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Abstract

We present the first algorithm that samples maxn≥0{Sn − nα}, where Sn is a mean zero

random walk, and nα with α ∈ ( 1
2 , 1) defines a nonlinear boundary. We show that our

algorithm has finite expected running time. We also apply this algorithm to construct the
first exact simulation method for the steady-state departure process of a GI/GI/∞ queue
where the service time distribution has infinite mean.
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1. Introduction

Consider a random walk Sn = ∑n
i=1 Xi for n ≥ 1 and S0 = 0, where {Xi : i ≥ 1} is a sequence

of independent and identically distributed random variables with E[X1] = 0 and var (X1)<∞.
Without loss of generality, we shall also assume that var (X1) = 1. Moreover, we shall impose
the following light-tailed assumption on the distribution of the Xi.

Assumption 1. There exists δ > 0, such that E[exp (θX1)]<∞ for all θ ∈ (−δ, δ).
In this paper we develop the first algorithm that generates perfect samples (i.e. samples

without any bias) from the random variable

Mα = max
n≥0

{Sn − nα},

where α ∈ ( 1
2 , 1). Moreover, we will show that our algorithm has finite expected running time.

There has been a substantial amount of work on exact sampling (i.e. sampling without any
bias) from the distribution of the maximum of a negative drifted random walk, e.g. M1 in
our setting. Ensor and Glynn [6] proposed an algorithm to sample the maximum when the
increments of the random walk are light tailed (i.e. Assumption 1 holds). Blanchet et al. [2]
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proposed an algorithm to simulate a multidimensional version of M1 driven by Markov random
walks. Blanchet and Wallwater [4] developed an algorithm to sample M1 for the heavy-tailed
case, which requires only that E[|X1|2+ε]<∞ for some ε > 0 to guarantee finite expected
termination time.

Some of this work was motivated by the fact that M1 plays an important role in ruin theory
and queueing models. For example, the steady-state waiting time of a GI/GI/1 queue has
the same distribution as M1, where Xi corresponds to the (centred) difference between the
ith service time and the ith interarrival time (see [1]). Moreover, applying coupling from
the past (CFTP) (see, for example, [9] and [8]), the techniques to sample M1 jointly with
the random walk {Sn : n ≥ 0} have been used to obtain perfect sampling algorithms for more
general queueing systems, including multi-server queues [5], infinite-server queues, and loss
networks [3], and multidimensional reflected Brownian motion with oblique reflection [2].

The fact that Mα stochastically dominates M1 makes the development of a perfect sampler
for Mα more difficult. For example, the direct use of exponential tilting techniques as in [6] is
not applicable. However, similar to some of the previous work, the algorithmic development
uses the idea of record-breakers (see, e.g. [3]) and randomization procedures similar to the
heavy-tailed context studied in [4].

The techniques that we study here can be easily extended, using the techniques studied in
[2], to obtain exact samplers of a multidimensional analogue of Mα driven by Markov random
walks (as done in [2] for the case α = 1). Moreover, using the domination technique introduced
in Section 5 of [5], the algorithms that we present here can be applied to the case in which the
term nα is replaced by g(n) as long as there exists n0 > 0 such that g(n) ≥ nα for all n ≥ n0.

We mentioned earlier that algorithms which simulate M1 jointly with {Sn : n ≥ 0} have been
used in applications of CFTP. Since the random variable Mα dominates M1, and we also
simulate Mα jointly with {Sn : n ≥ 0}, we expect our results here to be applicable to perfect
sampling (using CFTP) for a wide range of processes. In this paper, we will show how to use the
ability to simulate Mα jointly with {Sn : n ≥ 0} to obtain the first algorithm which samples from
the steady-state departure process of an infinite-server queue in which the job requirements
have infinite mean; the case of finite mean service/job requirements is treated in [3].

The rest of the paper is organized as follows. In Section 2 we discuss our sampling strategy.
Then we provide a detailed running time analysis in Section 3. Finally, the application to exact
simulation of the steady-state departure process of an infinite-server queue with infinite mean
service time is given in Section 4.

2. Sampling strategy and main algorithmic development

Our goal is to simulate Mα using a finite but random number of Xi. To achieve this goal, we
introduce the idea of record breakers.

Let ψ(θ ) := log E[exp (θXi)]. As ψ(θ ) = 1
2θ

2 + o(θ2) by Taylor’s expansion, there exists
δ′ < δ such that ψ(θ ) ≤ θ2 for θ ∈ (−δ′, δ′). Let

a ∈
(

0,min
{

4δ′, 1

2

})
and b = 4

a
log

(
4

( ∞∑
n=0

2n exp (−a222nα−n−4
))

. (1)

These choices of a and b will become clear in the proof of Lemma 1. We define a sequence of
record-breaking times as T0 := 0. For k = 1, 2, . . . , if Tk−1 <∞,

Tk := inf{n> Tk−1 : Sn > STk−1 + a(n − Tk−1)α + b(n − Tk−1)1−α};
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otherwise if Tk−1 = ∞ then Tk = ∞. We also define

κ := inf{k> 0: Tk = ∞}.
Because the random walk has independent increments, P(Ti = ∞ | Ti−1 <∞) = P(T1 = ∞).
Thus, κ is a geometric random variable with probability of success

P(T1 = ∞).

We first show that κ is well defined.

Lemma 1. For a and b satisfying (1),

P(T1 = ∞) ≥ 3
4 .

Proof. We first note that

P(T1 <∞) =
∞∑

n=0

P(T ∈ [2n, 2n+1)) ≤
∞∑

n=0

∑
k∈[2n,2n+1)

P(Sk > akα + bk1−α).

For any k ∈ [2n, 2n+1),

P(Sk > akα + bk1−α) ≤ exp (kψ(θ ) − θ (akα + bk1−α))

≤ exp (2n+1ψ(θ ) − θa2αn − θb2(1−α)n)

for any θ ∈ (−δ, δ). We define θn = a2(α−1)n−2. Since a< 4δ′, we have θn < δ
′. Then

kP(Sk > akα + bk1−α) ≤ exp (2n+1θ2
n − θna2αn − θnb2(1−α)n)

= exp
(
− a222nα−n−3 − ab

4

)
.

Therefore,

P(T1 <∞) ≤
( ∞∑

n=0

2n exp (−a222nα−n−3)

)
exp

(
− ab

4

)
≤ 1

4
,

where the last inequality follows from our choice of b. �
Let

ξ := max
n≥0

{
(anα + bn1−α) − 1

2
nα

}
. (2)

As a< 1
2 , ξ <∞. Conditional on the value of κ and the values of {Xicolon1 ≤ i ≤ Tκ−1}, we

define

	(κ) := �(2STκ−1 + 2ξ )1/α	. (3)

The choice of ξ will become clear in the proof of Lemma 2. We will next establish that

Mα = max
0≤n≤Tκ−1+	(κ)

{Sn − nα}.

