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AMBIGUITY AVERSION:
A NEW PERSPECTIVE ON INSURANCE PRICING 
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ABSTRACT

This paper intends to develop a feasible framework which incorporates ambi-
guity aversion into the pricing of insurance products and investigate the impli-
cations of ambiguity aversion on the pricing by comparing it with risk aver-
sion. As applications of the framework, we present the closed-form pricing 
formulae for some insurance products appearing in life insurance and property 
insurance. Our model confi rms that the effects of ambiguity aversion on the 
pricing of insurance do differ from those of risk aversion. Implications of our 
model are consistent with some empirical evidences documented in the litera-
ture. Our results suggest that taking advantage of natural hedge mechanism 
can help us control the effects of model uncertainty.

1. INTRODUCTION

Insurance enables consumers to be covered from a large contingent loss by 
paying a fi xed small premium. In order to price risks, many models are devel-
oped for calibration. However, there is no doubt that almost all the models 
cannot predict the future precisely. Model uncertainty exposes insurers to the risk 
that the prediction of their model might deviate from the actual outcome remark-
ably. Such risk may lead to severe solvency issues or the failure of insurance 
markets, especially for the long-term and/or large-quantity insured risk. One 
example is longevity risk, i.e. unexpected improvements in life expectancies. 
Life insurers, as well as pension funds, claim that their annuity businesses are 
losing money due to the unexpected longevity improvements over years, see 
Cairns et al. (2008) for an elaboration. Another example is catastrophe risk. 
The loss-related uncertainty associated with a risk appears to be the principal 
reason for the reluctance of the insurance industry to provide coverage against 
earthquake damage, see Kunreuther et al. (1993) and Earthquake Project (1990).

Confronted with model uncertainty, the insurer exhibits ambiguity aversion 
in the sense of  Knight (1921) and Ellsberg (1961). Ellsberg (1961) paradox1 

1 That is, people prefer to bet on an urn with 50 Red and 50 Blue balls, than in one with 100 total 
balls but where the number of blue or red balls is unknown.
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describes an attitude of preference for known risks over unknown risks, which 
is now termed “ambiguity aversion”. Ambiguity aversion induces the agent
to consider alternative models to protect himself  against possible model 
 mis-specifi cations. In the literature, Segal and Spivak (1988), Gilboa and 
Schmeidler (1989), Epstein and Wang (1994), Anderson et al. (1999), Hansen 
and Sargent (2001), Chen and Epstein (2002), Klibanoff  et al. (2005), etc. 
present a series of axiomatic characterizations of ambiguity aversion. Ambigu-
ity aversion has also attracted some attentions in insurance studies. Kunreuther 
et al. (1993) and Froot (2001) point out that when there is considerable ambi-
guity and uncertainty, the insurer would prefer to set premiums high or even 
not to provide insurance against risks.

Our paper explores the impact of  ambiguity aversion on the pricing of 
insurance. Firstly, we develop a feasible framework which incorporates ambi-
guity aversion into the pricing of insurance products. As applications of the 
framework, we obtain closed-form pricing formulae for mortality risk and 
property risk in the dynamic context, which seem new in the literature related 
to risk pricing2. Secondly, our model confi rms that the effects of ambiguity 
aversion on the pricing of  insurance do differ from those of  risk aversion.
In some cases, risk aversion might not yield a sensible price for insurance 
policy, but the price driven by ambiguity aversion seems quite reasonable. 
Thirdly, our model illustrates that “natural hedge”, if  it exists, can alleviate 
the impact of ambiguity aversion on the pricing. The terminology “natural 
hedge” means that there are two classes of policies underwritten in opposite 
directions, such as both life insurance policies and pure endowment policies 
provided by a life insurance company.

The starting point of our analysis is the utility-equivalence pricing princi-
ple, which is pioneered by Hodges and Neuberger (1989) and later extended 
by Davis et al. (1993). Since then, utility-equivalence pricing has been applied 
in many different areas of  fi nance and insurance. To list a few, Young and 
Zariphopoulou (2002), Musiela and Zariphopoulou (2004), Ludkovski and 
Young (2008), Egami and Young (2008), etc. The utility adopted in this paper 
follows Anderson et al. (1999), Hansen et al. (1999), Maenhout (2001), Uppal 
and Wang (2003) and Liu et al. (2005). Compared with Merton (1976) utility, 
the utility used here incorporates the insurer’s pessimism with regard to the 
reference model. Model uncertainty affects the utility in two different ways. 
On the one hand, the insurer tends to think through worst-case scenarios so 
that he underestimates the utility. On the other hand, the insurer knows that the 
reference model is the best representation of the existing data so that he penal-
izes his deviation from the model to prevent himself  from being too pessimistic. 
As a whole, the insurer adopts strategies according to the max-minimization 
principle.

Our formulation of ambiguity aversion falls under the general literature on 
portfolio decisions that are robust to model mis-specifi cations. Without knowing 

2 For a review on premium principles, see Young (2004).
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a distribution over the multiple priors, a robust decision maker uses rules that 
work well for a reference model, but that are also insensitive to small perturba-
tions of the reference model. To describe the preference for robustness, the 
max-min expected utility theory is initiated by Gilboa and Schmeidler (1989) 
and the robust-control theory is developed in Anderson et al. (1999)3. Hasen 
and Sargent (2001) study links between these two theories and show how to 
transform the “penalty problem” under the framework of  Anderson et al. 
(1999) into a closely related “constrained problem” under the framework of 
Gilboa and Schmeidler (1989)4. Following Anderson et al. (1999), we model 
ambiguity aversion by a combination of the max-minimization program and 
a penalty function for model perturbation. Although we do not make any 
novel contribution to the mathematical methodology of  the robust-control 
theory, we do make an addition to the related literature by constructing tricky 
penalty normalization factors and solving the insurer’s optimal utilities with 
ambiguity aversion in closed form when the underlying risk follows some spe-
cifi c stochastic processes.

It is worthwhile mentioning the connections between the methodology of 
pricing risks in our paper and the theory of coherent (convex) risk measures, 
which is pioneered by Artzner et al. (1999), and further developed by Frittelli 
(2000), Delbaen (2002), Föllmer and Schied (2002), Frittelli and Rosazza Gia-
nin (2002), and El Karoui (2009) (to mention only a few)5. Firstly, notice that 
the entropic risk measure corresponds to the certainty equivalence associated 
with the exponential utility and hence our pricing formulae can be expressed 
in terms of convex risk measures. Secondly, quite similar to the robust-control 
theory, the standard dual theorem transforms coherent (convex) risk measures 
into representations with penalties. Especially, for the convex risk measure 
defi ned by an exponential loss function together with model uncertainty, the 
penalty in its dual representation turns out to be the relative entropy exactly 
(see Föller and Schied (2002) and Schied (2006)). Thus it seems feasible to 
study the reservation prices of  risks and the hedging strategies with model 
uncertainty in the context of  coherent risk measures along the same line of 
our arguments.

Our results are closely related to Kunreuther et al. (1993) and Cox and Lin 
(2007). Kunreuther et al. (1993) empirically examine how model uncertainty 
affects the premium-setting decisions of actuaries, underwriters, and reinsurers. 
Their surveys reveal that the recommended premiums increase rapidly as the 
ambiguity with respect to the probability rises. By introducing a rigorous for-
mulation of ambiguity aversion, our pricing formulae grasp the mechanism 
that the premium driven by ambiguity aversion can approach infi nity. Cox and 

3 A substantial literature in fi nancial economics addresses the robust portfolio-selection problems. 
For the recent development, see Hansen et al. (1999), Goldfarb and Iyengar (2003), Schied (2005, 2006), 
Garlappi et al. (2007), and El Karoui (2009) among others.

