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Abstract

The main aim of this paper is to investigate the invariant properties of uniform domains under flattening
and sphericalization in nonlocally compact complete metric spaces. Moreover, we show that quasi-
Möbius maps preserve uniform domains in nonlocally compact spaces as well.
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1. Introduction

The present investigation is motivated by the work of John [17] and Martio and Sarvas
in [21] on uniform domains in Euclidean spaces and the later investigation on this
topic. After the appearance and prominent roles played by these articles, many other
characterizations of uniform domains were established by a number of researchers
(see [11, 13, 20, 25–27]). The importance of this class of domains in function theory
is well documented (see, for example, [11, 12, 23]). It is worth recalling that their
main motivation in [17, 21] for studying these domains was to establish global
injectivity properties for locally injective mappings. Moreover, uniform subdomains of
the Heisenberg groups, as well as more general Carnot groups, have become a focus
of study (see, for example, [6, 7, 10, 14]). Bonk et al. [2] introduced the notion of
uniformity in the locally compact metric space setting and obtained that there is a two
way correspondence between uniform spaces and Gromov hyperbolic proper geodesic
spaces.
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In [21], Martio and Sarvas proved that quasiconformal mappings f : Rn → Rn

preserve uniform domains. Then it follows from the equivalent condition of uniform
domains introduced by Martio [20] that uniformity of domains in Rn is preserved by
quasi-Möbius maps. Further, this result has been generalized to Banach spaces by
Väisälä [25]. Recently, Xie [30] investigated the invariance of uniform domains under
quasisymmetric and quasi-Möbius maps between locally compact metric spaces. The
main tool in his proof relies on the concept of metric space inversion (or flattening)
which was first introduced by Buckley et al. [5]. This class of conformal deformation
is dual to sphericalization in a certain sense. Simultaneously, they also obtained the
preservations of uniformity under the flattening and sphericalization transformations
in the set-up of locally compact metric spaces.

It turns out that the notion of metric space inversion is very useful in order to
extend the study of bounded metric spaces to the study of unbounded spaces, and
also to reduce the setting of quasisymmetric mappings to quasi-Möbius maps. For
instance, Bonk et al. [2] characterized bounded uniform proper domains of Rn in
terms of Gromov hyperbolicity of quasihyperbolic metrics and the quasisymmetric
correspondence between Euclidean boundaries and Gromov boundaries. With the
aid of the inversion transformations, Väisälä subsequently generalized this result,
in [29], to Banach spaces for arbitrary uniform domains by means of quasi-Möbius
equivalence of the norm boundary and Gromov boundary. Moreover, Herron et al. [15]
demonstrated that, in an annular convex metric space, uniform domains are precisely
those Gromov hyperbolic domains whose quasiconformal structure on the Gromov
boundary agrees with that on the metric boundary.

On the other hand, let us remark here that flattening and sphericalization in
metric spaces has recently attained considerable interest in analysis of quasimetric
spaces, for instance, in questions related to Poincaré inequality, Loewner condition,
quasiconvexity, doubling and Ahlfors regularity of measures (see, for example,
[8, 9, 18, 31]). The main purpose of this paper is to generalize the results of Väisälä
and Xie and to consider the behavior of uniform domains in nonlocally compact
metric spaces under quasi-Möbius maps. It is worthwhile to mention that Buckley and
Herron [4] obtained several characterizations for uniformity in nonlocally compact
metric spaces. More recently, the third author and Rasila studied the connection
between uniform domains and quasi-Möbius maps in Banach spaces and answered
two related questions raised by Väisälä in [27].

This article is an attempt to prove further results in this direction. Our first main
result is to investigate the invariance of uniform domains under flattening of metric
spaces. Note that we do not assume local compactness in our paper. We refer to
Section 2 for basic information including notation, definitions, terminology and some
auxiliary lemmas.

Theorem 1.1. Suppose that X is a complete metric space and Ω ⊂ X is a domain (open
and connected set) with card (∂Ω) ≥ 2 and p ∈ ∂Ω.

(1) If Ω is c-uniform, then (Ω, dp) is c1-uniform with c1 = c1(c).
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(2) If Ω is bounded and (Ω, dp) is c-uniform, then Ω is c2-uniform with
c2 = C0(diam(Ω)/b(p)), where C0 = C0(c) and b(p) = sup{d(p, q)| q ∈ ∂Ω}.

(3) If Ω is unbounded and (Ω, dp) is c-uniform, then Ω is c3-uniform with c3 = c3(c).

Remark 1.2. We remark that Theorem 1.1 coincides with [5, Theorem 5.1(a)] in the
setting of locally compact metric spaces. As is well known, the local compactness
assumption assures the existence of quasihyperbolic geodesics. But quasihyperbolic
geodesics need not exist in a general metric space (see [24, 2.9]). In order to overcome
this disadvantage, in this paper we substitute quasihyperbolic geodesics by short arcs.
The class of short arcs was introduced by Väisälä [28], and we see that the existence
of such a class of arcs is obvious in metric spaces. This idea is very useful in related
research (see [4, 15, 19, 27]).

From Theorem 1.1, we also conclude that the sphericalization transformations
preserve uniform domains because sphericalization can be realized as a special case of
flattening (see more information in Section 2).

Corollary 1.3. Suppose that X is a complete metric space and Ω ⊂ X is a domain
with card (∂Ω) ≥ 2 and p ∈ ∂Ω. If Ω is unbounded, then (Ω, d) is c-uniform if and only
if (Ω, d̂p) is c′-uniform, where the constants c and c′ depend only on each other.

As an application to Corollary 1.3, we deduce the invariance of uniform domains
for quasi-Möbius maps (see Section 2.2) in quasiconvex metric spaces.

Theorem 1.4. Suppose that X1 and X2 are c-quasiconvex complete metric spaces,
that Ωi ( Xi are proper domains with ∂Ωi containing at least two points and that
f : Ω1 → Ω2 is a θ-quasi-Möbius homeomorphism. If Ω1 is c1-uniform, then Ω2 is
c2-uniform for some constant c2. When Ω1 is unbounded, then the constant c2 depends
only on c, c1 and θ.

Remark 1.5. In the locally compact metric spaces setting, this result was considered
by Xie [30].