Lemma 2. For n ≥ Tκ−1 + 	(κ),

Sn ≤ nα .
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FIGURE 1: Bounds for record breakers.

Proof. For ξ defined in (2), we have, for any n ≥ 0,

anα + bn1−α ≤ 1

2
nα + ξ .

Since Tκ = ∞, for n ≥ 	(κ),

STκ−1+n ≤ anα + bn1−α + STκ−1 ≤ 1

2
nα + ξ + 1

2
	(κ)α − ξ ≤ nα ≤ (Tκ−1 + n)α . �

Figure 1 demonstrates the basic idea of our algorithmic development. (Note that the figure
is rescaled for illustrative purposes. In actual simulation, the record-breaking events happen
with a very small probability.) The solid line is nα . The first dotted line from the left (lowest
dashed curve) is the record-breaking boundary that we start with, anα + bn1−α . T1 is the first
record-breaking time. Based on the value of ST1 , we construct a new record-breaking boundary,
ST1 + a(n − T1)α + b(n − T1)1−α (the second dashed line from the left). At time T2, we have
another record breaker. Based on the value of ST2 , we construct again a new record-breaking
boundary, ST2 + a(n − T2)α + b(n − T2)1−α (the third dashed line from the left). If, from T2
on, we never break the record again (T3 = ∞), then we know that, for large enough n (say,
n> 100 in the figure), Sn will never pass the solid boundary again. Note that here we will need
a< 1, which is guaranteed by (1), but a tighter constraint is imposed on a in (1) for algorithmic
development and technical reasons related to Lemma 1 and 2.

The actual simulation strategy goes as follows.

Algorithm 1. Sampling 	(κ) together with (Xi : 1 ≤ i ≤ Tκ−1 + 	(κ)).

(i) Initialize T0 = 0, k = 1.

(ii) For Tk−1 <∞, sample J ∼ Bernoulli(P(Tk = ∞ | Tk−1)).

(iii) If J = 0, sample (Xi : i = Tk−1 + 1, . . . , Tk) conditional on Tk <∞. Set k = k + 1 and go
back to step (ii); otherwise (J = 1), set κ = k and go to step (iv).

(iv) Calculate 	(κ), sample (Xi : i = Tk−1 + 1, . . . , Tk−1 + 	(κ)) conditional on Tk = ∞.
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120 J. BLANCHET ET AL.

Remark 1. In general, any a<min
{

4δ′, 1

2

}
, and

b ≥ 4

a
log

(
4

( ∞∑
n=0

2n exp (−a222nα−n−4)

))

would work. However, there is a trade-off. The larger the values of a and b, the smaller the
value of κ , but the value of 	(κ) would be larger. We conduct a numerical study on the choice
of these parameters in Section 3.1.

In what follows, we shall elaborate on how to carry out steps (ii), (iii) and (iv) of
Algorithm 1. In particular, steps (ii) and (iii) are outlined in Procedure A below. Step (iv)
is outlined in Procedure B below.

2.1. Steps (ii) and (iii) in Algorithm 1

It turns out steps (ii) and (iii) can be carried out simultaneously using exponential tilting
based on the results and proof of Lemma 1.

We start by explaining how to sample the first record-breaking time T1. We introduce an
auxiliary random variable N with probability mass function (PMF)

p(n) = P(N = n) = 2n exp (−a222nα−n−3)∑∞
m=0 2m exp (−a222mα−m−3)

for n ≥ 1. (4)

We can then apply exponential tilting to sample the path (X1, X2 . . . , XT1 ) conditional on
T1 <∞.

When sampling the random walk, we use P( ·) to represent the measure induced by the
original distribution of the random walk, which we refer to as the nominal distribution. We
also denote Pθ ( ·) as the measure induced by the exponential tilting with tilting parameter θ .
The actual sampling algorithm goes as follows.

Procedure A. Sampling a Bernoulli J with probability of success P(J = 1) = P(T1 = ∞). If
J = 0, output (X1, . . . , XT1 ).

(i) Sample a random time N with PMF (4).

(ii) Let θN = a2N(α−1)−2. Generate X1, X2, . . . , X2N+1−1 under exponential tilting with tilting
parameter θN , i.e.

dPθN

dP
1{Xi ∈ A} = exp (θNXi −ψ(θN))1{Xi ∈ A}.

Let T1 = inf{n ≥ 1: Sn > anα + bn1−α} ∧ 2N+1.

(iii) Sample U ∼Uniform[0, 1]. If

U ≤ exp (−θNST1 + T1ψ(θN))

p(N)
1{T1 ∈ [2N, 2N+1)},

then set J = 0 and output (X1, X2, . . . , XT1 ); otherwise, set J = 1.

We next show that Procedure A works.
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Theorem 1. In Procedure A, J is a Bernoulli random variable with probability of success
P(T1 = ∞). If J = 0, the output (X1, X2, . . . , XT1 ) follows the distribution of (X1, X2, . . . , XT1 )
conditional on T1 <∞.

Proof. We first show that the likelihood ratio in step (iii) is less than 1 almost surely. Based
on this, we will then prove that P(J = 0) = P(T1 <∞). That is,

exp (−θnST1 + T1ψ(θn))

P(N = n)
1
{
T1 ∈ [2n, 2n+1)

} ≤ exp (−θn(a2αn + b2(1−α)n) + 2n+1θ2
n ))

P(N = n)

= exp (−a222nα−n−3 − ab/4)

P(N = n)

= 2−n exp
(
−ab

4

) ∞∑
m=0

2m exp (−a222mα−m−3)

≤ 1

4
,

where the last inequality follows from our choice of b as in the proof of Lemma 1.
We next prove that P(J = 0) = P(T1 <∞):

E[1{J = 0}|N = n] =Eθn

[
1
{

U ≤ exp (−θnST1 + T1ψ(θn))

p(n)

}
1{T1 ∈ [2n, 2n−1)}

]

=Eθn

[exp (−θnST1 + T1ψ(θn))

p(n)
1{T1 ∈ [2n, 2n+1)}

]

= P(T1 ∈ [2n, 2n+1))

p(n)
,

where the second equation uses the result that the likelihood ratio is less than 1; the last
equation follows from the observation that

dP

dPθn

(1{T1 ∈ [2n, 2n+1)}) = exp (−θnST1 + T1ψ(θn))1{T1 ∈ [2n, 2n+1)}.

Then we have

E[1{J = 0}] =
∞∑

n=0

E[1{J = 0} | N = n]p(n) =
∞∑

n=0

P(T1 ∈ [2n, 2n+1)) = P(T1 <∞).