4 There is an ongoing discussion about the exact relation between these two theories, we refer the 
reader to Maenhout (2001), Pathak (2002), Skiadas (2003), Uppal and Wang (2003), etc.

5 We thank an anonymous referee for pointing out such connections to us.
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Lin (2007) fi nd empirical evidence that annuity writing insurers who have more 
balanced business in life and annuity risks tend to charge lower premiums than 
otherwise similar insurers. This point is also justifi ed by our pricing formulae.

The difference between the effects of ambiguity aversion and those of risk 
aversion on the pricing of insurance lies in two aspects. One is that risk aver-
sion does not serve as an incentive for the insurer to adjust the underlying risk 
model to the safety side. The risk premium driven by risk aversion only refl ects 
the insurer’s preference on a given risk distribution. Broadly speaking, the 
pricing formula driven by risk aversion relies only on the estimated value of 
the underlying risk reported from a given model, irrespective of which specifi c 
model is selected. Two abnormal phenomena may be caused by such pricing 
mechanism. Firstly, for the policy of pure life insurance, the relative loading 
driven by risk aversion always becomes larger as long as the maturity decreases, 
which seems counterintuitive. Secondly, for property insurance, the relative 
loading driven by risk aversion is very sensitive to the loss magnitude, which 
suggests that risk aversion might not give rise to a plausible distortion for the 
pricing of modest losses6. In contrast, the risk premium driven by ambiguity 
aversion highlights the insurer’s selection on the models available. With ambi-
guity aversion, the insurer will adjust the model parameters to the safety side. 
The impact of  such adjustment on risk pricing accumulates when the time 
extends or the loss increases. Our results demonstrate that the pricing mecha-
nism driven by ambiguity aversion seems much more reasonable.

The other difference is that, although ambiguity aversion leads to a non-
linear increase of premium as the uncertainty accumulates over time or the 
loss magnitude is enlarged, the increasing pattern is different from that induced 
by risk aversion. Moreover, the premium driven by ambiguity aversion can be 
depressed by the existence of natural hedge. Typical examples of long-term 
policies and large coverage polices can be found in life insurance market and 
catastrophe insurance market respectively. There is a possibility that extremely 
high premium is charged by the insurer in both markets. Abnormally high 
premium and even market failure are observed in catastrophe market, see 
Kunreuther et al. (1993), Froot (2001) and Ibragimov et al. (2009). However, 
due to the presence of “natural hedge” in life insurance market, the relevant 
price approaches the one computed on the reference model. This indicates that 
taking advantage of natural hedge mechanism, like developing balanced busi-
ness, can partially eliminate the effects of model uncertainty.

The layout of this paper is as follows. In the second section, we illustrate 
how to incorporate ambiguity aversion into the utility function. In the third 
section, we price the risk of continuous fl uctuations through an example in life 

6 We concede that risk aversion may be a useful description of the taste for very-large-scale losses, 
however, for modest losses which the insurer attempts to underwrite, such sensitivity of the pricing to 
the loss magnitude driven by risk aversion seems abnormal. Rabin (2000) proves this point in a quite 
general expected utility framework. He points out that “within the expected-utility model, anything 
but virtual risk neutrality over modest stakes implies manifestly unrealistic risk aversion over large 
stakes”.
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insurance and obtain the corresponding closed-form pricing formula. We also 
compare the impact of ambiguity aversion with that of risk aversion, and ana-
lyze the way in which the effects of model uncertainty can be partially offset 
by “natural hedge”. In the fourth section, we price the risk of rare events (jumps) 
through an example in property insurance and explain why ambiguity aversion can 
give us a more reasonable pricing mechanism for modest losses. Furthermore, we 
discuss the effects of ambiguity aversion on the pricing of catastrophe risk and 
show that ambiguity aversion can lead to a high premium. The fi nal section 
concludes this paper. All the proofs are relegated to the Appendix.

2. PRELIMINARY

As mentioned in the Introduction, the starting point of  our analysis is the 
utility-equivalence pricing principle. To give a formal defi nition7, assume that 
U and UL are utility functions for the insurer without and with insurance 
liabilities respectively. The insurance liability LT is payable at time T by an 
insurer who has underwritten the liability. The liability cannot be traded after 
its transfer from the buyer to the insurer. The reservation price of the insurer P 
is defi ned as the minimum price that satisfi es U(W,  t)  #  UL(W  +  P, L, t) for all 
wealth levels W.

As a preparation for the study of UL(W  +  P, L, t), we at fi rst characterize 
U(W,  t) in the presence of model uncertainty and ambiguity aversion in this 
section. The formulation and derivation of U(W, t) with ambiguity aversion 
for the power utility is well known in the recent literature, see Anderson et al. 
(1999), Maenhout (2001), Uppal and Wang (2003) and Liu et al. (2005). Our 
task here is just to derive U(W, t) for the exponential utility and review
some insights on ambiguity aversion reported in the literature for our later use. 
The reason why we choose exponential utility to describe insurer’s preference 
is that the exponential utility possess very desirable properties for the insur-
ance pricing, see Gerber (1974) and Young and Zarphipoulou (2002).

The insurer invests in the stock market. Dynamics of the stock price St is 
modeled by

 t t
t

t dt ,m sS
dS

dt B= + S  (1)

where Bt
S is a standard Brownian motion under the reference measure �S, the 

drift mt and the volatility st are positive deterministic functions of t. The agent 
exhibits ambiguity aversion in the sense of Knight (1921) and Ellsberg (1961) 
in the way that he considers alternative models to protect himself  against pos-
sible model mis-specifi cations. Ambiguity aversion is characterized through a

7 This defi nition is borrowed from Young and Zarphipoulou (2002).
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Girsanov transform. Suppose the alternative model is defi ned by its probability
measure �S(zS), where T d

d S

z ( )z
S

S

=S
�

�  is its Radon-Nikodym derivative with respect 
to �S subject to

 t
t

t
td .

z

zd
h B= S S

S

S

Notice that ht
S is a stochastic process adapted to the fi ltration generated by Bt

S. 
Under the probability measure �S(zS), the process Bt

S given by dBt
S  =  ht

Sdt  +
dBt

S is a standard Brownian motion. The drift of St

tdS  under the measure �S(zS) 
is mt  +  st ht

S, and then the drift adjustment is qt
S  =  st ht

S. Formally, accepting the 
alternative probability �S(zS) is equivalent to accepting the dynamics

 
tt d

t
t .m q sS

dS
dtt

t= + +S SB^ h  (2)

Assume the insurer has a source of  information about Bt
S. Let Et and Et

zS
 

denote the expectation operators under the measures �S and �S(zS) condi-
tional on the information up to t respectively. We defi ne the index refl ecting 
the information with respect to Bt

S in the time period [t,  t  +  D] as

 
t

t D+
tE

z
( ) .

z
lnI Hz

S

S

=
SSz f p> H

In the Brownian motion setting, the function H is usually chosen as H(x)  =  x 
such that

 2
t

S
s( )I E2

1
t

t
=

D+S |z | dsh7 A#  (3)

is exactly the relative entropy of �S(zS) with respect to �S from time t to t  +  D.
The utility function U(W, t) for the insurer without insurance liabilities

is easy to obtain by the standard optimal control theory. Without insurance 
liabilities, given the investment decision pt, the budget equation of the insurer’s 
wealth is

 tt ttW rtdtt –( ) ,p p sr dt dBt t t= + + SmdW  (4)

where the risk-free rate rt  >  0 is assumed to be deterministic. The insurer 
strives to maximize his utility of wealth at time T. With ambiguity aversion, 
the insurer adopts strategies according to the max-minimization objective

 t [ ] ,sup inf EF
p z

z
t t

t

= D+

S

S
UU a k  (5)
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in which
 ( )xc I I( (S Sz zSf( ) , )x x withF = +S)

Here Ut  =  U(Wt, t) is the indirect utility function conditional on the informa-
tion up to t. The constant ƒS   $  0 is a penalty parameter which indicates that 
accepting the alternative measure �(zS) will incur a penalty. The term cS (·) is 
a normalization function that converts the penalty to units of utility and its 
functional form is often chosen for analytical tractability. The terminal condi-
tion of  U(W, t) is U(W, T )  =  u(W ) for all wealth levels W, where u(·) is a 
given utility function. Throughout this paper, we always suppose

,aW-–
a

( )u W e1=  where a  >  0 is the risk aversion parameter.

