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Abstract We show that the image of the Abel–Jacobi map admits functorially a model over the field of

definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The

cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the
deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show

that this model over the base field is dominated by the Albanese variety of a product of components of

the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a
result of Deligne on complete intersections of Hodge level 1.
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Let X be a smooth projective variety defined over the complex numbers. Given a

nonnegative integer n, denote by CHn+1(X) the Chow group of codimension-(n+ 1)
cycle classes on X , and denote by CHn+1(X)hom the kernel of the cycle class map

CHn+1(X)→ H2(n+1)(X,Z(n+ 1)). In the seminal paper [15], Griffiths defined a complex

torus, the intermediate Jacobian, J 2n+1(X) together with an Abel–Jacobi map

AJ : CHn+1(X)hom→ J 2n+1(X).

While J 2n+1(X) and the Abel–Jacobi map are transcendental in nature, the image of

the Abel–Jacobi map restricted to An+1(X), the subgroup of CHn+1(X) consisting of

algebraically trivial cycle classes, is a complex subtorus J 2n+1
a (X) of J 2n+1(X) that is

naturally endowed via the Hodge bilinear relations with a polarization, and hence is a
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complex abelian variety. The first cohomology group of J 2n+1
a (X) is naturally identified

via the polarization with Nn H2n+1(X,Q(n)); i.e., the nth Tate twist of the nth step in

the geometric coniveau filtration (see (1.1)).

If now X is a smooth projective variety defined over a subfield K ⊆ C, it is natural

to ask whether the complex abelian variety J 2n+1
a (XC) admits a model over K . In this

paper, we prove that J 2n+1
a (XC) admits a unique model over K such that

AJ : An+1(XC)→ J 2n+1
a (XC)

is Aut(C/K )-equivariant, thereby generalizing the well-known cases of the Albanese map

Adim X (XC)→ AlbXC and of the Picard map A1(XC)→ Pic0
XC

, as well as the case of

AJ : A2(XC)→ J 3
a (XC), which was treated in our previous work [1].

Theorem A. Suppose X is a smooth projective variety over a field K ⊆ C, and let n be

a nonnegative integer. Then J 2n+1
a (XC), the complex abelian variety that is the image

of the Abel–Jacobi map AJ : An+1(XC)→ J 2n+1(XC), admits a distinguished model J
over K such that the Abel–Jacobi map is Aut(C/K )-equivariant. Moreover, there is an

algebraic correspondence 0 ∈ CHdim(J )+n(J ×K X) inducing, for every prime number `, a

split inclusion of Gal(K )-representations

0∗ : H1(JK ,Q`) ↪→ H2n+1(X K ,Q`(n)) (0.1)

with image Nn H2n+1(X K ,Q`(n)).
By Chow’s rigidity theorem (see [10, Theorem 3.19]), an abelian variety A/C descends

to at most one model defined over K . On the other hand, an abelian variety A/K may

descend to more than one model defined over K . Nevertheless, since AJ : An+1(XC)→
J 2n+1

a (XC) is surjective, the abelian variety J 2n+1
a (XC) admits at most one structure

of a scheme over K such that AJ is Aut(C/K )-equivariant. This is the sense in which

J 2n+1
a (XC) admits a distinguished model over K .

Our proof of Theorem A uses a different strategy than we took in [1], and as a result

improves on the results of that paper in three ways:

(1) In [1, Theorem B], only the case n = 1 of Theorem A was treated. An essential step

in the proof in [1, Theorem B] was a result of Murre [24, Theorem C], relying on the

theorem of Merkurjev and Suslin, asserting that J 3
a (XC) is an algebraic representative,

meaning that it is universal among regular homomorphisms from A2(XC) (as defined in

§ 3). In general, little is known about when higher intermediate Jacobians are algebraic

representatives, or even when algebraic representatives exist. In this paper we completely

avoid the use of Murre’s result, or indeed the existence of an algebraic representative.

Instead, we use a new approach to show that for each n there is a model of J 2n+1
a (XC)

over K , which makes the Abel–Jacobi map Aut(C/K )-equivariant.

(2) The results of [1, Theorem A] concerning descent for J 2n+1
a (XC) for n > 1 only

show that the isogeny class of J 2n+1
a (XC) descends to K , and this is under the further

restrictive assumption that the Abel–Jacobi map be surjective (or under some other

constraint on the motive of X ; see [1, Theorem 2.1]). In contrast, the present Theorem A

provides a distinguished model of J 2n+1
a (XC) over K , without any additional hypothesis.

Moreover, we show the assignment in Theorem A is functorial (Proposition 5.1).
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The new technical input begins with Proposition 1.1, which shows that J 2n+1
a (XC)

is dominated, via the induced action of a correspondence defined over K , by the

Jacobian of a pointed, geometrically integral, smooth projective curve C defined over

K , strengthening [1, Proposition 1.3]. The key point is that this strengthening, together

with the fact that Bloch’s map [6] factors through the Abel–Jacobi map on torsion, makes

it possible to show directly that J 2n+1
a (XC) admits a unique model over K making the

Abel–Jacobi map AJ : An+1(XC)→ J 2n+1
a (XC) Galois-equivariant on torsion. In short,

avoiding the use of algebraic representatives, and the motivic techniques employed in [1],

we obtain a stronger result. We then make a careful analysis of Galois equivariance

for regular homomorphisms, strengthening some statements in [1], to conclude that the

Abel–Jacobi map is Galois-equivariant on all points – and not merely on torsion points

(Proposition 3.8); this is crucial to the proof of Theorem B.

(3) Finally, while a splitting in [1, Theorem A] analogous to (0.1) was established by

some explicit computations involving correspondences, here we utilize André’s powerful

theory of motivated cycles [3] in order to establish the more general splitting (0.1). This

also provides a proof that the coniveau filtration splits (Corollary 4.4), as well as a short

motivic proof that the isogeny class of J 2n+1
a (XC) descends, without any of the restrictive

hypotheses in [1].

The structure of the proof of Theorem A is broken into three parts. First we give

a proof of Theorem A, up to the statement of the splitting of the inclusion, and

where we focus only on the Aut(C/K )-equivariance of the Abel–Jacobi map on torsion

(Theorem 2.1). The proof of Theorem 2.1 relies on showing that Nn H2n+1(X K ,Q`(n))
is spanned via the action of a correspondence over K by the first cohomology group of

a pointed, geometrically integral curve; this is proved in Proposition 1.1. Next, in § 3,

we show that if the Abel–Jacobi map is Aut(C/K )-equivariant on torsion, then it is fully

equivariant. This is a consequence of more general results we establish for surjective

regular homomorphisms. Finally, the splitting of (0.1) is then proved in Theorem 4.2.

Note that when n = 1 the result of [1, Theorem A] is more precise in that the splitting

of (0.1) is shown to be induced by an algebraic correspondence over K .

As the first application of Theorem A, we recover a result of Deligne [11] regarding

intermediate Jacobians of complete intersections of Hodge level 1 (§ 6).

Another application is to the following question due to Barry Mazur. Given an

effective polarizable weight-1 Q-Hodge structure V , there is a complex abelian variety

A (determined up to isogeny) so that H1(A,Q) gives a weight-1 Q-Hodge structure

isomorphic to V . On the other hand, let K be a field, and let ` be a prime number (not

equal to the characteristic of the field). It is not known (even for K = Q) whether given

an effective polarizable weight-1 Gal(K )-representation V` over Q`, there is an abelian

variety A/K such that H1(AK ,Q`) is isomorphic to V`. A phantom abelian variety for

V` is an abelian variety A/K together with an isomorphism of Gal(K )-representations

H1(AK ,Q`)
∼= // V`.

Such an abelian variety, if it exists, is determined up to isogeny; this is called the phantom

isogeny class for V`. Mazur asks the following question [21, p. 38]: let X be a smooth
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projective variety over a field K ⊆ C, and let n be a nonnegative integer. If H2n+1(XC,Q)
has Hodge coniveau n (i.e., H2n+1(XC,C) = Hn,n+1(X)⊕ Hn+1,n(X)), does there exist a

phantom abelian variety for H2n+1(X K ,Q`(n))?
Theorem A answers this affirmatively under the stronger, but according to the

generalized Hodge conjecture equivalent, assumption that the Abel–Jacobi map AJ :
An+1(XC)→ J 2n+1(XC) is surjective. This assumption is known to hold in many

cases (e.g., uniruled threefolds). Theorem A in fact shows a stronger statement,

namely that the distinguished model over K of the image of the Abel–Jacobi

map AJ : An+1(XC)→ J 2n+1(XC) provides a phantom abelian variety for the

Gal(K )-representation Nn H2n+1(X K ,Q`(n)). Moreover, the arguments via motivated

cycles of § 4 give a second proof of the existence of a phantom abelian variety, although not

the descent of the image of the Abel–Jacobi map. In summary, these results strengthen

our answer to Mazur’s question, given in [1].

As another application, we provide an answer to a second question of Mazur, which

was not addressed in [1]. Over the complex numbers, the image of the Abel–Jacobi

map is dominated by Albaneses of resolutions of singularities of products of irreducible

components of Hilbert schemes. Since Hilbert schemes are functorial, and in particular

defined over K , and since the image of the Abel–Jacobi map descends to K , one might

expect the phantom abelian variety to be linked to the Albanese of a Hilbert scheme.