Let P
∗( ·) denote the measure induced by Procedure A. We next show that P

∗(X1 ∈
A1, . . . , Xt ∈ At | J = 0) = P(X1 ∈ A1, . . . , Xt ∈ At|T1 <∞), where t is a positive integer, and
Ai ⊂R, i = 1, 2, . . . , t, is a sequence of Borel measurable sets satisfying Ai ⊂ {x ∈R : x ≤
aiα + bi1−α} for i< t and At ⊂ {x ∈R : x> atα + bt1−α}. Let nt := log2 t�. Then

P
∗(X1 ∈ A1, . . . , Xt ∈ At | J = 0)

= P
∗(X1 ∈ A1, . . . , Xt ∈ At, J = 0)

P(J = 0)
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= P(N = nt)

P(T1 <∞)
Eθnt

[
1{X1 ∈ A1, . . . , Xt ∈ At}1

{
U ≤ exp (−θnt St + tψ(θnt ))

p(nt)

}]

= p(nt)

P(T1 <∞)
Eθnt

[
1{X1 ∈ A1, . . . , Xt ∈ At}exp (−θnt St + tψ(θnt ))

p(nt)

]

= E[1{X1 ∈ A1, . . . , Xt ∈ At}]
P(T1 <∞)

= P(X1 ∈ A1, . . . , Xt ∈ At | T1 <∞). �
The extension from T1 to Tk is straightforward: for Tk−1 <∞, given the value of Tk−1 and

STk−1 , we essentially start the random walk afresh from STk−1 for each Tk−1. Thus, to execute
steps (ii) and (iii) of Algorithm 1, given Tk−1 <∞, we can apply Procedure A. If J = 0, we
denote (X̃1, X̃2, . . . , X̃T ) as the output from Procedure A, and set (XTk−1+1, . . . , XTk−1+T ) =
(X̃1, . . . , X̃T ) and Tk = Tk−1 + T; otherwise, set κ = k.

2.2. Step (iv) in Algorithm 1

Sampling (X1, . . . , XTκ−1 ) is realized by iteratively applying Procedure A until it outputs
J = 1. Once we have found κ , we achieve sampling (XTκ−1+1, . . . , XTκ−1+	(κ)) by developing
a procedure that could sample (XTκ−1+1, . . . , XTκ−1+n) with any given n> 0, conditioning on
the fact that the trajectory of the random walk never passes the nonlinear upper bound, STκ−1 +
a(n − Tκ−1)α + b(n − Tκ−1)1−α . To be more precise, given κ = k, for any n> 0 (including
n = 	(κ)), we would like to sample (XTκ−1+1, . . . , XTκ−1+n) from P(· | Fk−1, Tk = ∞), where
{Fk : k ≥ 0} denote the filtration generated by the random walk. We can achieve this conditional
sampling using the acceptance–rejection technique.

We first introduce a method to simulate a Bernoulli random variable with probability of
success P(T1 = ∞ | T1 > t, St), which follows a similar exponential tilting idea as that used in
Section 2.1. In analogy to Section 2.1, we introduce a record-breaking time with a temporal–
spatial shift, and an auxiliary random variable leading to the definition of the tilting parameter.

Let

T̃ t,s := inf{n ≥ 0: s + Sn > a(n + t)α + b(n + t)1−α}.
Given t, we introduce an auxiliary random variable Ñ(t) with PMF

pt(n) = P(Ñ(t) = n) = 2n exp (−2−n−4a2(2n + t)2α)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

for n ≥ 1. (5)

Given Ñ(t) = n, we apply exponential tilting to sample (X̃1, X̃2, . . . , X̃2n+1−1), with tilting
parameter

θ̃n(t) = 2−n−2a(2n + t)α,

i.e.

dPθ̃n(t)

dP
1{Xi ∈ A} = exp (θ̃n(t)Xi −ψ(θ̃n(t)))1{Xi ∈ A}.

We also define S̃k := X̃1 + · · · + X̃k for k ≥ 1, and

T̃ = inf{n ≥ 0: s + S̃n > a(n + t)α + b(n + t)1−α} ∧ 2n+1.
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Let

J̃ = 1 − 1
{

U ≤ exp (−θ̃nS̃T̃ + T̃ψ(θ̃n))

pt(n)
1{T̃ ∈ [2n, 2n+1)}

}
, (6)

where U ∼Uniform[0, 1].

Lemma 3. For J̃ defined in (6), when s< atα/4, we have

P(J̃ = 1) = P(T̃ t,s = ∞).

Proof. We first note that

exp (−θ̃nST̃ + T̃ψ(θ̃n))

pt(n)
I{T̃ ∈ [2n, 2n+1)}

≤ 1

pt(n)
exp

(
− θ̃n

(
a(2n + t)α + b(2n + t)1−α − a

4
tα

)
+ 2n+1θ̃2

n

)

≤ 1

pt(n)
exp

(
− 2−n−3a2(2n + t)2α + 2−n−4a2(2n + t)2α − ab

4

)

= 1

pt(n)
exp

(
− 2−n−4a2(2n + t)2α − ab

4

)

≤
( ∞∑

m=0

2m exp (−2−m−4a2(2m + t)2α)

)
exp

(
−ab

4

)

≤
( ∞∑

m=0

2m exp (−a222mα−m−4)

)
exp

(
−ab

4

)

≤ 1

4
,

where the last inequality follows from our choice of a and b. The rest of the proof follows
exactly the same steps as the proof of Theorem 1. We shall omit it here. �

Let

L(n) = inf
{

k ≥ n : Sk > akα + bk1−α or Sk <
a

4
kα

}
.

The sampling algorithm goes as follows.

Procedure B. Sampling (X1, . . . , Xn) conditional on T1 = ∞.

(i) Sample (X1, . . . , Xn) under the nominal distribution P( ·).
(ii) If max1≤k≤n{Sk − akα − bk1−α}> 0, go back to step (i); otherwise, go to step (iii).

(iii) Sample L(n) and (Xn+1, Xn+2, . . . , XL(n)) under the nominal distribution P( ·). If SL(n) >

aL(n)α + bL(n)1−α , go back to step (i); otherwise, go to step (iv).

(iv) Sample Ñ with probability mass function pL(n) defined in (5). Generate

(
X̃1, X̃2, . . . , X̃2Ñ+1−1

)
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124 J. BLANCHET ET AL.

under exponential tilting with tilting parameter θ̃ Ñ = 2Ñ−2a(2Ñ + L(n))α . Let

T̃ = inf{k ≥ 1: SL(n) + S̃k > a(k + L(n))α + b(k + L(n))1−α} ∧ 2Ñ+1.

(v) Sample U ∼Uniform[0, 1]. If

U ≤ exp (−θ̃ ÑST̃ + T̃ψ(θ̃ Ñ))

pt(Ñ)
1
{
T̃ ∈ [

2Ñ, 2Ñ+1)},
set J̃ = 0 and go back to step (i); otherwise, set J̃ = 1 and output (X1, . . . , Xn).

We next show that Procedure B works.

Theorem 2. The output of Procedure B follows the distribution of (X1, . . . , Xn) conditional
on T1 = ∞.

Proof. Let P′( ·) = P(· | T1 = ∞). We first notice that

dP′

dP
(X1, . . . , Xn) = 1{T1 > n}P(T1 = ∞ | Sn, T1 > n)

P(T1 = ∞)
≤ 1

P(T1 = ∞)
.