Compared with Merton (1976) utility, the utility defi ned via (5) incorporates 
the agent’s pessimism with regard to the reference model. The optimization 
problem (5) involves two decision variables: ht

S and pt
S. If the optimal choice of 

ht
S is ht

S*, then the agent tends to accept the alternative underlying dynamics 
(2) with qt

S*  =  st  ht
S*. It affects the utility in opposite directions. On the one 

hand, accepting the pessimistic model makes the agent underestimate the utility. 
On the other hand, the penalty on the deviation from the statistically best refer-
ence measure �S adds a positive contribution to the utility.

We focus on the continuous-time version of the insurer’s max-minimization 
problem (5). With the choice cS(x)  =  |x|, Proposition A.1 gives the closed-
form solution, which yields the optimal investment

 s
–

t

t rt
S T

St a f

f

1
,

s

m r
e1 ds

2=
+

-* tp f fp p
#  (6)

and the optimal drift adjustment of St

tdS

 – rt –
f

( ) .q m
1

1
t t=

+
*S

Sc m  (7)

The functional form cS(x)  =  |x| can be interpreted intuitively in the way that 
the penalty of accepting the alternative probability is proportional to the util-
ity under that probability. The strategy (6) is equal to the one adopted by a 
risk-adverse agent without ambiguity aversion whose risk aversion parameter
is 

f
a ( )f1

#
+

S

S

. In other words, ambiguity aversion is not separable from risk 
aversion, as far as the investment strategy is concerned8. In our setup where 

8 This is the observational-equivalence result noted in Anderson et al. (1999) and Maenhout (2001). Uppal 
and Wang (2003) point out that when there are more than one risky assets, the observational-equivalence 
result remains valid only if the agent is equally ambiguous about the distributions of returns for all assets.

94352_Astin41-1_07_Zhao.indd   16394352_Astin41-1_07_Zhao.indd   163 12/05/11   14:3012/05/11   14:30

https://doi.org/10.2143/AST.41.1.2084390 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084390


164 L. ZHAO AND W. ZHU

the value of the optimal utility is concerned, we observe that the optimal utility 
for the agent who faces the underlying dynamics (1) with the ambiguity aver-
sion parameter ƒS is equivalent to the one for the agent who faces

 t
t

t f

1
m

S
d

dt dBS

S

t
S= +

+t fS
s  (8)

instead of (1) without ambiguity aversion, see Proposition A.1. This phenom-
enon can also be observed when we consider ambiguity aversion related to the 
non-tradable insurance liability. The intuition behind (8) is that the possibility 
of model mis-specifi cation adds another source of uncertainty to the riskiness 
of the terminal wealth. Due to ambiguity aversion, the agent is prone to over-

estimating the underlying risk by raising the volatility from st to tS

S

.1+ s
f

f

When deriving the utility function UL of the insurer, we should incorporate 
the liability or loss process Lt into the dynamic optimization framework. In 
addition to ambiguity aversion with respect to stock prices, we need also take into 
account ambiguity aversion with respect to the loss process Lt. Since the insurance 
liability is non-tradable in the market, the derivation of  UL(W  +  P,  L,  t) is 
different from that of U(W, t) and the construction of penalty function related 
to Lt is tricky. Commonly, Brownian motion accounts for a successful descrip-
tion of the risk of continuous fl uctuations and Poisson process fi ts the risk
of rare events (jumps) well. Intuitively, the effect of model uncertainty in the 
context of long-term continuous fl uctuations or large-scale rare events is non-
ignorable and in turn makes the insurer become conservative with the refer-
ence model, aware of the unexpected losses caused by model mis-specifi cations. 
In the next two sections, we derive the risk premium of continuous fl uctuations 
and jumps with ambiguity aversion respectively through concrete examples.

Remark 1. For the risk preference of insurers, the assumptions of “risk aver-
sion” and “risk neutral” both have their potentials in explaining insurers’ 
behavior. Our pricing formulae developed below are applicable for both risk-
averse and risk-neutral insurers.

3. PRICING THE RISK OF CONTINUOUS FLUCTUATIONS

It is widely accepted that continuous fl uctuations or Brownian motions con-
stitute a substantial part of the uncertainty appearing in mortality risk. As an 
illustration of pricing the risk of continuous fl uctuations, we study the prices 
of the pure endowment and the pure life insurance.

To highlight the key point, we assume the evolution of individual mortality 
lt to be an affi ne process

 tt t( ) ( )l l ld k k dt v v dBt t t t t0 1 0 1
2
1

= + + + l  (9)
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under the reference measure �l, where Bt
l is another Brownian motion inde-

pendent of Bt
S. Here k0t,  k1t,  v0t,  v1t are all deterministic functions of t. The 

model (9) neglects some otherwise important factors, such as the mortality 
jumps induced by the advances of social medicine. We will return to this at 
the end of this section. Typical examples of (9) include

Vasicek (VAS) process : l t–t( ) ,g vd dt dBt t= +l lm

Cox-Ingersoll-Ross (CIR) process : l tt–t ( )l g ld dt dt t= + v ,Blm

where mt is a deterministic function of the Gompertz type, g and ˇ are both 
positive constants. Biffi s (2005), Luciano and Vigna (2005) calibrate the VAS 
processes with or without jumps to different mortality tables. Dahl (2004), 
Dahl and Møller (2006) use the CIR process in the pricing and hedging of 
mortality risk. As what we have done for stock prices, ambiguity aversion with 
respect to lt is also characterized through a Girsanov transform

 
| |h dth T

d
d

T

T
t tt

l
dB

�

� ( )
,z el

l
l

l l l
2
1

= =
2z - 00# #

which implies that the process Bt
l given by dBt

l  =  ht
l dt  +  dBt

l is a standard 
Brownian motion under the alternative measure �l(zl). We defi ne the drift 
adjustment of mortality as qt

l  =  [v0t  +  v1t lt] 2
1

 ht
l. Thus accepting the alternative 

probability �l(zl) is equivalent to accepting the mortality model

 t tv( ) .Bl qd k k dtt t t t t t0 1 0 1
2
1

= + + + +t l lv dl la k

We use Et, Et
zS, l

, Et
zS

 and Et
z l

 to denote the expectation operators under the 
measures �S  ≈  �l, �S(zS)  ≈  �l(zl), �S(zS) and �l(zl) respectively, conditional 
on the information up to t. Parallel to the previous section, we use the relative 
entropy of �l(zl) with respect to �l from time t to t  +  D to index the information 
with respect to Bt

l in the time period [t, t  +  D]. That is, as in (3), we introduce 
the information index

 
2

El
s(I d2

1 l
t

t
=

D+

t
| |) .z h s9 C#  (10)

