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ON THE COMMUTATIVITY OF PULL-BACK AND PUSH-FORWARD
FUNCTORS ONMOTIVIC CONSTRUCTIBLE FUNCTIONS

JORGE CELY ANDMICHEL RAIBAUT

Abstract. In this article, we study the commutativity between the pull-back and the push-forward
functors on constructible functions in Cluckers–Loeser motivic integration.

§1. Introduction. Let k be a characteristic zero field. By analogy with integra-
tion over local fields, Kontsevich introduced in [15] an integration theory on finite
dimensional vector spaces over k((t)), called motivic integration, with values in a
Grothendieck ring of varietiesK0(Vark). Later, Cluckers–Loeser in [7] (announced
in [3,4]) generalized that construction allowing in particular integrals with param-
eters in the context of henselian valued fields of equal characteristic zero, and in
[13], Hrushovski–Kazhdan treated the case of algebraically closed valued fields of
equal characteristic zero.
For any definable sets X , given by a first-order formula in the Denef-Pas
language, Cluckers–Loeser construct in [7] an algebra C (X ) of constructible
motivic functions defined on X , and in [6] and [8] they enlarge it in an algebra
C (X )exp of exponential constructible functions. Moreover, for any definable func-
tion f : X → Y , they define a pull-back functor f∗ : C (Y )exp → C (X )exp,
an abelian subgroup IYC (f)exp of C (X )exp of f-integrable constructible func-
tions and a push-forward functor f! : IYC (f)exp → C (Y )exp which corresponds
to an integration along fibers of f. Roughly speaking, for any definable set X ,
there exists integers m, n and r such that for any k-field extension K , the set of
K-rational points X (K) is contained in K((t))m × Kn × Zr . Such definable set
admits a cell decomposition and similarly to the construction of the integration
against Euler characteristic in the real semi-algebraic setting, the construction of
the functor f! is given by an induction process on the valued field dimension. We
recall in the first section of this article main ideas, definitions and results of these
constructions.
In [19] the second author introduced a notion of definable distributions in
Cluckers–Loeser motivic setting. He introduced also a notion ofmotivic wave front
set, which allows him, as in the real setting [12] or in the p-adic setting [11] and [18],
to study the pullback of a distribution by a function. All this study used pull-back
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and push-forward functors, in particular the following result is announced and used
in [19].

Theorem 1.1. Let X , W and W ′ be definable sets over k, let � be a definable
morphism fromW toW ′. We denote by �W the projection fromW × X toW and
by �W ′ the projection from W ′ × X to W ′. Let [ϕ] be a constructible exponential
function in C (W ′ × X )exp.
1. If [ϕ] is �W ′ -integrable then [(� × IdX )∗ϕ] is �W -integrable. Furthermore, if �
is onto then this implication is an equivalence.

2. If [ϕ] satisfies the condition (1) then

�W !
[
(� × IdX )∗ϕ

]
= �∗(�W ′ ![ϕ]).

This natural commutativity relation between pull-back and push-forward func-
tors seems not contained in the articles [7, 8] and the purpose of this article is to
prove it. Remark that a similar result for local fields is obvious using evaluation of
points, nevertheless in the motivic context, motivic constructible functions are not
determined by their point-wise evaluation so this theorem should be proved using
only functorial properties of motivic integration at the level of the rings of motivic
constructible functions. Thus, we start in Section 2 by recalling main definitions and
ideas of Cluckers–Loeser motivic integration. Then, in Section 3, we prove above
theorem in a slightly more general context (Lemma 2.27 and Theorem 2.28) follow-
ing all different steps of the construction of the theory, as the induction process on
the valued field dimension using cell decompositions and the computation at the
residue and value group levels.

§2. Motivic integration and constructible motivic functions. For the reader’s con-
venience we shall start by recalling briefly some definitions, notations and construc-
tions from [7] and [8] that will be used in this article. For an introduction to this
circle of ideas we refer to the surveys [2,5] and [10] and the notes [3,4] and [6].

2.1. Denef-Pas, Presburger language. We fix a field k of characteristic zero and
we denote by Fieldk the category of fields containing k. For any field K in this
category we consider the field of Laurent series K((t)) endowed with its natural
valuation

ord : K((t)) \ {0} −→ Z

extended by ord 0 = +∞, and with the angular componentmapping
ac : K((t))→ K

defined by ac (x) = xt−ord x mod t if x �= 0 and ac (0) = 0.
We use the three sorted language introduced by Denef and Pas in [16]

LDP,P = (LVal,LRes,LOrd,ord , ac )

with sorts corresponding respectively to valued field, residue field and value group
variables. The languages LVal and LRes are the ring language

LRings = (+,−, ·, 0, 1)
and the language LOrd is the Presburger language

LPR = {+,−, 0, 1,≤} ∪ {≡n| n ∈ N, n > 1},
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with ≡n symbols interpreted as equivalence relation modulo n. Symbols ord and
ac will be interpreted respectively as valuation and angular component, so that
for any K in Fieldk the triple (K((t)), K,Z) is a structure for LDP,P. We shall also
add constant symbols in the Val-sort and in the Res-sort for elements of k((t)),
resp. of k.
We will work with the LDP,P-theory Hac ,0 of structures whose valued field is
Henselian, with characteristic zero residue field, and with value group Z. Denef and
Pas proved in [16] the following theorem on elimination of valued field quantifiers.

Theorem 2.1 (Denef-Pas [16], Presburger [17]). Every formula φ(x, �, α) without
parameters in theLDP,P-language, with x variables in the Val-sort, � variables in the
Res-sort and α variables in the Ord-sort is Hac ,0-equivalent to a finite disjunction of
formulas of the form

�(ac f1(x), . . . , ac fk(x), �) ∧ 	(ordf1(x), . . . ,ord fk(x), α),
with � a LRes-formula, 	 a LOrd-formula without quantifiers and f1, . . . , fk polyno-
mials in Z[x]. The theory Hac ,0 admits elimination of quantifiers in the valued field
sort.