Let P′′( ·) denote the measure induced by Procedure B. Then we have, for any sequence of
Borel measurable sets Ai ⊂R, i = 1, 2, . . . , n,

P
′′(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1, . . . , Xn ∈ An | T1 > L(n), J̃ = 1)

= P(X1 ∈ A1, . . . , Xn ∈ An | T1 > L(n), T̃L(n),SL(n) = ∞)

= P(X1 ∈ A1, . . . , Xn ∈ An | T1 = ∞),

where the second equality follows from Lemma 3, and the third equality follows from the fact
that

P(T1 = ∞ | St, T1 > t) = P(T̃ t,St = ∞). �
To execute step (iv) of Algorithm 1, we apply Procedure B with n = 	(κ).

3. Running time analysis

In this section we provide a detailed running time analysis of Algorithm 1.

Theorem 3. Algorithm 1 has finite expected running time.

We divide the analysis into the following steps.

(a) From Lemma 1, the number of iterations between steps (ii) and (iii) follows a geometric
distribution with probability of success P(T1 = ∞) ≥ 3/4.

(b) In each iteration (when applying Procedure A), we will show that the length of the path
needed to sample J has finite moments of all orders (Lemma 4).

(c) For step (iv), we will show that 	(κ) has finite moments of all orders (Lemma 5).

(d) When applying Procedure B for step (iv), we will show that the total length of the paths
needed in Procedure B has finite moments of every order (Lemma 6).
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Lemma 4. The length of the path needed to sample the Bernoulli J in Procedure A has finite
moments of every order.

Proof. The length of the path generated in Procedure A is bounded by 2N+1, where the
distribution of N is defined in (4). Therefore, for all r> 0,

E[2(N+1)r] =
∑∞

m=0 2(m+1)r2m exp (−a222mα−m−3)∑∞
m=0 2m exp (−a222mα−m−3)

=
∑∞

m=0 exp (−a222mα−m−3 + (mr + r + m) log 2)∑∞
m=0 2m exp (−a222mα−m−3)

.

Since, for sufficiently large m,

exp (−a222mα−m−3 + (mr + r + m) log 2) ≤ exp (−a222mα−m−4);

for fixed r> 0, there exists C> 0 such that

∑∞
m=0 exp (−a222mα−m−3 + (mr + r + m) log 2)∑∞

m=0 2m exp (−a222mα−m−3)
≤ C

∑∞
m=0 exp (−a222mα−m−4)∑∞

m=0 2m exp (−a222mα−m−3)
<∞.

Note that this also implies that

E[Tr
11(T1 <∞)] ≤E[2(N+1)r1(J = 0)] ≤E[2(N+1)r]<∞.

�

Lemma 5. 	(κ) and L(	(κ)) have finite moments of any order.

Proof. We start with 	(κ). Let Rn := Sn − anα − bn1−α . For Ti <∞, we also define

Ri := STi − STi−1 − a(Ti − Ti−1)α − b(Ti − Ti−1)1−α .

Then we have

	(κ) = ⌈
(2STκ−1 + 2ξ )1/α⌉

=
⌈(

2
κ−1∑
i=1

(STi − STi−1 ) + 2ξ

)1/α⌉

=
⌈(

2
κ−1∑
i=1

Ri + 2
κ−1∑
i=1

(
a(Ti − Ti−1)α + b(Ti − Ti−1)1−α) + 2ξ

)1/α⌉

≤
⌈(

2
κ−1∑
i=1

Ri + 2κξ +
κ−1∑
i=1

(Ti − Ti−1)α
)1/α⌉

,

where the last inequality follows from the definition of ξ in (2).
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In what follows, we first prove that, conditioning on T1 <∞, RT1 has finite moments of
every order. That is,

E[eγRT1 1(T1 <∞)]

=
∞∑

n=0

E[eγRn 1(T1 = n)]

=
∞∑

n=0

E[eγ (Xn+Sn−1−anα−bn1−α)1(T1 = n)]

≤
∞∑

n=0

E[eγXn1(T1 = n)]

≤
∞∑

n=0

E[epγXn]1/p
E[1(T1 = n)]1/q

(
for p, q> 1,

1

p
+ 1

q
= 1 by Hölder’s inequality

)

=E[epγX1 ]1/p
∞∑

n=0

P(T1 = n)1/q.

Because X1 has moment generating function within a neighbourhood of 0, we can choose p> 0
and γ > 0 such that E[epγX1 ]1/p <∞. In the proof of Lemma 4 we showed that, for all r> 0,
E[Tr

11(T1 <∞)]<∞, which implies that P(T1 = n) = O(1/nr). As r can be any positive value,∑∞
n=0 P(T1 = n)1/q <∞.
We next show that 	(κ) has finite moments of all orders. By Jensen’s inequality, for any

fixed r ≥ 1,

E[	(κ)r] ≤E

[( κ−1∑
i=1

(Ti − Ti−1)α + 2κξ + 2
κ−1∑
i=1

Ri

)r/α]

≤ 3r/α−1
E

[( κ−1∑
i=1

(Ti − Ti−1)α
)r/α

+ (2κξ )r/α +
(

2
κ−1∑
i=1

Ri

)r/α]
. (7)

We shall analyse each of the three parts on the right-hand side of (7). As κ is a geometric
random variable, E[(2κξ )r/α]<∞. Hence,

E

[( κ−1∑
i=1

(Ti − Ti−1)α
)r/α]

=E

[
E

[( κ−1∑
i=1

(Ti − Ti−1)α
)r/α∣∣∣∣κ

]]

≤E

[
κr/α−1

E

[ κ−1∑
i=1

(Ti − Ti−1)r
∣∣∣∣κ

]]

≤E[κr/α
E[Tr

1 | T1 <∞]]

=E[κr/α]E[Tr
1 | T1 <∞]

<∞.
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Similarly, we have

E

[(
2
κ−1∑
i=1

Ri

)r/α]
≤E[(2κ)r/α]E[Rr/α

T1
| T1 <∞]<∞.

Therefore, we have

E[	(κ)r]<∞.

As for L(	(κ)), we first note that

L(	(κ)) − 	(κ) ≤ inf
{

n ≥ 0: Sn+	(κ) <
a

4
(n + 	(κ))α

}
.

Given 	(κ) = n∗ and S	(κ) = s∗, since s∗ < anα∗ + bn1−α∗ ,

P(L(	(κ)) − 	(κ)> n|	(κ) = n∗, S	(κ) = s∗)

≤ P

(
Sn ≥ a

4
(n + n∗)α − s∗

)

≤ P

(
Sn ≥ a

4
(n + n∗)α − anα∗ − bn1−α∗

)

≤ P

(
Sn ≥ a

4
(n + n∗)α − 1

2
nα∗ − ξ

)

≤ exp
(

nθ2 − θ
(a

4
(n + n∗)α − 1

2
nα∗ − ξ

))
for 0< θ < δ′.