We consider a contract of endowment insurance. The insurer pays K dollars 
at time T if  the insured survives to that time and r dsT

sK te- #  dollars to the 
insured’s family if  he dies at time t. Under the exponential utility, the insurer 
is indifferent between paying r dsT

sK te- #  at the death time t and paying K at the 
maturity T. In this case, the insurer’s utility Ut

L  =  UL(Wt,  lt,  t) conditional on 
the information up to t satisfi es

K–,t D+t t
,

U t[EF D
t

], [ ] ( , ) ( ),lsup infU E W T uwith
p z z

z z
t

L,

S

S

= =+l

S
WLL U U

l

a k  (11)
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where

t

r

,

c

t ,

+

T

t

(c

ds

c

l

( )x + +

–U K

f f f( , ) ( ) ) ( ) ( , ) ( ),

( , ),

( .

z z zx y I x y I y x y I

U U W t

U W e t

F l l lS
x t

S
x t

L L
t

t
s

= + + +

=

=

D
S SS S

)

qD

t

p

-

7 7A A
Z

[

\

]
]

]
] #

In the above, I (zl) and I (zl) are given by (3) and (10) respectively, D pt  + x  = 
Et

z l
 

l dss
Dt+

[ ]- te #
 is the �l(zl)-probability that the insured survives to time t  +  D

given that he is alive at time t and Dqx  +  t  =  1  –  D pt  + x is the �l(zl)-probability 
that the insured dies before time t  +  D. The constant ƒl  $  0 is a penalty param-
eter which indicates that accepting the alternative measure �l(zl) will incur a 
penalty. The term cl(·, ·) is again a normalization function that converts the 
penalty to units of utility and its functional form is also chosen for analytical 
tractability.

On the continuous-time version of  the max-minimization problem (11), 
after choosing cS(x)  =  |x| and cl(x, y)  =  |x  –  y|, Proposition A.3 presents the 
closed-form solution UL(W, l, t)  =  U(W, t)  j(l, t). Intuitively, the functional 
forms cS(x)  =  |x| and cl(x, y)  =  |x  –  y| mean that the penalty of accepting 
the alternative probability on the stock price is proportional to the utility 
under that probability; while the penalty of accepting the alternative probabil-
ity on mortality is proportional to the difference between the utility without 
liability and the one with liability under that probability. By defi nition, the price 
of the insurer is

 dsrT
s ln-

a ( , .le tj1P = t )#  (12)

Similar to (8), the optimal utility for the insurer who faces the underlying 
dynamics (9) with the ambiguity aversion parameter ƒl is observationally 
equivalent to the utility for the insurer who faces one of  the following two 
artifi cial mortalities

 v tk+ + +
t t t t0

f

f
l l l( )

1
( ) ,d dt v dBl

l
l

t t t0 1 1
2
1

= +
+

++ k  (13)

 
–

v tk+ -
t t t t0

f

f
l l l( )

1
( ) ,d dt v dBl

l
l

t t t0 1 1
2
1

= + +- -k  (14)

without ambiguity aversion. To be specifi c, when K  >  K, the insurer takes (13) 
as the utility-equivalence mortality, while when K  <  K the insurers takes (14) 
over (13)9. With ambiguity aversion, the pricing of the pure endowment is now 

9 For ease of exposition, we assume implicitly that ƒl  $  1. In the case of ƒl  <  1, we can obtain P in 
(12) by computing j(l, t) directly through Proposition A.3.
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based on the artifi cial mortality (13) or (14) instead of (9). In general, we can-
not expect the closed-form expression of j(l, t) for arbitrarily given k1t and
v1t. However, for both the VAS process and CIR process, we can get j(l, t)

explicitly. Let T  –  t  p +
x  +  t  =  Et 

+dsslD+

[ - T
t ]e #  and T  –  t  p –

x  +  t  =  Et 
sl ds
–D+

[ - T
t ]e #  be the

survival probabilities for the artifi cial mortalities (13) and (14) respectively. 
Denote T  –  t  q +

x  +  t  =  1  –  T –  t  p+
x  +  t and T  –  t q –

x  +  t  =  1  –  T  –  t  p –
x  +  t.

Theorem 1. Assume that the dynamic mortality is modeled by the affi ne process (9). 
Then the price of the endowment insurance contract under the equivalent utility 
principle with ambiguity aversion is given by
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 (15)

Moreover, the optimal adjustment of the mortality drift for the VAS process is
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 (16)

while the optimal adjustment of the mortality drift for the CIR process is
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(17)

Theorem 1 provides a feasible framework which incorporates ambiguity aver-
sion to the pricing of life insurance contracts. To understand how the insurer’s 
ambiguity aversion affects the utility-equivalence price P, we take away the 
feature of model uncertainty by letting ƒl   =  + 3. In this situation, the pricing-
based mortalities lt

+ and lt
– reduce to be the actual one lt and thus P reduces 

to be the standard price which is driven by risk aversion only. Another notable 
fact is that with ƒl  =  + 3, we always have qt

l*  =  0. In other words, without 
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168 L. ZHAO AND W. ZHU

model uncertainty, risk aversion only does not serve as an incentive for the 
insurer to adjust the mortality model to the safety side.

When the insurer exhibits ambiguity aversion to the mortality model, i.e. 
ƒl  <  + 3, the insurer adjusts the drift of the mortality model to the safety side. 
Notice from (16) and (17) that the drift adjustment is proportional to 1/ƒl. 
Accepting the pessimistic mortality model (13) for the endowment pricing or 
the model (14) for the life insurance pricing has two confl icting infl uences on 
the utility. On the one hand, insurer will underestimate the utility of his wealth. 
On the other hand, the penalty on the deviation from the statistically best 
reference measure �l adds a positive contribution to the utility.

Letting K and K be equal to zero respectively, Theorem 1 gives the prices 
of the pure endowment and the pure life insurance:
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Without ambiguity aversion, the corresponding prices driven by risk aversion 
reduce to be10

 r ds–
T

sa, a, 1 ,ln e1 1P
aK

T t x t3 = + - +
-,K 0 tep^ ^h h7 A

#  (18)

 r .dsT

– sa +, aK, 0, ln e1 1 1P
a

T t x t3 = - +
-q tK e^ ^h h9 C

#  (19)

where T  –  t  px  +  t  =  Et 
l dsT

s[ - t ]e #  is the survival probability under the reference 
mortality model and T  –  t qx  +  t  =  1  –  T  –  t  px  +  t. The facts

 q qand>T t x t T t x t T t x t T t x t- + - + - + - +
- >p+p

imply

 , ,,Kf f K Ka a a a0 , 0 0, , , 0, .K and> >P P PP l l3 3, ,, ,^ ^ ^ ^h h h h

The intuition is that in addition to risk aversion, ambiguity aversion provides 
another motivation to charge a positive premium. For a risk-neutral insurer, 
the pricing formulae driven by ambiguity aversion turn out to be

 K Kf0, , , 0 0, , 0, ,qK K and PP l l
T t x t T t x t= =- + - +f -p+# #^ ^h h

which seem new in the literature related to mortality risk pricing11.