2.2. Definable subassignments. From now on we will work with the Denef-Pas
language enriched with constant symbols in the Val-sort and in the Res-sort for
elements of k((t)), resp. of k, and we will denote this language also by LDP,P.
2.2.1. Definable subassignments and definable morphisms. Let ϕ be a formula
respectively in m, n and r free variables in the various sorts. For every field K in
Fieldk , we denote by hϕ(K) the subset of

h[m, n, r](K) := K((t))m ×Kn × Zr

consisting of points satisfying ϕ. The assignment K 
→ hϕ(K) is called a definable
subassignment or definable set. For instance we will denote by {∗} the definable
subassignment h[0, 0, 0] defined by K 
→ SpecK . A definable morphism F between
two definable subassignments hϕ and h� is a collection of applications parametrized
by K in Fieldk

F (K) : hϕ(K)→ h�(K)
such that the graph mapK 
→ GraphF (K) is a definable subassignment. Definable
subassignments and definable morphisms are precisely objects and morphisms of
the category of definable subassignments over k denoted by Defk . More generally,
for any definable subassignment S in Defk , we will consider the category DefS of
definable subassignments over S whose objects are definable morphisms 
Z in Defk
from a definable Z to S and morphisms are definable maps g : Y → Z such that

Y = 
Z ◦g. Sometimes, instead of using 
Z , we will simply say thatZ is a definable
set in DefS .

2.2.2. Finiteness of some definable functions. We deduce from Theorem 2.1 on
quantifier elimination the following corollary

Corollary 2.2. For nonnegative integers m,n, and r, every definable map from
h[0, n, 0] to h[m, 0, r] or from h[0, 0, r] to h[m, n, 0] or from h[0, n, r] to h[m, 0, 0]
takes finitely many values.
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2.2.3. Points and fibers. A point x of a definable set X is by definition a couple
x = (x0, K), where K is an extension of k and x0 is a point of X (K). The field K
will be denoted by k(x) and called residue field of x.
Let f be a definable morphism from a subassignment of h[m, n, r] denoted by X
to a subassignment of h[m′, n′, r′] denoted by Y . Let ϕ(x, y) be the formula which
describes the graph of f, where x runs over h[m, n, r] and y runs over h[m′, n′, r′].
For every point y = (y0, k(y)) of Y , the fiber Xy is the object of Defk(y) defined by
the formula ϕ(x, y0) which has coefficients in k(y) and k(y)((t)). Taking fibers at y
gives rise to a functor i∗y : DefY → Defk(y).
2.2.4. Dimension. For any positive integerm, an algebraic subvariety Z of Am

k((t))

induces a definable subassignment hZ of h[m, 0, 0] with hZ(K) equal to Z(K((t)))
for any extensionK of k. TheZariski closure of a subassignment S of h[m, 0, 0] is by
definition the subassignment of the intersectionW of all algebraic subvarietiesZ of
Am
k((t)) such that hZ contained S. The dimensionKdim S of S is naturally defined as
dimW . More generally, the dimension of a subassignment S of h[m, n, r] is defined
as the dimension Kdim p(S) where p is the projection from h[m, n, r] to h[m, 0, 0].
It is proved in [7], using results of Pas [16] and van denDries [20], that isomorphic
definable subassignments in Defk have the same dimension.

2.3. Grothendieck rings and exponentials.

2.3.1. The category RDef expk . For any definable subassignment Z in Defk , the
subcategory RDefZ of DefZ whose objects are definable morphisms �Y , with Y
a subassignment of a product Z × h[0, n, 0], n a nonnegative integer and �Y the
canonical projection on Z, has been introduced in [7].

Example 2.3. If Z is the point h[0, 0, 0], then the subcategory RDefZ is the
category of definable sets in the ring language with coefficients from k.

More generally, in [8] motivic additive characters were considered in this con-
text through the category RDef expZ whose objects are triples (�Y , �, g) with �Y a
definable set in RDefZ , � a definable morphism from Y to h[0, 1, 0] and g a defin-
able morphism from Y to h[1, 0, 0]. A morphism from (�Y ′ , �′, g ′) to (�Y , �, g) in
RDef expZ is a morphism h from Y ′ to Y satisfying the equalities

�Y ′ = �Y ◦ h, �′ = � ◦ h, g ′ = g ◦ h.
Remark 2.4. The functor �Y 
→ (�Y , 0, 0) allows to identify RDefZ as a full
subcategory of RDef expZ .

2.3.2. The Grothendieck ring K0(RDef
exp
Z ). As an abelian group it is the free

abelian group over symbols [�Y , �, g] modulo the following relations:
Isomorphism. For any isomorphic (�Y , �, g) and (�Y ′ , �′, g ′),

[�Y , �, g] = [�Y ′ , �′, g ′]. (R1)

Additivity. For �Y and �Y ′ definable subassignments of some �X in RDefZ and
for � and g defined on Y ∪ Y ′

[�Y∪Y ′ , �, g] + [�Y∩Y ′ , �|Y∩Y ′ , g|Y∩Y ′ ] = [�Y , �|Y , g|Y ] + [�Y ′ , �|Y ′ , g|Y ′ ]. (R2)
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Compatibility with reduction. For any �Y in DefZ , for any definable morphism f
from Y to h[1, 0, 0] with ordf(y) ≥ 0 for any y ∈ Y we have