Motivated by concrete examples where this holds (e.g., the intermediate Jacobian of a

smooth cubic threefold X is the Albanese variety of the Fano variety of lines on X [9]),

Mazur asks the following question [21, Question 1]: Can this phantom abelian variety be

constructed as – or at least in terms of – the Albanese variety of some Hilbert scheme

geometrically attached to X? We provide an affirmative answer for Nn H2n+1(X K ,Q`(n)).

Theorem B. Suppose X is a smooth projective variety over a field K ⊆ C. Then the

phantom abelian variety J/K for Nn H2n+1(X K ,Q`(n)) given in Theorem A is dominated

by the Albanese variety of (a finite product of resolutions of singularities of some

finite number of) components of a Hilbert scheme parameterizing codimension-(n+ 1)
subschemes of X over K .

The proof of the theorem, given in § 7 (Theorem 7.3), uses in an essential way

the Aut(C/K )-equivariance of the Abel–Jacobi map as stated in Theorem A. For the

sake of generality, the proof is framed in the language of Galois-equivariant regular

homomorphisms, as described in [1, § 4]. As a consequence, some related results are

obtained for algebraic representatives of smooth projective varieties over perfect fields of

arbitrary characteristic.

For concreteness, we mention the following consequence of Theorems A and B,

providing a complete answer to Mazur’s questions for uniruled threefolds (see § 7).

Corollary C. Suppose X is a smooth projective threefold over a field K ⊆ C and assume

that XC is uniruled. Then the intermediate Jacobian J 3(XC) descends to an abelian

variety J/K , which is a phantom abelian variety for H3(X K ,Q`(1)), and is dominated

by the Albanese variety of (a product of resolutions of singularities of a finite number of)

components of a Hilbert scheme parameterizing dimension-1 subschemes of X over K .
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Conventions. We use the same conventions as in [1]. A variety over a field is

a geometrically reduced separated scheme of finite type over that field. A curve

(resp. surface) is a variety of pure dimension 1 (resp. 2). Given a variety X ,

CHi (X) denotes the Chow group of codimension-i cycles modulo rational equivalence,

and Ai (X) ⊆ CHi (X) denotes the subgroup of cycles algebraically equivalent to 0.

If X is a smooth projective variety over the complex numbers, then we denote by

J 2n+1(X) = Fn+1 H2n+1(X,C)\H2n+1(X,C)/H2n+1(X,Z) the complex torus that is the

(2n+ 1)th intermediate Jacobian of X , and we denote by J 2n+1
a (X) the image of the

Abel–Jacobi map An+1(X)→ J 2n+1(X). A choice of polarization on X naturally endows

the complex torus J 2n+1
a (X) with the structure of a polarized complex abelian variety,

and H1(J 2n+1
a (X),Q) ∼= Nn H2n+1(X,Q)(n). If C/K is a smooth projective geometrically

irreducible curve over a field, we will sometimes write J (C) for Pic◦C/K . Given a field K ,

we denote by K a separable closure. Finally, given an abelian group A, we denote by

A[N ] the kernel of the multiplication-by-N map; and if A is an abelian group scheme

over a field K , we write A[N ] for A(K )[N ].

1. A result on cohomology

The main point of this section is to prove Proposition 1.1, strengthening

[1, Proposition 1.3]. Recall that if X is a smooth projective variety over a field K , then

the geometric coniveau filtration Nν H i (X K ,Q`) is defined by:

Nν H i (X K ,Q`) :=
∑
Z⊆X

closed, codim>ν

ker
(
H i (X K ,Q`)→ H i (X K \Z K ,Q`)

)
. (1.1)

If K = C, the geometric coniveau filtration Nν H i (X,Q) is defined similarly. We direct

the reader to [1, § 1.2] for a review of some of the properties we use here. Sometimes,

we will abuse notation slightly and denote the rth Tate twist of step ν in the geometric

coniveau filtration by Nν H i (X K ,Q`(r)) := (N
ν H i (X K ,Q`))⊗Q` Q`(r), and similarly for

Betti cohomology.

Proposition 1.1. Suppose X is a smooth projective variety over a field K ⊆ C, and let

n be a nonnegative integer. Then there exist a geometrically integral smooth projective

curve C over K , admitting a K -point, and a correspondence γ ∈ CHn+1(C ×K X)Q such

that for all primes `, the induced morphism of Gal(K )-representations

γ∗ : H1(CK ,Q`)→ H2n+1(X K ,Q`(n))
has image Nn H2n+1(X K ,Q`(n)). Likewise, the morphism of Hodge structures

γ∗ : H1(CC,Q)→ H2n+1(XC,Q(n))
has image Nn H2n+1(XC,Q(n)); in particular, the image of γ∗ : J (CC)→ J 2n+1(XC) is

J 2n+1
a (XC).

Remark 1.2. The result [1, Proposition 1.3] differs from Proposition 1.1 only in the sense

that it is not shown there that C can be taken to admit a K -rational point or to be

geometrically integral.
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There are three main ingredients in the proof of Proposition 1.1: the Bertini theorems,

the Lefschetz type result in Lemma 1.3 describing cohomology in degree 1, and

Proposition A.1 regarding the cohomology of curves. While we expect Proposition A.1 is

well known, for lack of a reference we include a proof in Appendix A.

Lemma 1.3 (Lefschetz). Suppose X is a smooth projective variety over a field K
with separable closure K . There exist a smooth curve C ↪→ X over K , which is

a (general) linear section for an appropriate projective embedding of X , and a

correspondence γ ∈ CH1(C ×K X)Q such that for all ` 6= char(K ), the induced morphism

of Gal(K )-representations

γ∗ : H1(CK ,Q`) // // H1(X K ,Q`)

is surjective. Moreover, if X is geometrically integral (resp. admits a K -point), then C
can be taken to be geometrically integral (resp. to admit a K -point).

Proof. By Bertini [26], let ι : C ↪→ X be a one-dimensional smooth general linear section

of an appropriate projective embedding of X . Note that by the irreducible Bertini

theorems [8], if X is geometrically integral (resp. admits a K -point), then C can also

be taken to be geometrically integral (resp. to admit a K -point); (see e.g., [2, Theorem

B.1] for the version we use here).

The hard Lefschetz theorem [12, Theorem 4.1.1] states that intersecting with C yields

an isomorphism

ι∗ι
∗
: H1(X K ,Q`) ↪→ H1(CK ,Q`)� H2 dim X−1(X K ,Q`(dim X − 1)).

The Lefschetz Standard conjecture is known for `-adic cohomology and for Betti

cohomology in degree 6 1 (see [18, Theorem 2A9(5)]), meaning in our case that the

map (ι∗ι
∗)−1 is induced by a correspondence, say 3 ∈ CH1(X ×K X)Q. Therefore, the

composition

H1(CK ,Q`) ι∗

(0ι)∗ // // H2 dim X−1(X K ,Q`(dim X − 1))
3∗

∼=

// H1(X K ,Q`)

is surjective and is induced by the correspondence γ := 3 ◦0ι, where 0ι denotes the

graph of ι.

Proof of Proposition 1.1. Up to working component-wise, we can and do assume that

X is irreducible, say of dimension dX . Since K ⊆ C, we have from the characterization

of coniveau (see e.g., [1, (1.2)]) that there exist a smooth projective variety Y (possibly

disconnected) of pure dimension dY = dX − n over K , and a K -morphism f : Y → X such

that

Nn H2n+1(X K ,Q`(n)) = Im( f∗ : H1(YK ,Q`)→ H2n+1(X K ,Q`(n))).
Using Lemma 1.3 applied to Y , there exist a smooth projective curve C over K (possibly

disconnected) and a correspondence 0 ∈ CH1(C ×K Y )Q such that the composition

H1(CK ,Q`)
0∗ // // H1(YK ,Q`)

f∗ // H2n+1(X K ,Q`(n))

has image Nn H2n+1(X K ,Q`(n)).
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As recalled in Proposition A.1, there is a morphism β : C → Pic◦C/K inducing

an isomorphism β∗ = (0t
β)∗ : H1(Pic◦

CK /K
,Q`)→ H1(CK ,Q`). Observe that Pic◦C/K is

geometrically integral and admits a K -point. Lemma 1.3 yields a smooth geometrically
integral curve D/K endowed with a K -point, and a surjection H1(DK ,Q`)�
H1(Pic◦

CK /K
,Q`) induced by a correspondence 0̃ over K . The composition

H 1(DK ,Q`)
0̃∗

Lef
// // H 1(Pic◦CK /K ,Q`)

(0t
β )∗

∼=

// H 1(CK ,Q`)
0∗

Lef
// // H 1(YK ,Q`)

f∗

Def
// // Nn H 2n+1(X K ,Q`(n)),

induced by the associated composition of correspondences γ , provides the desired

surjection

γ∗ : H1(DK ,Q`) // // Nn H2n+1(X K ,Q`(n)).

Finally, the compatibility of the comparison isomorphisms in cohomology with

Gysin maps and the action of correspondences (see e.g., [1, § 1.2]), or simply

rehashing the argument above after pull-back to C, establishes that the image

of the induced morphism of Hodge structures γ∗ : H1(DC,Q)→ H2n+1(XC,Q(n)) is

Nn H2n+1(XC,Q(n)) = H1(J 2n+1
a (XC,Q)). Using the equivalence of categories between

polarizable effective weight-1 Hodge structures and complex abelian varieties, we see

that this morphism of Hodge structures is induced by a surjection of abelian varieties

γ∗ : J (DC)� J 2n+1
a (XC).

