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Consider the minimal weights of paths between two points in a complete graph Kn with

random weights on the edges, the weights being, for instance, uniformly distributed. It is

shown that, asymptotically, this is log n/n for two given points, that the maximum if one

point is fixed and the other varies is 2 log n/n, and that the maximum over all pairs of

points is 3 log n/n.

Some further related results are given as well, including results on asymptotic distribu-

tions and moments, and on the number of edges in the minimal weight paths.

1. Introduction

Let a random weight Tij be assigned to every edge ij of the complete graph Kn. (Thus

Tji = Tij . We do not define Tij for i = j.) We assume that the
(
n
2

)
weights Tij , 1 6 i < j 6 n,

are independent and identically distributed; moreover, we assume that they are non-

negative and that their distribution function P(Tij 6 t) = t + o(t) as t ↘ 0, the main

examples being the uniform U(0, 1) and the exponential Exp(1) distributions.

For two vertices i and j, let Xij be the minimal total weight of a path between i and j.

Our main theorem is a set of three different asymptotic results for Xij (log denotes the

natural logarithm).

Theorem 1.1. Under the assumptions above, as n→∞ :

(i) for any fixed i and j,

Xij

log n/n

p→ 1;

(ii) for any fixed i,

maxj6n Xij

log n/n

p→ 2;
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(iii)

maxi,j6n Xij

log n/n

p→ 3.

Hence, with high probability, Xij is about log n/n for any fixed (or random) pair of

vertices, but there are pairs of vertices for which it is larger: up to 2 log n/n if i is fixed

and up to 3 log n/n globally.

Similarly, defining Yi = maxj6n Xij , we see from (ii) and (iii) that Yi typically is about

2 log n/n, but that it is larger for a few vertices with maxi Yi being about 3 log n/n. A

companion result shows that, in contrast, Yi is not significantly smaller than 2 log n/n for

any vertex i.

Theorem 1.2. As n→∞,

mini6n maxj6n Xij

log n/n

p→ 2.

In other words, interpreting the weights as distances, most pairs of vertices are at a

distance of about log n/n, the radius of the graph is about 2 log n/n and the diameter is

about 3 log n/n.

Remark 1. Theorem 1.1(i),(ii) may alternatively be stated in terms of first-passage

percolation on the complete graph (the time to reach a given vertex is about log n/n

and the time to reach all is 2 log n/n).

For completeness and comparison, we also state the corresponding simple (and well-

known) results for the minimal distance from a vertex. In this case there is less concentration

and we obtain convergence (in distribution) to a nondegenerate random variable instead

of to a constant.

Theorem 1.3. Let Zi = minj 6=i Xij = minj 6=i Tij . As n→∞ :

(i) for any fixed i,

nZi
d→ Exp(1);

(ii)

n2 min
i6n

Zi = n2 min
i,j6n

Tij
d→ Exp(2);

(iii)

maxi6n Zi
log n/n

p→ 1.

The proofs of (i) and (ii) are simple exercises, while (iii) is, in disguise, the well-known

threshold for existence of isolated vertices in a random graph [1, Exercise III.2]; consider

the graph with edges {ij : Tij < t}. We leave the details to the reader. (Note that if

Tij ∈ Exp(1), then (n− 1)Yi ∈ Exp(1) and n(n− 1) mini Yi ∈ Exp(2) exactly.)
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Using Theorem 1.3(iii), we can give a simple informal explanation of the discrepancy

between the three parts of Theorem 1.1 as follows, interpreting the weights as travel times.

Most vertices are connected by efficient highways, which take you to almost any other

vertex within about log n/n (but rarely much quicker). Some vertices, however, are remote

villages (like Oberwolfach), from which it takes up to log n/n to get to any other vertex at

all. Hence, starting at a typical vertex, most travel times are about log n/n, but it takes an

extra log n/n (just for the final step in the path) to reach a few remote vertices. Similarly,

if we start at one of the very remote vertices, it takes about log n/n to get to any other

vertex at all, 2 log n/n to get to most other vertices and 3 log n/n to get to the other very

remote vertices.

Some further results on asymptotic distributions and moments are given in Section 3.