[�Y , �, g + f] = [�Y , � + f, g] (R3)

with f the reduction of f modulo (t).
Sum over the line. Let p be the canonical projection fromY [0, 1, 0] to h[0, 1, 0]. If
the morphisms �Y [0,1,0], g and � all factorize through the canonical projection from
Y [0, 1, 0] to Y then

[Y [0, 1, 0]→ Z, � + p, g] = 0. (R4)

This Grothendieck group is endowed with a ring structure by setting

[�Y , �, g] · [�Y ′ , �′, g ′] = [�Y⊗ZY ′ , � ◦ pY + �′ ◦ p′Y , g ◦ pY + g ′ ◦ p′Y ], (R5)

where Y ⊗Z Y ′ is the fiber product of Y and Y ′ above Z, pY is the projection to
Y and pY ′ is the projection to Y ′. The element [IdZ, 0, 0] is the multiplicative unit
of K0(RDef

exp
Z ). The Grothendieck ring K0(RDefZ) is defined as above and the

functor defined in Remark 2.4 induces an injection K0(RDefZ)→ K0(RDef expZ ).
Remark 2.5. The element [�Y , �, g] of K0(RDef

exp
Z ) will be denoted by

e�E(g)[�Y ]. We will abbreviate e0E(g)[�Y ] by E(g)[�Y ], e0E(0)[�Y ] by [�Y ] and
e0E(g)[IdZ ] by E(g).

Remark 2.6 (Interpretation of E). The element E(g) in K0(RDef
exp
Z ) can be

viewed as the exponential (at the valued field level of the definable morphism g from
Z to h[1, 0, 0], said otherwise, it is a motivic additive character on the valued field
evaluated in g. More precisely, by relations (R3) and (R5), E can be interpreted as
a universal additive character which is trivial on the maximal ideal of the valuation
ring. This is compatible with specialization to p-adic fields as explained in Section
9 of [8].

Remark 2.7 (Interpretation of e). The element e� in K0(RDef
exp
Z ) can be con-

sidered as the exponential (at the residue field level) of the definable morphism �
from Z to h[0, 1, 0]. By relation (R4), e can be interpreted as a universal additive
character on the residue field. For instance in the case where Z is the point, the
relation [h[0, 1, 0] → {∗}, p, 0] = 0 should be interpreted as an abstraction of the
classical nullity of the sum of a nontrivial character over elements of a finite field.
Relation (R3) expresses compatibility under reduction modulo the uniformizing
parameter between the exponentials over the valued field and over the residue field.

2.3.3. Pull-back and push-forward. For f : Z → Z′ in Defk there is a natural
pull-back morphism f∗ : K0(RDef

exp
Z′ ) → K0(RDef

exp
Z ), induced by the fiber

product. Furthermore, if f is a morphism in RDefZ′ , then composition with f
induces a morphism f! : K0(RDef

exp
Z )→ K0(RDef expZ′ ).

2.4. Constructible exponential functions.

2.4.1. Constructiblemotivic functions. In thep-adic context (see [8,9,14] and [1]),
for instance over the field Qp itself, one fixes an additive character Ψ : K → C×

trivial on pZp and nontrivial on the set ord x = 0 and one denotes by Ap the
ring Z[1/p, 1/(1 − p−i)]. For any X contained in some Qmp and definable for the
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Macintyre language, it is natural to define theAp-algebra of constructible functions
on X denoted by C(X ) and generated by function of the form |f|ord (h), where
f and h are definable functions from X to Qp and h does not vanish. In [8], also
a variant with additive characters is introduced, called constructible exponential
functions on X and denoted by C(X )exp. The algebra C(X )exp is generated by C(X )
and functions of the form �(g) with g : X → Qp with � a nontrivial additive
character on Qp. Analogously, in [7] Cluckers and Loeser consider the ring

A = Z

[
L,L−1,

(
1

1− L−i

)
i>0

]
,

where L is a symbol, and they define the ring C(Z) of constructible motivic functions
on a definable set Z by

C(Z) := K0(RDefZ)⊗P0(Z) P(Z),
where P(Z), called ring of Presburger constructible functions, is the subring of the
ring of functions from the set of points of Z to A, generated by constant functions,
definable functions from Z to Z and functions of the form L� with � a definable
function fromZ toZ. Here,P0(Z) is the subring ofP(Z) generated by the constant
function L and the characteristic functions 1Y of definable subsets Y of the baseZ.
The tensor product is given by the morphism from P0(Z) to K0(RDefZ) sending
1Y to the class [Y → Z] of the canonical injection from Y to Z and sending L to
the class [Z[0, 1, 0]→ Z] of the canonical projection to Z.
The following proposition [7, Proposition 5.3.1] allows to dissociate the Res-sort
with the value group sort.

Proposition 2.8. Let S be a definable subassignment of h[0, n, 0].

• LetW be a definable subassignment of h[0, n, 0]. The canonical morphism
P(S)⊗P0(S) K0(RDefS×W )→ C(S ×W )

is an isomorphism.
• LetW be a definable subassignment of h[0, 0, r]. The canonical morphism

K0(RDefS)⊗P (0)(S) P(S ×W )→ C(S ×W )
is an isomorphism.