2. Proof of Theorem A: Part I, descent of the image of the Abel–Jacobi map

In this section we establish the following theorem, proving the first part of Theorem A.

Theorem 2.1. Suppose X is a smooth projective variety over a field K ⊆ C, and let n
be a nonnegative integer. Then the image of the Abel–Jacobi map J 2n+1

a (XC) admits

a distinguished model J over K such that the induced map AJ [N ] : An+1(XC)[N ] →
J 2n+1

a (XC)[N ] on N -torsion is Aut(C/K )-equivariant for all positive integers N .

Moreover, there is a correspondence 0 ∈ CHdim(J )+n(J ×K X) such that for each prime

number `, we have that 0 induces an inclusion of Gal(K )-representations

H1(JK ,Q`)
� � 0∗ // H2n+1(X K ,Q`(n)), (2.1)

with image Nn H2n+1(X K ,Q`(n)).

We will prove the theorem in several steps contained in the following subsections.

Remark 2.2. As explained below the statement of Theorem A, an abelian variety over

C may admit several models over K , if it admits any. However, it admits at most one

model over K such that the induced map AJ [N ] : An+1(XC)[N ] → J 2n+1
a (XC)[N ] on

N -torsion is Aut(C/K )-equivariant for all positive integers N . Indeed, by Chow’s rigidity

theorem (see [10, Theorem 3.19]), an abelian variety A/C descends to at most one model

defined over K ; moreover, there is at most one model of A defined over K that induces a
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given action of Gal(K ) on the K -points of A. Therefore, since AJ [N ] : An+1(XC)[N ] →
J 2n+1

a (XC)[N ] is surjective for all N not divisible by a finite number of fixed primes

(this is a general fact about regular homomorphisms; see § 3 and Lemma 3.2(b)), and

since torsion points of order not divisible by a finite number of fixed primes are dense,

the abelian variety J 2n+1
a (XC) admits at most one structure of a scheme over K such

that AJ [N ] is Aut(C/K )-equivariant for all positive integers N not divisible by the finite

number of given primes. This is the sense in which J 2n+1
a (XC) admits a distinguished

model over K .

2.1. Chow rigidity and L/K -trace: descending from C to K

The first step in the proof consists in using Chow rigidity and C/K -trace to descend the

image of the Abel–Jacobi map from C to K . We follow the treatment in [10], and refer

the reader to [1, § 3.3] where we review the theory in the setting we use here.

For the convenience of the reader, we briefly recall a few points. We focus on the

case where L/K is an extension of algebraically closed fields of characteristic 0. First, we

reiterate that by Chow’s rigidity theorem (see [10, Theorem 3.19]), an abelian variety B/L
descends to at most one model, up to isomorphism, defined over K . Given an abelian

variety B defined over L, while B need not descend to K , there is [10, Theorem 6.2,

Theorem 6.4, Theorem 6.12, p. 72, p. 76, Theorem 3.19] an abelian variety B defined

over K equipped with an injective homomorphism of abelian varieties

B
L
� � τ // B

(together called the L/K -trace) with the property that for any abelian variety A/K , base

change gives an identification

HomAb/K (A, B) = HomAb/L(AL , B)

f 7→ τ ◦ fL .

It follows that if there are an abelian variety A/K and a surjective homomorphism AL →

B, then τ is surjective and hence an isomorphism; in other words, B descends to K
(as B).

Proof of Theorem 2.1, Step 1: J 2n+1
a (XC) descends to K . In the notation of Theorem

2.1, we wish to show that J 2n+1
a (XC) descends to an abelian variety over K . We have

shown in Proposition 1.1 that there exist a smooth projective geometrically integral curve

C/K , admitting a K -point, and a correspondence γ ∈ CHn+1(C ×K X)Q, which induces

a surjection γ∗ : J (CC)� J 2n+1
a (XC). Thus from the theory of the (C/K )-trace, and the

fact that J (CC) = J (CK )C is defined over K , J 2n+1
a (XC) descends to K as its (C/K )-trace

J 2n+1
a

(XC), and there is a surjective homomorphism of abelian varieties over K

J (CK )
γ∗
// // J 2n+1

a
(XC).

Moreover, the Abel–Jacobi map on torsion AJ [N ] : An+1(XC)[N ] → J 2n+1
a (XC)[N ] is

Aut(C/K )-equivariant for all positive integers N . Indeed, Aut(C/K ) acts trivially on
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J 2n+1
a (XC)[N ] = J 2n+1

a
(XC)[N ] and it also acts trivially on An+1(XC)[N ] by Lecomte’s

rigidity theorem [20] (see e.g., [1, Theorem 3.8(b)]).

2.2. Descending from K to K

In the notation of Theorem 2.1, we have found a smooth projective geometrically integral

curve C/K , admitting a K -point, and a correspondence γ ∈ CHn+1(C ×K X)Q inducing

a surjective homomorphism of abelian varieties over K

0 // P // J (CK )
γ∗
// // J 2n+1

a
(XC) // 0 (2.2)

where P is defined to be the kernel. We will show that J 2n+1
a

(XC) descends to an abelian

variety J over K by showing that P descends to K , using the following elementary

criterion.

Lemma 2.3. Let A/K be an abelian variety over a perfect field K , let �/K be an

algebraically closed extension field, and let A = A�. Suppose that B ⊂ A is a closed

subgroup scheme. Then Bred descends to a subgroup scheme over K if and only if, for

each natural number N , we have B[N ](�) is stable under Aut(�/K ).

Proof. It is well known that, since the fixed field of � under Aut(�/K ) is K itself,

a subvariety W of A descends to K if and only if W (�) is stable under Aut(�/K )
(e.g., [23, Proposition 6.8]). In fact, to show W descends to K it suffices to verify that

there is a Zariski-dense subset S ⊂ W (�), which is stable under Aut(�/K ). (Indeed, if

σ ∈ Aut(�/K ), then W σ contains the Zariski closure of Sσ , which is W itself.) Now use

the fact that, over an algebraically closed field, torsion points are Zariski-dense in any

abelian variety or étale group scheme.

Proof of Theorem 2.1, Step 2: J 2n+1
a

(XC) descends to K . We wish to show that the

abelian variety J 2n+1
a

(XC) over K , obtained in Step 1 of the proof, descends to an abelian

variety over K . In the notation of Step 1, let P be the kernel of γ∗, as in (2.2). We use

the criterion of Lemma 2.3 to show that P descends to K . To this end, let N be a natural

number. We have a commutative diagram of abelian groups:

P[N ]� _

��

PC[N ]� _

��

J (CK )[N ]
' //

γ
∗,N

��

H1
ét(CK ,µN )

γ∗,N

��

J (CC)[N ]

γ∗,N

��

'
// H1

an(CC,µN )

γ∗,N

��

Ja
2n+1(XC)[N ] H2n+1

ét (X K ,µ
⊗(n+1)
N )

J 2n+1
a (XC)[N ]

� � // J 2n+1(XC)[N ] H2n+1
an (XC,µ

⊗(n+1)
N )

.
(2.3)

https://doi.org/10.1017/S1474748018000245 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000245


900 J. D. Achter et al.

Here, the identification J 2n+1(XC)[N ] = H2n+1
an (XC,µ

⊗(n+1)
N ) is given by the definition of

the intermediate Jacobian J 2n+1(XC), since H2n+1
an (XC,µ

⊗(n+1)
N ) = H2n+1

an (XC,Z/nZ) =
H2n+1

an (XC,
1
nZ/Z). The key point then is that, by commutativity, the composition of

arrows along the back of the diagram

J (CK )[N ]
' // H1

ét(CK ,µN )
γ∗,N
// H2n+1

ét (X K ,µ
⊗(n+1)
N ) (2.4)

has the same kernel as the arrow γ
∗,N

, namely P[N ]. Moreover, each arrow of the

composition (2.4) is Gal(K )-equivariant. Therefore, P[N ] = ker γ
∗,N

is Gal(K )-stable for

each N , and P descends to K . Therefore the abelian variety J 2n+1
a

(XC) over K admits a

model J over K such that the K -homomorphism γ∗ : J (CK )→ J 2n+1
a

(XC) descends to a

K -homomorphism f : J (C)→ J .

2.3. The Abel–Jacobi map is Galois-equivariant on torsion

In the notation of Theorem 2.1, we have so far established that J 2n+1
a (XC) descends to an

abelian variety J over K . We now wish to show that with respect to this given structure

as a K -scheme, the Abel–Jacobi map on torsion

AJ : An+1(XC)[N ] // J 2n+1
a (XC)[N ] = J [N ] (2.5)

is Aut(C/K )-equivariant. In Step 1, we already showed that AJ is Aut(C/K )-equivariant

when restricted to torsion. Therefore, in order to conclude, it only remains to prove that

the map AJ : An+1(X K )[N ] → J [N ] is Gal(K/K )-equivariant.

For future reference, we have the following elementary lemma.

Lemma 2.4. Let G be a group and let A, B,C be G-modules. Let φ : A→ B and

ψ : B → C be homomorphisms of abelian groups. We have:

1 If φ is surjective and if φ and ψ ◦φ are G-equivariant, then ψ is G-equivariant.

2 If ψ is injective and if ψ and ψ ◦φ are G-equivariant, then φ is G-equivariant.

Proof of Theorem 2.1, Step 3: The Abel–Jacobi map is equivariant on torsion.