10 See also Young and Zariphopoulou (2002).
11 For a review of the existing premium principles for insurance contracts, see Young (2004).
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The effect of ambiguity aversion differs from the effect of risk aversion on 
insurance pricing. The risk premium driven by risk aversion only refl ects the 
insurer’s preference on a given risk distribution. Generally speaking, the risk 
premium driven by risk aversion relies only on the estimated value of  the 
underlying risk reported from a given model, irrespective of which specifi c model 
is selected. In contrast, the risk premium driven by ambiguity aversion high-
lights the insurer’s selection on the models available. With ambiguity aversion, 
the insurer will adjust the model parameters to the safety side. The impact of 
such adjustment on risk pricing will accumulate when the time extends or the 
loss increases. In what follows, we compare the patterns of infl uence of risk 
aversion and ambiguity aversion through an illustrative example. Suppose the 
insurer underwrites policies of pure endowment and life insurance. Remember 
that P(0, 3, K, K) is the actuarial value of  an endowment insurance policy 
under the reference mortality model. We defi ne
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where the left hand side involves risk aversion only and yet the right hand side 
involves ambiguity aversion only. Figure 1 displays the comparative results of 
(20) by using a set of artifi cial parameters.

We observe that the pattern of infl uence of ambiguity aversion is different 
from that of risk aversion on the pricing. In view of (18)-(19), the fact
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illustrates that risk aversion always imposes a large relative loading to a risk 
with small probability. For the pure endowment, the underlying event becomes 
a small probability event when the maturity is long enough. Consequently, for 
the pure endowment the relative loading charged by a risk-averse insurer is 
always higher when T is larger, see R (0.8, 3, 1, 0) in Panels A and C of Figure 1. 
But for the life insurance, the small probability event occurs when the maturity 
is short and hence the relative loading is always higher when T is smaller, see 
R (0.8, 3, 0, 1) in Panels B and D of Figure 1, which seems somewhat counter-
intuitive.
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170 L. ZHAO AND W. ZHU

In contrast, the relative loading imposed by ambiguity aversion is always 
monotonously increasing with T. For both the VAS and the CIR models, it is 
easy to deduce

 0, , , .lim KR
l

T
3=

"3
0f^ h

As the endowment maturity extends, the relative loading driven by risk aversion 
is bounded from above, while the relative loading driven by ambiguity aversion 
can approach infi nity, see R (0, 1.25, 1, 0) in Panels A and C of Figure 1. This 
indicates that model uncertainty has a substantial impact on the pricing, espe-
cially when the uncertainty persists in a long time period. For the life insurance, 
ambiguity aversion delivers an inverted-U pattern of the relative loading, as 
shown by R (0, 1.25, 0, 1) in Panels B and D of Figure 1. Compared with the 
decreasing pattern of  relative loading with T driven by risk aversion, the 
inverted-U pattern indicates an intuitively reasonable result in the sense that 
the relative loading of the life insurance should be small when the maturity T 
is short.

Remark 2. The inverted-U pattern in Figure F1 can be explained as follows. 
When T is small, e.g., T  <  20 (years), the relative loading driven by ambiguity 

FIGURE 1: R (0.8, 3, 1, 0) v.s. R (0, 1.25, 1, 0) and R (0.8, 3, 0, 1) v.s. R (0, 1.25, 0, 1).
In the VAS model, we choose g  =  0.01, mt  =  0.5 and ˇ  =  0.01. In the CIR model, we choose g  =  0.01, 

mt  =  0.5 and ˇ  =  0.1. The initial mortality value is taken as l0  =  0.003.

3

33
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aversion increases with T, due to the fact that model uncertainty accumulates 
over time. When T is large, e.g., T  >  40 (years), both the referred and the 
adjusted probabilities of  death approach 1, which makes the relative loading 
decrease to be 1.

With ambiguity aversion, the insurer tends to take for granted that the 
expected potential loss is larger than the one estimated from the reference 
model. When the insurer underwrites two classes of policies in opposite direc-
tions, he will suffer a smaller loss in one direction in case that the loss in the 
other direction becomes larger. This is the so-called “natural hedge” mechanism, 
see Cox and Lin (2007). In life insurance market, there exists natural hedge 
between life insurance and endowment. Suppose that the insurer underwrites 
a total amount of K dollars of endowment and K dollars of life insurance. 
Assume that the purchaser of  life insurance policies and the purchaser of 
endowment policies come from a homogeneous cohort, the persons in which 
have the same age and the same health status such that the mortality of per-
sons in the cohort can be described by the same reference model. Then the 
choice of mortality model depends on whether K or K is larger. If  K  >  K, then 
the effect of  model uncertainty on K dollar endowment can be completely 
offset by the effect of model uncertainty on life insurance12. Due to the pres-
ence of (K  –  K) dollar endowment, the insurer will overestimate the insured’s 
survival probability to protect himself  from suffering the loss arising from the 
unexpected improvement in mortality. As a result, the insurer tends to charge 
lower premiums for life insurance policies. The situation of  K  <  K can be 
 analyzed in a similar way. On the whole, developing balanced business can 
partially eliminate the effects of model uncertainty and in turn decrease the 
premium caused by ambiguity aversion.

Specially, the risk of model uncertainty can be partially hedged by designing 
hybrid insurance products. An example is the endowment insurance contract. 
It is easy to verify that for ƒl  >  0, K  >  0, K  >  0, there is

 ,KK K0, , 0 0, , 0, 0, , .K >P PP l l+l ,f f f^ ^ ^h h h  (21)

This amounts to say that buying an endowment insurance with payoff (K, K) is 
cheaper than buying the endowment with payoff K and the life insurance with 
payoff  K separately. The equality R (0, fl, K,  K )  =  1 achieves if  and only if  
K  =  K, irrespective of fl. Likewise, it can be proved that

 K K( , , ) (0, , , 0) (0, , , ) (0, , 0, ),eK Ke and< <R R RR l l l lf f f f0,  for all e  >  0.

Figure 2 visualizes the comparisons between R (0, 1.25, 2, 0.1) and R (0, 1.25, 2, 0), 
R (0, 1.25, 0.1, 2) and R (0, 1.25, 0, 2) respectively. It shows that even if  the 

12 In practice, there is only partial hedge between life insurance and endowment due to the existence 
of basis risk. In our context, the perfect hedge is employed just for a brief  statement of our point.
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172 L. ZHAO AND W. ZHU

 balanced amount e accounts merely for 5% (= 0.1/2), the relative loading can 
be depressed obviously. In particular, panels A and C in Figure 2 illustrate that 
R (0, 1.25, 2, 0.1) is signifi cantly smaller than R (0, 1.25, 2, 0) when T  >  40 (years).

Remark 3. This section provides an illustration of how to price the risk of 
continuous fl uctuations with ambiguity aversion. We concede that this exam-
ple does not accommodate all important factors in the underlying dynamics. 
However, the above pricing framework is feasible enough to admit one to 
incorporate some other important elements for insurance pricing. Possible 
extensions of the pricing formulae in Theorem 1 include:

(I). For the long-term life insurance, the ambiguity with respect to interest rate 
has become oral tradition among some subsets of practitioners. It is possible 
to incorporate such ambiguity into the pricing formulae. The outline of this 
idea is given below. At fi rst, we model the interest rate as

 t t tt0( ) ( ) ,d a a dt b dBt t t t1 0 1
2
1

= + + +r r rr b

where Bt
r is an independent Brownian motion under the reference measure �r. 

Following what we have done for (9) and (10), defi ne
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 FIGURE 2: R (0, 1.25, 2, 0.1) v.s. R (0, 1.25, 2, 0) and R (0, 1.25, 0.1, 2) v.s. R (0, 1.25, 0, 2).
The parameters used for this fi gure are the same as those used for Figure 1.
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Then, we introduce a default-free zero-coupon bond that pays $1 at time T, 
whose t-time price is given by

 r dsT

t
s(z( , ) ,F r T E )r r

= -,t � te8 B
#

where �r(zr) is the risk-neutral measure corresponding to �r(zr) with an 
 unambiguous loading13. The default-free zero-coupon bond is available as an 
investment instrument. By constructing an appropriate penalty on the devia-
tion from �r, we can follow Ludkovski and Young (2008) to derive the utilities 
U (W, t) and UL(W, L, t). One can expect that with ambiguity aversion to inter-
est rate, the insurer will adjust the model of interest rate to the safety side, 
which gives rise to a positive risk premium.