The lengths of the minimum weight paths are studied in Section 4.

2. Proofs

We first observe that the distribution of Tij does not affect the results, as long as it satisfies

the condition above. This is seen by the following standard coupling argument, which we

include for completeness.

Let F−1: [0, 1) → [0,∞) be the inverse function of the distribution function F(t) =

P(Tij 6 t) of Tij . If Uij ∈ U(0, 1) are independent uniform random variables, then

F−1(Uij) has the same distribution as Tij , so we may without loss of generality assume

that Tij = F−1(Uij). By assumption, F(t)/t → 1 as t ↘ 0, and thus also F−1(t)/t → 1.

Let ε > 0. If Xij < 10 log n/n, say, for some i and j, then Tkl = F−1(Ukl) < 10 log n/n

for each edge kl in the minimum weight path from i to j, and thus, provided n is large

enough, 1 − ε < Tkl/Ukl < 1 + ε. Consequently, the sum of the Ukl for the same path

is at most (1 − ε)−1Xij , and thus, using X ′ij to denote the minimal path weight defined

by {Uij}, X ′ij 6 (1 − ε)−1Xij . Conversely, by the same argument, if X ′ij < 10 log n/n

then Xij < (1 + ε)X ′ij . It follows that, if either Xij < 9 log n/n or X ′ij < 9 log n/n, and

n is large enough, then both Xij < 10 log n/n and X ′ij < 10 log n/n hold, and moreover

(1− ε)X ′ij < Xij < (1 + ε)X ′ij . It now follows immediately that, if any part of Theorem 1.1

or 1.2 holds either for Tij or for the uniform Uij , then it holds for both. In particular,

a proof of these results for any distribution with F(t)/t → 1 as t ↘ 0 implies the same

results for U(0, 1), and then for any other such distribution.

We may thus choose a convenient distribution of Tij; we use the exponential distribution

because of its excellent Markov properties. Hence, in the sequel we assume that Tij ∈
Exp(1).

Proof of Theorem 1.1. For parts (i) and (ii), we may assume that i = 1. We adopt

the first-passage percolation viewpoint (see Remark 1), so we regard vertex 1 as initially

infected, and assume that the infection spreads along each edge with an Exp(1)-distributed

waiting time. We first study when the other vertices get infected, considering them in order

of infection and ignoring their labels.

Since there are n − 1 neighbours of the initially infected vertex, the time V1 until the

second vertex is infected is exponentially distributed with expectation 1/(n − 1). More

https://doi.org/10.1017/S0963548399003892 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548399003892


350 S. Janson

generally, when k < n vertices have been infected, there are k(n− k) edges connecting the

infected and non-infected vertices, and thus the time Vk until the next vertex is infected is

Exp
(
1/(k(n− k))); moreover, this time is independent of V1, . . . , Vk−1. In other words, the

time Sm until m vertices have become infected can be written

Sm =

m−1∑
1

Vk

where V1, . . . , Vn−1 are independent with Vk ∈ Exp
(
1/(k(n− k))).

The times {Sm}nm=2 are just the minimal path weights {X1j}nj=2, arranged in increasing

order. In particular,

Y1 = max
j>2

X1j = Sn =

n−1∑
1

Vk. (2.1)

Hence

EY1 =

n−1∑
1

EVk =

n−1∑
1

1

k(n− k) =
1

n

n−1∑
1

(
1

k
+

1

n− k
)

=
2

n

n−1∑
1

1

k

= 2
log n

n
+ O

(
1

n

)
, (2.2)

and similarly

VarY1 =

n−1∑
1

VarVk =

n−1∑
1

(
1

k(n− k)
)2

6 2

n/2∑
1

1

k2(n− k)2

6
8

n2

n/2∑
1

1

k2
= O(n−2). (2.3)

Part (ii) now follows by Chebyshev’s inequality.

