bubble, i.e. out of the wake, the velocity field is well described by the potential
flow around a single rising bubble (Ellingsen & Risso 2001; Risso & Ellingsen 2002).
Under the potential flow approximation, the flow ṽ(x) around an oblate ellipsoid of
revolution in translation in the direction of its axis is known analytically (Lamb 1932,
§ 108) and depends only on the aspect ratio ξ between the major and the minor
axes. In this section, we consider the liquid velocity fluctuations generated by the
summation of such potential disturbances.

The statistical cumulants are still given by (2.3). In the simplest case of a spherical
bubble (ξ = 1), the variances of the three components of the velocity fluctuations have
been determined by Biesheuvel & Wijngaarden (1984) (see also Lance & Bataille
1991) as

σ̃ 2
pot x = 3

20 α,

σ̃ 2
pot y = 3

20 α,

σ̃ 2
pot z = 1

5 α.

 (2.9)

Because of the very complex expression of ṽ(x), obtaining the analytical expression
of the statistical moments for any ξ is of no use. It is however worth mentioning that
the variance of the fluctuations is in any case a linear function of α.

Statistically representative ensembles of samples of fluctuations induced by potential
disturbances are obtained numerically by a method similar to that described previously
for the wake disturbances. Figure 3 presents p.d.f.s that have been obtained for ξ = 2
(case C, table 1) and various gas volume fractions. Figure 3(b) shows the p.d.f.s
of the horizontal velocity fluctuations. As expected, they are symmetric. At low
α we observe a peak-shaped curve that is characteristic of fluctuations that each
result from a single disturbance. Increasing α, the maximum becomes rounded and
exponential tails develop. Because the potential flow disturbance is closely localized
near the bubble, the convergence towards a Gaussian function is very slow and only
achieved for an unreasonable gas volume fraction of 100 %. Figure 3(a) shows the
p.d.f.s of the vertical velocity fluctuations. Even if the streamlines of the potential
flow are symmetric relative to the bubble mid-plane, the vertical velocity is not.
The convergence towards a Gaussian function is even slower than for the horizontal
fluctuations and the asymmetry needs a very high bubble number density to fade
away. For intermediate gas volume fractions, exponential tails are still present.

The presence of exponential tails in the p.d.f.s of velocity fluctuations resulting
from the summation of randomly distributed disturbances seems to be a general
feature, independent of the nature of the disturbances. It was previously found in
the Stokes regime (Drazer et al. 2002; Abbas et al. 2006). It is found here for both
wake and potential disturbances. It is observed for intermediate number densities
between the very dilute regime, in which each fluctuation results from a single
disturbance, and the very concentrated regime, in which each fluctuation results from
a very large number of individual disturbances and where the p.d.f. is Gaussian. The
corresponding range of gas volume fractions depends on the spatial extent of the
disturbance around each bubble, which is larger for a Stokes disturbance than for a
wake-induced disturbance, which is itself larger than for a potential disturbance. It also
depends on the asymmetry of the disturbance, which delays the convergence towards
the asymptotic solution at large concentration. Both wake and potential disturbances
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FIGURE 3. (Colour online) The p.d.f.s of liquid velocity fluctuations induced by potential
flow disturbances at various gas volume fractions for a bubble aspect ratio ξ = 2 (case
C in table 1). The light (red) curve shows the Gaussian solution valid at large bubble
number density for the case α = 100 %.

do not converge to a Gaussian distribution for volume fractions that can be achieved
when the finite size of the bubble is taken into account. At large Reynolds number,
the summation of individual disturbances thus generates exponential tails in the range
of gas volume fractions where they are observed in experiments, from a few tenths
of one per cent to a few tens of per cent.

3. Turbulent agitation resulting from a flow instability
The average flow disturbance generated in the vicinity of a bubble is not the only

source of velocity fluctuations. Provided the Reynolds number is large enough, the
whole flow within the bubble swarm becomes unstable and turbulent fluctuations
develop. From large-scale simulations, Riboux et al. (2013) showed that wake
interactions gave birth to a collective instability, which develops as the bubble
Reynolds number or the gas volume fraction is increased. In these simulations, as
well as in experiments of the flow through a random array of spheres (Amoura
2008; Risso et al. 2008), the fluctuations resulting from the flow instability can be
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separated from those resulting from the superposition of velocity disturbances induced
by individual bubbles. It turns out that they are not localized within the vicinity of
the bubbles or their wakes, but are rather homogeneously distributed over the liquid
phase. Moreover, they appear to be almost isotropic and the p.d.f.s of both the
horizontal and vertical fluctuations are symmetric and show exponential tails.