The remaining part of this paper is organized as follows. Section 2 contains basic
definitions and auxiliary lemmas that are used later in the discussion. In Section 3,
we present the proof of Theorem 1.1(1), which we formulate as Theorem 3.2. The
proofs of Theorems 1.1(2) and 1.1(3) are presented in Section 4, which we state as
Theorems 4.4 and 4.5, respectively. Finally, the proof of Theorem 1.4 is presented in
Section 5.

2. Preliminaries

2.1. Notation. In what follows, (X, d) always denotes a complete metric space with
the metric d. We often write the distance between x and y as d(x, y) and the distance
from a point x to a set A as d(x,A). For A ⊂ X, ∂A = X \ A denotes the metric boundary
of A. We always assume that ∞ denotes an element not in X. The one-point extension
of X is the set Ẋ = X ∪ {∞}. The topology of Ẋ consists of all open sets in X and of all
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sets U containing∞ such that Ẋ \U = X \U is closed and bounded in X. The diameter
of a set A ⊂ X is denoted by diam A.

A curve in X means a continuous map γ : I → X from an interval I ⊂ R to X. If
γ is an embedding of I, it is also called an arc. We write γ : xy y if γ is an arc
joining x and y. If needed, this notation also gives an orientation for γ from x to y. By
convention, we also denote the image set γ(I) of γ by γ itself. The length `d(γ) of γ
with respect to the metric d is defined in an obvious way. Here the parameter interval
I is allowed to be open, closed or half-open. We denote the subarc of γ between x and
y by γ[x, y]. A metric space (X, d) is called rectifiably connected if every pair of points
in X can be joined with a curve γ in X with `(γ) <∞.

Next, we recall the definition of quasiconvex metric spaces from [16].

Definition 2.1. An arc α ⊂ X with endpoints x and y is said to be c-quasiconvex if
there is c ≥ 1 such that

`(α) ≤ cd(x, y).

A metric space (X, d) is called c-quasiconvex if each pair of points can be joined by a
c-quasiconvex arc.

Let the letters A, B,C, . . . denote positive numerical constants. Similarly, let
C(a, b, c, . . .) denote universal positive functions of the parameters a, b, c, . . . .
Sometimes we write C = C(a, b, c, . . .) to emphasize the parameters on which C
depends and abbreviate C(a, b, c, . . .) to C. The notation (x, y, z,w) 7→ (x′, y′, z′,w′)
means that x, y, z,w are substituted by x′, y′, z′,w′, respectively.

2.2. Quasi-Möbius, quasisymmetric and bilipschitz. Given a metric space (X, d),
the cross ratio r(x, y, z,w) of each of the four distinct points x, y, z,w ∈ X is defined as

r(x, y, z,w) =
d(x, z)d(y,w)
d(x, y)d(z,w)

.

It is often convenient to consider cross ratios also in the extended space Ẋ. If
x, y, z,w are points in Ẋ and if one of the points x, y, z,w is∞, the cross ratio is defined
by ignoring the factor which concerns the distance from∞: for example,

r(x, y, z,∞) =
d(x, z)
d(x, y)

.

Let (X1, d1) and (X2, d2) be two metric spaces, let X0 ⊂ Ẋ1 and let f : (X0, d1)→
(Ẋ2, d2) be a homeomorphism. Given a homeomorphism η : [0,∞)→ [0,∞), we say
that f is η-quasi-Möbius if, for x, y, z,w ∈ X0,

r( f (x), f (y), f (z), f (w)) ≤ η(r(x, y, z,w)).

If f preserves all cross ratios, it is called a Möbius map.
We say that f is η-quasisymmetric if

d2( f (x), f (z))
d2( f (x), f (y))

≤ η
(d1(x, z)
d1(x, y)

)
whenever x, y, z ∈ X1.
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The mapping f is said to be L-bilipschitz if there exists an L ≥ 1 such that, for all
x, y ∈ X1,

1
L

d1(x, y) ≤ d2( f (x), f (y)) ≤ Ld2(x, y).

Several mapping properties of these mappings are presented, for example, in [22,
Theorem 2.2] and [27, Theorem 6.23].

2.3. Quasihyperbolic distance, h-short arcs and uniform domains. Let Ω ⊂ X be
a proper domain with nonempty boundary. The quasihyperbolic length of a rectifiable
curve γ in Ω is the number `kΩ

(γ) defined by

`kΩ
(γ) =

∫
γ

ds(z)
δΩ(z)

,

where δΩ(z) denotes the distance from z to the boundary ∂Ω of Ω. For any z1, z2 in Ω,
the quasihyperbolic distance kΩ(z1, z2) between z1 and z2 is defined by

kΩ(z1, z2) = inf{`kΩ
(γ) : γ : z1 y z2, γ ⊂ Ω}.

If γ : xy y is a rectifiable curve in Ω ( X, then (see [27])

`kΩ
(γ) ≥ log

(
1 +

`(γ)
min{δΩ(x), δΩ(y)}

)
.

Moreover,

kΩ(x, y) ≥ jΩ(x, y) =: log
(
1 +

d(x, y)
min{δΩ(x), δΩ(y)}

)
≥

∣∣∣∣∣ log
δΩ(x)
δΩ(y)

∣∣∣∣∣, (2-1)

for all x, y ∈ Ω.
We also record the following useful result.

Lemma A [16, Lemma 3.8]. Suppose that Ω is a domain in a c-quasiconvex metric
space (X, d) with ∂Ω , ∅ and that x, y ∈ Ω. If d(x, y) ≤ (1/3c)δΩ(x) or kΩ(x, y) ≤ 1,
then

1
2

d(x, y)
δΩ(x)

< kΩ(x, y) ≤ 3c
d(x, y)
δΩ(x)

.

Next, we recall the definition of short arcs presented in [29] or [4].

Definition 2.2. An arc α : xy y in Ω is h-short for h ≥ 0 if

`kΩ
(α) ≤ kΩ(x, y) + h.

We see from [28, Lemma 2.4] that every subarc of an h-short arc is also h-short.
The existence of such arcs follows from the fact that (Ω, kΩ) is a length metric space.

Definition 2.3. Let Ω be a domain in X with ∂Ω , ∅, and let c ≥ 1.

(1) γ : [0, 1]→ Ω is a c-uniform arc if γ satisfies the following two conditions.

(a) Turning condition: `(γ) ≤ cd(γ(0), γ(1)).
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(b) Cigar condition: for t ∈ [0, 1], min{`(γ[0, t]), `(γ[t, 1])} ≤ cδΩ(γ(t)).