For part (i), fix j = 2. Observe that, if N is the number of vertices infected before vertex

2, then

X12 = SN+1 =

N∑
1

Vk, (2.4)

where, by symmetry, N is uniformly distributed over 1, . . . , n − 1 and independent of

V1, . . . , Vn−1. We rewrite this equation as X12 =
∑n−1

1 1[N > k]Vk , using indicator functions

to eliminate the random summation limit. Hence,

EX12 =

n−1∑
1

E(1[N > k]Vk) =

n−1∑
1

P(N > k)EVk

=

n−1∑
1

n− k
n− 1

1

k(n− k) =

n−1∑
1

1

k(n− 1)

=
log n

n
+ O

(
1

n

)
. (2.5)
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In order to estimate the variance, we further rewrite the sum as

X12 =

N∑
1

(Vk −EVk) +

N∑
1

1

n

(
1

k
+

1

n− k
)

=

N∑
1

(Vk −EVk) +
1

n

(
logN + log n− log(n−N)

)
+ O

(
1

n

)
. (2.6)

We consider the three terms on the right-hand side separately. Since N,V1, . . . , Vn−1 are

independent,

Var

(
N∑
1

(Vk −EVk)
)

= E

(
N∑
1

(Vk −EVk)
)2

= E

(
N∑
1

VarVk

)

6
n−1∑

1

VarVk =

n−1∑
1

1

k2(n− k)2

6

n/2∑
1

4

k2n2
+

n−1∑
n/2

4

n2(n− k)2
= O

(
1

n2

)
.

For the second term, we observe that

E
(
logN − log(n− 1)

)2
= E

(
log

N

n− 1

)2

→
∫ 1

0

(log x)2 dx < ∞

as n → ∞. Hence Var(logN) = Var
(
log(n−N)

)
= O(1), and it follows that the variance

of the second term in (2.6) is also O(n−2). The same is trivially true for the third

term.

Consequently, VarX12 = O(n−2), which together with (2.5) yields part (i).

The proof of (iii) is divided into two parts, considering upper and lower bounds

separately. First, by (2.1), for −∞ 6 t < 1− 1/n,

EetnY1 =

n−1∏
1

EentVk =

n−1∏
1

(
1− nt

k(n− k)
)−1

. (2.7)

Hence, for every a > 0, choosing t = 1− 1/ log n (n > 3),

P(Y1 > a log n/n) 6 EetnY1−ta log n = e−ta log n
n−1∏

1

(
1− nt

k(n− k)
)−1

=

(
1− nt

n− 1

)−2

exp

(
−ta log n+

n−2∑
2

− log

(
1− nt

k(n− k)
))

6

(
1− nt

n− 1

)−2

exp

(
−ta log n+

n−2∑
2

(
nt

k(n− k) +

(
nt

k(n− k)
)2))

=
(
1− t+ O(n−1)

)−2
exp
(−ta log n+ 2t log n+ O(1)

)
= O

(
n2−a log2 n

)
. (2.8)
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This evidently implies

P
(
max
i
Yi > a log n/n

)
6 nP

(
Y1 > a log n/n

)
= O

(
n3−a log2 n

)
,

which tends to 0 as n→∞ for every fixed a > 3.

For the lower bound, let ε > 0 be small. Partition the vertex set {1, . . . , n} of Kn into the

sets A = {1, . . . , nA} and B = {nA + 1, . . . , n}, where nA = dn1−εe. Let nB = |B| = n− nA.

For i ∈ A, let Ui = minj∈B Tij . Then the random variables Ui, i ∈ A, are independent

with Ui ∈ Exp(1/nB). In particular,

P
(
Ui > (1− 2ε) log n/n

)
= exp

(
−(1− 2ε)

nB

n
log n

)
> exp

(−(1− 2ε) log n
)

= n2ε−1

and thus

P
(
Ui 6 (1− 2ε) log n/n for every i ∈ A) 6 (1− n2ε−1

)n1−ε
< e−nε . (2.9)

For k ∈ A, let Ek be the event that Uk > (1 − 2ε) log n/n but Ui 6 (1 − 2ε) log n/n for

i 6 k. Then the events Ek are disjoint and, by (2.9),∑
k∈A
P(Ek) = P

(⋃
k∈A
Ek
)
> 1− e−nε . (2.10)

The idea of the proof is to show that, conditioned on Ek , Yk is with high probability close to

3 log n/n; in fact, as is shown in detail below, conditioning on Uk > (1−2ε) log n/n typically

increases Yk (which is usually about 2 log n/n) by (1 − 2ε) log n/n, while conditioning on

Ui 6 (1− 2ε) log n/n for i 6 k hardly affects the result.