We thus propose to model the p.d.f.s of the three velocity components by the same
symmetric exponential function,

ft x(ũx)=
√

2
2σ̃t

exp

(
−
√

2|ũx|
σ̃t

)
,

ft y(ũy)=
√

2
2σ̃t

exp

(
−
√

2|ũy|
σ̃t

)
,

ft z(ũz)=
√

2
2σ̃t

exp

(
−
√

2|ũz|
σ̃t

)
,


(3.1)

where σ̃ 2
t is the variance of each component and 3σ̃ 2

t is the variance of the velocity
vector norm. Since these fluctuations result from nonlinear interactions between the
wakes, they are not expected to vary linearly with the gas volume fraction. Since we
will compare the present model with the experimental results of Riboux et al. (2010),
we will retain the scaling proposed in this paper,

σ̃t =
( α

0.01

)0.4
ṽt, (3.2)

where ṽt is the standard deviation of the fluctuation at α = 1 %.
In the next section, we will add the fluctuations resulting from the flow instability

to those resulting from individual disturbances. We therefore need to generate sets of
realizations of a random variable ũi that has an exponential probability density. For
this purpose, it is convenient to introduce an auxiliary random variable ζi such that

ũi = sgn(1− 2ζi)
σ̃t√

2
log(1− |1− 2ζi|). (3.3)

If ζi is uniformly distributed within [0, 1], then ũi is distributed within ]−∞, +∞[
with the probability density ft i(ũi) defined by (3.1) (see justification in appendix B).
Figure 4 shows p.d.f.s of velocity samples generated by randomly choosing 5× 105

values of ζi and computing the corresponding values of ũi from (3.3). Comparison
with the analytical expression of the p.d.f. shows that a good statistical convergence
is achieved. In the following, the three components of the velocity fluctuations, ũx, ũy
and ũz, are considered statistically independent and generated from three independent
sets ζx, ζy and ζz.

4. Complete model and comparison with experiments
We now model the fluctuations by taking into account all the kinds of velocity

fluctuations: (i) those induced by the flow disturbances in the vicinity of each bubble
and (ii) those resulting from the turbulent agitation.

The procedure to compute a sample of velocity fluctuation within the bubble swarm
is as follows. The first step is similar to the computation of either the wake-induced
disturbance (§ 2.2) or the potential one (§ 2.3), except that both of them are now
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Equation (3.1)
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FIGURE 4. The p.d.f.s of liquid velocity fluctuations resulting from turbulent agitation at
three gas volume fractions for a bubble of 2.5 mm (case C in table 1). Black curves show
p.d.f.s obtained from randomly generated samples. Grey curves show the analytical model
described by (3.1).

considered simultaneously. N bubbles are randomly distributed over the computational
domain. The contribution of each bubble in the middle of the domain is computed
as the sum of the wake disturbance (2.4) and that of the potential flow. This is
questionable in the region behind the bubble where the potential contribution should
account for the presence of the wake. However, it is a reasonable approximation
since the wake is largely dominant in this region. Then, the disturbances induced by
all the bubbles are added to obtain the fluctuation due to the individual contributions
of the bubbles, uind. The second step consists in randomly choosing a value of a
turbulent fluctuation, uturb, by the method described in § 3. A sample of the total
velocity fluctuations in the bubble swarm is simply obtained as the sum of the two
kinds of fluctuations: u = uind + uturb. Finally, an ensemble of Ns = 5 × 105 velocity
samples is generated from which the p.d.f. is determined.