Fix J/K to be the model of J 2n+1
a (XC) from Step 2. We wish to show that for

any positive integer N , the restriction (2.5) of the Abel–Jacobi map to N -torsion is

Aut(C/K )-equivariant. As mentioned above, it only remains to prove that the map

AJ : An+1(X K )[N ] → J 2n+1
a

(XC)[N ] is Gal(K/K )-equivariant.

For this, observe that the Bloch map λn+1
: An+1(X K )[N ] −→ H2n+1

ét (X K ,µ
⊗(n+1)
N )

is Galois-equivariant, since it is constructed via natural maps of sheaves, all of which

have natural Galois actions. Moreover, on torsion the Bloch map factors through the

Abel–Jacobi map. Indeed, over C, we have [6, Proposition 3.7]

λn+1
: An+1(XC)[N ]

AJ [N ]
// JC[N ]

� � // H2n+1
ét (XC,µ

⊗(n+1)
N ).
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Using rigidity for torsion cycles [20], rigidity for torsion on abelian varieties, and proper

base change, we obtain the analogous statement over K :

λn+1
: An+1(X K )[N ]

AJ [N ]
// JK [N ]

� � // H2n+1
ét (X K ,µ

⊗(n+1)
N ).

As described in (2.3), the inclusion JK [N ] ↪→ H2n+1
ét (X K ,µ

⊗(n+1)
N ) is also Galois-

equivariant. By Lemma 2.4(b), we find that AJ [N ] is Galois-equivariant.

2.4. The Galois representation

We now conclude the proof of Theorem 2.1 by constructing the correspondence 0 ∈

CHdim(J )+n(J ×K X) inducing the desired morphism of Galois representations.

Proof of Theorem 2.1, Step 4: The Galois representation. Let J/K be the model of

J 2n+1
a (XC) from Step 2 (which was shown to be distinguished in Step 3; see Remark 2.2).

We will now construct a correspondence 0 ∈ CHdim(J )+n(J ×K X) such that for each prime

number `, the correspondence 0 induces an inclusion of Gal(K )-representations

H1(JK ,Q`)
� � 0∗ // H2n+1(X K ,Q`(n)),

with image Nn H2n+1(X K ,Q`(n)).
Let C and γ ∈ CHn+1(C ×K X)Q be the smooth, geometrically integral, pointed

projective curve and the correspondence provided by Proposition 1.1. As we have seen

(in Steps 1 and 2 of the proof of Theorem 2.1), γ induces a surjective homomorphism

of complex abelian varieties J (CC)→ J 2n+1
a (XC) that descends to a homomorphism

f : J (C)→ J of abelian varieties defined over K . Consider then the composite morphism

H1(JK ,Q`)
� � f ∗

// H1(J (C)K ,Q`)
alb∗

'
// H1(CK ,Q`)

γ∗
// H2n+1(X K ,Q`(n)), (2.6)

where alb : C → J (C) denotes the Albanese morphism induced by the K -point of C . This

morphism is clearly injective and induced by a correspondence on J ×K X , and we claim

that its image is Nn H2n+1(X K ,Q`(n)). Indeed, the complexification of (2.6) together

with the comparison isomorphisms yields a diagram:

H1(J 2n+1
a (XC),Q) �

� ( fC)∗ // H1(J (C)C,Q)
(albC)∗

'
// H1(CC,Q)

(γC)∗ // H2n+1(XC,Q(n)),
(2.7)

where (albC)∗ ◦ ( fC)∗ is easily seen to be the dual (via the natural choice of polarizations)

of (γC)∗. Since the Hodge structure H1(CC,Q) is polarized by the cup product, we

conclude by [1, Lemma 2.3] that the image of (2.7) is equal to the image of (γC)∗, that

is, to Nn H2n+1(XC,Q(n)). Invoking the comparison isomorphism settles the claim.

This completes the proof of Theorem 2.1.

3. Proof of Theorem A: Part II, regular homomorphisms and torsion points

In order to upgrade Theorem 2.1 to a statement about equivariance for arbitrary cycle

classes, we reconsider and extend the theory of regular homomorphisms. Given a smooth
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projective complex variety X , a fundamental result of Griffiths [15] (and also [14, p. 826])

is that the Abel–Jacobi map AJ : An+1(X) −→ J 2n+1
a (X) is a regular homomorphism.

This means that for every pair (T, Z) with T a pointed smooth integral complex variety,

and Z ∈ CHi (T × X), the composition

T (C) wZ
−−−−→ Ai (X)

φ
−−−−→ J 2n+1

a (X)

is induced by a morphism of complex varieties ψZ : T → J 2n+1
a (X), where, if t0 ∈ T (C)

is the base point of T , wZ : T (C)→ Ai (X) is given by t 7→ Z t − Z t0 ; here Z t is the

refined Gysin fiber. Likewise, one defines regular homomorphisms for smooth projective

varieties defined over an arbitrary algebraically closed field. We direct the reader

to [1, § 3] for a review of the material we use here on regular homomorphisms and

algebraic representatives, and to [1, § 4] for the notion of a Galois-equivariant regular

homomorphism. In this section we provide some results regarding equivariance of regular

homomorphisms; the main results are Propositions 3.5 and 3.8.

3.1. Preliminaries

We will utilize the following facts.

Proposition 3.1 [2, Theorem 2]. Let X/K be a scheme of finite type over a perfect field K .

If α ∈ CHi (X K ) is algebraically trivial, then there exist an abelian variety A/K , a cycle

Z ∈ CHi (A×K X), and a K -point t ∈ A(K ) such that α = Z t − Z0.

Proof. We have shown in [2, Theorem 2] that there exist an abelian variety A′/K , a

cycle Z ′ on A′×K X , and a pair of K -points t1, t0 ∈ A′(K ) such that α = Z ′t1 − Z ′t0 . Let

p13, p23 : A′×K A′×K X → A′×K X be the obvious projections. Let Z be defined as the

cycle Z := p∗13 Z ′− p∗23 Z ′ on A′×K A′×K X . For points t1, t0 ∈ A′(K ), we have Z(t1,t0) =
Z ′t1 − Z ′t0 . Thus setting A = A′×K A′, we are done.

Lemma 3.2. Let X be a scheme of finite type over an algebraically closed field k, and let

A/k be an abelian variety.

1 Let Z ∈ CHi (A×k X). The map wZ : A(k)→ Ai (X) is a homomorphism on torsion;

more precisely, for each natural number N , wZ restricted to A(k)[N ] gives a

homomorphism wZ [N ] : A(k)[N ] → Ai (X)[N ].

2 Let φ : Ai (X)� A(k) be a surjective regular homomorphism. There exists a natural

number r such that for any natural number N coprime to r , φ is surjective on

N -torsion; i.e., φ[N ] : Ai (X)[N ]� A(k)[N ] is surjective.

Proof. (a) Since wZ factors as A(k)
τ
−→ A0(A)

Z∗
−→ Ai (X), where τ(a) := [a] − [0], and

Z∗ is the group homomorphism induced by the action of the correspondence Z , it suffices

to observe that τ is a homomorphism on torsion. In fact, τ is an isomorphism on torsion

[4, Proposition 11, Lemma p. 259] (which is based on [5, Theorem (0.1)] and [28]).

(b) By [24, Corollary 1.6.3] (see also [1, Lemma 4.9]) there exists a Z ∈ CHi (A×k X)

so that the composition ψZ : A(k)
wZ
−→ Ai (X)

φ
−→ A(k) is induced by r · IdA for some
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integer r . Let N be any natural number coprime to r . Then ψZ [N ] is surjective, and

therefore it follows from (a) that φ[N ] is surjective.

Remark 3.3. Note that the proof of Lemma 3.2(b) actually shows that for all N , we have

a surjection Ai (X)[r N ] → A(k)[N ]. In particular, a surjective regular homomorphism

φ : Ai (X)� A(k) (e.g., the Abel–Jacobi map) induces a surjective homomorphism

Ai (X)tors � A(k)tors on torsion.

3.2. Algebraically closed base change and equivariance of regular

homomorphisms

In this section we will utilize traces for algebraically closed field extensions in arbitrary

characteristic. The main results of this paper focus on the characteristic 0 case, which we

reviewed in § 2.1. The properties of the trace that we utilize here in positive characteristic

are reviewed in [1, § 3.3.1]; the main difference is that we must potentially keep track of

some purely inseparable isogenies.

Lemma 3.4. Let �/k be an extension of algebraically closed fields, and let X be a smooth

projective variety over k. Let A be an abelian variety over � and let φ : Ai (X�)→
A(�) be a surjective regular homomorphism. Setting τ : A

�
→ A to be the �/k-trace

of A, we have that τ is a purely inseparable isogeny, which is an isomorphism in

characteristic 0. Moreover, there is a regular homomorphism (φ)� : Ai (X�)→ A
�
(�)

making the following diagram commute:

Ai (X�)
(φ)�
// A
�
(�)

' τ(�)
��

Ai (X�)
φ
// A(�).

(3.1)

Proof. Let us start by recalling some of the set-up from [1, Theorem 3.7]. First,

consider the regular homomorphism φ : Ai (X)→ A(k) constructed in Step 2 of the proof

[1, Theorem 3.7]. It fits into a commutative diagram [1, (3.9)]:

Ai (X)
φ
//

base change

��

A(k)

base change
��

A
�
(�)

τ(�)
��

Ai (X�)
φ
// A(�).