Let wn = a(n + n∗)α/4 − nα∗/2 − ξ . If we pick θ = εn|wn/n|, where εn is chosen such that
θ < δ′, then

exp (nθ2 − θwn) ≤ exp
(
− w2

n

n
εn(1 − εn)

)
≤ exp

(
− w2

n

4n

)
.

We note that, for large enough n,

wn ≤ a

5
(n + n∗)α .

Thus, there exists C> 0, such that

P(L(	(κ)) − 	(κ)> n | 	(κ) = n∗, S	(κ) = s∗) ≤ C exp
(

− a2

100

(n + n∗)2α

n

)

≤ C exp
(

− a2

100
n2α−1

)
.

This implies that, given 	(κ) and S	(κ), L(	(κ)) − 	(κ) has finite moments of all orders. �
Lemma 6. The total length of the paths needed to sample the Bernoulli J̃ in Procedure B has
finite moments of every order.

Proof. To sample the trajectory, using the notations defined in Procedure B, the length of
each path generated, steps (i)–(iv), either accepted or rejected, satisfies

n + (L(n) − n)1{S̃k ≤ akα + bk1−α, 1 ≤ k ≤ n} + 2Ñ+11{S̃k ≤ akα + bk1−α, 1 ≤ k ≤ L(n)}
≤ L(n) + 2Ñ+1,

where Ñ is sampled in step (iv) according to (5).
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We start by establishing a bound for E[2rÑ] for any fixed r> 0. We have proved in Lemma 5
that, for all n, L(n) has finite moments of all orders. Moreover, for any r> 0, t> 0, Ñ(t)
generated from pt( ·) (defined in (5)) satisfies

E[2Ñ(t)r] =
∑∞

m=0 2(r+1)m exp (−2−m−4a2(2m + t)2α)∑∞
m=0 2m exp (−2−m−4a2(2m + t)2α)

. (8)

We next prove that E[2Ñ(t)r] = O(tr), which leads to the desired bound for E[2rÑ]. This is
achieved in two steps. In the first step we show that, for large enough m, the summand in the
numerator of (8) decays exponentially fast.

Let η1 := (22α − 2)/2. For large enough m, we have

2m ≥ (2 + η1)1/(2α) − 1

2 − (2 + η1)1/(2α)
t (9)

⇐⇒ 2m(2 − (2 + η1)1/(2α)) ≥ (2 + η1)1/(2α)t − t

⇐⇒ 2m+1 + t ≥ (2m + t)(2 + η1)1/(2α)

⇐⇒ (2m+1 + t)2α ≥ (2 + η1)(2m + t)2α .

Then we have

2(1+r)(m+1) exp (−2−(m+1)−4a2(2m+1 + t)2α)

2(1+r)m exp (−2−m−4a2(2m + t)2α)

= exp (−2−(m+1)−4a2(2m+1 + t)2α + 2−m−4a2(2m + t)2α + (1 + r) log 2)

= exp (−2−m−5a2((2m+1 + t)2α − 2(2m + t)2α) + (1 + r) log 2)

≤ exp (−2−m−5a2η1(2m + t)2α + (1 + r) log 2)

≤ exp (−2−5a2η12(2α−1)m + (1 + r) log 2). (10)

Note that (10) can be made arbitrarily small by having sufficiently large m. Thus, there exists
m(r) large enough such that, for m ≥ m(r),

2(1+r)(m+1) exp (−2−(m+1)−4a2(2m+1 + t)2α) ≤ 1

2
2(1+r)m(r) exp (−2−m−4a2(2m + t)2α).

We now carry out the second step. Based on (9), let

η2 := (2 + η1)1/(2α) − 1

2 − (2 + η1)1/(2α)
.

Then, for large enough t, we have

∞∑
m=�log (η2t)	+1

2(1+r)m exp (−2−m−4a2(2m + t)2α)

≤ 2(1+r)�log (η2t)	 exp (−2−�log (η2t)	−4a2(2�log (η2t)	 + t)2α)
∞∑

k=1

1

2k

≤ 2(1+r)�log (η2t)	 exp (−2−�log (η2t)	−4a2(2�log (η2t)	 + t)2α).
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Thus,

E[2Ñ(t)r]

=
∑�log (η2t)	

m=0 2(1+r)m exp (−2−m−4a2(2m+t)2α)+∑∞
m=�log (η2t)	+1 2(1+r)m exp (−2−m−4a2(2m+t)2α)∑∞

m=0 2m exp (−2−m−4a2(2m+t)2α)

≤
∑�log (η2t)	

m=0 2(1+r)m exp (−2−m−4a2(2m+t)2α)+2(1+r)�log (η2t)	 exp (−2−�log (η2t)	−4a2(2�log (η2t)	+t)2α)∑∞
m=0 2m exp (−2−m−4a2(2m+t)2α)

≤ 2r�log (η2 t)	 ∑�log (η2 t)	
m=0 2m exp (−2−m−4a2(2m+t)2α)+2(1+r)�log (η2 t)	 exp (−2−�log (η2 t)	−4a2(2�log (η2 t)	+t)2α)∑�log (η2 t)	

m=0 2m exp (−2−m−4a2(2m+t)2α)

≤ 2r�log (η2t)	+1

≤ 3ηr
2tr.

We are now ready to establish the bound for E[(L(n) + 2Ñ+1)r] for any fixed r ≥ 1. Hence,

E[(L(n) + 2Ñ+1)r] ≤E[2r−1(L(n)r + 2(Ñ+1)r)]

≤ 2r−1
E[L(n)r] + 22r−1

E[2Ñr] (by Jensen’s inequality)

≤ 2r−1
E[L(n)r] + 22r−13ηr

2E[L(n)r]

<∞.

We have thus shown that each path has finite moments of all orders.
As for the acceptance probability in steps (ii), (iii) and (v), we note that

P({Sk ≤ akα + bk1−α, 1 ≤ k ≤ L(n)} ∩ {J̃ = 1})
= P(T1 > L(n), T̃L(n),SL(n) = ∞)

= P(T1 = ∞) (as P(T1 = ∞ | St, T1 > t) = P(T̃ t,St = ∞))

≥ 3

4
(by Lemma 1).

Then the number of times a path is rejected is stochastically bounded by a geometric random
variable with probability of success 3

4 . Therefore, the total length of paths generated in
Procedure B has finite moments of all orders. �

3.1. Numerical experiments

In this section we conduct numerical experiments to analyse the performance of Algorithm 1
for different values of the parameter a. In Remark 1, we briefly discussed how the parameters
a and b would affect the performance of Algorithm 1. We shall fix the value of b upon our
choice of a as in (1), as we want to guarantee that the probability of record-breaking is small
enough, while keeping 	(κ) as small as possible.