The present model assumes that the two contributions, uind and uturb, at a given
location and a given instant are statistically independent. This assumption is supported
by the fact that the temporal fluctuations generated in the flow through a random array
of fixed spheres or bubbles have been found to be almost isotropic and homogeneously
distributed over space (Amoura 2008; Riboux et al. 2013). Now, considering the flow
around each bubble, it has been found to be similar to the flow around an isolated
bubble except that the wake is attenuated by the interactions with the other wakes
(Risso & Ellingsen 2002; Risso et al. 2008). It is therefore reasonable to assume
that it is not significantly influenced by the instantaneous local turbulent fluctuation.
It is important to stress that this assumption does not imply that the turbulent
fluctuations and the disturbances in the vicinity of the bubbles are not coupled. It
is in contradiction with a mechanism of local production–dissipation balance within
the bubble wakes. However, it is compatible with the production of turbulence by
a collective instability of the flow throughout a randomly distributed population of
bubbles.
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The model involves parameters that need to be chosen. The gas volume fraction α,
which is involved in all contributions, is a known parameter. The potential contribution
depends on the bubble aspect ratio ξ , which is taken equal to the value measured
by Riboux et al. (2010) for an isolated rising bubble. The wake model involves two
parameters, the normalized width w̃ and length L̃ of the wake. In the experiments of
Riboux et al. (2010), L was found to be equal to the Eulerian integral length scale of
the velocity fluctuations (Λ= 7.7 mm), independent of α and the same for the three
considered bubble sizes. In practice, the non-dimensional wake length has thus been
taken here as L̃=Λ/d, while the value of w̃ has been varied. However, it has been
shown that the results depend only on the wake volume scale L̃w̃2. The choice of the
value of Λ is therefore insignificant – provided its order of magnitude is preserved –
and the interpretation of the results has to be done by considering the value of L̃w̃2.
Next, the model for the turbulent agitation involves another unknown parameter, the
standard deviation ṽt of the turbulent fluctuations at α = 1 %. Eventually, the model
hence involves two a priori unknown parameters, L̃w̃2 and ṽt.

In the following, the values of L̃w̃2 and ṽt have been adjusted to fit the experimental
results of Riboux et al. (2010). Figures 5, 6 and 7 show the p.d.f.s obtained with
the present model for cases A, B and C (table 1), which correspond to experiments
with bubbles of diameters 1.6, 2.1 and 2.5 mm, respectively. For each bubble size,
the p.d.f.s of the vertical and horizontal fluctuations are shown for four gas volume
fractions. In order to reveal the role of each contribution, the result of the model
including the wake contribution only, that of the model including the wake and
the turbulent contributions, and that of the complete model including the three
contributions are plotted together with the experimental p.d.f.

Let us discuss how the two free parameters have been adjusted. For the value of
ṽt, we consider the p.d.f. of the horizontal fluctuations. In any case, the contribution
of the wake is totally negligible and that of the potential flow only has an influence
on large fluctuations, an influence that increases with the bubble size and the gas
volume fraction. It therefore turns out that the first exponential decay of the horizontal
p.d.f. depends only on the turbulent agitation. The turbulent standard deviation has
thus been adjusted from the slope s of the first exponential decay, exp(−s|ũx|), at the
lowest available gas volume fraction αmin: ṽt = (

√
2/s)(αmin/0.01)−0.4. Eventually, ṽt

is found to increase from 0.073 to 0.090 as the bubble diameter increases from 1.6
to 2.5 mm. For the wake parameter, we consider the p.d.f. of the vertical fluctuations.
We remark that the exponential decay of the positive fluctuations is fully determined
by the wake characteristics. The value of L̃w̃2 has then been adjusted to fit the
experimental decay at a value of α around 4 %, in order to stay beyond the dilute
regime described by (2.6), where the exponential decay is not yet attained. It is close
to 0.8 for the smallest bubble and to 1.1 for the two largest ones. As expected, the
wake dimensions are of the order of the bubble dimensions.

Figures 5, 6 and 7 show that the present model is in rather good agreement with
the experimental p.d.f.s for the three diameters and predicts well their evolution with
the gas volume fractions for α in the range from 0.3 % to 8 %. Concerning the
horizontal fluctuations (figures 5b, 6b and 7b), the wake contribution is negligible.
(Therefore, the p.d.f. obtained by considering only the wakes is not represented.) As
already mentioned, at low gas volume fraction, the central part of the p.d.f., which
corresponds to low to moderate velocity fluctuations, is totally dominated by the
contribution of the turbulent agitation. The turbulent agitation is therefore responsible
for the first exponential decay, the evolution of the slope of which is well reproduced
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FIGURE 5. (Colour online) Theoretical and experimental p.d.f.s of liquid velocity
fluctuations for a bubble of 1.6 mm (case A in table 1).

by assuming that the standard deviation of the turbulent agitation scales as α0.4 (3.2).
Because it is localized in the close vicinity of the bubbles, the potential contribution
can only influence the large fluctuations as long as α remains small, and gives birth
to a second exponential decay. When α is increased, the potential contribution starts
to significantly influence the statistics of lower and lower fluctuations as the close
vicinity of the bubbles covers a larger and larger part of the flow.
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FIGURE 6. (Colour online) Theoretical and experimental p.d.f.s of liquid velocity
fluctuations for a bubble of 2.1 mm (case B in table 1).

