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Abstract
Plant height is important for crop yield improvement. In this study, a dwarf mutant,

Gmdwarf1, was screened from a g-ray-treated soybean population. Compared with the wild

type, the mutant exhibited later germination, smaller and darker green leaves, and less-

elongated shoots. Genome-wide transcriptome detection through RNA-seq analysis revealed

that not only gibberellin-related genes but many other genes involved in hormone biosynthetic

pathways were also significantly influenced in the mutant. We presumed that Gmdwarf1

might play essential roles in the plant hormone pathways. Future functional analysis of this

dwarf mutant would help us to understand the underlying mechanisms and be beneficial

for improving soybean yield.
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Introduction

Dwarf genes play an important role in the improvement of

crop yield. In the 1960 s, plant breeders developed cereal

varieties with shorter stems, which improved lodging

resistance and, in turn, increased yield (Khush 2001). The

new varieties prevent many people across the world from

starving, which was well known as the ‘Green Revolution’.

Currently, there are a large number of modern wheat varie-

ties that contain semi-dwarfing alleles (Borner et al. 1996).

Molecular identification has revealed that the

genes responsible for the Green Revolution in wheat

(Peng et al. 1999) and rice are involved in the gibberellin

(GA) biosynthetic/signalling pathway (Hedden 2003,

Monna et al. 2002). It has been found that GA plays

important roles in the control of dwarf and plant develop-

ment, including seed germination, leaf expansion, stem

elongation (Plackett et al. 2011, Sun and Gubler 2004) and

stress (Achard et al. 2006).

It has been predicated that the current crop production

must be doubled by 2050 to meet the food demand of the

increasing world population. Soybean [Glycine max (L.)

Merr.], one of the most important crops, is a main source

of protein and oil for both humans and animals. Dwarf

mutant analysis is essential for soybean yield improve-

ment. In this study, a severe soybean dwarf mutant

screened from a g-ray-treated population was character-

ized. RNA-seq analysis revealed that many genes related

to hormone metabolism exhibited significant differences

in the wild type and dwarf mutant. Treatment with†These authors contributed equally to this study.
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GA3 (Gibberellin 3) could partially restore the mutant

phenotype. Our results indicate that the responding gene

may play essential roles in many hormone pathways.

Materials and methods

Screening of Gmdwarf1

Gmdwarf1 was screened from a g-ray-treated (with

250 Gy) population of the soybean variety Huaxia 3

in 2006. After treatment under short-day conditions

and with 10 mg/l GA3, M2 (indicate second-generation)

mature seeds were obtained at the Campus Farm, Chi-

nese Academy of Agricultural Sciences in Beijing.

Plant growth conditions and material collection

The soybean plants were grown in the normal season

of 2012 and 2013 at the Experimental Station of the

Institute of Genetics and Developmental Biology,

Chinese Academy of Sciences, in Beijing. Four seeds

were planted in each pot. Nine pots were used for each

experiment.

For RNA-seq analysis, 10-day-old roots and cotyledons

were collected from the wild-type and mutant plants

after germination and immediately frozen in liquid

nitrogen. Each sample was collected from at least five

independent plants and pooled together.

RNA-seq library construction and sequencing

Total RNA was isolated using the TRIzol reagent (Invitro-

gen, http://www.lifetechnologies.com/). RNA-seq libraries

were constructed following the method described

previously (Severin et al. 2010). RNA sequencing was

carried out on a Hi-Sequation 2000 analyser (illumina,

http://www.illumina.com/systems.ilmn).

Computational analysis of sequencing data
and determination of differentially expressed
genes (DEGs)

After quality control, the raw sequencing data were

mapped to the soybean reference genome (http://www.

phytozome.net/soybean) using TopHat2 (Trapnell et al.

2009) with a default parameter. DEGs were determined

using edgeR (Robinson et al. 2010). Gene Ontology

(GO) analysis was carried out using agriGO (Du et al.

2010) and WEGO (Ye et al. 2006).