For the computational cost, we first note that the choices of a and b will affect the
distribution of N, which is the length of trajectory generated in Procedure A. In Procedure B,
the values of 	(κ), L(	(κ)) and the distribution of Ñ also depends on the values of a and b.

https://doi.org/10.1017/jpr.2019.9 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.9


130 J. BLANCHET ET AL.

TABLE 1: Running time of Algorithm 1 (in seconds).

a α = 0.8 α = 0.85 α = 0.9 α = 0.95

0.1 287.58 39.62 10.20 4.99
0.2 36.24 8.11 4.19 3.15
0.3 13.38 5.03 2.94 2.56
0.4 7.90 3.53 2.41 2.25
0.45 7.06 3.31 2.43 2.15
0.49 7.25 3.06 2.19 2.11
0.499 12.81 3.79 3.49 3.12

Let Xi
D= X − 1, where X is a unit-rate exponential random variable. Then ψ(θ ) = −θ

−log (1 − θ ) for θ < 1. Let g(θ ) :=ψ(θ ) − θ2. As g′(0) = 0, g′′(θ ) = 1/(1 − θ )2 − 2, we have

g(θ )< 0 for all θ ∈
(
−1, 1 −

√
2

2

)
.

Therefore, we can set δ′ = 1 − √
2/2, and when θ ∈ (−δ′, δ′), ψ(θ )< θ2. According to (1),

a<min ( 1
2 , 4δ′) = 1

2 . We ran Algorithm 1 with different values of a and α. Table 1 summarizes
the running time of the algorithm in different settings.

We observe that when a is relatively far away from the upper bound 1
2 (e.g. a ≤ 0.45),

the running time decreases as a increases. However, as a approaches 1
2 , the running time is

increasing in a. This is because ξ → ∞ as a → 1
2 (see (2)). We also observe that the changing

rate of running time regarding a is larger for smaller values of α, which in general implies
greater curvature of the nonlinear boundary.

4. Departure process of an infinite-server queue

We finish the paper with an application of the algorithm developed in Section 2 to sample
the steady-state departure process of an infinite-server queue with general interarrival time and
service time distributions. We assume the interarrival times are independent and identically
distributed (i.i.d.). Independent of the arrival process, the service times are also i.i.d. and may
have infinite mean.

Suppose that the system starts operating from the infinite past. Then it would be at
stationarity at time 0. We want to sample all the departures in the interval [0, h].

We start by introducing a point process representation of an infinite-server queue to facilitate
the explanation of the simulation strategy. We mark each arriving customer as a point in a
two-dimensional space, where the x-coordinate records its arrival time and the y-coordinate
records its service time (service requirement). Figure 2 provides an illustration with two
points representing two arriving customers. Customer 1 arrives at −A1 and has a service
requirement of V1. Note that, as there are infinitely many servers, this customer will enter
service immediately upon arrival and will leave the system at time −A1 + V1. If we draw a
minus 45-degree line from (−A1, V1), the intersection of this line with the x-axis represents
customer 1’s departure time. Likewise, we can also denote the departure time of customer 2 by
the intersect of the minus 45-degree line staring from (−A2, V2) with the x-axis. We observe
that in this particular example, customer 1 would leave the system in the interval [0, h], while
customer 2 would leave the system before time 0. Based on this observation, we can draw a
shaded region in Figure 2, which has the property that all the points (customers) that fall into
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FIGURE 2: Point process representation of an infinite-server queue.

this region will leave the system during [0, h]. Therefore, to sample the departure process on
[0, h], we essentially would like to sample all the points (customers) that fall into the shaded
area.

We further divide the shaded area into two parts, namely H and G. Points in the shaded area
G are customers that arrive after time 0 and depart before time h, while points in area H are
customers who arrive before time 0 and depart between times 0 and h. Sampling the points that
fall into G is easy. As G is a bounded area, we can simply sample all the arrivals between 0
and h, and decide, using their service time information, whether they fall into region G or not.
The challenge lies in sampling the points in H, as it is an unbounded region.

For the rest of this section, we explain how to sample all the points (customers) that fall
into region H. We mark the points sequentially (according to their arrival times) backwards in
time from time 0 as (−A1, V1), (−A2, V2), . . . , where −An is the arrival time of the nth arrival
counting backwards in time and Vn is its service time. Let A0 := 0. We then denote Xn :=
An − An−1 as the interarrival time between the nth arrival and the (n − 1)th arrival. Let μ :=
E[X] denote the mean interarrival time and σ 2 := var (X) denote its variance. For simplicity of
notation, we write

H := {(−An, Vn) : An < Vn < An + h}.
It is the collection of points that fall into region H.

The following observation builds the foundation of our simulation strategy. Suppose that
we can find a random number � such that

Vn < An or Vn > An + h

for n ≥�. Then we can sample the point process up to �, i.e. {(−Ai, Vi), 1 ≤ i ≤�}, and find
H. Built on this observation, we further introduce an idea to separate the simulation of the
arrival process and the service time process. It requires us to find a sequence of {εn : n ≥ 1},
satisfying the following two properties.

(P1) There exists a well-defined random number �1 such that

nμ− εn < An < nμ+ εn for all n ≥�1.

(P2) There exists a well-defined random number �2 such that

Vn < nμ− εn or Vn > nμ+ εn + h for all n ≥�2.
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Now, set�= max{�1, �2}. Then we have Vn < An or Vn > An + h for n ≥�. Note that, based
on the introduction of the εn, we can find �1 and �2 separately.

To guarantee that �1 and �2 are well defined, i.e. finite, we need to choose εn that satisfy
the following two conditions:

(C1)
∑∞

n=1 P(|An − nμ|> εn)<∞,

(C2)
∑∞

n=1 P(Vn ∈ (nμ− εn, nμ+ εn + h))<∞.

Under (C1) and (C2), the Borel–Cantelli lemma guarantees that �1 and �2 are finite almost
surely.

We next introduce a specific choice of εn when the service times follow a Pareto distribution
with shape parameter β ∈ ( 1

2 , 1). We denote the PDF of Vi as f ( ·), which takes the form

f (v) = βv−(β+1)1{v ≥ 1}. (11)

We also write F̄( ·) as the tail distribution of Vi. We assume the interarrival time has a finite
moment generating function in a neighbourhood of the origin. This is without loss of generality.
If the interarrival time is heavy tailed, we can simulate a coupled infinite-server queue with
truncated interarrival times, XC

i = min{Xi,C}. This coupled infinite-server queue would serve
as an upper bound (in terms of the number of departures) of the original infinite-server queue
in a path-by-path sense.

Set εn = nα for 1
2 <α < β. In what follows, we shall show that our choice of εn satisfies

(C1) and (C2), respectively. We shall also explain how to find (simulate) �1 and �2.

4.1. Sampling of the arrival process and �1

The following lemma verifies (C1).

Lemma 7. If εn = nα for α >
1

2
,

∞∑
n=1

P(|An − nμ|> εn)<∞.