(2) Ω is a c-uniform domain if every pair of points in Ω can be joined by a c-uniform
arc and, moreover, Ω is uniform if it is c-uniform for some c ≥ 1.

The following result concerning the uniformity of short arcs in uniform domains
will be frequently used in what follows.

Lemma 2.4. Assume that (X, d) is a complete metric space and that Ω ⊂ X is a c-
uniform domain with ∂Ω , ∅.

(1) Let x, y ∈ Ω with h0 = min{kΩ(x, y), 1} and 0 < h ≤ h0. If α : xy y in Ω is an
h-short arc, then α is µ1-uniform with µ1 = µ1(c).

(2) Suppose that γ is an h-short µ2-uniform arc in Ω with h ≤ 1. For u, v in γ, if
kΩ(u, v) ≥ h, then the subarc γ[u, v] of γ is also h-short µ2-uniform.

Proof. We observe that δΩ(x) > 0 for each x ∈ Ω and thus Ω is locally complete which
shows that statement (1) follows from [4, Corollary 3.3]. Moreover, it is not difficult
to see that (2) is a direct consequence of (1) because every subarc of an h-short arc is
also h-short. �

We remark that the constant µ1 in Lemma 2.4, as indicated in [4, Corollary 3.3],
can be taken as 3 exp(200c6). Finally, we conclude this part with the following lemma.

Lemma B [2, Lemma 2.13]. If Ω is a c-uniform domain in (X, d) with ∂Ω , ∅, then, for
all x, y ∈ Ω,

kΩ(x, y) ≤ 4c2 log
(
1 +

d(x, y)
min{δΩ(x), δΩ(y)}

)
.

2.4. Flattening and sphericalization. The original idea of sphericalization and
flattening (or inversion) in metric spaces comes from the work of Bonk and
Kleiner [3] in defining a metric on the one-point compactification of an unbounded
locally compact metric space. The first class of deformation, sphericalization, is a
generalization of the deformation from the Euclidean distance on Rn to the chordal
distance on Sn. The second class of flattening deformation is a generalization of
inversion on punctured Sn.

2.4.1. Metric space inversions. Let (X,d) be a metric space. For a fixed point p ∈ X,
define

Ip(X) =

X \ {p} if X is bounded,

(X \ {p}) ∪ {∞} if X is unbounded

and

fp(x, y) = fp(y, x) =



d(x, y)
d(x, p)d(y, p)

if x, y ∈ X \ {p},

1
d(x, p)

if y =∞ and x ∈ X \ {p},

0 if x =∞ = y.
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Let us recall the following useful result from [5, Lemma 3.2].

Lemma C [5, Lemma 3.2]. There is a distance function dp on Ip(X) such that:

(1) for all x, y ∈ Ip(X),
1
4 fp(x, y) ≤ dp(x, y) ≤ fp(x, y);

(2) the identity map (Ip(X),d) −→ (Ip(X),dp) is a 16t-quasi-Möbius homeomorphism.

2.4.2. Metric space sphericalizations. We need the following metric space
sphericalizations due to Bonk and Kleiner [3], which have been discussed also by
Buckley et al. [5]. Assume that (X, d) is unbounded and p is a fixed point in X. Set

Sp(X) = X ∪ {∞}.

We define a function sp as follows.

sp(x, y) = sp(y, x) =



d(x, y)
[1 + d(x, p)][1 + d(y, p)]

if x, y ∈ X,

1
1 + d(x, p)

if y =∞ and x ∈ X,

0 if x =∞ = y.

Similarly, we have the following lemma.

Lemma D. There exists a metric d̂p on Sp(X) such that:

(1) [3, (2.3)], see also [5] for all x, y ∈ Sp(X),

1
4 sp(x, y) ≤ d̂p(x, y) ≤ sp(x, y);

(2) [3, Lemma 2.2] the identity map (X, d) −→ (X, d̂p) is 16t-quasi-Möbius.

Moreover, it is mentioned in [5] that the notion of inversion is dual to the
sphericalization in the sense of the following two ideas: first, sphericalization can
be realized as a special case of inversion [5, 3.8]; second, repeated inversions using
appropriate points produces a space which is bilipschitz equivalent to the original
space (see [5, Properties 3.7, 3.8, 3.9]). Sphericalization and flattening have a lot of
applications in the area of geometric function theory and analysis on metric spaces
(see [1, 5, 15, 18, 30, 31]).

3. Flattening and uniform domains I

The goal of this section is to prove that the image of a uniform domain under
flattening is still uniform in nonlocally compact spaces. The proof of this result relies
on the following lemma.
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Lemma 3.1. Suppose that X is a complete metric space and that Ω ⊂ X is a domain with
card (∂Ω) ≥ 2. Let u, v ∈ Ω, p ∈ ∂Ω be points such that d(u, p) ≤ d(v, p) ≤ 81d(u, p),
and let β be a µ-uniform arc (µ ≥ 1) in (Ω, d) connecting u and v. Then β is c0-uniform
in (Ω, dp) with c0 = c0(µ).

Proof. For convenience, we write λ = d(u, p) and τ = d(v, p). Then

λ ≤ τ ≤ 81λ.

By [5, Lemma 5.8(c)], we only need to prove that there exist positive constants r and
R such that

β ⊂ A(p; r,R) := {x : r ≤ d(x, p) ≤ R}. (3-1)

We note from [5, Lemma 5.8(c)] and (3-1) that β is c0-uniform with c0 = 8µ(R/r)2,
where the ratio R/r is independent of λ. In the following, we prove (3-1).

Since β is µ-uniform and thus µ-quasiconvex, it follows that, for w ∈ β,

d(w, p) ≤ 1
2`( β) + τ ≤ 1

2µd(u, v) + τ ≤ (41µ + 81)λ =: R.

Now we are going to get a lower bound for d(w, p). To this end, we consider two
possibilities. If min{`( β[u,w]), `( β[w, v])} ≤ 1

2λ, then

d(w, p) ≥ max{λ − d(u,w), τ − d(v,w)} ≥ 1
2λ.

If min{`( β[u,w]), `( β[w, v])} > 1
2λ, then we find that

d(w, p) ≥ δΩ(w) ≥
1

2µ
λ.

Hence we obtain (3-1) by taking r = (1/2µ)λ and R = (41µ + 81)λ, and this completes
the proof of Lemma 3.1. �

Using Lemma 3.1, we can carry out the proof of the following result.