We will use the following lemma.

Lemma 2.1. Suppose that µ, b > 0 and X ∈ Exp(µ), and define

f(x) = −µ log
(
e−b/µ + (1− eb/µ)e−x/µ).

(i) The distribution of f(X) equals the conditional distribution of X given X 6 b.

(ii) If, further, 0 6 α < 1 and b/µ > α(1− log α)/(1− α), then f(x) > αx when 0 6 x 6
α−1b− µ. Consequently,

P(f(X) < αX) 6 P(X > α−1b− µ) = e1−α−1b/µ.

Proof. We may for simplicity, by homogeneity, assume that µ = 1. Then e−X is uniformly

distributed on [0, 1], and thus for 0 6 t 6 b,

P
(
f(X) 6 t

)
= P

(
e−b + (1− e−b)e−X > e−t) = P

(
e−X >

e−t − e−b
1− e−b

)
=

1− e−t
1− e−b = P(X 6 t | X 6 b),

which proves part (i).

For part (ii) we observe that (when µ = 1) f(x) > αx if and only if

e−b + (1− e−b)e−x 6 e−αx. (2.11)
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Letting y = e−x, the left-hand side of (2.11) is a linear function of y, while the right-hand

side yα is concave; hence, in order to verify (2.11) for the interval 0 6 x 6 α−1b − 1, it

suffices to verify it for the endpoints.

For x = 0, (2.11) is a trivial identity, while for x = α−1b− 1 it is

e−b + (1− e−b)e−α−1b+1 6 e−b+α. (2.12)

Now, by assumption, α−1b = b+ b(1− α)α−1 > b+ 1− log α, and thus

e−b + e−α−1b+1 6 e−b + e−b+log α = (1 + α)e−b 6 eαe−b;

this implies (2.12), which completes the proof of the lemma.

Continuing with the proof of Theorem 1.1(iii), let k ∈ A be fixed, let f be as in

Lemma 2.1 with µ = 1/nB and b = (1− 2ε) log n/n, and define

U ′i =


f(Ui), i < k,

Ui + b, i = k,

Ui, i > k.

Then, by Lemma 2.1(i) for i < k and the standard lack-of-memory property of exponential

distributions for i = k, the distribution of U ′i equals the conditional distribution of Ui

given Ek for every i ∈ A; moreover, by our independence assumptions, this extends to

the joint distribution. Furthermore, by the same lack-of-memory property, the family of

random variables {Tij − Ui}j∈B is independent of Ui, for each i ∈ A separately and thus

for all i ∈ A jointly too; hence the joint distribution of {Tij −Ui}i∈A, j∈B is not affected by

conditioning on Ek . It follows that if we define T ′ij for 1 6 i < j 6 n by

T ′ij =

{
Tij −Ui +U ′i , i ∈ A and j ∈ B,
Tij , otherwise,

(2.13)

and let T ′ji = T ′ij for j > i, then the family {T ′ij} has the same distribution as the conditional

distribution of {Tij} given Ek . Note in particular that T ′kj = Tkj + b when j ∈ B.

Suppose that {Tij} are such that

U ′i > (1− 2ε)Ui, for every i ∈ A, (2.14)

Tik > 3
log n

n
, for every i ∈ A, (2.15)

and

Yk > (2− ε) log n

n
. (2.16)

We observe first that, by (2.13) and (2.14), then

T ′ij > (1− 2ε)Tij , for every i and j 6= i. (2.17)

Now consider the minimal path weights X ′ij defined by the edge weights T ′ij and the

corresponding Y ′i = maxj X
′
ij . By (2.16), there exists a vertex l such that every path

i0 = k, i1, . . . , im = l from k to l has weight W =
∑m

1 Tis−1is > (2 − ε) log n/n. Consider

such a path and the corresponding weight W ′ =
∑m

1 T
′
is−1is

. Either i1 ∈ A, and then, by
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(2.13) and (2.15), W ′ > T ′ki1 = Tki1 > 3 log n/n, or i1 ∈ B, and then T ′ki1 = Tki1 + b, which

together with (2.17) yields

W ′ > b+ (1− 2ε)W > (1− 2ε)
log n

n
+ (1− 2ε)(2− ε) log n

n
> (3− 7ε)

log n

n
.