Proof. We note that An = ∑n
i=1 Xi is a random walk with Xi being i.i.d. interarrival times

with mean μ, except the first one. X1 follows the backward recurrent time distribution of the
interarrival time distribution. By the moderate deviation principle [7], we have

1

n2α−1
log P(|An − nμ|> nα) → − 1

2σ 2
.

As 2α − 1> 0,
∑∞

n=1 P(|An − nμ|> nα)<∞. �
Let Sn = An − nμ. We note that both Sn and −Sn are mean zero random walks:

P(|Sn|> nα) ≤ P(Sn > nα) + P(−Sn > nα).

Thus, we can apply a modified version of Algorithm 1 to find �1. In particular, we define a
modified sequence of record-breaking times as follows. Let T ′

0 := 0. For k ≥ 1, if T ′
k−1 <∞,

T ′
k := inf

{
n> T ′

k−1 : Sn > ST ′
k−1

+ a(n − T ′
k−1)α + b(n − T ′

k−1)1−α

or Sn < ST ′
k−1

− a(n − T ′
k−1)α − b(n − T ′

k−1)1−α};

otherwise, T ′
k = ∞. Then the modified version of Algorithm 1 goes as follows.
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Algorithm 1′. Sampling � together with (Xi : 1 ≤ i ≤�).

(i) Initialize T ′
0 = 0, k = 1.

(ii) For T ′
k−1 <∞, sample J′ ∼ Bernoulli(P(T ′

k = ∞ | T ′
k−1)).

(iii) If J′ = 0, sample (Xi : i = T ′
k−1 + 1, . . . , T ′

k) conditional on T ′
k <∞ (see Procedure A′

below). Set k = k + 1 and go back to step (ii); otherwise (J′ = 1), set �1 = T ′
k−1 and go to

step (iv).

(iv) Apply Procedure C (detailed in Section 4.2) iteratively to sample �2.

(v) Set �= max{�1, �2}. If �>�1, sample (Xi : i = T ′
k−1 + 1, . . . , �) conditional on T ′

k =
∞ (see Procedure B′ below).

We also modify Procedure A and Procedure B as follows.

Procedure A′. Sampling J′ with P(J′ = 1) = P(T ′
1 = ∞). If J′ = 0, output (X1, . . . , XT ′

1
).

(i) Sample a random time N with PMF (4). Let θN = a2N(α−1)−2. Sample U1 ∼
Uniform[0, 1]. If U1 ≤ 1

2 , go to step (ii(a)); otherwise, go to step (ii(b)).

(ii) (a) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter θN . Let

T ′
1 = inf{n ≥ 1: |Sn|> anα + bn1−α} ∧ 2N .

(b) Generate X1, . . . , X2N+1−1 under exponential tilting with tilting parameter −θN .
Let

T ′
1 = inf{n ≥ 1: |Sn|> anα + bn1−α} ∧ 2N .

(iii) Generate U2 ∼ Uniform[0, 1]. If

U2 ≤ ( exp (θNST ′
1
−ψ(θN)T ′

1)/2 + exp (−θNST ′
1
−ψ(−θN)T ′

1)/2)−1

p(N)

× 1{T ′
1 ∈ [2N, 2N+1)},

then set J′ = 0 and output (X1, X2, . . . , XT ′
1
); otherwise, set J′ = 1.

Propsition 1. In Procedure A′, J′ is a Bernoulli random variable with probability of success
P(T ′

1 = ∞). If J = 0, the output (X1, X2, . . . , XT ′
1
) follows the distribution of (X1, X2, . . . , XT ′

1
)

conditional on T ′
1 <∞.

The proof of Proposition 1 follows exactly the same line of analysis as the proof of
Theorem 1. We shall omit it here.

Let

L′(n) = inf
{

k> n : Sk ∈
(

− a

4
kα,

a

4
kα

)
or Sk > akα + bk1−α or Sk <−akα − bk1−α}.

Procedure B′. Sampling (X1, . . . , Xn) conditional on T ′
1 = ∞.

(i) Sample (X1, . . . , Xn) under the nominal distribution P( ·).
(ii) If max1≤k≤n{Sk − akα − bk1−α}> 0 or min1≤k≤n{Sk + akα + bk1−α}< 0, go back to

step (i); otherwise, go to step (iii).
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(iii) Sample L′(n) and (Xn+1, . . . , XL′(n)) under the nominal distribution P( ·). If |SL′(n)|>
aL′(n)α + bL′(n)1−α , go back to step (i); otherwise, go to step (iv).

(iv) Sample Ñ with PMF pL(n) defined in (5). Set θ̃ Ñ = 2Ñ−2a(2Ñ + L(n))α . Sample U1 ∼
Uniform[0, 1]. If U1 <

1
2 , go to step (v(a)); otherwise, go to step (v(b)).

(v) (a) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1 under exponential tilting with tilting parameter θ̃ Ñ .
Let

T̃ ′ = inf
{
n ≥ 1: |SL′(n) + S̃k|> a(k + L′(n))α + b(k + L′(n))1−α} ∧ 2Ñ+1.

(b) Generate X̃1, X̃2, . . . , X̃2Ñ+1−1 under exponential tilting with tilting parameter

−θ̃ Ñ . Let

T̃ ′ = inf
{
n ≥ 1: |SL′(n) + S̃k|> a(k + L′(n))α + b(k + L′(n))1−α} ∧ 2Ñ+1.

(vi) Sample U2 ∼ Uniform[0, 1]. If

U2 ≤ ( exp (θ̃ Ñ S̃T̃ ′ − ψ̃(θ̃ Ñ))/2 + exp ( − θ̃ Ñ S̃T̃ ′ − ψ̃(−θ̃ Ñ))/2)−1

pt(Ñ)

× 1{T̃ ′ ∈ [2Ñ, 2Ñ+1)},
set J̃′ = 0 and go back to step (i); otherwise, set J̃′ = 1 and output (X1, . . . , Xn).

Propsition 2. The output of Procedure B′ follows the distribution of (X1, . . . , Xn) conditional
on T ′

1 = ∞.

The proof of Proposition 2 follows exactly the same line of analysis as the proof of
Theorem 2. We shall omit it here.

4.2. Sampling of the service time process and �2

We start by verifying (C2).

Lemma 8. If εn = nα for 1
2 <α < β,

∞∑
n=1

P(Vn ∈ (nμ− εn, nμ+ εn + h))<∞.

Proof. We have

P(Vn ∈ (nμ− εn, nμ+ εn + h)) = F̄(nμ− εn) − F̄(nμ+ εn + h)

≤ β

(nμ− nα)(β+1)
(2nα + h)

= β(2 + hn−α)

nβ+1−α(μ− n−(β−α))β+1
.

As β + 1 − α > 1,

∞∑
n=1

β(2 + hn−α)

nβ+1−α(μ− nα−β )β+1
<∞. �
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To find �2, we use a similar record-breaker idea. In particular, we say that Vn is a record
breaker if

Vn ∈ (nμ− εn, nμ+ εn + h).