Theorem 3.2. Suppose that X is a complete metric space and that Ω ⊂ X is a domain
with card (∂Ω) ≥ 2 and p ∈ ∂Ω. If card (∂Ω) ≥ 2 and (Ω, d) is c-uniform, then (Ω, dp)
is c′-uniform with c′ = c′(c).

Proof. Let x, y ∈ Ω and write t = d(x, p) and s = d(y, p). Without loss of generality, we
may assume that t ≤ s. By Lemma 2.4(1), we know that there is a 1-short µ1-uniform
arc γ in (Ω, d) connecting x and y with µ1 = µ1(c). To prove the uniformity of (Ω, dp),
we show that there exists a constant c′ = c′(c) such that γ is a c′-uniform arc in (Ω, dp).

If s ≤ 81t, then the uniformity of γ follows immediately from Lemma 3.1.
In the following, we may therefore assume that s > 81t. Then Lemma C yields that

dp(x, y) ≥
d(x, y)

4d(x, p)d(y, p)
≥

s − t
4st

>
1
5t
. (3-2)

Let n be an integer with 3nt < s ≤ 3n+1t. Thus we have n ≥ 4. For each i ∈ {1, 2, . . . ,
n − 1}, let xi be the first point from x to y in γ with

d(xi, p) = 3it.

For convenience, we let x0 = x, xn = y and γi = γ[xi−1, xi]. Then, for each
i ∈ {1, 2, . . . , n}, we get from (2-1) and Lemma C that:
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(i)

kΩ(xi−1, xi) ≥ log
(
1 +

d(xi−1, xi)
δΩ(xi−1)

)
≥ log

(
1 +

3it − 3i−1t
3i−1t

)
= log 3 > 1;

(ii)

1
2 · 3it

=
1
4

{ 1
d(xi−1, p)

−
1

d(xi, p)

}
≤ dp(xi−1, xi) ≤

1
d(xi−1, p)

+
1

d(xi, p)
≤

4
3it
.

Moreover, it follows from (i) and Lemma 2.4(2) that every subarc γi is µ1-uniform
in (Ω, d). Since d(xi, p) ≤ 9d(xi−1, p), again we obtain from Lemma 3.1 that each γi is
c′1-uniform in (Ω, dp). Thus (3-2) and (ii) imply that, for any i ∈ {0, 1, . . . , n − 1},

`dp (γ[xi, y]) =

n∑
r=i+1

`dp (γr) ≤
2

3it
c′1 ≤

10
3i c′1dp(x, y). (3-3)

In particular, for i = 0, (3-3) deduces the inequality

`dp (γ) ≤ 10c′1dp(x, y).

Therefore, it remains to show the cigar condition of γ in (Ω, dp). That is, there is
some constant c′ = c′(c) such that, for every z ∈ γ,

min{`dp (γ[x, z]), `dp (γ[z, y])} ≤ c′δΩ,dp (z).

To this end, we divide the discussions into three cases.

Case 1. z ∈ γ1 ∪ γ2.
In this case, we see from (ii) that

`dp (γ[z, x3]) ≥ `dp (γ3) ≥ dp(x2, x3) ≥
1

54t
,

and so by (3-3),

`dp (γ[z, y]) ≤ `dp (γ) ≤
2
t

c′1 ≤ 108c′1`dp (γ[z, x3]).

This implies that

min{`dp (γ[x, z]), `dp (γ[z, y])} ≤ 108c′1 min{`dp (γ[x, z]), `dp (γ[z, x3])}.

Since d(x3, p) = 27d(x, p), Lemma 3.1 guarantees that γ[x, x3] is µ1-uniform in
(Ω, dp). Hence we obtain

min{`dp (γ[x, z]), `dp (γ[z, y])} ≤ 108c′1µ1δΩ,dp (z).

Case 2. z ∈ γn−1 ∪ γn.
Again by (ii), we get

`dp (γ[xn−3, z]) ≥ `dp (γn−2) ≥ dp(xn−2, xn−3) ≥
1

2 · 3n−2t
,
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and so (3-3) implies that

`dp (γ[z, y]) ≤ `dp (γ[xn−2, y]) ≤
2

3n−2t
c′1 ≤ 4c′1`dp (γ[xn−3, z])

from which it follows that

min{`dp (γ[x, z]), `dp (γ[z, y])} ≤ 4c′1 min{`dp (γ[xn−3, z]), `dp (γ[z, y])}.

Moreover, we find from Lemma 3.1 and d(y, p) ≤ 81d(xn−3, p) that γ[xn−3, y] is
µ1-uniform in (Ω, dp). Furthermore,

min{`dp (γ[x, z]), `dp (γ[z, y])} ≤ 36c′1µ1δΩ,dp (z),

as desired.

Case 3. z ∈ γ3 ∪ · · · ∪ γn−2.
If n = 4, then the proof is complete due to the former arguments. So, in the

following, we assume that n ≥ 5. Let m ∈ {3, . . . , n − 2} be the integer such that z ∈ γm.
Since d(xm+1, p) ≤ 81d(xm−2, p), it follows from Lemma 3.1 that γ[xm−2, xm+1] is
µ1-uniform in (Ω, dp).

If `dp (γ[xm−2, z]) ≤ `dp (γ[z, xm+1]), then we know from (ii) that

µ1δΩ,dp (z) ≥ `dp (γ[xm−2, z]) ≥ `dp (γ[xm−2, xm−1]) ≥ dp(xm−2, xm−1) ≥
1

2 · 3m−1t
,

and so (3-3) implies that

`dp (γ[z, y]) ≤ `dp (γ[xm−1, y]) ≤
2

3m−1t
c′1 ≤ 4c′1µ1δΩ,dp (z).

If `dp (γ[xm−2, z]) > `dp (γ[z, xm+1]), then a similar argument yields that

µ1δΩ,dp (z) ≥ `dp (γ[z, xm+1]) ≥ `dp (γ[xm, xm+1]) ≥
1

2 · 3m+1t
,

which implies that

`dp (γ[z, y]) ≤ `dp (γ[xm−1, y]) ≤ 36c′1µ1δΩ,dp (z),

as required. The proof of Theorem 3.2 is complete. �

4. Flattening and uniform domains II

In this section, we consider the converse of Theorem 3.2 and prove that if (Ω, dp) is
uniform, then (Ω, d) is uniform.
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4.1. Ω is bounded. In this subsection, we always assume that Ω is bounded with
card (∂Ω) ≥ 2 and that (Ω,dp) is c-uniform. Let u, v ∈ Ω. Then, by Lemma 2.4(1), there
exists an hu,v-short µ1-uniform arc γ in (Ω, dp) connecting u and v with µ1 = µ1(c) and

hu,v ≤ min
{
kΩ,dp (u, v), log

(
1 +

b(p)
4diam(Ω)

)}
,

where kΩ,dp denotes the quasihyperbolic metric of Ω in the metric dp and b(p) =

sup{d(p, q) : q ∈ ∂Ω}. We note that ∂Ω contains at least two points so that 0 < b(p) ≤
diam(Ω). Hence we have hu,v ≤ log(1 + 1/4). In the following, we give some useful
results concerning the properties of the above hu,v-short µ1-uniform arc γ.