(3.2)

Since we are assuming that φ : Ai (X�)→ A(�) is surjective, Step 3 of the proof of

[1, Theorem 3.7] yields that φ : Ai (X)→ A(k) is surjective, and that τ : A
�
→ A is a

purely inseparable isogeny, and thus an isomorphism in characteristic 0. In particular,

τ(�) : A
�
(�)→ A(�) is an isomorphism.
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Now consider the regular homomorphism φ
�
: Ai (X�)→ A

�
(�) constructed in Step 1

of the proof of [1, Theorem 3.7], which by loc. cit. is surjective. We can therefore fill in

diagram (3.2) to obtain:

Ai (X)
φ
//

base change
��

A(k)

base change
��

Ai (X�)
(φ)�
// A
�
(�)

' τ(�)
��

Ai (X�)
φ
// A(�).

(3.3)

We claim that (3.3) is commutative. To start, the commutativity of the top square is

established in Step 1 of the proof of [1, Theorem 3.7], and we have already confirmed the

commutativity of the outer rectangle, above. For the bottom square we argue as follows.

By rigidity for torsion cycles on X ([17, 20]; see also [1, Theorem 3.8(b)]) and for

torsion points on A, the vertical arrows in diagram (3.3) are isomorphisms on torsion.

A little more naively (i.e., without using [17]), one can simply fix a prime number ` not

equal to char k, and consider torsion to be `-power torsion, and the rest of the argument

goes through without change. The top square and outer rectangle are commutative, and

thus (3.3) is commutative on torsion. Now let α ∈ Ai (X�). By Weil [29, Lemma 9] (e.g.,

Proposition 3.1) there exist an abelian variety B/�, a cycle class Z ∈ CHi (B×� X�),
and an �-point t ∈ B(�) such that α = Z t − Z0. Then consider the following diagram

(not a priori commutative):

B(�)
wZ // Ai (X�)

(φ)�
// A
�
(�)

' τ(�)
��

B(�)
wZ // Ai (X�)

φ
// A(�).

(3.4)

The left-hand square is obviously commutative. We have shown that the right-hand

square is commutative on torsion. The horizontal arrows on the left send torsion points to

torsion cycle classes (Lemma 3.2(a)). Therefore the whole diagram (3.4) is commutative

on torsion. Since torsion points are Zariski-dense in abelian varieties, the diagram is

commutative if we replace Ai (X�) with Im(wZ ). Since α ∈ Im(wZ ), we see that (τ (�) ◦

(φ)�)(α) = φ(α). Thus, since α was arbitrary, the lemma is proved.

Proposition 3.5. Let �/k be an extension of algebraically closed fields of characteristic 0,

and let X be a smooth projective variety over k. Let A be an abelian variety over � and

let φ : Ai (X�)→ A(�) be a surjective regular homomorphism. Then A admits a model

over k, the �/k-trace of A, such that φ is Aut(�/k)-equivariant.

Proof. This follows directly from Lemma 3.4. Indeed, by the construction of (φ)� in

Step 1 of [1, Theorem 3.7], (φ)� is Aut(�/k)-equivariant. Then, since τ : A
�
→ A is an

isomorphism, we are done.
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Remark 3.6. More generally, if char k 6= 0, then in the notation of Proposition 3.5, the

abelian variety A admits a purely inseparable isogeny to an abelian variety over � that

descends to k, namely the �/k-trace. Moreover, under this purely inseparable isogeny,

the �-points of both abelian varieties are identified, and under the induced action of

Aut(�/k) on A(�), we have that φ is Aut(�/k)-equivariant.

3.3. Galois-equivariant regular homomorphisms and torsion points

The main point of this subsection is to prove Proposition 3.8. This allows us to utilize

results of [1] on regular homomorphisms in the setting of torsion points. We start with

the following lemma.

Lemma 3.7. Let A be an abelian variety over a perfect field K and let φ : Ai (X K )→

A(K ) be a regular homomorphism. Assume that there is a prime ` 6= char(K ) such

that for all positive integers n we have that the map φ[`n
] : Ai (X K )[`

n
] → A[`n

] is

Gal(K )-equivariant. Let B/K be an abelian variety and let Z ∈ CHi (B×K X) be a cycle

class. Then the induced morphism ψZ K
: BK → AK is defined over K .

Proof. Since (geometric) `-primary torsion points are Zariski-dense in the graph of

ψZ K
inside B×K A, it suffices to show that the induced morphism B(K )→ A(K )

is Galois-equivariant on `-primary torsion. Since the map wZ : B(K )→ Ai (X K ) is

Galois-equivariant and since φ : Ai (X K )→ A(K ) is Galois-equivariant on `n-torsion for

all positive integers n, it is even enough to show that the map wZ : B(K )→ Ai (X K )

sends torsion points of B(K ) to torsion cycles in Ai (X K ). This is Lemma 3.2(a).

We can now prove the following proposition.

Proposition 3.8. Let A be an abelian variety over a perfect field K and let φ : Ai (X K )→

A(K ) be a regular homomorphism. Assume that there is a prime ` 6= char(K ) such that for

all positive integers n the map φ[`n
] : Ai (X K )[`

n
] → A[`n

] is Gal(K )-equivariant. Then

φ is Gal(K )-equivariant.

Proof. Let α ∈ Ai (X K ), and let σ ∈ Gal(K ). From Proposition 3.1, we have an abelian

variety B/K , a cycle Z ∈ CHi (B×K X), and a K -point t ∈ B(K ) such that α = Z t − Z0.

Now consider the following diagram (not a priori commutative):

B(K )
wZK
−−−−→ Ai (X K )

φ
−−−−→ A(K )

σ ∗B

y σ ∗X

y σ ∗A

y
B(K )

wZK
−−−−→ Ai (X K )

φ
−−−−→ A(K ).

Since Z is defined over K , and the base point 0 is defined over K , the left-hand square is

commutative (e.g., [1, Remark 4.3]). It follows from Lemma 3.7 that the outer rectangle is

also commutative. Therefore, from Lemma 2.4(a), the right-hand square in the diagram

is commutative on the image of wZ K
. In particular, φ(σ ∗Xα) = σ

∗

Bφ(α).
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4. Proof of Theorem A: Part III, the coniveau filtration is split

We now complete the proof of Theorem A by showing that the coniveau filtration is split

(Corollary 4.4). For this purpose, we use Yves André’s theory of motivated cycles [3].

Along the way, we show in Theorem 4.2 that the existence of a phantom isogeny class

for Nn H2n+1(X K ,Q`(n)) for all primes ` follows directly from André’s theory. Note that

we already proved this in Theorem 2.1 in a more precise form, namely by showing that

there exists a distinguished phantom abelian variety within the isogeny class.

For clarity, we briefly review the set-up of André’s theory of motivated cycles, and

fix some notation. Given a smooth projective variety X over a field K and a prime

` 6= char(K ), let us denote by B j (X)Q the image of the cycle class map CH j (X)Q→
H2 j (X K ,Q`( j)). A motivated cycle on X with rational coefficients is an element of the

graded algebra
⊕

r H2r (X K ,Q`(r)) of the form pr∗(α ∪∗β), where α and β are elements

of B∗(X ×K Y )Q with Y an arbitrary smooth projective variety over K , pr : X ×K Y → X
is the natural projection, and ∗ is the Lefschetz involution on

⊕
r H2r ((X ×K Y )K ,Q`(r))

relative to any polarization on X ×K Y . The set of motivated cycles on X , denoted

as B•mot(X)Q, forms a graded Q-subalgebra of
⊕

r H2r (X K ,Q`(r)), with Br
mot(X)Q ⊆

H2r (X K ,Q`(r)); cf. [3, Proposition 2.1]. Taking Y = Spec K above, we have an inclusion

Br (X)Q ⊆ Br
mot(X)Q. Moreover, there is a notion of motivated correspondences between

smooth projective varieties, and there is a composition law with the expected properties.

Proposition 4.1. Let Y and X be smooth projective varieties over a field K ⊆ C. Consider

a motivated cycle γ ∈ BdY+r
mot (Y ×K X)Q and its action

γ∗ : H j (YK ,Q`) // H j+2r (X K ,Q`(r)) .

Then Im(γ∗) (resp. ker(γ∗)) is a direct summand of the Gal(K )-representation

H j+2r (X K ,Q`(r)) (resp. H j (YK ,Q`)).

Proof. We are going to show that if γ ∈ BdY+r
mot (Y ×K X)Q is a motivated correspondence,

then there exists an idempotent motivated correspondence p ∈ BdY
mot(Y ×K Y )Q such

that p∗H j (YK ,Q`) = ker(γ∗). Assuming the existence of such a p, this would establish

that ker(γ∗) is a direct summand of H j (YK ,Q`) as a Q`-vector space. But then by
[3, Scolie 2.5], motivated cycles on a smooth projective variety Y over K are exactly the

Gal(K )-invariant motivated cycles on YK ; therefore ker(γ∗) is indeed a direct summand

of H j (YK ,Q`) as a Gal(K )-representation, completing the proof. The statement about

the image of γ∗ follows by duality.