(II). As mentioned before, mortality jumps maybe appear. For instance, if  
there is unexpected breakthrough in the treatment of heart disease, cancer or 
Aids, a great increase in people’s lifetime can be expected. Such improvements 
in mortality are regarded to be too signifi cant to be continuous, and can be 
captured by jumps, see Cox et al. (2006). We will gain experience in pricing
the risk of rare event (jumps) in the following section. By integrating these 
techniques, one is able to price the (mortality) risk which is modeled by the 
diffusion process with jumps.

Remark 4. Various pricing methods have been put forward to price the mortal-
ity risk: Milevsky et al. (2005), Bayraktar and Young (2007) and Young (2008) 
propose a Sharpe ratio rule; Young and Zariphopoulou (2002) apply the
principle of equivalent utility; Milevsky and Promislow (2001), Dahl (2004); 
Biffi s (2005), Cairns et al. (2006), etc. use the risk-neutral theory. As far as 
robustness is concerned, Chen et al. (2010) give a detailed comparison of the 
above methods. Our pricing formulae in Theorem 1 can be seen as additions 
to the literature on life insurance pricing by incorporating uncertainty to mor-
tality risk modeling.

4. PRICING THE RISK OF JUMPS

The frequency of insurance claims is usually modeled by a Poisson process14. 
To exhibit how one can price the risk of jumps with ambiguity aversion, we 
give the pricing formula for a simple contract in property insurance.

In property insurance market, the insurer provides coverage against poten-
tial property losses. The arrival rate of  loss events is usually described as a 
Poisson process in the literature, see for instance Cummins and Geman (1995), 

13 To be specifi c, we write q d qTT B dss s-

(

( s ,
)

)

z

z

d

d
r

2
1r 2r r

r
tt= -e�

�

##  where Bt
r given by dBt

r  =  ht
rdt  +  dBt

r is the Brownian

 motion under the measure �r(zr). The loading qt is assumed to be an explicit adapted process.
14 See Klugman et al. (2004) and the references therein.
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Young and Zarphipoulou (2002), Cox et al. (2004), etc. Without loss of general-
ity, we assume that the property loss is modeled by

 withd , ( ),dL Y Y f Zt t= =N  (22)

where Nt is a Poisson process indicating the occurrence of  loss events, Z is a 
random variable, f (·) is a nonnegative deterministic function, and Y  =  f (Z ) 
characterizes the loss magnitude. Under the statistically best reference measure 
�L, we assume that the jump intensity is k and the mean of the jump size Y
is y  =  E [  f (Z )]. The alternative model is defi ned via its probability measure
PL(zL), where zT

L  =  ( )

d

d Lz
L

L

�

�  is the Radon-Nikodym derivative subject to
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Here h1
L and h2

L are stochastic processes adapted to the fi ltration generated
by Lt. Under the alternative measure �L(zL), the jump intensity and the mean 
jump size are changed to be
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 provided f is monotonic and h2
L  !  0. The

formal derivation of (23) can be found in the Appendix. Therefore accepting 
the alternative probability �L(zL) is equivalent to accepting the adjusted model

 d( ) ,Z Nd ft t=L  (24)

where Nt is a Poisson process with the jump intensity kzL and Z is a random 
variable such that E [  f (Z)]  =  yzL. As in the former section, accepting (24) will 
incur a penalty. To formulate the penalty, we use Et, Et

zS, l
, Et

zS
 and Et

z l
 to 

denote the expectation operators under the measures �S  ≈  �l, �S(zS)  ≈  �l(zl), 
�S(zS) and �l(zl) respectively, conditional on the information up to t. Follow-
ing Liu et al. (2005), we defi ne the index describing the information with 
respect to Nt and Z in the time period [t, t  +  D] as

t D+lnt( ) ,
z

z
I E H

t

L
L

=L
L

z z
f p> H   where H(x)  =  x  +  b(ex  –  1) for some b  >  0. (25)

Notice that when b approaches zero, the information measure in (25) reduces to 
be the relative entropy. A positive b in (25) is important in handling ambiguity 
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aversion toward the jump component, since it can prevent the insurer from 
going overboard to the extremely bad case of yzL  =  3.

For the insurer, with the liability to pay Lt if  the property loss occurs and 
zero otherwise, the utility Ut

L  =  UL(Wt, Lt, t) conditional on the information 
up to t satisfi es

 t D+
– Lt t [ ] ( , , ) ),sup infU E U W L Twith

,p z z

z L L

t
L

= =
S

,S L

F
L WU (ua k  (26)

where

 ( )x( ,x I( (y S L Lf f) ) ) ( ) .c z c zx I xS L= + +SF

In the above, I (zS) and I (zL) are given by (3) and (25) respectively. The con-
stant ƒL  $  0 is a penalty parameter and the term cL(·) is again a normalization 
function that converts the penalty to units of utility and its functional form is 
also chosen for analytical tractability. In the current setup, there is a one-to-
one correspondence between the pair of adjustment parameters (h1

L,  h2
L) and 

the pair of penalty parameters (ƒL, b).
On the continuous-time version of  the max-minimization problem (26),

after choosing cS(x)  =  |x| and cL(x)  =  a|x|, Proposition A.4 gives the closed-
form solution UL(W, L, t)  =  U(W, t) eaL j(t). Intuitively, the function cL(UL)  =

L2
2 |UL|  =  a|UL| suggests that the penalty of accepting the alternative probabil-

ity on the loss is proportional to the marginal utility with respect to the loss 
under that probability. By defi nition, when losses have never occurred before 
time t, the price of the property insurance charged by the insurer is

 r dsT
s

a ( .ln t1P = )j- te #

More explicitly, we have the following theorem.

Theorem 2. Assume that the property loss is modeled by the jump process (22). 
Then the price of the property insurance contract under the equivalent utility 
principle with ambiguity aversion is given by
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-
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(f Zh
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e
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,

d

`
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j
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1 2 34444444444444 4444444444444

1 2 34444444 4444444

#

#

 (27)

where h1
L* and h2

L* are the solution of the optimization problem (A.4) and the 
function �(·, ·) is defi ned in Proposition A.4 in the Appendix.
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When the insurer exhibits ambiguity aversion to the reference model, the 
insurer selects the conservative model (24) with the adjustment parameters 
(h1

L*,  h2
L*) so that he will overestimate the potential risk relative to the reference 

model. This can be observed in the fi rst term of  (27). Giving up the statisti-
cally best reference model will lead to a penalty on the pricing, which is cap-
tured by the second term of (27). When ƒL  =  3 and b  =  3, the impact of 
ambiguity aversion vanishes and (27) reduces to be the price driven by risk 
aversion only:

 r dsT

– t s–
a

a
( , , ) ( ) 1 .k T E e

P
a (f Z

3 3 = - t
)

ec m< F
#  (28)

When the insurer is risk-neutral, the effect of risk aversion disappears and (27) 
becomes

   r ds,
Z

,b
T

– t
Z

*

*
* * s

*

)
1

2

– f( ) ( )
[ ( ]

[ ( ) ( )]
( ,

E f

E f f Z
P L h

L

L
L L LL

= -2
21k � h tf0, T e

h
)

h
h e> H

#  (29)

where h1
L* and h2

L* are now the solution to the optimization problem below

 
Z

Z L

)

)
L

L
1

2

2 –
1 2

[ ( ]

[ ( ( )]
, .sup

E f

E f f Z
h

,h

h L L

L L

L

21�fke
h h

h
h^ h> H  (30)

The pricing formula (29) driven by ambiguity aversion seems new in the lit-
erature related to property insurance pricing. Remember that the actuarial 
value of this property insurance policy under the reference model is

 r ds– t
T

s( ) [ ( )] .k E f ZA = T - te #

We defi ne

 ,
,

b
bL

( )
( )

R
A

PL =a f
a

,
f,

to measure the relative loading charged by the insurer whose risk aversion 
parameter and ambiguity aversion parameters are a and (ƒL, b ) respectively.
We will compare R (a, 3, 3) with R (0, ƒL, b ) in the sequel.