Lemma E [5, Lemma 5.13(b)]. Let u, v ∈ Ω, and let γ be an hu,v-short µ1-uniform arc
γ in (Ω, dp) connecting u and v. Suppose that:

(1) d(u, p) ≤ d(v, p); and
(2) there exists a number K ≥ 1 such that, for all z ∈ γ, d(z, p) ≤ Kd(u, p).

Then γ is µ1K2-quasiconvex and c2-uniform in (Ω, d), where c2 = 2µ1K2(8µ1 + 1)2.

Next, we state and prove a couple of technical lemmas.

Lemma 4.1. Let u, v ∈ Ω, and let γ be an hu,v-short µ1-uniform arc γ in (Ω, dp)
connecting u and v. Suppose that d(u, p) ≤ 1

8 d(v, p) and that d(z, p) ≤ 2d(v, p) for
all z ∈ γ. Then γ is c3-quasiconvex and c4-uniform in (Ω, d), where c3 = 28µ1 and
c4 = 224µ2

1(8µ1 + 1)2.

Proof. Let t = d(u, p) and let n be the integer such that

2nt ≤ d(v, p) < 2n+1t.

Then n ≥ 3. For 1 ≤ i ≤ n − 1, we use ui to denote the first point in γ from u to v such
that d(ui, p) = 2it.

Set u0 = u, un = v and γi = γ[ui−1, ui] for each 1 ≤ i ≤ n. Then we know that, for all
i ∈ {1, . . . , n},

1
2 d(ui, p) ≤ d(ui−1, ui) ≤ 3

2 d(ui, p) and 2i−1t ≤ d(ui−1, ui) ≤ 3 · 2i−1t. (4-1)

Moreover, for each i < j ∈ {0, . . . , n}, it follows from Lemma C that

dp(ui, u j) ≥
d(ui, u j)

4d(ui, p)d(u j, p)
≥

d(u j, p) − d(ui, p)
4d(ui, p)d(u j, p)

≥
1

4d(u j, p)
,

and for all q ∈ ∂Ω \ {p},

δΩ,dp (u j) ≤ dp(u j, q) ≤
d(u j, q)

d(u j, p)d(p, q)
.

Then we deduce from these inequalities that

kΩ,dp (ui, u j) ≥ log
(
1 +

dp(ui, u j)
δΩ,dp (u j)

)
≥ log

(
1 +

d(p, q)
4d(u j, q)

)
,
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and so
kΩ,dp (ui, u j) ≥ log

(
1 +

b(p)
4diam(Ω)

)
≥ hu,v.

Therefore, we see from Lemma 2.4 that, for each i < j ∈ {2, . . . , n}, γ[u j, u j] is hu,v-
short µ1-uniform.

Next, we check the quasiconvexity of γ in (Ω, d). By the choice of ui, we have, for
all z ∈ γ[ui−1, ui],

d(z, p) ≤ 2d(ui−1, p).

Then with the substitution

(γ, u, v,K) 7→ (γi, ui−1, ui, 2)

(we note that this means that the arc γ, the points u, v and the constant K are replaced
by γi, ui−1, ui and 8, respectively), Lemma E gives

`(γi) ≤ 4µ1d(ui−1, ui) ≤ 2i+4µ1t,

and thus

`
( i⋃

r=1

γr

)
=

i∑
r=1

`(γr) ≤ µ1t
i∑

r=1

2r+4 ≤ 2i+5µ1t ≤ 26+i−nµ1d(u, v), (4-2)

where the last inequality holds since

d(u, v) ≥ d(v, p) − d(u, p) ≥ 2nt − t ≥ 2n−1t.

By taking i = n, we see from (4-2) that γ is c3-quasiconvex with c3 = 26µ1.
Now, to prove the uniformity of γ, we only need to deal with the cigar condition of

γ. Indeed we shall show that, for any z ∈ γ,

min{`(γ[u, z]), `(γ[v, z])} ≤ c4δΩ(z), (4-3)

where c4 = 224µ2
1(8µ1 + 1)2.

Let z ∈ γ. Note that there is a % ∈ {1, . . . , n} such that z ∈ γ%. We separate the
discussions into three cases by considering the position of z in γ.

Case 4. z ∈ γ1.
In this case, we see from (4-2) that

`(γ[u, z]) ≤ `(γ1) ≤ 210µ1t,

and at the same time (4-1) leads to

`(γ[z, u2]) ≥ `(γ[u1, u2]) ≥ d(u1, u2) ≥ t.

It follows that
`(γ[z, u2]) ≥

1
29µ1

`(γ[u, z]).
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By the choice of u2, for w ∈ γ[u, u2],

d(w, p) ≤ 4d(u, p).

Then we infer from Lemma E with the substitution

(γ, u, v,K) 7→ (γ[u0, u2], u0, u2, 4)

that

δΩ(z) ≥
1

25µ1(8µ1 + 1)2 min{`(γ[u, z]), `(γ[z, u2])} ≥
1

214µ2
1(8µ1 + 1)2

`(γ[u, z]),

which implies that
`(γ[u, z]) ≤ 214µ2

1(8µ1 + 1)2δΩ(z), (4-4)

as needed.

Case 5. z ∈ γn−1 ∪ γn.
For z ∈ γ, we have d(z, p) ≤ 2d(v, p) and thus

d(z, p) ≤ 16d(un−2, p).

By the substitution
(γ, u, v,K) 7→ (γ[un−2, y], un−2, y, 16),

we can get from Lemma E that

`(γ[z, y]) ≤ `(γ[un−2, y]) ≤ 28µ1d(un−2, y) < 2n+10µ1t.