2.4.2. Constructible exponential functions. For any definable set Z in Defk , the
ring C(Z) exp of constructible exponential functions is defined in [8] by

C(Z) exp := C(Z)⊗K0(RDefZ ) K0(RDef expZ ),
where we use the morphism a 
→ a ⊗ 1Z fromK0(RDefZ) to C(Z). For any integer
d , we denote by C≤d (Z) exp the ideal of constructible functions of K-dimension ≤d ,
namely the ideal generated by the characteristic functions 1Z′ of subassignments
Z′ of Z of dimension at most d . A constructible function has K-dimension d , if it
belongs to C≤d (Z) exp \ C≤d−1(Z) exp. This family of ideals is a filtration of the ring
C(Z) exp and the graded ring associated

C (Z) exp = ⊕d∈N C≤d (Z) exp/C≤d−1(Z) exp

is called ring of constructible exponential Functions.
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Remark 2.9. Constructible Functions can be compared to the equivalence
classes of Lebesgue measurable functions (equality up to a zero measure set). In
this article we will just write function for Function; the difference still being visible
in the notation C (Z) exp versus C(Z) exp.
2.5. Cell decomposition. Let C be a definable subassignment in Defk . Let α :
C → Z, � : C → h[0, 1, 0] \ {0} and c : C → h[1, 0, 0] be definable morphisms.
• The cell ZC,c,α,� with basis C , center c, order α and angular component �, is

ZC,c,α,� =
{
(y, z) ∈ C [1, 0, 0] ord (z − c(y)) = α(y)

ac (z − c(y)) = �(y)
}
.

Note that this definable set is a family of balls B(c(y) + �(y)tα(y), α(y) + 1)
parametrized by the base C . The axiom (Axiom 2.21), below gives the push-
forward morphism corresponding to the projection of this cell on its base C , that
is, integration in the fibers of this projection map.
• The cell ZC,c with basis C and center c is

ZC,c = {(y, z) ∈ C [1, 0, 0] | z = c(y)} .
The change of variables formula (Theorem 2.23) gives in particular, the push-
forward morphism corresponding to the projection of that cell on its base.
More generally, a definable subassignment Z of S[1, 0, 0] for some S in Defk is
called a 1-cell or a 0-cell if there exists a definable isomorphism

� : Z → ZC,c,α,� ⊂ S[1, s, r] or � : Z → ZC,c ⊂ S[1, s, 0],
called presentation of the cell Z, where the baseC is contained in S[0, s, r] and such
that the morphism � ◦ � is the identity on Z with � the projection to S[1, 0, 0].
Let us state a variant of Denef-Pas Cell Decomposition theorem [16], Theorem
7.2.1 of [8], that will be used in the proof of the projectionLemma 2.27 in Section 3.3.

Theorem 2.10 (Cell decomposition). Let X be a definable subassignment of
S[1, 0, 0] with S in Defk .

1. The definable set X is a finite disjoint union of cells.
2. For every ϕ in C(X ) there exists a finite partition of X into cells Zi with presen-
tation (�i , ZCi ) such that ϕ|Zi = �

∗
i p

∗
i (�i), with �i in C(Ci) and pi : ZCi → Ci

the projection. Similar statements hold for ϕ in P(X ) and in K0(RDefX ).
2.6. Pull-back of constructible exponential functions. A definable map f : Z →
Z′ in Defk induces a pull-back morphism (cf. [7, Section 5.4] and in [8, Section
3.4])

f∗ : C(Z′)exp → C(Z)exp.
Indeed, the fiber product along f induces a pull-back morphism from
K0(RDefZ′)exp to K0(RDefZ)exp and the composition by f induces also a pull-
back morphism from P(Z′) to P(Z). These pull-backs are compatible with their
tensor product.

Remark 2.11. A constructible exponential function E(g)e� ⊗ αL� can be
thought of as

z ∈ Z 
→ E(g(z))e�(z) ⊗ α(z)L�(z) ∈ C({z})exp.
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More generally, the constructible exponential function [�Y ]E(g)e� ⊗ αL� can be
thought of as

z ∈ Z 
→ [Yz ]E(g|Yz )e�|Yz ⊗ α|YzL�|Yz ∈ C({z})exp.
By Corollary 2.2, the restrictions α|Yz and �|Yz take finitely many values, but [Yz ]
should be thought of as a kind of motive standing for a possibly infinite sum over
elements in Yz , which is a definable subset of some power of the residue field. With
E and e, the expression [�Y ]E(g)e� is a kind of exponential motive, standing for
possibly infinite exponential sums. In the p-adic case, the finiteness of the residue
field allows one to see [Yz ] as a finite sum again.

2.7. Push-forward of constructible exponential functions. For S in Defk , Cluckers
and Loeser construct in [7] and [8] a functor I expS from the category DefS to the
category Ab of abelian groups:

I expS :

⎧⎪⎨
⎪⎩
DefS −→ Ab
(
Z : Z → S) 
−→ (ISC (
Z)exp ⊂ C (Z)exp)
(
Z

f→ 
Y ) 
−→ (ISC (
Z)exp f!→ ISC (
Y )exp)
satisfying natural axioms implying its uniqueness, see Theorems 10.1.1 and 13.2.1
in [7] and Theorem 4.1.1 in [8]. The elements of ISC (
Z)exp are called 
Z-integrable
motivic constructible exponential functions on Z or simply 
Z-integrable functions.

Example 2.12. The ring ISC (IdS)exp is all of C (S)exp, namely, every function
in C (S)exp is already integrable up to S itself, with the identity map S → S as
structural morphism.

The functor I expS and the integrable functions are constructed simultaneously. The
functor IS is first defined in [7] in the setting without exponential and extended in
[8] in the exponential setting to I expS . In particular, for any 
Z : Z → S in DefS ,
ISC (
Z)exp is a graded subgroup of C (Z)exp defined as

ISC (
Z)exp := ISC (
Z)⊗K0(RDefZ ) K0(RDefZ)exp.
Remark 2.13. Sometimes we will simply say S-integrable instead of 
Z-
integrable and write ISC (Z)exp when the structural morphism 
Z is implicitly
clear.