Hence W ′ > (3 − 7ε) log n/n for every path from k to l, and thus X ′kl > (3 − 7ε) log n/n

and finally Y ′k > X ′kl > (3− 7ε) log n/n.

We have shown that, if (2.14)–(2.16) hold, then Y ′k > (3− 7ε) log n/n. Consequently,

P
(
Yk > (3− 7ε) log n/n | Ek) = P

(
Y ′k > (3− 7ε) log n/n

)
> P((2.14)–(2.16) hold).

Let q denote the probability that (2.14)–(2.16) hold. We have so far kept k fixed, but q

is independent of k, and summing over k we obtain

P
(
max
i
Yi > (3− 7ε) log n/n

)
>
∑
k∈A
P
(
Yk > (3− 7ε) log n/n | Ek)P(Ek)

> q
∑
k∈A
P(Ek). (2.18)

Now, by Lemma 2.1(ii) with α = 1− 2ε, if n is large enough,

P
(
(2.14) fails

)
6
∑
i∈A
P
(
U ′i < (1− 2ε)Ui

)
6 nAe

1−nB log n/n

= O
(
n1−εn−1

)
= o(1).

Similarly,

P
(
(2.15) fails

)
6
∑
i∈A
P

(
Tik < 3

log n

n

)
6 3nA

log n

n
= o(1),

while P
(
(2.16) fails

)
= o(1) by the already proven part (ii) of the theorem.

Consequently, q = 1 − o(1), which by (2.18) and (2.10) yields P
(
maxi Yi > (3 − 7ε)

log n/n
)→ 1 as n→∞. This completes the proof of (iii).

Proof of Theorem 1.2. We use (2.7), replacing t by −t, and, for every a and t > 0, obtain

P(Y1 < a log n/n) 6 Eeta log n−tnY1 6 eta log n
n−1∏

1

(
1 +

nt

k(n− k)
)−1

= exp

(
ta log n+

n−1∑
1

− log

(
1 +

nt

k(n− k)
))

6 exp

(
ta log n+

n−1∑
1

(
− nt

k(n− k) +
1

2

(
nt

k(n− k)
)2))

= exp

(
at log n− 2t log n+ O(t) + O(t2)

)
.

If 0 < a < 2, we thus obtain for any constant t

P(min
i
Yi < a log n/n) 6 nP(Y1 < a log n/n) = O

(
n1+(a−2)t

)
,
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which is o(1) provided t > 1/(2− a). On the other hand, Theorem 1.1(ii) implies

P
(
min
i
Yi > (2 + ε) log n/n

)
6 P

(
Y1 > (2 + ε) log n/n

)→ 0

for every ε > 0, and the proof is complete.

3. Asymptotic distributions and moments

The method above also yields the asymptotic distributions of Xij and Yi: these are not

normal. More precisely, we have the following result. (We have to impose a slightly stronger

condition on the distribution of the Tij; the condition is satisfied for the exponential and

uniform distributions.)

Theorem 3.1. Suppose that the distribution function P(Tij 6 t) = t+ o(t/| log t|) as t↘ 0.

Then, as n→∞,

nXij − log n− γ d→
∞∑
1

1
k
(ξk − 1) + ζ (3.1)

and

nYi − 2 log n− 2γ
d→
∞∑
1

1
k
(ξk − 1) +

∞∑
1

1
k
(ξ′k − 1), (3.2)

where γ is Euler’s constant, and the random variables ξk, ξ
′
k , k > 1, and ζ are independent

with ξk, ξ
′
k ∈ Exp(1) while ζ has the logistic distribution P(ζ 6 x) = ex/(1 + ex).

Proof. By a slight modification of the coupling argument in the proof of Theorem 1.1,

it suffices to consider the case Tij ∈ Exp(1); we omit the details.