The idea is to find the record breakers sequentially until there are no more record breakers.
Specifically, let K0 := 0. If Ki−1 <∞,

Ki = inf{n>Ki−1 : Vn ∈ (nμ− εn, nμ+ εn + h)};
if Ki−1 = ∞, Ki = ∞. Let τ = min{i> 0: Ki = ∞}. Then we can set �2 = Kτ−1.

The task now is to find the Ki one by one. We achieve this by finding a proper sequence of
upper and lower bounds for P(Ki = ∞). We start with K1. Note that

P(K1 = ∞) =
∞∏

n=1

(1 − P(Vn ∈ (nμ− εn, nμ+ εn + h))).

Let

u(k) =
k∏

n=1

(1 − P(Vn ∈ (nμ− εn, nμ+ εn + h))).

Then we have P(K1 = ∞)< u(k + 1)< u(k) for any k ≥ 1, and limk→∞ u(k) = P(K1 = ∞). We
also note that u(k) − u(k − 1) = P(K1 = k).

From the proof of Lemma 8, we have, for n> (2/μ)1/(β−α),

P(Vn ∈ (nμ− εn, nμ+ εn + h))<
2(2 + h)β

μ

1

nβ+1−α .

Then for large enough k∗ such that k∗ > (2/μ)1/(β−α) and

2(2 + h)β

μ

1

k∗,β+1−α < 1,

we have, for k> k∗,

∞∏
n=k+1

(1 − P(Vn ∈ (nμ− εn, nμ+ εn + h))) ≥
∞∏

n=k+1

(
1 − 2(2 + h)β

μ

1

nβ+1−α
)

≥ exp

(
− (2 + h)β

μ

∞∑
n=k+1

1

nβ+1−α

)

≥ exp
(

− (2 + h)β

μ
(k + 1)−(β−α)

)
.

Let l(k) = 0 for k< k∗, and

l(k) = u(k) exp
(

− 2(2 + h)β

μ
(k + 1)−(β−α)

)

for k> k∗. Then we have l(k) ≤ l(k + 1)< P(K1 = ∞) and limk→∞ l(k) = P(K1 = ∞).
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Similarly, given Ki−1 = m<∞, we can construct the sequences of upper and lower bounds
for P(Ki = ∞ | Ki−1 = m) as

um(k) =
k∏

n=m+1

(1 − P(Vn ∈ (nμ− εn, nμ+ εn + h)))

for k>m, and

lm(k) = um(k) exp
(

− (2 + h)β

μ
(k + 1)−(β−α)

)
.

Based on the sequence of lower and upper bounds, given Ki−1 = m, we can sample Ki using
the following iterative procedure.

Procedure C. Sample Ki conditional on Ki−1 = m.

(i) Generate U ∼ Uniform[0, 1]. Set k = m + 1. Calculate um(k) and lm(k).

(ii) While lm(k)<U < um(k)
Set k = k + 1. Update um(k) and lm(k).
end while.

(iii) If U < lm(k), output Ki = ∞; otherwise, output Ki = k.

Once we find the values of the Ki, sampling the Vn conditional on the information of the Ki

is straightforward. We summarize the simulation of the service time process together with �
in Algorithm 2.

Algorithm 2. Sampling � together with (Vi : 1 ≤ i ≤�).
(i) Initialize K0 = 0, i = 1.

(ii) Given the value of Ki−1 <∞, sample Ki using Procedure C.

(iii) If Ki <∞, set i = i + 1 and go back to step (ii); otherwise, set �2 = Ki−1 and go to
step (iv).

(iv) Apply Algorithm 1′ to find �.

(v) Sample (Vi : i = 1, 2, . . . , �) conditional on (K1,K2, . . . ,Ki−1) using the acceptance–
rejection method with the nominal distribution of the service times as the proposal
distribution.

We next provide some comments about the running time of Procedure C. Let �i denote the
number of iterations in Procedure C to generate Ki. We shall show that, while P(�i <∞) = 1,
E[�i] = ∞. Taking �1 as an example,

P(�1 > n) = P(K1 > n)

= P(l1(n)<U < u1(n))

≥ u1(n)
(

1 − exp
(
−2(2 + h)β

μ
(n + 1)−(β−α)

))
,
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with

1 − exp
((

−2(2 + h)β

μ
(n + 1)−(β−α)

))
= O(n−(β−α)),

and u1(n) ≥ P(K1 = ∞) for any n ≥ 1. As 1<β − α < 1, we have P(K1 <∞) = 1, but∑∞
n=1 P(K1 > n) = ∞. Thus, P(�1 <∞) = 1, but E[�1] = ∞.
The fact that the Procedure C has infinite expected termination time may be unavoidable

in the following sense. In the absence of additional assumptions on the traffic feeding into the
infinite-server queue, any algorithm which simulates stationary departures during, say, time
interval [0, 1], must be able to directly simulate the earliest arrival, from the infinite past,
which departs in [0, 1]. If the arrivals are simulated sequentially backwards in time, we now
argue that the expected time to detect such an arrival must be infinite. Assuming, for simplicity,
deterministic interarrival times equal to 1, and letting −T < 0 be the time at which such earliest
arrival occurs, then we have

P(T > n) ≥ P

( ∞⋃
k=n+1

{Vk ∈ [k, k + 1]}
)

≥ (1 − P(V > n))
∞∑

k=n+1

P(Vk ∈ [k, k + 1])

= (1 − P(V > n))P(V > n + 1).

As
∑∞

n=0 P(V > n) = ∞, we must have E[T] = ∞.

Remark 2. Based on our analysis above, in general, the choice of εn imposes a trade-off
between �1 and �2. The smaller εn is, the larger the value of �1 and the smaller the value
of �2.

4.3. Numerical experiment on the departure process of an M/G/∞ queue

In this section we apply Algorithms 1′ and 2 to simulate the steady-state departure process
of an infinite-server queue whose service times have infinite mean.

We consider an infinite-server queue having Poisson arrival process with rate 1, and Pareto
service time distributions with probability density function

f (v) = βv−(β+1)1{v ≥ 1},
for β ∈ ( 1

2 , 1). Note that we already know that the departure process of this M/G/∞ queue
should also be Poisson process with rate 1. Therefore, this numerical experiment would help
us verify the correctness of our algorithm.

We truncate the length of path at 106 steps. We tried different pairs of parameters α and β,
and executed 1000 trials for each pair of α and β. We count the number of departures between
times 0 and 1 for each run and construct the corresponding relative frequency bar plot in
Figure 3. We observe that the distribution of simulated departures between times 0 and 1 indeed
follows a Poisson distribution with rate 1. In particular, the distribution is independent of the
values of α and β, which is consistent with what we expected. We also conduct the χ2 test
as goodness of fit tests with the four groups of sampled data against the Poisson distribution.
The corresponding p-values are 0.2404, 0.2589, 0.4835, and 0.1137, respectively. Therefore,
the tests fail to reject that the generated samples are Poisson distributed.
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FIGURE 3: Histograms comparison for sampled departure.
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