The exponential family distributions are commonly used for the calibration 
of property losses, see for example Klugman et al. (2004). To get a broad percep-
tion on the pricing formula (29), we display R (a, 3, 3) and R (0, ƒL, b) by assum-
ing that f (x)  =  x and Z obeys the exponential distribution in Figure 3. From 
Panel A, we see that R (a, 3, 3) increases explosively with E [Z ]. Especially, 
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when E [Z ]  >  1/a, the pricing formula (28) driven by risk aversion even cannot 
yield a well-defi ned (fi nite) value. This observation shows that the relative 
loading driven by risk aversion is very sensitive to the loss magnitude. If  we 
evaluate a relative large risky loss by using the risk aversion parameter a which 
is calibrated well to the price of  a modest risky loss, we will encounter an 
abnormally high price. For example, in Panel A of  Figure 3, one sees clearly 
that R (0.1341, 3, 3) for E [Z ]  =  6 does not exceed 10, but R (0.1341, 3, 3) for 
E [Z ]  =  8 approaches 70 abruptly. This result suggests that risk aversion might not 
provide a plausible account of risk preference over modest stakes15. One may 
suspect that our observation relies heavily on the specifi cation of the negative 
exponential utility function. However, the intuition behind our observation is 
verifi ed in a quite general expected utility framework. Under the very weak 
condition that the utility is increasing and strictly concave, Rabin (2000) proves 
that “within the expected-utility model, anything but virtual risk neutrality 
over modest stakes implies manifestly unrealistic risk aversion over large 
stakes”16.

On the contrary, it seems that ambiguity aversion can help us achieve a 
reasonable pricing mechanism in the sense that the relative loading should 
increase moderately with the magnitude for modest losses. In Figure 3, we match 
the parameters (ƒL, b ) and a such that the relative loading driven by risk
aversion equals the one driven by ambiguity aversion at the point E [Z ]  =  0.5. 
By comparison of Panel A and Panel B in Figure 3, we see that R (0, 1.25, 1) 
increases much slower than R (0.1341, 3, 3). In fact, the fi rst-order condition 
of the optimization problem (30) in the current setup is

 1– –
f [ ]

[ ]
[ ]

[ ]
[ ] 2

[ ]
[ ]

1 ,
ln

ln
E Z

E Z
E Z

E Z Z
E Z

E Z
E ZL h

2

2

2

1

L

= + +
L

b eh f p

following which we have

 , bb
L

–1
f

[ ] ( ) ( ) ( ) [ ] ( )],
b

ln lnh E Z o E Z o2 1
2

1 1and R
L L L= + = +f f, [0 1

15 Though risk aversion may be a useful description of the taste for very-large-scale losses, for modest 
losses which the insurer attempts to underwrite, such sensitivity of the pricing to the loss magnitude 
driven by risk aversion seems abnormal. An example from fi nancial markets is given by Rabin (2000), 
who writes “an expected-utility maximizer with CARA preferences who turns down 50/50 lose 
$1,000/gain $1,200 gambles will only be willing to keep $8,875 of her portfolio in the stock market, 
no matter how large her total investments in stocks and bonds. If  she turns down a 50/50 lose $100/
gain $110 bet, she will be willing to keep only $1,600 of her portfolio in the stock market-keeping 
the rest in bonds (which average 6% lower annual return). While it is widely believed that investors 
are too cautious in their investment behavior, no one believes they are this risk averse”.

16 The argument in this paragraph is not to say risk aversion should not be taken into account in 
explaining the risk premium. It just reminds us to be careful of the use of risk aversion in the pricing 
of  modest losses.
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where o(1) is the infi nitesimal residual satisfying limE[Z] " 3  o(1)  =  0. This con-
fi rms that ambiguity aversion leads to a linear relative loading of E [Z ], which 
does increase much slower than R (a, 3, 3).

At last, we discuss the possible application of (29) to the pricing of catas-
trophe insurance. The magnitude of catastrophe loss is widely accepted to be 
heavy-tailed in the sense that its tail probability is not exponentially bounded. 
One typical calibration for catastrophe loss is

Y  =  f (Z )  =  eZ,  where Z is a random variable with normal distribution, (31)

see Lee and Yu (2002), Egami and Young (2008), Lin et al. (2009), etc. For 
catastrophe loss which is modeled by (31), it is notable that the pricing formula 
(28) driven by risk aversion cannot produce a fi nite value. However, the pricing 
formula (29) driven by ambiguity aversion can lead us to a sensible result. 
Assume the mean and the variance of Z are m and ˇ2 respectively, and then

 
(f

e
2

2

( )]

( ) )]
,

E h Z

E h Z Z
L

L
m hL

2
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2= + +2 2

[

[

f

f v v  (32)

   –+2 2

e1 1 1
1 1� , 1 ( ) 2 ,k b bh h h h2

1 ( ) vL L L L h h h2
L L L L

2= + + + +
2 h–22 1v e e^ a _h k i< F  (33)

and (29) turns out to be

 r ds ,
T

– t * ** * Ls –1 �f( ) ,keP
m L LL L

2
1 2

2
2

= - + + +
1 2

vt T v h h h he ` j: D
#

where h1
L* and h2

L* are subject to the fi rst-order condition of the optimization 
problem (30)

FIGURE 3: R (0.1341, 3, 3) v.s. R (0, 1.25, 1).
This fi gure is based on the assumptions that f (x)  =  x and Z obeys the exponential distribution.

33
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We remark that by inspection of (32)-(33) and (30), it is clear that a positive b 
does prevent the occurrence of the extremely bad case h2

L*  =  3. With ˇ and k 
being fi xed, when m approaches infi nity, it is easy to derive the asymptotics
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 (34)

where o(1) is the infi nitesimal residual satisfying limm " 3 o(1)  =  0. The equa-
tion (34) implies that when the insurer is risk neutral, ambiguity aversion
can result in a linear increase of  the relative loading with catastrophe losses. 
We illustrate this tendency in Figure 4. Panel B in Figure 4 exhibits that the 
linear relative loading will induce a nonlinear (square) increase of P (0, ƒL, b) 
with respect to the related actuarial value under the reference model. This result 
implies that ambiguity aversion can lead to a high premium of catastrophe 
insurance, which is commonplace in practice.

5. CONCLUSION

This paper develops a feasible framework which incorporates ambiguity aversion 
into the pricing of insurance products. Under the utility-equivalence principle, 

FIGURE 4: R (0, 1.25, 1) and P (0, 1.25, 1).
This fi gure is based on the assumptions that f (x)  =  ex and Z obeys the normal distribution with ˇ  =  1.

94352_Astin41-1_07_Zhao.indd   17994352_Astin41-1_07_Zhao.indd   179 12/05/11   14:3012/05/11   14:30

https://doi.org/10.2143/AST.41.1.2084390 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084390


180 L. ZHAO AND W. ZHU

we obtain closed-form pricing formulae for the risk of continuous fl uctuations 
and the risk of rare events.