We write An ≈ Bn to mean that E(An − Bn)2 = o(1) as n→ ∞. In the exponential case,

(2.4) and (2.1) imply that

nX12
d
=

N∑
1

n

k(n− k)ξk =

N∑
1

n

k(n− k) (ξk − 1) +

N∑
1

(
1

k
+

1

n− k
)

≈
N∑
1

1

k
(ξk − 1) + logN + γ + log n− log(n−N)

≈
∞∑
1

1

k
(ξk − 1) + log

N/n

1−N/n + log n+ γ,

and

nY1
d
=

n−1∑
1

n

k(n− k)ξk =

n−1∑
1

n

k(n− k) (ξk − 1) + 2

n−1∑
1

1

k

≈
bn/2c∑

1

1

k
(ξk − 1) +

n−1∑
bn/2c+1

1

n− k (ξk − 1) + 2 log n+ 2γ
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d
=

bn/2c∑
1

1

k
(ξk − 1) +

dn/2e−1∑
1

1

k
(ξ′k − 1) + 2 log n+ 2γ.

The result follows, since N/n
d→ η, where η ∈ U(0, 1), and ζ = log

(
η/(1 − η)

)
has the

logistic distribution.

Since the moment generating function Eetξk of ξk equals (1 − t)−1, Ret < 1, it follows

that the moment generating function of
∑

1
k
(ξk − 1) is

∞∏
k=1

(1− t/k)−1e−t/k = lim
n→∞

(
n∏
k=1

k

k − t
)
e−t
∑n

l=1

1
l

= lim
n→∞

Γ(n+ 1)Γ(1− t)
Γ(n+ 1− t) e−t log n−tγ+o(1)

= Γ(1− t)e−tγ , Ret < 1;

hence the moment generating function of W =
∑

1
k
(ξk − 1) + γ equals Γ(1− t), Ret < 1.

Now, if T ∈ Exp(1), then − logT has the moment generating function Ee−t logT =

ET−t =
∫ ∞

0 x−te−x dx = Γ(1 − t) too. Thus W
d
= − logT . (Recall that the restriction of

the moment generating function to the imaginary axis yields the characteristic function,

which determines the distribution.) Hence,

P(W 6 x) = P(logT > −x) = P(T > e−x) = e−e−x , −∞ < x < ∞, (3.3)

which is one of the standard extreme value distributions [2].

Consequently, the right-hand side of (3.2) can be written W +W ′ − 2γ, where W and

W ′ are independent random variables with the distribution (3.3).

Moreover, the logistic distribution has the moment generating function, for |Ret| < 1,

with η ∈ U(0, 1) as above,

Eet log(η/(1−η)) =

∫ 1

0

xt(1− x)−t dx = B(1 + t, 1− t) = Γ(1 + t)Γ(1− t),

which equals the moment generating function of the symmetrization W − W ′. Thus

ζ
d
= W −W ′.
We can now restate Theorem 3.1 as follows.

Theorem 3.2. Suppose that the distribution function P(Tij 6 t) = t+ o(t/| log t|) as t↘ 0.

Then, as n→∞,

nXij − log n
d→W1 +W2 −W3 (3.4)

and

nYi − 2 log n
d→W1 +W2, (3.5)

where W1,W2,W3 are independent random variables with the same extreme value distribution

P(Wi 6 x) = e−e−x .
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The variables on the right-hand sides of (3.4) and (3.5) have the moment generating

functions Γ(1 − t)2Γ(1 + t), |Ret| < 1, and Γ(1 − t)2, Ret < 1, respectively, and thus the

characteristic functions Γ(1− it)2Γ(1 + it) and Γ(1− it)2. The limit W1 +W2 in (3.5) has a

density function that can be expressed using modified Bessel functions as 2e−xK0(2e−x/2)

(cf., for instance, [3, (5.10.23)]). We do not know any simple expression for the density

function of W1 +W2 −W3.