The existence of p follows formally from [3, Theorem 0.4]: the ⊗-category of

pure motives M over a field K of characteristic zero obtained by using motivated

correspondences rather than algebraic correspondences is a graded, abelian semi-simple,

polarized, and Tannakian category over Q. Indeed, using the notations from [3, § 4]

and viewing γ as a morphism from the motive h(Y ) to the motive h(X)(r), we

see by semi-simplicity that there exists an idempotent motivated correspondence p ∈
BdY

mot(Y ×K Y )Q such that ker(γ ) = ph(Y ). Now the Tannakian category M is neutralized
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by the fiber functor to the category of Q`-vector spaces given by the `-adic realization

functor. Since by definition a fiber functor is exact, p∗H j (YK ,Q`) = ker(γ∗) as Q`-vector

spaces.

Theorem 4.2. Suppose X is a smooth projective variety over a field K ⊆ C, and let

n be a nonnegative integer. The Gal(K )-representation Nn H2n+1(X K ,Q`(n)) admits a

phantom; more precisely there exist an abelian variety J ′ over K and a correspondence

0′ ∈ CHdim J ′+n(J ′×K X) such that the morphism of Gal(K )-representations

0′∗ : H1(J ′
K
,Q`) �

�
// H2n+1(X K ,Q`(n)) (4.1)

is split injective with image Nn H2n+1(X K ,Q`(n)).
Proof. Let C and γ ∈ CHn+1(C ×K X)Q be the pointed curve and the correspondence

provided by Proposition 1.1. By Proposition 4.1 and its proof, there is an

idempotent motivated correspondence q ∈ B1
mot(C ×K C)Q such that q∗H1(CK ,Q`)

γ∗
−→

H2n+1(X K ,Q`(n)) is a monomorphism of Gal(K )-representations with image

Nn H2n+1(X K ,Q`(n)), which is itself a direct summand of H2n+1(X K ,Q`(n)).
Now we claim that for smooth projective varieties defined over a field of characteristic

zero, we have B1
mot(−)Q = B1(−)Q. Over an algebraically closed field of characteristic

zero this is a consequence of the Lefschetz (1, 1)-theorem. Over a field K of characteristic

zero, the claim follows from the following two facts: (1) if Y is a smooth projective variety

over K , then Br (Y )Q consists of the Gal(K )-invariant classes in Br (YK )Q by a standard

norm argument, and similarly (2) Br
mot(Y )Q consists of the Gal(K )-invariant classes in

Br
mot(YK )Q by [3, Scolie 2.5].

Therefore the motivated idempotent q is in fact an idempotent correspondence in

B1(C ×K C)Q, and thus defines, up to isogeny, an idempotent endomorphism of Pic◦(C).
Its image J ′, which is only defined up to isogeny, is the sought-after abelian variety

such that q∗H1(CK ,Q`) ∼= H1(J ′
K
,Q`). Composing the transpose of the graph of the

morphism C ↪→ Pic◦(C)� J ′ with the algebraic correspondence γ yields the desired

correspondence 0′ ∈ CHdim J ′+n(J ′×K X).

Remark 4.3. The main difference from [1, Theorem 2.1] is that we do not know if the

splitting in Theorem 4.2 is induced by an algebraic correspondence over K . In that

respect [1, Theorem 2.1] is more precise.

A nice consequence of Proposition 4.1 is the following.

Corollary 4.4. Let X be a smooth projective variety over a field K ⊆ C. The geometric

coniveau filtration on the Gal(K )-representation Hn(X K ,Q`) is split.

Proof. Let r be a nonnegative integer. Using the coniveau hypothesis, resolution of

singularities, mixed Hodge theory, and comparison isomorphisms, there exist a smooth

projective variety Y of dimension dim X − r over K and a morphism f : Y → X such that

the induced morphism of Gal(K )-representations

f∗ : Hn−2r (YK ,Q`(−r))→ Hn(X K ,Q`)
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has image Nr Hn(X K ,Q`); see e.g., [16, Sec. 4.4(d)]. The splitting of the coniveau filtration

follows from Proposition 4.1 and the Krull–Schmidt theorem.

Proof of Theorem A. Everything except for the splitting of the inclusion (0.1) in

Theorem A is shown by combining Theorem 2.1 with Propositions 3.5 and 3.8. The

splitting follows from Corollary 4.4.

5. A functoriality statement

Recall that if X and Y are smooth projective varieties over a field K ⊆ C, and we

are given a correspondence Z ∈ CHm−n+dim X (X ×K Y ), then Z induces functorially a

homomorphism of complex abelian varieties

ψZC : J 2n+1
a (XC)→ J 2m+1

a (YC)

that is compatible with the Abel–Jacobi map.

Proposition 5.1. Denote by J and J ′ the distinguished models of J 2n+1
a (XC) and

J 2m+1
a (YC) over K . Then the homomorphism ψZC descends to a K -homomorphism of

abelian varieties ψZ : J → J ′.
In particular, given a morphism f : X → Y defined over K , the graph of f and its

transpose induce homomorphisms

f∗ : J 2n+1
X/K → J 2(n−dim X+dim Y )+1

Y/K and f ∗ : J 2n+1
Y/K → J 2n+1

X/K .

This makes our descent functorial for morphisms of smooth projective varieties over K .

Proof. By Theorem A, the Abel–Jacobi map AJ : An+1(XC)→ J 2n+1
a (XC) is

Aut(C/K )-equivariant. Applying Lemma 2.4(a) to the commutative square

An+1(XC)
AJ // //

(ZC)∗
��

J 2n+1
a (XC)

ψZC
��

Am+1(YC)
AJ // // J 2m+1

a (YC)

shows that ψZC is Aut(C/K )-equivariant. From the theory of the C/K -trace, ψZC descends

to a morphism ψ
ZC
: J 2n+1

a
(XC)→ J 2m+1

a
(YC) over K . Then the Aut(C/K )-equivariance

of ψZC on C-points implies ψ
ZC

is Gal(K/K )-equivariant on K -points, and so descends

from K to K . Alternately, ψZC descends to K simply by C/K -descent.

Remark 5.2. Proposition 5.1 could have been proved earlier by using Theorem 2.1,

together with the fact (see Lemma 3.2(b)) that AJ [N ] : An+1(XC)[N ] → J 2n+1
a (XC)[N ]

is surjective for all N not divisible by a finite number of fixed primes and the fact that

torsion points on an abelian variety of order not divisible by a finite number of fixed

primes are dense.
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6. Deligne’s theorem on complete intersections of Hodge level 1

We recapture Deligne’s result [11] on intermediate Jacobians of complete intersections

of Hodge level 1 (Deligne’s primary motivation was to establish the Weil conjectures for

those varieties; of course Deligne established the Weil conjectures in full generality a few

years later):

Theorem 6.1 (Deligne [11]). Let X be a smooth complete intersection of odd dimension

2n+ 1 over a field K ⊆ C. Assume that X has Hodge level 1, that is, h p,q(XC) = 0 for

all |p− q| > 1. Then the intermediate Jacobian J 2n+1(XC) is a complex abelian variety

that is defined over K .

Proof. First note that the assumption that X has Hodge level 1 implies that the cup

product on H2n+1(XC,Z) endows the complex torus J 2n+1(XC) with a Riemannian

form so that J 2n+1(XC) is naturally a principally polarized complex abelian variety.

Deligne’s proof that this complex abelian variety is defined over K uses the irreducibility

of the monodromy action of the fundamental group of the universal deformation of X on

H2n+1(XC,Q) and on H2n+1(XC,Z/`) for all primes `. Here, we give an alternate proof

based on our Theorem A.

Denote by Vm(a1, . . . , ak) a smooth complete intersection of dimension n of multi-degree

(a1, . . . , ak) inside Pm+k . A complete intersection X of Hodge level 1 of odd dimension

is one of the following types: V2n+1(2), V2n+1(2, 2), V2n+1(2, 2, 2), V3(3), V3(2, 3), V5(3),
V3(4); see for instance [27, Table 1]. In the cases where X is one of the above and X
has dimension 3, then X is Fano and as such is rationally connected, and therefore

CH0(XC) = Z. In all of the other listed cases, it is known [25, Corollary 1] that

CH0(XC)Q, . . . ,CHn−1(XC)Q are spanned by linear sections. By [13, Theorem 3.2], which

is based on a decomposition of the diagonal argument [7], it follows that if X is a

complete intersection of Hodge level 1, then the Abel–Jacobi map An(XC)→ J 2n+1(XC)
is surjective, i.e., J 2n+1(VC) = J 2n+1

a (VC). Theorem 2.1 implies that the complex abelian

variety J 2n+1(XC) has a distinguished model over K .

7. Albaneses of Hilbert schemes

Over the complex numbers, the image of the Abel–Jacobi map is dominated by Albaneses

of resolutions of singularities of products of irreducible components of Hilbert schemes.

Since Hilbert schemes are functorial, and in particular defined over the field of definition,

and since the image of the Abel–Jacobi map descends to the field of definition, one might

expect this abelian variety to be dominated by Albaneses of resolutions of singularities of

products of irreducible components of Hilbert schemes defined over the field of definition.

In this section, we show this is the case, thereby proving Theorem B. Our approach utilizes

the theory of Galois-equivariant regular homomorphisms, and consequently, we obtain

some related results over perfect fields in arbitrary characteristic.
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7.1. Regular homomorphisms and difference maps

In this section we give an equivalent theory of regular homomorphisms and algebraic

representatives that does not rely on pointed varieties.