The natural morphism of graded groups from ISC (
Z) to ISC (
Z)exp is injective.
We will use the following axioms (see Theorem 10.1.1 in [7] and Section 13.2 in [8]):

Axiom 2.14 (Fubini). Let S be inDefk . Letf : 
X → 
Y be a definablemorphism
in DefS . A constructible function ϕ on X is 
X -integrable if and only if ϕ is f-
integrable and f!ϕ is 
Y -integrable namely:

ϕ ∈ ISC (
X )exp ⇔ ϕ ∈ IYC (f)exp and f!ϕ ∈ ISC (
Y )exp.
Axiom 2.15 (Additivity). Let Z be a definable subassignment in DefS . Assume
Z is the disjoint union of two definable subassignments Z1 and Z2. Then, for every
morphism f : Z → Y in DefS , the isomorphism C (Z) � C (Z1) ⊕ C (Z2) induces
an isomorphism ISC (Z) � ISC (Z1)⊕ ISC (Z2) under which we have f! = f1!⊕f2!.
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Axiom 2.16 (Projection formula). Let S be in Defk . For every morphism f from

Z to 
Y in DefS , and every α in C(Y )exp and � in ISC (
Z)exp, if f∗(α)� belongs to
ISC (
Z)exp, then f!(f∗(α)�) = αf!(�).

Axiom 2.17 (Push-forward for inclusions). Let S be a definable set in Defk . Let

T : T → S be a definable set in DefS . Let Z and Z′ two definable subassignments
of T with Z ⊂ Z′. Let i : Z → Z′ be the corresponding inclusion and 
Z and 
Z′ the
corresponding restriction of 
T to Z andZ′. We have 
Z = 
Z′ ◦ i . Composition with
i induces a morphism

i! : K0(RDefZ)→ K0(RDefZ′).

The extension by zero induces a morphism i! : P(Z)→ P(Z′). By compatibility with
the tensor product, we get a morphism

i! : C(Z)→ C(Z′). (1)

For every constructible function ϕ in C(Z), the class [ϕ] lies in ISC (
Z) if and only if
[i!(ϕ)] belongs to ISC (
Z′). If this is the case then

i!([ϕ]) = [i!(ϕ)].

The morphism (1) is also compatible with the morphism

i! : K0(RDef
exp
Z )→ K0(RDefexpZ′ )

also defined by extension by zero. We obtain in such a way a morphism i! : C(Z)exp →
C(Z′)exp. As i sends subassignments of Z to subassignments of Z′ of the same
dimension, there are group morphisms

i! : C≤d (Z)exp → C≤d (Z′)exp

and a graded group morphisms

i! : C(Z)exp → C(Z′)exp

which restricts to a morphism i! : ISC (
Z)exp → ISC (
Z′)exp.

Axiom 2.18 (Projection along k-variables). Let S be a definable subassignment
in Defk . Let 
Y : Y → S be in DefS . Let n ≥ 0 be an integer. We denote by Z
the definable set Y [0, n, 0], by � : Z → Y the canonical projection, and by 
Z the
structural map � ◦ 
Y . By Proposition 2.8, there is a canonical isomorphism

C(Z) � K0(RDefZ)⊗P (0)(Y ) P(Y )
which allows to define a ring morphism �! : C(Z) → C(Y ) by sending∑i ai ⊗ ϕi to∑
i �!(ai)⊗ϕi with ai inK0(RDefZ), ϕi in P(Y ) and �!(ai) defined in Section 2.3.3.

For any constructible function ϕ in C(Z), the class [ϕ] is �-integrable and
�!([ϕ]) = [�!(ϕ)]

where �! is defined above.
The map �! : K0(RDef

exp
Z )→ K0(RDefexpY ) induces a ring morphism
�! : C(Z)exp → C(Y )exp.

https://doi.org/10.1017/jsl.2019.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.31


COMMUTATIVITYOF PULL-BACKAND PUSH-FORWARD FUNCTORS 1261

Furthermore, as � sends subassignments of Z to subassignments of Y of the same
dimension, there are group morphisms �! : C≤d (Z)exp → C≤d (Y )exp for all d , and a
graded group morphism �! : C (Z)exp → C (Y )exp which restricts to a morphism

�! : ISC (
Z)exp → ISC (
Y )exp.
Axiom 2.19 (Projection along Z-variables). Let S be a definable subassignment
in Defk . Let 
Y : Y → S be in DefS . Let r ≥ 0 be an integer. We denote by Z
the definable set Y [0, 0, r], by � : Z → Y the canonical projection, and by 
Z the
structural map � ◦ 
Y .
Let ϕ be a constructible function in C(Z). The class [ϕ] is �-integrable if and
only if ϕ can be written as a finite sum

∑
i ϕ
(i)
Y ⊗ ϕ(i)P , where for each i , ϕ(i)Y is a

constructible function in C(Y ) and ϕ(i)P is a Presburger function in IYP(Z), namely
ϕ(i)P is a Y -integrable Presburger function on Z: for any q > 1, for any y in Y the
family

∑
x∈Zr
q(ϕ

(i)
P (y, x)) is summable with q : A → R the unique morphism of

rings mapping L to q. In that case we have

�![ϕ] =
∑
i

[ϕ(i)Y ⊗ �!(ϕ(i)P )],

where for each i , �!(ϕ
(i)
P ) is the unique constructible function in C(Y ) such that for any

y in Y , for any q > 1

q

(
(�!ϕ

(i)
P )(y)

)
=

∑
x∈Zr

q(ϕ
(i)
P (y, x)).

This defines a morphism �! : ISC (
Z) → ISC (
Y ), which induces by tensor product
a graded group morphism

�! : ISC (
Z)exp → ISC (
Y )exp

using the fact that the canonical morphism

K0(RDef
exp
Y )⊗P0(Y ) P0(Z)→ K0(RDefexpZ ),

is an isomorphism.