Using the fact that the variance of the logistic distribution is π2/3 (which follows

from its moment generating function Γ(1 + t)Γ(1− t) = πt/ sin πt, |Ret| < 1, or from the

representation W −W ′ above), it is easily seen that the limiting variables in (3.1) and

(3.2) have expectations 0 and variances
∑∞

1 k
−2 + π2/3 = π2/2 and 2

∑∞
1 k
−2 = π2/3,

respectively. Since all approximations and limits in the proof hold in L2 sense, we obtain

that these are the limits of the expectations and variances of the left-hand sides in (3.1)

and (3.2) too, provided Tij ∈ Exp(1). This carries over to other distributions as well, in

particular to the uniform distribution; we have the following theorem.

Theorem 3.3. Suppose that the distribution function P(Tij 6 t) = t+ o(t/| log t|) as t↘ 0,

and that ETp
ij < ∞ for some p > 0. Then all moments converge in (3.1), (3.2), (3.4) and

(3.5); in particular,

EXij =
log n

n
+
γ

n
+ o

(
1

n

)
,

EYi = 2
log n

n
+

2γ

n
+ o

(
1

n

)
,

VarXij ∼ π2

2n2
,

VarYi ∼ π2

3n2
.

Proof. It suffices to prove that E(nXij − log n)m = O(1) and E(nYi − 2 log n)m = O(1) for

every even integer m and n large enough, since this implies convergence of all moments

of order < m by a standard result on uniform integrability.

When Tij is exponentially distributed, this can be done as for the case m = 2 in the

proof of Theorem 1.1; we omit the details.

In general, we let a and b be two constants, to be chosen later, and split the expectation

into three parts. (We treat only Xij; the same argument applies to Yi.)

First, E
(
(nXij − log n)m1[Xij 6 a log n/n]

)
= O(1) by comparison with the exponential

case, using the coupling argument as in earlier proofs.

Secondly, by (2.8), E
(
(nXij)

m1[a log n/n < Xij 6 b]
)
6 bmnmP(Xij > a log n/n) =

O(nm+2−a log2 n); choosing a = m+ 3 this becomes bounded.

Finally, considering only the n− 2 paths of length 2 between i and j, we see that

P(Xij > x) 6 P(Tik > x/2 or Tjk > x/2 for every k 6= i, j)

6
(
2P(Tij > x/2)

)n−2
.
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Now, if ETp
ij < ∞, then xpP(Tij > x)→ 0 as x→ ∞; it follows that if b is large enough,

then 2P(Tij > x/2) < x−p when x > b, and thus

P(Xij > x) 6 x−(n−2)p, x > b.

Consequently,

E
(
(nXij)

m1[Xij > b]
)

= nmbmP(Xij > m) + nm
∫ ∞
b

mxm−1P(Xij > x) dx

= O(nmb−np) = O(1),

provided n > 2 + m/p.

Combining these estimates we find E(nXij − log n)m = O(1) as required.

Remark 2. The asymptotic variances can also be obtained by refining the estimates used

in the proof of Theorem 1.1.

Remark 3. The condition that ETp
ij < ∞ for some p > 0 is necessary too; if it fails then

Xij has no finite moment for any n. In fact, suppose that, for instance, EXij < ∞ for

some n; then P(Xij > t) < 1/t for large t. Since P(Xij > t) > P(Tik > t for every k 6= i) =

P(Tij > t)n−1, this yields P(Tij > t) < t−1/(n−1) (t large), and thus for example ET 1/n
ij < ∞.

We do not know any similar results for maxi,j Xij .

Problem 1. What is the asymptotic distribution of maxi,j Xij (presuming that some exists)?

Problem 2. What is the order of Var(maxi,j Xij)? Is it ∼ c/n2? If so, what is the constant

c?

4. Lengths of minimal paths

We have so far studied the weights of the minimal paths, but one might also ask how

long they are, disregarding their weights, that is, how many edges they contain. Let Lij
be the length of the path between i and j that has minimal weight.

For the case of exponentially distributed Tij , these lengths can be studied by observing

that the proof of Theorem 1.1 shows that the collection of minimal weight paths from a

given vertex, 1 say, form a tree (rooted at 1) which can be constructed as follows. Begin

with a single root and add n−1 vertices one by one, each time joining the new vertex to a

(uniformly) randomly chosen old vertex. This type of random tree is known as a random

recursive tree, and it is known that, if Dk is the depth of the kth vertex, then Dn/ log n
p→ 1

[4] and maxk6n Dk/ log n
p→ e [5] as n→∞; see also the survey [6].