Let X/k be a smooth projective variety over the algebraically closed field k, let T/k
be a smooth integral variety and let Z be a codimension-i cycle on T ×k X . Let p13, p23 :

T ×k T ×k X → T ×k X be the obvious projections. Let Z̃ be defined as the cycle

Z̃ := p∗13 Z − p∗23 Z

on T ×k T ×k X . For points t1, t0 ∈ T (k), we have Z̃(t1,t0) = Z t1 − Z t0 . We therefore have a

map

(T ×k T )(k)
yZ // Ai (X)

(t1, t0)
� // Z t1 − Z t0 .

(7.1)

Lemma 7.1. Let X/k be a smooth projective variety over an algebraically closed field

k, and let A/k be an abelian variety. A homomorphism of groups φ : Ai (X)→ A(k) is

regular if and only if for every pair (T, Z) with T a smooth integral variety over k and

Z ∈ CHi (T ×k X), the composition

(T ×k T )(k)
yZ

−−−−→ Ai (X)
φ

−−−−→ A(k)
is induced by a morphism of varieties ξZ : T ×k T → A.

Proof. If φ : Ai (X)→ A(k) is a regular homomorphism to an abelian variety, then φ ◦ yZ
is induced by a morphism of varieties T ×k T → A; indeed after choosing any diagonal

base point (t0, t0) ∈ (T ×k T )(k), the maps φ ◦ yZ and φ ◦wZ̃ ,(t0,t0) agree. Conversely,

suppose φ ◦ yZ is induced by a morphism ξZ of varieties, and let t0 ∈ T (k) be any base

point. Let ι be the inclusion ι : T → T ×{t0} ⊂ T × T . Then wZ ,t0 = yZ |ι(T ), and φ ◦wZ
is induced by the morphism ξZ ◦ ι.

Now suppose that X is a smooth projective variety over K , that T is a smooth integral

quasiprojective variety over K , and that Z is a codimension-i cycle on T ×K X . The cycle

Z̃ = p∗13 Z − p∗23 Z on T ×K T ×K X is again defined over K .

Lemma 7.2. Let K be a perfect field, suppose X , Z and T are as above, and let A/K be an

abelian variety. If φ : Ai (X K )→ A(K ) is a Gal(K )-equivariant regular homomorphism,

then the induced morphism ξZ K
: (T ×K T )K → AK is also Gal(K )-equivariant on

K -points, and thus ξZ K
descends to a morphism ξZ : T ×K T → A of varieties over K .

Proof. For each σ ∈ Gal(K ) there is a commutative diagram: (see [1, Remark 4.3])

(T ×K T )(K )
yZ K //

σ ∗T×T
��

Ai (X K )
φ

//

σ ∗X
��

A(K )

σ ∗A
��

(T ×K T )(K )
yZ K // Ai (X K )

φ
// A(K ).

Now φ is Gal(K )-equivariant by hypothesis, and yZ K
is Gal(K )-equivariant since Z̃ , T

and X are defined over K . Consequently, ξZ K
is Gal(K )-equivariant, as claimed.
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7.2. Albaneses of Hilbert schemes and the Abel–Jacobi map

We are now in a position to prove the following theorem, which will allow us to prove

Theorem B.

Theorem 7.3. Suppose X is a smooth projective variety over a perfect field K , and let n
be a nonnegative integer. Let A/K be an abelian variety defined over K , and let

φ : An+1(X K )
// // AK (K )

be a surjective Galois-equivariant regular homomorphism. Then there are a finite number

of irreducible components of the Hilbert scheme Hilbn+1
X/K parameterizing codimension-

(n+ 1) subschemes of X/K , so that by taking a finite product H of these components,

and then denoting by AlbH̃/K the Albanese variety of a smooth alteration H̃ of H , there

is a surjective morphism

AlbH̃/K
// // A (7.2)

of abelian varieties over K .

Proof. Let Z be the cycle on A×K X from [1, Lemma 4.9(d)] so that the composition

A(K )
wZ
−−−−→ An+1(X K )

φ
−−−−→ A(K )

is induced by the K -morphism r · Id : A→ A for some positive integer r .

Now using the Bertini theorem, let C be a smooth projective curve that is a linear

section of A passing through the origin (so it has a K -point), and such that the inclusion

C ↪→ A induces a surjective morphism JC/K � A. Denote again by Z the refined Gysin

restriction of the cycle Z to C . We have a commutative diagram:

C(K )

��

� � // A(K )
wZ //

r ·Id

99 99
An+1(X K )

φ
// // A(K )

JC/K (K )

66 66
. (7.3)

Discarding extra components, we may assume that Z is flat over C . Write Z =∑m
j=1 V ( j)

−
∑m′

j=m+1 V ( j), where V (1), . . . , V (m′) are (not necessarily distinct) integral

components of the support of Z , which by assumption are flat over C . Let Hilb( j)
X/K be

the component of the Hilbert scheme, with universal subscheme U ( j)
⊆ Hilb( j)

X/K ×K X

such that V ( j) is obtained by pull-back via a morphism f ( j)
: C → Hilb( j)

X/K . Let H =∏m′
j=1 Hilb( j)

X/K , and let UH :=
∑m

j=1 pr∗j U ( j)
−
∑m′

j=m+1 pr∗j U ( j), where pr j : H → Hilb( j)
X/K

is the natural projection. There is an induced morphism f : C → H and we have

Z = f ∗UH ; the pull-back is defined since all the cycles are flat over the base.

Now let ν : H̃ → H be a smooth alteration of H and let Ũ = ν∗UH . Let µ : C̃ → C be

an alteration such that there is a commutative diagram:

C̃
f̃
//

µ

��

H̃

ν

��

C
f
// H.
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Let Z̃ = µ∗Z . We obtain maps

(C̃ ×K C̃)(K ) �
�

// (H̃ ×K H̃)(K )
yŨK // An+1(X K )

φ
// // A(K ).

By Lemma 7.2, these descend to K -morphisms

C̃ ×K C̃ �
�

// H̃ ×K H̃
ξŨ // A.

Recall that if W/K is any variety, then there exist an abelian variety AlbW/K and a torsor

Alb1
W/K under AlbW/K , equipped with a morphism W → Alb1

W/K , which is universal for

morphisms from W to abelian torsors. Taking Albanese torsors we obtain a commutative

diagram:

C̃ ×K C̃ �
�

//

��

((

H̃ ×K H̃
ξŨ //

��

A

Alb1
C̃/K
×K Alb1

C̃/K
//

����

Alb1
H̃/K
×K Alb1

H̃/K

55

JC/K ×K JC/K

-- --C ×K C

OO

ξZ

// A.

The surjectivity of the map JC/K ×K JC/K → A follows from (7.3). A diagram chase

then shows that the map Alb1
H̃/K
×K Alb1

H̃/K
→ A is surjective. In general, if T is a

torsor under an abelian variety B/K , and if T � A′ is a surjection to an abelian variety,

then there is a surjection B → A′ over K . (Indeed, the surjection T � A′ induces an

inclusion Pic0
A′/K ↪→ Pic0

T/K ; but Pic0
A′/K is isogenous to A′, while Pic0

T/K is isogenous to

B.) Applying this to the surjection Alb1
H̃/K
×K Alb1

H̃/K
� A, we obtain the surjection

AlbH̃/K ×K AlbH̃/K → A. Theorem 7.3 now follows, where the H̃ in (7.2) is the product

H̃ ×K H̃ considered here.

We now use Theorem 7.3 to prove Theorem B.

Proof of Theorem B. Recall the fundamental result of Griffiths [14, p. 826] asserting

that the Abel–Jacobi map AJ : An+1(XC) −→ J 2n+1
a (XC) is a surjective regular

homomorphism. By Theorem A and its proof, J 2n+1
a (XC) descends uniquely to an abelian

variety J/K such that the surjective regular homomorphism AJ : An+1(X K ) −→ JK
defined in the proof of Lemma 3.4 is Galois-equivariant. Now employ Theorem 7.3.

Proof of Corollary C. A uniruled threefold has a Chow group of zero-cycles supported

on a surface. A decomposition of the diagonal argument [7] shows that the threefold has

geometric coniveau 1 in degree 3.

Theorem 7.3 also gives the following result for algebraic representatives.
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Corollary 7.4. Let X be a smooth projective variety over a perfect field K , let �/K be

an algebraically closed field extension, with either � = K or char(K ) = 0, and let n be

a nonnegative integer. Assume there is an algebraic representative φn+1
� : An+1(X�)→

Abn+1(X�)(�) (e.g., n = 0, 1, or dim X − 1).

Then the abelian variety Abn+1(X�) descends to an abelian variety Abn+1(X K ) over K ,

and there are a finite number of irreducible components of the Hilbert scheme Hilbn+1
X/K

parameterizing codimension-(n+ 1) subschemes of X/K , so that by taking a finite product

H of these components, and then denoting by AlbH̃/K the Albanese of a smooth alteration

H̃ of H , there is a surjective morphism AlbH̃/K � Abn+1(X K ) of abelian varieties over

K .

Proof. The fact that Abn+1(X�) descends to K to give Abn+1(X K ) is proven in

[1, Theorem 3.7]. It is then shown in [1, Theorem 4.4] that Abn+1(X K ) descends to

an abelian variety over K and that the map φn+1
K
: An+1(X K )→ Abn+1(X K )(K ) is

Gal(K )-equivariant. Therefore, we may employ Theorem 7.3 to conclude.