Results and discussion

Phenotypic characterization of the Gmdwarf1
mutant in soybean

A dwarf mutant, Gmdwarf1, was screened from a g-ray-

treated population of the soybean variety Huaxia 3.
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Fig. 1. Phenotypes of soybean Gmdwarf1 mutant and wild-type (WT) plants. (a) Phenotypes of 3-week-old Gmdwarf1 mutant
and WT plants (scale bar 5 cm). (b) Difference in the germination date between Gmdwarf1 mutant and WT plants.
(c) Four-week-old Gmdwarf1 mutant and WT plants (scale bar 5 cm). (d) Difference in the root phenotype of 10-day-old
Gmdwarf1 mutant and WT plants (scale bar 5 cm).
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The Gmdwarf1 mutant germinated later than the wild

type (Fig. 1(a)). On average, germination was delayed

by 5day in the mutant (Fig. 1(b)). After germination,

the Gmdwarf1 mutant exhibited an extremely dwarf

phenotype and no obvious internode. The leaves of the

mutant were much smaller and darker green than those

of the wild type (Fig. 1(c)). In addition, elongated roots

were observed in the mutant (Fig. 1(d)).

The phenotype of Gmdwarf1 indicated that it might

be caused by a mutation related to the GA biosyn-

thetic or response pathway (Peng and Harberd 2002,

Thomas and Sun 2004). To determine the genes that

would be affected by the mutation, the RNA of

10-day-old roots and cotyledons of the wild type

and dwarf mutant were extracted and used for RNA

sequencing.

Samples Start reads Unique mapped reads

WT cotyledon 73,686,200 47,990,311 (65.13%)

WT root 64,918,962 34,353,987 (52.92%)

Mutant cotyledon 68,822,326 50,688,865 (73.65%)

Mutant root 56,095,226 29,838,964 (53.19%)
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Fig. 2. Differentially expressed genes (DEGs) in Gmdwarf1 mutant and wild-type (WT) plants detected through RNA-seq
analysis. (a) Statistics of the mapped read ratios from RNA-sequation (b) Venn diagram of DEGs in the samples. (c) Heat map
of DEG expression in Gmdwarf1 mutant and WT plants. (d) DEGs related to endogenous stimulus response. (e) Phenotype
of Gmdwarf1 mutant and WT plants after treatment with 140mM GA3 (scale bar 5 cm). (f) Phenotype of Gmdwarf1 mutant
and WT plants after treatment with water (scale bar 5 cm).
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Gmdwarf1 led to different expression of hormone
pathway-related genes

In total, more than 263 M reads (,26.3 Gb) were

obtained from RNA-seq. The average reads for each

sample were 65.8 M (,6.58 Gb; Fig. 2(a)). After trimming

of adaptor sequences and filtering of low-quality reads,

52–73% of high-quality unique reads (excluding multiple

mapped reads) were aligned to the soybean genome.

Among the four samples, the mapped read ratios in the

cotyledons were higher than those in the roots (Fig. 2(a)).

DEG detection revealed that there were 793 DEGs in

the roots of the wild type and mutant. In the mutant,

460 DEGs were up-regulated and 333 were down-

regulated (Fig. S1(A), available online). In total, 3186 DEGs

were found in the cotyledons of the mutant, including 1490

that were up-regulated and 1696 that were down-regulated

(Fig. S1(B), available online). Of the total DEGs, 52 that

were up-regulated and 77 that were down-regulated were

shared by both the cotyledons and roots (Fig. 2(b)). Their

expression patterns are shown in Fig. 2(c). GO annotation

demonstrated that the DEGs were involved in different

biological processes (Fig. S1(C), available online). Further

analysis revealed that these DEGs were enriched in the

process of endogenous stimulus response (GO:0009717;

Fig. S1(D), available online), in which GA-related genes

onlymakeupasmallportion.However,manygenes involved

in other hormone pathways were detected (Fig. 2(d)). This

may indicate that Gmdwarf1 may not play essential roles in

only a single hormone biosynthetic pathway.

Treatment with 140mM GA3 could partially restore the

mutant phenotype (Fig. 2(e)), whereas that with water

could not (Fig. 2(f)). Genetic analysis through crossing

with the wild type revealed that the segregating ratio of

the wild type to the mutant in the F2 population was

almost equal to 3:1 (65:31; x2
3:1 ¼ 2:72 , x2

0:05 ¼ 3:84),

indicating the Gmdwarf1 phenotype was controlled by

a single recessive gene. Future cloning and functional

analysis of Gmdwarf1 would help us to understand the

underlying mechanisms in the plant hormone pathways.

Supplementary material

To view supplementary material for this article, please

visit http://dx.doi.org/10.1017/S1479262114000306
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