Moreover, by (4-1) we obtain

`(γ[un−3, z]) ≥ `(γ[un−3, un−2]) ≥ d(un−3, un−2) ≥ 2n−3t,

which yields
`(γ[z, v]) ≤ 213µ1`(γ[un−3, z]).

Again by Lemma E with the substitution

(γ, u, v,K) 7→ (γ[un−3, y], un−3, y, 32),

we obtain that

δΩ(z) ≥
1

211µ1(8µ1 + 1)2 min{`(γ[un−3, z]), `(γ[z, v])} ≥
1

224µ2
1(8µ1 + 1)2

`(γ[z, v]),

so that
`(γ[z, v]) ≤ 224µ2

1(8µ1 + 1)2δΩ(z).

Case 6. z ∈ γ2 ∪ · · · ∪ γn−2 when n ≥ 4.
We see from the choice of u% that, for z ∈ γ[u%−2, u%+1]),

d(z, p) ≤ 8d(u%−2, p).
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Then it follows from Lemma E with the substitution

(γ, u, v,K) 7→ (γ[u%−2, u%+1], u%−2, u%+1, 8)

that
27µ1(8µ1 + 1)2δΩ(z) ≥ min{`(γ[u%−2, z]), `(γ[z, u%+1])}. (4-5)

Since
`(γ[u%−2, z]) ≥ `(γ[u%−2, u%−1]) ≥ d(u%−2, u%−1) ≥ 2%−2t (4-6)

and
`(γ[z, u%+1]) ≥ `(γ[u%, u%+1]) ≥ 2st, (4-7)

we get that

`(γ[u, z]) ≤ `(γ[u, u%]) =

s∑
j=1

`(γ j) ≤ µ1t
s∑

j=1

2 j+6 ≤ 2s+7µ1t. (4-8)

The combination of (4-5)–(4-8) implies that

`(γ[u, z]) ≤ 216µ2
1(8µ1 + 1)2δΩ(z), (4-9)

which gives (4-3). Hence we have established the validity of Lemma 4.1. �

For the convenience of the reader, we may combine the derivation of (4-4) and (4-9)
into the following form.

Corollary 4.2. Under the assumptions of Lemma 4.1, let ui (i ∈ {0, 1, . . . , n}) denote
the consecutive points in γ determined at the beginning of Lemma 4.1. Then, for all
z ∈ γ[u0, un−2],

`(γ[u, z]) ≤ c5δΩ(z),

where c5 = 216µ2
1(8µ1 + 1)2.

Lemma 4.3. Let u, v ∈ Ω, and let γ be an hu,v-short µ1-uniform arc γ in (Ω, dp)
connecting u and v. Let z0 ∈ γ such that d(z0, p) = supz∈γ d(z, p). We have the following.

(1) If d(u, v) ≤ t/8µ1 min{d(u, p), d(v, p)}, then

d(z, p) ≤ 2 min{d(u, p), d(v, p)} for all z ∈ γ.

(2) If kΩ,dp (z0, u) ≤ hu,v, then d(z, p) ≤ 2d(u, p) for all z ∈ γ.
(3) If kΩ,dp (z0, v) ≤ hu,v, then d(z, p) ≤ 2d(v, p) for all z ∈ γ.

Proof. We first prove (4.3). Without loss of generality, we may assume that d(u, p) ≤
d(v, p). Then we know from Lemma C that

dp(u, v) ≤
d(u, v)

d(u, p)d(p, v)
≤

1
8µ1d(u, p)

.

For z ∈ γ, we infer from the uniformity of γ in (Ω, dp) and Lemma C that

d(u, z)
4d(u, p)d(p, z)

≤ dp(u, z) ≤ `dp (γ) ≤ µ1dp(u, v) ≤
1

8d(u, p)
,
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which implies that
d(u, z) ≤ 1

2 d(p, z).

Thus we have
d(u, p) ≥ d(p, z) − d(u, z) ≥ 1

2 d(p, z),

as desired.
Next, we shall check (2). Since kΩ,dp (z0, u) ≤ hu,v, we have

log
(
1 +

dp(z0, u)
δΩ,dp (z0)

)
≤ kΩ,dp (z0, u) ≤ hu,v ≤ log

(
1 +

b(p)
4diam(Ω)

)
.

Then, for any q ∈ ∂Ω \ {p}, Lemma C guarantees that

d(z0, u)
4td(z0, p)

≤ dp(z0, u) ≤
b(p)

4diam(Ω)
δΩ,dp (z0) ≤

b(p)
4diam(Ω)

·
d(z0, q)

d(z0, p)d(p, q)
.

By taking the supremum with respect to q in ∂Ω \ {p}, we obtain that

d(z0, u) ≤ d(u, p),

and thus, for z ∈ γ,

d(p, z) ≤ d(z0, p) ≤ d(u, p) + d(z0, u) ≤ 2d(u, p).

Therefore, we obtain (2).
By symmetry, we know that the proof of (3) is similar to the proof of (2). Hence,

the proof of the lemma is complete. �

Theorem 4.4. Suppose that X is a complete metric space and that Ω ⊂ X is a domain
with card (∂Ω) ≥ 2 and p ∈ ∂Ω. If Ω is bounded and (Ω, dp) is c-uniform, then (Ω, d) is
c′′-uniform with c′′ = C0(diam(Ω)/b(p)), where C0 = C0(c) and b(p) = sup{d(p,q)| q ∈
∂Ω}.

Proof. Let x, y ∈ Ω. Then by Lemma 2.4(1) we know that there exists an hx,y-short
µ1-uniform arc γ in (Ω, dp) connecting x and y with µ1 = µ1(c) and that

hx,y ≤ min
{
kΩ,dp (x, y), log

(
1 +

b(p)
4diam(Ω)

)}
.

We shall show that this γ is c′′-uniform in (Ω, d) with c′′ depending only on c.
To this end, we let z0 in γ be such that, for all z ∈ γ, d(z0, p) ≥ d(z, p). Set s = d(y, p),

t = d(x, p), σ = d(z0, p) and τ = (diam(Ω)/b(p)). Without loss of generality, we may
assume that t ≤ s. Then we divide the proof into the following three cases.

Case a. Either d(x, y) ≤ t/8µ1 or d(x, y) > t/8µ1 and kΩ,dp (z0, x) ≤ hx,y.
In this case, it follows from Lemmas 4.3 and E that γ is 8µ1(8µ1 + 1)2-uniform in

(Ω, d).