Acknowledgments. We would like to thank Ofer Gabber for comments that were

instrumental in arriving at Theorem A. We also thank the referee for helpful suggestions.

A. Cohomology of Jacobians of curves via Abel maps

Let C be a smooth projective curve over a field K with separable closure K . For any n
invertible in K , the Kummer sequence of étale sheaves on C :

1 // µn // Gm
[n]
// Gm // 1

gives an isomorphism

H1(C,µn) ∼= PicC/K [n] = Pic◦C/K [n],

where we have written C for CK . After taking the inverse limit over all powers of a fixed

prime n = `, we obtain isomorphisms of Gal(K )-representations

H1(C,Z`(1)) ∼= T` Pic◦C/K
∼= (T`P̂ic◦C/K )

∨(1) ∼= H1( ̂Pic◦
C/K ,K

,Z`(1)).

After twisting by −1, the canonical (principal) polarization on the Jacobian gives an

isomorphism

H1(C,Z`) ∼= H1(Pic◦
C/K

,Z`). (A 1)

In this appendix we show that, up to tensoring with Q`, the isomorphism (A 1) is induced

by a K -morphism C → Pic◦C/K .

Proposition A.1. Let C be a smooth projective curve over a field K . Then there exists a

morphism β : C → Pic◦C/K over K , which induces an isomorphism

β∗ : H1(Pic◦
C/K

,Z`)
∼ // H1(C,Z`)

of Gal(K )-representations for all but finitely many `. For all ` invertible in K , we have

that the pull-back β∗ : H1(Pic◦
C/K

,Q`)→ H1(C,Q`) is an isomorphism.
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The case of an integral curve over an algebraically closed field is standard (e.g., [22,

Proposition 9.1, p. 113]). The case where C is geometrically irreducible and C(K ) is

nonempty is certainly well known; even if C admits no K -points, the result follows almost

immediately from the case K = K :

Lemma A.2. If C/K is geometrically irreducible, then Proposition A.1 holds for C.

Proof. Let d be a positive integer such that C admits a line bundle L of degree d over

K . Let β denote the composition

β : C a // Pic1
C/K

[d]=(−)⊗d

isogeny
// Picd

C/K
(−)⊗L∨

∼
// Pic◦C/K ,

where Pice
C/K denotes the torsor under Pic◦C/K consisting of degree e line bundles on C/K ,

and a is the Abel map (e.g., [19, Definition 9.4.6, Remark 9.3.9]).

We claim that if ` - d, then β∗ : H1(Pic◦
C/K

,Z`)→ H1(C,Z`) is an isomorphism. After

passage to K , we may find a line bundle M such that M⊗d ∼= L. We have a commutative

diagram:

C a //

aM
  

Pic1
C/K

[d]
//

(−)⊗M∨

��

Picd
C/K

(−)⊗L∨

��

Pic◦
C/K

[d]
// Pic◦

C/K
.

Since the diagonal arrow is the usual Abel–Jacobi embedding of C in its Jacobian, where

the assertion about pull-back of cohomology is well known (e.g., [22, Proposition 9.1,

p. 113]), and the lower horizontal arrow is an isogeny of degree d2g(C), the commutativity

of the diagram implies that β has the asserted properties.

A.1. Components of the Picard scheme

Now suppose that C is irreducible but C is reducible. Continue to let Pic◦
C/K

denote

the connected component of identity of the Picard scheme, and for each d let Picd
C/K

be the space of line bundles of total degree d. (This has the unfortunate notational side

effect that Pic◦
C/K

does not coincide with Pic0
C/K

, but we will never have cause to study

the space of line bundles of total degree zero.) Then Picd
C/K

is no longer a torsor under

Pic◦
C/K

, and we need to work slightly harder to identify suitable geometrically irreducible,

K -rational components of the Picard scheme of C .

Let 50(C) be the set of irreducible components of C . (Since K is separably closed,

each such component is geometrically irreducible.) Fix a component D ∈ 50(CK ), and

let H ⊂ Gal(K ) be its stabilizer. Since C is irreducible, we have

C =
⊔

[σ ]∈Gal(K )/H

D
σ
,
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where viewing σ as an automorphism of C , we set D
σ
= σ(D). Let e = #50(C). Inside

the deth symmetric power Sde(C)K = Sde(C), we identify the irreducible component

S1d (C) :=
∏

[σ ]∈Gal(K )/H

Sd(D
σ
).

Since this element of 50(Sde(C)) is fixed by Gal(K ), it descends to K as a geometrically

irreducible variety.

Similarly, inside the Picard scheme PicC/K we single out

Pic1d
C/K
=

∏
[σ ]∈Gal(K )/H

Picd
Dσ
/K
.

It is visibly irreducible and, since it is stable under Gal(K ), it descends to K . Note that

Pic1d
C/K

is a Pic◦
C/K

-torsor.

The (de)th Abel map Sde(C)→ Picde
C/K then restricts to a morphism

S1d (C)
a1d // Pic1d

C/K

of geometrically irreducible varieties over K .

One (still) has the canonical Abel map

C a // Pic1
C/K .

Over K , the image of the Abel map aK lands in

Pic1
C/K
=

⊔
[σ ]∈Gal(K )/H

Pic1
Dσ ×

∏
[τ ]6=[σ ]

Pic◦
Dτ

 .
Although Pic1

C/K
has e components, Gal(K ) acts transitively on them, and we have an

irreducible variety Pic1
C/K over K .

In conclusion, the canonical Abel map induces a morphism

C a // Pic1
C/K

of irreducible varieties over K .

We need two more K -rational morphisms:

Lemma A.3. Let C/K be a smooth projective integral curve. Let s be the map

Pic1
C/K

s // Pic11
C/K

L � //
⊗
[σ ]∈Gal(K )/H σ

∗L .

Let t be the map

C t // S11(C)
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such that, if P ∈ D
τ
(K ) ⊂ C(K ), then the components of t (P) are given by

t (P)σ = στ−1(P) ∈ D
σ

Then s and t descend to morphisms over K .

Proof. Each is Gal(K )-equivariant on K -points.

A.2. Isomorphisms on cohomology

Lemma A.4. Let C/K be a smooth projective irreducible curve. Then the composition

C a // Pic1
C/K

s // Pic11
C/K

induces an isomorphism of Gal(K )-representations

H1(Pic11
C/K

Z`)→ H1(C,Z`).

Proof. It suffices to analyze s ◦ a after base change to K . Choose a base point Pσ ∈ D
σ

for each irreducible component of C . We have a commutative diagram:

C a //

t

��

Pic1
C/K

s // Pic11
C/K∏
[σ ](−)⊗O(−Pσ )

��

S11(C)

a11

55

∏
[σ ] aPσ

// Pic◦
C/K

,

where the bottom arrow is the product of Abel maps associated to the points Pσ .

Since the right-most vertical arrow is an isomorphism of schemes, it suffices to verify

that t and
∏

aPσ induce isomorphisms on first cohomology groups. On one hand,

since cohomology takes coproducts to products, we have H1(C,Z`) ∼=
∏
σ H1(D

σ
,Z`).

On the other hand, since each D
σ

is connected, the Künneth formula implies

that H1(S11(C),Z`) = H1(
∏
σ D

σ
,Z`) ∼=

⊕
σ pr∗σ H1(D

σ
,Z`). Since the composition

D
τ t //

∏
σ D

σ prτ // D
τ

is the identity,

H1(S11(C),Z`)
t∗ // H1(C,Z`)

is an isomorphism as well.

Finally, since each Abel–Jacobi map aPσ induces an isomorphism H1(Pic◦
Dσ
/K
,Z`) ∼=

H1(D
σ
,Z`), their product yields an isomorphism (

∏
[σ ] aPσ )

∗
: H1(Pic◦

C/K
,Z`)→

H1(S11(C),Z`).
It is now straightforward to provide a proof of the main result of this appendix.

Proof of Proposition A.1. Since both the Picard functor and cohomology take

coproducts to products, we may and do assume that C is irreducible. Choose d such

that Pic1d
C/K admits a K -point L. Let β be the composition

C a // Pic1
C/K

s // Pic11
C/K

[d]

isog.
// Pic1d

C/K
(−)⊗L∨

∼=

// Pic◦C/K .

By Lemma A.4, β∗ : H1(Pic◦
C/K

,Z`)→ H1(C,Z`) is an isomorphism as long as ` - d.
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Chow d’une variété abélienne, in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes
in Mathematics, Volume 1016, pp. 238–260 (Springer, Berlin, 1983). MR 726428.

5. S. Bloch, Some elementary theorems about algebraic cycles on Abelian varieties, Invent.
Math. 37(3) (1976), 215–228. MR 0429883.

6. S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compos. Math. 39(1)
(1979), 107–127. MR 539002 (80k:14012).

7. S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J.
Math. 105(5) (1983), 1235–1253. MR 714776 (85i:14002).

8. F. Charles and B. Poonen, Bertini irreducibility theorems over finite fields, J. Amer.
Math. Soc. 29(1) (2016), 81–94. MR 3402695.

9. C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold,
Ann. of Math. (2) 95 (1972), 281–356. MR 0302652.

10. B. Conrad, Chow’s K/k-image and K/k-trace, and the Lang–Néron theorem, Enseign.
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