Axiom 2.20 (Volume of graph; 0-cell). Let 
Y be in DefS , and

Z = {(y, z) ∈ Y [1, 0, 0] | z = c(y)}
where c : Y → h[1, 0, 0] is a definablemorphism.Denote byf : Z → Y themorphism
induced by the projection from Y × h[1, 0, 0] to Y , and 
Z its composition with 
Y .
Then, the constructible function [1Z ] is 
Z-integrable if and only if L(ord jacf)◦f

−1
is


Y -integrable. In that case, in the ring ISC (Y )exp we have the equality

f!([1Z ]) = L(ord jacf)◦f
−1
.

Axiom 2.21 (Volume of balls; 1-cell). Let 
Y be in DefS , and

Z = {(y, z) ∈ Y [1, 0, 0] | ord (z − c(y)) = α(y), ac (z − c(y)) = �(y)}
where α : Y → Z, � : Y → h[0, 1, 0] \ {0} and c : Y → h[1, 0, 0] are definable
morphisms. Denote by f : Z → Y the morphism induced by the projection from
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Y × h[1, 0, 0] to Y , and 
Z its composition with 
Y . Then, the constructible function
[1Z ] is 
Z-integrable if and only if L−α−1[1Y ] is 
Y -integrable. In that case, in the ring
ISC (Y )exp we have the equality

f!([1Z ]) = L−α−1[1Y ].

By Axiom 2.21, the volume of a ball

{z ∈ h[1, 0, 0] | ord (z − c) = α, ac (z − c) = �}
with α in Z, c in k((t)) and � in k, � �= 0 is Lα−1. This is natural by analogy with
the p-adic case.

Axiom 2.22 (Relative balls of large volume). Let 
Y be inDefS and

Z = {(y, z) ∈ Y [1, 0, 0] | ord z = α(y), ac z = �(y)}
where α : Y → Z, � : Y → h[0, 1, 0] \ {0} are definable morphisms. Let f : Z → Y
be the morphism induced by the projection from Y [1, 0, 0] to Y . Suppose that the
constructible function [1Z ] is (
Y ◦ f)-integrable and moreover α(y) < 0 holds for
every y in Y , then f!(E(z)[1Z ]) = 0.
The previous axiom is also natural by analogy with the p-adic case, where an
additive character evaluated in the identity function and integrated over a large ball
is naturally zero.

Theorem 2.23 (Change of variables formula, Theorem 5.2.1 of [8]). Let f :
X → Y be a definable isomorphism between definable subassignments of dimension
d . Let ϕ be in C≤d (Y ) exp with a nonzero class in Cd (Y ) exp. Then [f∗(ϕ)] belongs
to IYC d (f)exp and

f!([f∗(ϕ)]) = Lord (Jacf)◦f
−1
[ϕ].

We give some ideas of the construction of this push-forward and refer to [7] and
[8] and to the surveys [2, 5] and [10] for further details. For instance, we fix a base
S, we consider a definable morphism f : Y → S where Y is a subassignment of
some h[m, n, r] and we denote by Γf the graph off. By functoriality the morphism
f! is the composition p! ◦ i! where i : Y → Γf and p : Γf → S are the canonical
injection and projection. Thus, it is enough to know how to construct the push-
forward morphisms for injections and projections. The case of definable injection
is done using extension by zero of constructible functions, and an adjustment with
a Jacobian to match the induced measures. Using the axiom of the volume of
balls and the change of variables formula, we observe that the construction of the
push-forward morphism for a projection is done by induction on the valued field
dimension. For instance, Γf can be seen as a definable subassignment of S′[1, 0, 0]
where S′ is the definable set S[m − 1, n, r] and the push-forward p! will be the
composition p(m−1)! ◦ �! where � : Γf → S′ and p(m−1) : S′ → S are canonical
projections. The construction does not depend on the order of such projections and
the main tool is the cell decomposition theorem stated above. Once the valuative
dimension is zero we have to define a push-forward of a projection from some
S[0, n′, r′] to S. This is done using the independence between the residue field
and the value group, coming from Theorem 2.1, see for instance Proposition 2.8.
The push-forward along residue variables is simply the push-forward induced by
composition at the level of Grothendieck ring cf. Axiom 2.18 (and [7, Section 5.6]).

https://doi.org/10.1017/jsl.2019.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.31


COMMUTATIVITYOF PULL-BACKAND PUSH-FORWARD FUNCTORS 1263

The integration along Z-variables corresponds to summing over the integers, cf.
Axiom 2.19 (and [7, Section 4.5]).

Example 2.24 (Integration of constructible functions, [7, Section 11.1]). In this
example, we illustrate the computation of the integration along a projection f :
S × Y → S with Y = h[1, n, r]. We will use this computation in Section 3.3. Let
ϕ be a constructible function in C(S[1, n, r]). By the cell decomposition theorem
(Theorem 2.10), there is a cell decomposition of S[1, n, r] adapted to ϕ denoted
by (Zi )i∈I . For any i in I , the cell Zi has a presentation (�i , ZCi ), and there is a
constructible function �i in C(Ci) such that

ϕ|Zi = �
∗
i p

∗
i (�i), (2)

where ZCi is a subassignment of some h[1, n + ni , r + ri ], Ci is a subassignment
of h[0, n + ni , r + ri ], pi : ZCi → Ci and qi : Ci → S are the projections. By a
refinement of the cell decomposition we can assume that for any i , the restriction
ϕ|Zi is either zero or has the same K-dimension as Zi . By the additivity axiom
(Axiom 2.15) ϕ will be f-integrable if and only for any i in I the restriction ϕ|Zi is
f-integrable and in that case

f!ϕ =
∑
i∈I
f!

(
ϕ|Zi

)
.

For any i in I , we consider the commutative diagram

Zi
�i



��

f

��

ZCi

pi

��
S Ciqi
��

.