This leads to the following result; our condition on the distribution of Tij is presumably

much stronger than really required.

Theorem 4.1. Suppose that Tij has a density function f(t) = 1 + O(t) for t > 0. Then, as

n→∞ :
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(i) for any fixed i and j,

Lij

log n

p→ 1;

(ii) for any fixed i,

maxj6n Lij
log n

p→ e.

Proof. The case when Tij ∈ Exp(1) follows from the discussion before the theorem: we

have Lij = DN , where N is uniformly distributed over 2, . . . , n, and maxj6n Lij = maxk6n Dk .

In general, we first observe that we may, for a given n, modify the distribution of Tij on

the interval t > 5 log n/n without affecting the result, since, by Theorem 1.1, edges with

such large weights are hardly ever used. Hence we may assume that its density function

is 1 +O(log n/n) times the density function e−t of the exponential distribution, uniformly

for all t > 0. It is now easy to see that the minimum weight paths from i = 1 form a

random tree, obtained by adding vertices one by one as above, with the modification that

the probability that the kth vertex (in order of insertion) is joined to the lth, for l < k,

may depend on the previous history of the tree but is always (1 + O(log n/n))/(k − 1).

We may couple this random tree growing process with the one with equal probabilities

1/(k− 1) in such a way that the probability that a vertex k is joined to different preceding

vertices in the two trees is O(log n/n), even if we condition on the previous history. It

follows that, if we fix the end vertex j, the path from i = 1 to j is the same in both trees

with probability 1− O(log2 n/n), which, by the result for the exponential case, implies (i)

for a general distribution.

For (ii) we observe that, if Dk is the depth of the kth vertex (in order of insertion)

in the tree, and D̄k is the depth in the random recursive tree with uniformly chosen

ancestors, then, by the above, Dk = D̄k for every k 6 n1 = n/ log2 n with probability

1 − O(n1 log n/n) = 1 − O(1/ log n). Since maxk6n1
D̄k/ log n1

p→ e by the result quoted

above [5], it follows that for every ε > 0, with probability 1− o(1),

max
k6n

Dk > max
k6n1

Dk = max
k6n1

D̄k > (e− ε) log n1 =
(
e− ε− o(1)

)
log n,

which by maxj6n Lij = maxk6n Dk proves one half of the result.

For the other half, define the generating functions

Fm(t) = E
m∑
k=1

tDk

and

F̄m(t) = E
m∑
k=1

tD̄k .

The recursive definition of the tree yields EtD̄m+1 = t
m
F̄m(t) and thus

F̄m+1(t) =

(
1 +

t

m

)
F̄m(t),
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which together with D̄1 = 0 yields

F̄m(t) =
Γ(m+ t)

Γ(m)Γ(1 + t)
.

Choosing t = e we obtain, for every a > e,

P(max
k6n

D̄k > a log n) 6 P

(
n∑
k=1

eD̄k > na
)
6 n−aF̄n(e) ∼ n−a+e/Γ(e+ 1),

which tends to 0 as n→∞.

For Dk we similarly obtain the inequalities, for some C < ∞ and all t > 0,

EtDm+1 6
t

m

(
1 + C

log n

n

)
Fm(t),

Fm+1(t) 6

(
1 +

t

m

(
1 + C

log n

n

))
Fm(t),

and thus

Fm(t) 6 F̄m

(
t

(
1 + C

log n

n

))
.

which yields, as above,

P(max
k6n

Dk > a log n) 6 n−aFn(e) 6 n−aF̄n(e+ Ce log n/n) ∼ n−a+e/Γ(e+ 1),

which tends to 0 as n→∞ for a > e.

Problem 3. How large is maxi,j Lij?

We can show that, if α ≈ 3.591 is defined by α log α − α = 1, then, for every ε >

0, P(e − ε < maxi,j Lij/ log n < α + ε) → 1. Hence it is natural to conjecture that

maxi,j Lij/ log n converges in probability to a constant in [e, α]. Which?
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