However, if the comparison with the experiments shows that the slope of the second
exponential decay is well reproduced for a gas volume fraction greater than or equal
to 4 %, it is underestimated by the model at lower α. A possible explanation for this
deviation may be that we consider the potential flow that goes past an ellipsoidal
bubble, while a better description would account for the fact that the flow has also
to get around the bubble wake (Bush & Eames 1998). More generally, it is evident
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FIGURE 7. (Colour online) Theoretical and experimental p.d.f.s of liquid velocity
fluctuations for a bubble of 2.5 mm (case C in table 1).

that the present model is not based on an accurate description of the flow in the close
vicinity of the bubble. However, we will not try to propose a more complex model
because the interest of the present approach is to capture the main characteristics
of the p.d.f.s of the liquid velocity fluctuations with the use of a minimum set of
assumptions and adjustable parameters. Nevertheless, we think that it is reasonable to
conclude that the second exponential decay in the experimental p.d.f. of the horizontal
fluctuations is due to flow disturbances in the close vicinity of the bubble.
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Regarding the p.d.f.s of the vertical fluctuations (figures 5a, 6a and 7a), negative
and positive velocities have to be distinguished. Negative vertical fluctuations are
similar to horizontal fluctuations. At low gas volume fraction, the exponential decay
is dominated by the turbulent agitation and the good agreement with the experiments
confirms the validity of the assumption of an isotropic turbulent agitation (3.1). From
the model we see that the contribution of the potential flow becomes significant
when α is increased. Again, a deviation from the experiments is seen at larger α
because of the crude model used to describe the flow in the close vicinity of the
bubbles. Positive fluctuations are essentially generated by the wakes, with a secondary
contribution of the turbulent agitation for large fluctuations.

An advantage of the present model is to allow the distinction between the
contributions of the different kinds of fluctuations. The variance of the fluctuations
has been computed for the following cases: (1) the complete model including all
contributions, (2) the potential contribution alone, (3) the wake contribution alone,
and (4) the turbulent contribution alone. Figure 8 shows the corresponding variances
as a function of the gas volume fraction for cases A, B and C. First, it is worth
mentioning that, by model construction, the variance of the wake contribution is
proportional to α in the vertical direction (2.8) and zero in the horizontal direction,
that of the potential contribution is proportional to α in both directions, and that
of the turbulent contribution is isotropic and proportional to α0.8 (3.2): the relative
weight of each of them is hence weakly dependent on α. Second, since they both
describe the flow in the vicinity of the bubble, the wake and the potential fluctuations
are correlated to the bubble locations and are therefore not statistically independent of
each other. Their common contribution to the total fluctuation is thus not simply the
addition of their variances obtained in the case they are computed separately. That is
the reason why, in the vertical direction, the sum of the three contributions considered
separately (represented by circles in figure 8) is different from the variance obtained
with the complete model. It is not the case in the horizontal direction because the
wake contribution is zero.

This being said, we can discuss the main features of the fluctuating energy. In
the vertical direction, the contribution of the individual bubble disturbances, which
are mainly caused by the wakes, represents the major part of the fluctuating energy,
while that of the turbulent agitation is relatively small. The picture is totally different
in the horizontal direction where the energy of the turbulent agitation dominates
over that of individual bubble disturbances, which are only due to the potential
disturbances.

The present analysis leads to the conclusion that the total energy of the fluctuations
is a rather poorly informative quantity, which does not reveal the physical nature
of the fluctuation nor allow comparison between the directions. Moreover, the
experimental determination of this quantity is in general not very robust since it
can be notably altered by either a lack of detection or spurious measurements in the
vicinity of the bubbles. Using the present model, the difficulty of describing the flow
close to the bubbles will not significantly affect the determination of the turbulent
contribution.