Using Equation (2), the projection axiom (Axiom 2.16) and the Fubini axiom
(Axiom 2.14), the following statement are equivalent

• the restriction ϕ|Zi is f-integrable,
• the constructible function p∗i (�i)[1ZCi ] is f ◦ �−1i -integrable, namely, qi ◦ pi -
integrable,

• the constructible function �ipi![1ZCi ] is qi -integrable with pi![1ZCi ] is an
integration of a 0-cell given by (Axiom 2.20) or a 1-cell given by (Axiom
2.21).

The qi -integrability condition and the qi -integration can be treated by Proposition
2.8 and (Axioms 2.18 and 2.19). If all these constructible functions are integrable
then

f!ϕ =
∑
i∈I
qi! (�ipi![1ZCi ]) .

Example 2.25 (Integration of exponential constructible functions in [8]). We
consider two cases.

• Integration along the projection �S[1,0,0]S : S[1, 0, 0]→ S.
Let S be a definable set in Defk . Let ϕ be a constructible function in

C(S[1, 0, 0])exp. By additivity, we can simply assume
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ϕ = [f : Y → S[1, 0, 0]]e�E(g) ⊗ ϕ̃
with Y ⊂ S[1, nY , 0]. In the construction [8, Section 5.1], using a cell
decomposition adapted to ϕ̃ the authors consider a definable isomorphism

� : Y → Y ′ ⊂ Y [0, n, r]
and the following diagram

Y

� 

��

f �� S[1, 0, 0]
�S �� S

Y ′ �′ �� S[0, n + nY , r],
p′

�������������

where �′ and p′ are projections. They define

�′ = � ◦ �−1, g ′ = g ◦ �−1 and ϕ′ = �−1∗f∗(ϕ̃).

By construction there exists also a unique definable function �̃′ from S[0, nY +
n, r] to h[0, 1, 0] such that �′ = �̃′ ◦ �′.
We consider an element ofY ′ as a couple (x, y) with x in S[0, nY , 0] and y in
h[1, 0, 0]. Following from its construction, the authors decompose the definable
set Y ′ as unionA∪B, such that the function g ′(x, .) : y → g ′(x, y) is constant
on each fiber Bx and nonconstant and injective on each fiber Ax where for
each x,

Ax = {y ∈ h[1, 0, 0] | (x, y) ∈ A} and Bx = {y ∈ h[1, 0, 0] | (x, y) ∈ B}.
As g′ is constant along fibers of Bx , we denote by g̃ ′ : �′(B) → h[1, 0, 0] the
unique definable function such that g ′|B = g̃

′ ◦ �′|B . They refined the above
partition, decomposing A as the union A1 ∪ A2 with
A1 := {(x, y) ∈ A | g ′(x, .) maps Ax onto a ball of volume L−j with j ≤ 0}
and

A2 := {(x, y) ∈ A | g ′(x, .) maps Ax onto a ball of volume L−j with j > 0}.
Finally by their construction they consider two definable morphisms

r′ : S[0, nY + n, r]→ h[1, 0, 0] and 	′ : S[0, nY + n, r]→ h[0, 1, 0]
such that for any (x, y) in A2

g ′(x, y) − r′(x) = 	(x) mod (t).
Then, using all these notations they define

�S[0,1,0]S! ([ϕ]) := p′!
(
e�̃

′
E(g̃ ′)�′! ([1Bϕ

′]) + e�̃
′+	E(r)�′! ([1A2ϕ

′])
)
. (3)

• Integration alongf : Z → Y . Let S be a definable set in Defk . Let f : Z → Y
be a morphism in DefS . Let ϕ in ISC (Z)exp be of the form

ϕ = E(g)e	 [p : X → Z]⊗ϕ0
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with p : X → Z in RDefZ , g : X → h[1, 0, 0] and 	 : X → h[0, 1, 0] definable
morphisms and ϕ0 in ISC (Z). We denote by

�f,g,	 : X → Y [1, 1, 0]
the morphism sending x to

(
(f ◦ p)(x), g(x), 	(x)). We denote by

�Y [1,1,0]Y [0,1,0] : Y [1, 1, 0]→ Y [0, 1, 0] and �Y [0,1,0]Y : Y [0, 1, 0]→ Y
the projections, and by x and � the canonical coordinates on the fibers of
�Y [1,1,0Y |0,1,0] and �

Y [0,1,0]
Y . Then, using integration along a residue variable (see

Axiom 2.18) and integration along one valued field variable explained above,
Cluckers and Loeser defined

f!(ϕ) := �
Y [0,1,0]
Y !

(
�Y [1,1,0]Y [0,1,0]!

(
E(x)e��f,g,	!(p∗ϕ0)

))
.

2.8. Commutativity of pull-back and push-forward functors.

Notations 2.26. Let A, B, C ,D some sets. Consider f : A→ C and g : B → D
some applications. We denote by f × g the application from A × B to C ×D which
maps (a, b) to (f(a), g(b)). Let ϕ : A × B → C and � : A × B → D be some
applications. We denote by (ϕ,�) the application from A× B to C ×D which maps
(a, b) to (ϕ(a, b), �(a, b)).

The purpose of this article was to prove the natural following commutativity
relation between pull-back and push-forward which seem not contained in the
articles [7,8] and announced by the second author in [19].

Lemma 2.27. Let S be a definable set in Defk and � : W → W ′ be a definable
morphism in DefS . Let X be a definable set inDefS . We denote by �W the projection
from W ×S X to W and by �W ′ the projection from W ′ ×S X to W ′. Let ϕ be a
constructible exponential function in C(W ′ ×S X )exp.
1. If [ϕ] is �W ′ -integrable then [(� × IdX )∗ϕ] is �W -integrable. Furthermore, if �
is onto then this implication is an equivalence.