We compare the effects of ambiguity aversion with those of risk aversion 
on the pricing. Conceptually, the risk premium driven by risk aversion relies 
only on the estimated value of  the underlying risk reported from a given 
model, irrespective of  which specifi c model is selected. Two abnormal phe-
nomena may arise from such pricing mechanism. First, for the policy of pure 
life insurance, the relative loading driven by risk aversion becomes larger as 
the maturity decreases, which seems counterintuitive. Second, for property 
insurance, the relative loading driven by risk aversion is very sensitive to the 
loss magnitude, which seems odd for modest losses. However, the risk pre-
mium driven by ambiguity aversion highlights the insurer’s selection on the 
models available. With ambiguity aversion, the insurer will adjust the model 
parameters to the safety side. The impact of such adjustment on risk pricing 
accumulates when the time extends or the loss increases, which is reasonable 
for the pricing of pure life insurance and modest losses.

Our pricing formulae grasp the mechanism that the premium driven by ambi-
guity aversion can approach infi nity as well as can be depressed by the existence 
of natural hedge. Taking advantage of natural hedge mechanism can help us 
control the effects of model uncertainty. This provides a theoretic explanation 
for the empirical fi ndings of Kunreuther et al. (1993) and Cox and Lin (2007).

We concede that some quantitative results of  this paper depend on the 
specifi c formulation of the penalty functions, however, the intuition behind 
our results is quite general. Our work sheds light on the effects of ambiguity 
aversion on insurance pricing from the perspective of insurance supply. Further 
empirical investigation of the pricing with ambiguity, including the calibration 
of our pricing model, would be very useful.

APPENDIX

A. Technical propositions

Defi ne two differential operators
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In the following, we always choose cS(x)  =  |x| and cl(x, y)  =  |x  –  y|.

Proposition A.1. The HJB equation for the max-minimization problem (5) is
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The closed-form solution of U is U(W, t)  =  W b- t– ea
a1 t- , where at and bt are in 

(B.2).

Proposition A.2. For the affi ne process (9), under the reference probability �l,
we have T  –  t  px  +  t  =  l dsT

ts
t

t[ ]E ea bt= +l- te # , where at and bt are determined by (B.4)-
(B.5).

Proposition A.3. The HJB equation for the max-minimization problem (11) is
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The closed-form solution of UL is UL(W, l, t)  =  U(W, t)  j(l, t), where U(W, t) is 
as in Proposition A.1 and
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Proposition A.4. The HJB equation for the max-minimization problem (26) is
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with the terminal condition UL(W, L, T )  =  u (W  –  L). In the above,
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Then the closed-form solution of UL is UL(W, L, t)  =  U(W, t) eaL j(t), where U(W, t)

is as in Proposition A.1 and j(t)  =  ,* *h1 2ea )L L(L )(T t-h .

B. Detailed proofs

The proof of Proposition A.1. The formal derivation of the HJB equation (A.1) 
is standard. In fact, rewrite (5) as
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we can easily arrive at (A.1). Under the negative exponential utility, the indi-
rect utility U is negative. If  we fi t the solution U(W, t)  =  W b- t– ea

a1 t- , then we 
have 

 – –t tb+ t( ), ,t U Wa W Ua
W

Uat

2

2
2

2
2

2

2= = =� � 2,U U U
2

and the HJB equation (A.1) turns out to be
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After inserting (B.1) into the above HJB equation, we are led to the ordinary 
differential equations (ODE’s)
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with aT  =  a and bT  =  0. It is then easy to obtain

 r dsT –

s

ss sa
1

.s
m r

ds2
1andt t

S

t

T 2
= =

+ Sf

f
a te b f cp m##  (B.2)

The expressions of at and bt together with (B.1) give (6) and (7). ¡

The proof of Proposition A.2. Write T  –  t  px  +  t  =  G(lt, t) and then 
t l- se ds0# G(lt, t) 

is a martingale under �l. By Itô formula, the drift of  
t l- se ds0# G (lt, t) must 

vanish, i.e.,

 l lk v+t t0 10 ( ) ( )l l lt G G 2
1

t t1 0 2

2

2
2 2 2

2 2
= + + +– k v .GG  (B.3)

We fi t the solution G (l, t)  =  te la bt +  into (B.3) and obtain

 –t tt t t1 t0t t0 1 ,la k a v a k a v ab2
1

2
1

t t1 0= + + + + +2 2� �a ak k

which is equivalent to

 –t ta t , ,a k v a a0 1 2
1 0t t T1 1= + + =2�  (B.4)

 Tt t tt0 , .b k a v a b0 2
1 0t0= + + =2�  (B.5)

The ODE (B.4) is of the Riccati type and (B.5) can be solved directly once we 
know at. ¡

The proof of Proposition A.3. The formal derivation of the HJB equation (A.2) 
is standard. In fact, rewrite (11) as
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Letting D " 0, using the facts
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we can easily arrive at (A.2). If  we choose cS(U )  =  |U |, cl(UL, U )  =  |UL  –  U| 
and fi t the solution UL(W, l, t)  =  U(W, t)  j(l, t), the optimal choice of ht

l is

 – l* v
–

t
a

t0( ) .
j e

l
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l
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2
1

= +
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j
h v  (B.6)

Inserting (B.6) into (A.2), we fi nd that j must satisfy
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 (B.7)

To solve (B.7), we differentiate three cases. Case 1 is K  <  K. In this case, we 
assume j(l, t)  =  eaK  +  te la bt + . It follows from (B.7) that
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We solve the ODE’s
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and then obtain the desired results. Case 2 is K  >  K. In this case, we assume 
j(l, t)  =  eaK  –  te la bt + . It follows from (B.7) that
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We solve the ODE’s
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and then obtain the desired results. Case 3 is K  =  K, which can be approximated 
by the case K  >  K and the case K  <  K. ¡

The proof of Theorem 1. By comparison of  (B.4)-(B.5) with (B.8)-(B.9) and 
(B.10)-(B.11), it is easy to fi nd that j(l, t)  =  eaK  +  (eaK  –  eaK) T  –  t  p+

x  +  t when 
K  <  K and j(l, t)  =  eaK  –  (eaK  –  eaK) T  –  t  p–

x  +  t when K  >  K. Hence (15) follows 
directly from (12). For the VAS process, we solve the ODE’s (B.4)-(B.5) and 
obtain
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Equation (16) follows from (B.6) and the expression of at. For the CIR process, 
we solve the ODE’s (B.4)-(B.5) and get
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Equation (17) follows from (B.6) and the expression of at. ¡

The proof of Proposition A.4. The formal derivation of the HJB equation (A.3) 
is standard. In fact, rewrite (26) as
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Letting D " 0, we have limD " 0 
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To obtain limD " 0 
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L)z , we restructure I (zL) as
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Applying Itô lemma for jump-diffusion to zt
L ln zt

L and (zt
L)2, we achieve
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L). Based on the above limits, we can easily 
arrive at (A.2). We choose cS(UL)  =  |UL|, cL(UL)  =  L2

2 UL  =  acL(UL), fi t the 
solution UL(W, L, t)  =  U (W, t) eaL j(t) and get
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The derivation of (23). Applying the Girsanov transform for point process to 
the compensated Poisson process Mt  =  Nt  –  kt, we have under �(zL) that the 
process Mt satisfying
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is a martingale. Hence the intensity of Nt under �(zL) is 1kehL

. Next, applying 
the Girsanov transform to Mt  =  Lt  –  kE [ f (Z)]dt, we have under �(zL) that the 
process Mt satisfying
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