5. Conclusions

In most studies, the various contributions to the bubble-induced fluctuations are not
distinguished. However, these contributions result from distinct physical mechanisms,
such as local flow disturbances or flow instabilities, and therefore involve different
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FIGURE 8. (Colour online) Variances of vertical (a) and horizontal (b) liquid velocity
fluctuations corresponding to the various contributions. (Note that the contribution of the
average wakes is zero in the horizontal direction.)

time and length scales. With the purpose of understanding and modelling the bubble-
induced agitation, it is therefore crucial to achieve such a decomposition. In this work,
gathering all available pieces of information about homogeneous bubbly flows, we
have proposed a simple model accounting for the elementary contribution of the flow
disturbances in the vicinity of the bubbles and that of the turbulent agitation.

The flow in the vicinity of each bubble is modelled as the sum of the potential flow
around an ellipsoidal bubble rising at constant velocity and an exponentially decaying
wake, in agreement with observations (Risso et al. 2008, and references therein).
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The turbulent contribution is modelled as an isotropic and homogeneous random
fluctuation, the probability density of which is exponential, in agreement with the
observation of the flow through a random array of fixed spheres or bubbles (Amoura
2008; Riboux et al. 2013). Both these contributions involve nonlinear hydrodynamics:
nonlinear interactions between individual bubble disturbances are responsible for wake
attenuations, and nonlinear flow instabilities generate turbulent fluctuations.

The turbulent fluctuations and the flow disturbances generated in the vicinity of the
bubbles are assumed to be statistically independent. This assumption is supported by
the fact that the wake attenuation that is observed in bubbly flows does not result from
an enhanced diffusion by the turbulence (Hunt & Eames 2002; Risso et al. 2008), and
is consistent with a turbulence generated by a collective instability of the flow through
a bubble swarm.

The present model involves two unknown parameters, one accounting for the wake
volume and the other for the intensity of the turbulent agitation. Taking advantage
of the fact that some parts of the p.d.f. depend on a single contribution, we have
proposed an objective way to determine these two parameters independently of each
other by adjustment of experimental results. The model is found to reproduce well
the experimental results obtained in a homogeneous bubble column by Riboux et al.
(2010) for gas volume fractions in the range from a few tenths of one per cent up to
8 %, and high bubble Reynolds numbers from 540 to 760. In this range of parameters,
the model can thus be used to decompose the three contributions to the bubble-induced
turbulence in experiments where shear-induced turbulence is absent.

Comparisons of the model with other experiments are highly desirable, but there
are no other published works that provide the data to do so. In future work, it would
be interesting to test the robustness of the model assumptions for lower Reynolds
number, say in the range from 10 to 500 that was considered in the experiments of
Martínez Mercado et al. (2007) and Mendez-Diaz et al. (2013). First, the range in
which the p.d.f. shapes remain similar to those found by Riboux et al. (2010) should
be determined. In this range, the evolution of the turbulence and wake parameters of
the model, σt and L̃w̃2, should be determined. It could also be envisaged to complete
the model by accounting for the contribution of the shear-induced turbulence to
address more complex bubbly flows. Since shear-induced turbulence generates a
Gaussian p.d.f. that is clearly different from the contributions of bubble-induced
turbulence, the distinction between the various contributions from an experimental
p.d.f. should still be possible.

Regarding bubble-induced turbulence, the contribution of the wakes is now rather
well understood. It was already found that it could cause a k−3 subrange in the spectral
domain (Risso 2011) and we have shown here that it is responsible for the exponential
tail of the vertical p.d.f. in the direction of upward fluctuations. Conversely, even if
the properties of the turbulent contribution have been determined experimentally, its
dynamics still needs to be elucidated. From the study of the flow through a random
array of fixed spheres or bubbles (Amoura 2008; Riboux et al. 2013), it turns out that
the signature of the turbulent contribution is characterized by a k−3 subrange in the
spectral domain and by an isotropic exponential p.d.f. Furthermore, the present work
has shown that assuming isotropic turbulent fluctuations with a exponential p.d.f. is
consistent with measurements in a homogeneous bubble column. However, the reasons
for these statistical features are still an open question. We think that they could be
understood by a systematic study of the stability of the flow through a random array
of obstacles.
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FIGURE 9. Schematic illustrating the theoretical derivation of the p.d.f.s of wake-induced
fluctuations in the limit of low gas volume fraction (appendix A).