Case b. d(x, y) > t/8µ1 and kΩ,dp (z0, y) ≤ hx,y.
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If d(y, p) ≤ 8t, then we obtain that, for all z ∈ γ,

d(z, p) ≤ 16t.

By taking K = 16, it follows from Lemma E that γ is 29µ1(8µ1 + 1)2-uniform in (Ω, d).
Now, we assume that d(y, p) > 8t. Then, by Lemmas 4.1 and 4.3, we see that γ is

c4-uniform in (Ω, d), where c4 = 224C1(8C1 + 1)2.

Case c. d(x, y) > t/8µ1, kΩ,dp (z0, x) > hx,y and kΩ,dp (z0, y) > hx,y.
First, note that, by Lemma 2.4(2), both γ[z0, x] and γ[y, z0] are hx,y-short µ1-uniform

arcs. Then we claim that
σ ≤ 8µ1sτ. (4-10)

We may assume that σ ≥ 8s since otherwise the claim is clear. Since t ≤ s, we know
that

7
8σ ≤ σ − d(x, p) ≤ d(z0, x) ≤ σ + d(x, p) ≤ 9

8σ. (4-11)

Similarly,
7
8σ ≤ d(z0, y) ≤ 9

8σ.

Thus we infer from Lemma C that

`dp (γ[z0, x]) ≥ dp(z0, x) ≥
d(z0, x)

4σt
>

1
8t

and
`dp (γ[z0, y]) ≥ dp(z0, y) >

1
8s
.

Then the uniformity of γ in (Ω, dp) gives

µ1δΩ,dp (z0) ≥ min{`dp (γ[z0, x]), `dp (γ[z0, y])} >
1
8s
,

and thus
δΩ,dp (z0) ≥

1
8µ1s

. (4-12)

On the other hand, for any q ∈ ∂Ω \ {p}, Lemma C shows that

δΩ,dp (z0) ≤ dp(z0, q) ≤
d(z0, q)
σd(p, q)

,

and so
δΩ,dp (z0) ≤

τ

σ
. (4-13)

Therefore, (4-10) follows from (4-12) and (4-13).
Moreover, we need to check the following estimates for the arc length of γ[x, z0]

and γ[y, z0]: that is,

`(γ[z0, x]) ≤ 29µ1σ and `(γ[y, z0]) ≤ 29µ1σ. (4-14)
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This can be seen as follows. Since σ ≥ 8s ≥ 8t, it follows from Lemma 4.1 and
(4-11) that

`(γ[z0, x]) ≤ 28µ1d(z0, x) ≤ 29µ1σ

and
`(γ[z0, y]) ≤ 28µ1d(z0, y) ≤ 29µ1σ.

Thus the proof of (4-14) is complete.
Now, we are ready to show the uniformity of γ in (Ω, d). First, we see from (4-10)

and (4-14) that

`(γ) = `(γ[z0, x]) + `(γ[y, z0]) ≤ 210µ1σ ≤ 213µ2
1sτ. (4-15)

By considering the cases s ≥ 2t and s < 2t, we can deduce from the triangle inequality
d(x, y) ≥ s − t and d(x, y) ≥ t/8µ1 that

d(x, y) ≥
s

16µ1
.

This, together with (4-15), implies that

`(γ) ≤ 217µ3
1τd(x, y),

which shows that γ is c6-quasiconvex with c6 = 217µ3
1τ.

It remains to prove the cigar condition of γ. Let m, n be two integers such that

2mt ≤ σ < 2m+1t and 2ns ≤ σ < 2n+1s.

Thus we have m ≥ 3 and n ≥ 3. Then, for each i ∈ {0, . . . ,m}, let ui be the first point
from x to z0 in γ[z0, x] with

d(ui, p) = 2it.

Similarly, for each j ∈ {0, . . . , n}, we let v j be the first point from y to z0 in γ[y, z0] with

d(v j, p) = 2 js.

By applying Corollary 4.2 to γ[z0, x] and γ[y, z0], respectively, we get that

`(γ[x, z]) ≤ c5δΩ(z) for z ∈ γ[x, um−2]

and
`(γ[y, z]) ≤ c5δΩ(z) for z ∈ γ[y, vn−2].

So we only need to consider the case when z ∈ γ[um−2, vn−2]. By the choice of the
points um−3, vn−3 and z0, we have

max{d(um−3, p), d(vn−3, p)} ≤ d(z0, p) ≤ 16 min{d(um−3, p), d(vn−3, p)}.

Then Lemma E is available to γ[u′, v′] with the substitution K = 16, which yields

min{`(γ[um−3, z]), `(γ[z, vn−3])} ≤ 29µ1(8µ1 + 1)2δΩ(z).
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Without loss of generality, we may assume that `(γ[um−3, z]) ≤ `(γ[z, vn−3]). Thus

29µ1(8µ1 + 1)2δΩ(z) ≥ `(γ[um−3, z]) ≥ `(γ[um−3, um−2])
≥ d(um−3, um−2) ≥ 2m−3t.

This, together with (4-15), shows that

min{`(γ[x, z]), `(γ[z, y])} ≤ 1
2`(γ) ≤ 29µ1σ

≤ 2m+10µ1t

≤ 222µ2
1(8µ1 + 1)2δΩ(z).

It follows that γ is c′′-uniform, where c′′ = max{217µ3
1τ, 2

22µ2
1(8µ1 + 1)2}. The proof of

Theorem 4.4 is complete. �

4.2. Ω is unbounded. In this subsection, we consider the case when Ω is
unbounded.

Theorem 4.5. Suppose that X is a complete metric space and that Ω ⊂ X is a domain
with card (∂Ω) ≥ 2 and p ∈ ∂Ω. If Ω is unbounded and (Ω, dp) is c-uniform, then (Ω, d)
is c′′-uniform with c′′ depending only on c.

Proof. Let p′ ∈ Inv p(X) correspond to ∞ ∈ X̂. Since (Ω, dp) is c-uniform, we get
from Theorem 4.4 that (Ω, (dp)p′) is c′-uniform with c′ = c′(c). Then it follows from
[5, Proposition 3.7] that (Ω, d) is c′′-uniform with c′′ depending only on c. �

5. Quasi-Möbius preserves uniform domains

In this section, we prove that uniform domains are preserved under quasi-Möbius
mappings in quasiconvex metric spaces. To this end, some useful lemmas are needed.

Lemma F [4, Theorem 3.1]. Suppose that (X, d) is a c-quasiconvex complete metric
spaces and that Ω ⊂ X is a domain. Then the following conditions are equivalent:

(1) Ω is a-uniform;
(2) kΩ(x, y) ≤ a1 jΩ(x, y) + b; and
(3) kΩ(x, y) ≤ 4a2 jΩ(x, y),

where the constants a and a1, b depend on each other and c.

Lemma 5.1. Suppose that (Xi, di) are c-quasiconvex complete metric spaces, that
Ωi ⊂ Xi are domains (i = 1, 2) and that f : Ω1 → Ω2 is an η-quasisymmetric
homeomorphism. Then there exist constants M > 0 and C ≥ 0 depending only c and η
such that

kΩ1 (x, y) −C
M

≤ kΩ2 ( f (x), f (y)) ≤ MkΩ1 (x, y) + C

for all x, y ∈ Ω1.
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Proof. By symmetry, we only need to prove the second inequality. By [16, Lemma
3.9], we know that (Ω, kΩ1 ) is λ-quasiconvex for all λ ≥ 1. Then, in view of [27,
Lemma 2.3], it suffices to find a constant s depending only on c and η such that
kΩ2 ( f (x), f (y)) ≤ 1 whenever kΩ1 (x, y) ≤ s.

To this end, let s with 0 < s < 1
2 be a constant such that η(2s) ≤ 1/6c, and let

x, y ∈ Ω1 with kΩ1 (x, y) ≤ s. Then Lemma A implies that

d1(x, y)
δΩ1 (x)

≤ 2kΩ1 (x, y) ≤ 2s.

By [27, Lemma 6.12], f extends to an η-quasisymmetric homeomorphism f : Ω1 →

Ω2. Let w ∈ ∂Ω1 with d2( f (x), f (w)) ≤ 2dΩ2 ( f (x)). Thus we obtain

d2( f (x), f (y))
δΩ2 ( f (x))

≤ 2
d2( f (x), f (y))
d2( f (x), f (w))

≤ 2η
( d1(x, y)
d1(x,w)

)
≤ 2η

(d1(x, y)
δΩ1 (x)

)
≤ 2η(2s) <

1
3c
.

Again by Lemma A, we have kΩ2 ( f (x), f (y)) ≤ 1, and thus the proof of Lemma 5.1 is
complete. �

Lemma 5.2. Suppose that (Xi, di) are c-quasiconvex complete metric spaces, that
Ωi ⊂ Xi are domains (i = 1, 2) and that f : Ω1 → Ω2 is an η-quasisymmetric
homeomorphism. Then there exist constants M1 ≥ 1 and C1 ≥ 0 depending only c and
η such that

jΩ1 (x, y) −C1

M1
≤ jΩ2 ( f (x), f (y)) ≤ M1 jΩ1 (x, y) + C1

for all x, y ∈ Ω1.

Proof. By [27, Lemma 6.14], we may assume that η(t) = C0 max{tα, t1/α}, where
C0 ≥ 1, 0 < α ≤ 1. Let x, y ∈ Ω1. We may assume that δΩ2 ( f (x)) ≤ δΩ2 ( f (y)). By [27,
Lemma 6.12], f extends to an η-quasisymmetric homeomorphism f : Ω1 → Ω2. Let
w ∈ ∂Ω1 with d2( f (x), f (w)) ≤ 2δΩ2 ( f (x)). Denote r = (d1(x, y)/δΩ1 (x)). Thus we have
d(x, y) ≤ rd(x,w). Therefore, we obtain

d2( f (x), f (y))
δΩ2 ( f (x))

≤ 2
d2( f (x), f (y))
d2( f (x), f (w))

≤ 2η
( d1(x, y)
δ1(x,w)

)
≤ 2C0 max{rα, r1/α}.

This yields

jΩ2 ( f (x), f (y)) = log
(
1 +

d2( f (x), f (y))
δΩ2 ( f (x))

)
≤

1
α

log
(
1 +

d1(x, y)
δΩ1 (x)

)
+ log(1 + 2C0).

Finally, by symmetry, Lemma 5.2 holds by letting M1 = 1/α and C1 = log(1 + 2C0). �
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Lemma 5.3. Suppose that (Xi, di) are c-quasiconvex complete metric spaces and that
Ωi ⊂ Xi are domains (i = 1, 2), and suppose that f : Ω1 → Ω2 is an η-quasisymmetric
homeomorphism. If Ω1 is c1-uniform, then Ω2 is c2-uniform with c2 depending only on
c, c1 and η.

Proof. The proof of this lemma follows from Lemmas F, 5.1 and 5.2. �

Now we are ready to prove Theorem 1.4.

5.1. Proof of Theorem 1.4. We divide the proof into three cases.

Case 7. Both Ω1 and Ω2 are bounded.
Because both Ω1 and Ω2 are bounded, the quasi-Möbius mapping f is, in fact,

quasisymmetric and thus the desired conclusion follows from Lemma 5.3, in this case.

Case 8. Among Ω1 and Ω2, one of them is bounded while the other is unbounded.
By symmetry, we only need to consider the case where Ω1 is bounded and Ω2 is

unbounded. Choose a point p ∈ ∂Ω2 and set d′2 = d̂2,p. We know from Lemma D that
the identity map id : (Ω2, d2)→ (Ω2, d′2) is 16t-quasi-Möbius. Hence by composition,
we get a map g from (Ω1, d1)→ (Ω2, d′2) which is also quasi-Möbius. Moreover,
(Ω2, d′2) is bounded, so g is quasisymmetric. Since (Ω1, d1) is uniform, it follows from
Lemma 5.3 that (Ω2, d′2) is also uniform. Then, by Corollary 1.3, we get that (Ω2, d2)
is uniform.

Case 9. Both Ω1 and Ω2 are unbounded.
Choose points pi ∈ ∂Ωi and set d′i = d̂i,pi , where i = 1, 2. We know from

Lemma D that the identity map id : (Ωi, di)→ (Ωi, d′i ) is 16t-quasi-Möbius. Hence
by composition, we get a map g from (Ω1, d′1)→ (Ω2, d′2) which is also quasi-Möbius.
Moreover, (Ωi, d′i ) are bounded, so g is quasisymmetric. Since (Ω1, d1) is uniform, it
follows from Corollary 1.3 and Lemma 5.3 that (Ω2, d′2) is also uniform. Then, again
by Corollary 1.3, we get that (Ω2, d2) is uniform.

The proof of Theorem 1.4 is complete. �
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