Appendix A. Theoretical derivation of the p.d.f.s of wake-induced fluctuations in
the limit of low gas volume fraction

In this section we present the derivation of the p.d.f. generated by the summation of
the wakes of randomly distributed bubbles in the limit of small gas volume fractions.
Let us consider a volume ϑT of fluid located downward of a bubble that generates a
wake described by (2.4) (see figure 9). Since the bubble number density is small, we
assume that the liquid velocity in ϑT is only due to the wake of the bubble located
at the origin O of the cylindrical coordinates (r, θ, z). The volume ϑ+ in which the
vertical liquid velocity is larger than a given value ũz is located above the parabola
with equation

z
L
+ r2

w2
= log

(
1
ũz

)
= b, (A 1)

and thus we can write

ϑ+ =
∫ 2π

θ=0

∫ 0

z=−bL

∫ w
√

b+z/L

r=0
r dθ dr dz= π

2
Lw2 log2

(
1
ũz

)
. (A 2)

If we randomly select a point within the volume ϑT , the probability that the velocity
Ũz at this point is lower than a given value ũz is

Gz(ũz)= Prob(Ũz 6 ũz)= 1− ϑ+/ϑT . (A 3)

Now, considering that ϑT is the average volume that contains a single bubble of
volume ϑb, we can express it as a function of the bubble diameter and gas volume
fraction,

ϑT = ϑb

α
= πd3

6α
. (A 4)

The p.d.f. gz is the derivative of the distribution function Gz. Substituting (A 4) in (A 3)
and differentiating yields

gz(ũz)= κ 1
ũz

log
(

1
ũz

)
with κ = 6α

w2L
d3
. (A 5)
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Because of the assumptions made, this p.d.f. is only defined on the finite interval
[ε, 1]. The lower bound results from the fact that the considered volume ϑT is finite.
A velocity fluctuation cannot therefore be lower than the value of ṽz at the frontier of
ϑT . The value of ε is obtained from the fact that the sum of a probability function
must be unity, ∫ 1

ε

gz(ũz) dũz = κ2 log2

(
1
ε

)
= 1, (A 6)

which leads to

ε = exp

(
−
√

2
κ

)
. (A 7)

The upper bound is a consequence of the fact that any velocity fluctuation results only
from the disturbance caused by a single bubble wake. It thus cannot exceed 1, which
is the maximum of ṽz defined by (2.4).

Since the wakes induce only positive velocity disturbances, the present distribution
has a positive average,

M =
∫ 1

ε

gz(ũz)ũz dũz = κ
(

1− ε − ε
√

2
κ

)
. (A 8)

In order to have a distribution fz with a zero average velocity, we need to shift the
p.d.f. as

fz(ũz)= gz(ũz +M), (A 9)

and we finally get

fz(ũz)= κ 1
ũz +M

log
(

1
ũz +M

)
for ε −M 6 ũz 6 1−M. (A 10)

Appendix B. Auxiliary variable for the generation of statistical samples following
an exponential p.d.f.

Let u be a random variable defined on the interval ]−∞,+∞[, f (u) its p.d.f. and
F(u) its distribution function (or cumulative p.d.f.). From elementary statistics, it is
known that ξ = F(u) is a random variable uniformly distributed on the interval [0, 1].

If the p.d.f. is

f (u)=
√

2
2σ

exp

(
−
√

2|u|
σ

)
, (B 1)

then the distribution function is

F(u)=
√

2
2σ

∫ U

−∞
exp

(
+
√

2u
σ

)
= 1

2
exp

(
+
√

2u
σ

)
for u 6 0,

F(u)= 1
2
+
√

2
2σ

∫ U

0
exp

(
−
√

2u
σ

)
= 1− 1

2
exp

(
−
√

2u
σ

)
for u > 0,

 (B 2)
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and its reciprocal is

u= F−1(ξ)= σ√
2

log(2ξ) for ξ 6
1
2
,

u= F−1(ξ)=− σ√
2

log(2− 2ξ) for ξ >
1
2
,

 (B 3)

which can be rewritten by using the absolute value and sign functions as

u= sgn(1− 2ζ )
σ√

2
log(1− |1− 2ζ |). (B 4)

Equation (B 4) thus allows one to transform a set of values of ξ that are uniformly
distributed between 0 and 1 into a set of values of u that are distributed according
to (B 1).
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