2. If [ϕ] satisfies the condition (1) then

�W !
[
(� × IdX )∗ϕ

]
= �∗(�W ′ ![ϕ]). (4)

This lemma can be generalized in the following way

Theorem 2.28. Let S be a definable set in Defk and � : W → W ′ be a definable
morphism in DefS . Let f : X → Y be a definable morphism in DefS . We denote by
�W the projection fromW ×S X toW and by �W ′ the projection fromW ′ ×S X to
W ′. Let ϕ be a constructible function in C(W ′ ×S X )exp.
1. If [ϕ] is (�W ′ × f)-integrable then [(� × IdX )∗ϕ] is (�W × f)-integrable.
Furthermore, if � is onto then this implication is an equivalence.

2. If [ϕ] satisfies the condition (1) then

(�W × f)!
[
(� × IdX )∗ϕ

]
= (� × IdY )∗

(
(�W ′ × f)![ϕ]) . (5)

§3. Proofs. In Section 3.1, we state and prove three lemmas allowing us to prove
Lemma 2.27 and Theorem 2.28 in an inductive way following step by step the
motivic integration construction in [7] and [8]. In Section 3.2 we prove Theorem

https://doi.org/10.1017/jsl.2019.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.31


1266 JORGE CELY ANDMICHEL RAIBAUT

2.28 as a Corollary of 2.27. In Section 3.3 we give a proof of the projection lemma
in the case of constructible functions without exponential, then in Section 3.4 we
give the proof of the general case with exponential.

3.1. Some preliminary lemmas.

3.1.1. Splitting lemma.

Lemma 3.1. Let S be a definable set and � : W → W ′ be a definable morphism
in DefS . Let X , Y and Z be definable sets in DefS . We consider the following
commutative diagram composed with definable morphisms in DefS

W ×S X �×IdX ��

f

��

W ′ ×S X
f′

��
W ×S Y �×IdY ��

g

��

W ′ ×S Y
g′

��
W ×S Z �×IdZ �� W ′ ×S Z

.

Assume

• for any constructible exponential function ϕ in C(W ′ ×S X )exp, if [ϕ] is f′-
integrable then (� × IdX )∗[ϕ] is f-integrable (with equivalence if � is onto) and
in that case

(� × IdY )∗(f′
! [ϕ]) = f![(� × IdX )∗ ϕ]. (6)

• for any constructible exponential function � in C(W ′ ×S Y )exp, if [�] is g ′-
integrable then (� × IdY )∗[�] is g-integrable (with equivalence if � is onto) and
in that case

(� × IdZ)∗(g ′! [�]) = g![(� × IdY )∗ �] (7)

then, for any constructible exponential functionϕ in C(W ′×S X )exp, if [ϕ] is (g ′◦f′)-
integrable then (� × IdX )∗[ϕ] is (g ◦f)-integrable (with equivalence if � is onto) and
in that case

(� × IdZ)∗((g ′ ◦ f′)![ϕ]) = (g ◦ f)![(� × IdX )∗ ϕ]. (8)

Proof. The lemma follows from Fubini axiom (see Axiom 2.14) and the assump-
tions. Indeed, let ϕ be a constructible exponential function in C(W ′ ×S X )exp. By
Fubini axiom, [ϕ] is (g′ ◦ f′)-integrable if and only if [ϕ] is f′-integrable and
f′
! [ϕ] is g

′-integrable. Then, using assumptions we observe that if [ϕ] is (g′ ◦ f′)-
integrable then (� × IdX )∗[ϕ] is f-integrable and (� × IdY )∗(f′

! [ϕ]) is g-integrable
(with equivalence if � is onto). By Fubini axiom, (� × IdX )∗[ϕ] is f-integrable and
f!(� × IdX )∗[ϕ] is g-integrable if and only if (� × IdX )∗[ϕ] is (g ◦ f)-integrable.
Then, Equation (7) implies the result. Furthermore, we obtain the equality (8) by
a direct computation using (6), (7) and Fubini axiom

(� × IdZ)∗((g ′ ◦ f′)![ϕ]) = (� × IdZ)∗(g ′! (f′
! [ϕ]))

with

(� × IdZ)∗(g ′! (f′
! [ϕ])) = g!((� × IdY )∗(f′

! [ϕ])) = g!(f![(� × IdX )∗ϕ]),
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then
(� × IdZ)∗((g ′ ◦ f′)![ϕ]) = (g ◦ f)!([(� × IdX )∗ϕ]). �

3.1.2. Extension lemma.

Lemma 3.2. Let S be a definable set and � : W → W ′ be a definable morphism
in DefS . Let i : X → Y be a definable injection between two definable sets in DefS .
We denote by iW and iW ′ the corresponding canonical injections between W ×S X
and W ×S Y , respectively between W ′ ×S X and W ′ ×S Y . For any constructible
exponential function ϕ in C(W ′ ×S X )exp, [ϕ] is iW ′ -integrable and [(� × IdX )∗ϕ] is
iW -integrable. Furthermore, ϕ satisfies the equality

(� × IdY )∗(iW ′![ϕ]) = iW ![(� × IdX )∗ϕ]. (9)

Proof. As i is a definable injection, we can decompose i as the induced definable
bijection X → i(X ) composed with the definable inclusion i(X )→ Y . Thus, using
Fubini Axiom 2.14 and the splitting Lemma 3.1, to prove Lemma 3.2 it is enough
to do it in the following cases: i is a definable bijection, and i is the inclusion from
X to Y .
• Assume i : X → Y is a definable bijection. In particular iW and iW ′ are also
definable bijections. Letϕ be a constructible exponential function in C(W ′×SX )exp,
then applying the change variable formula (Theorem 2.23), [ϕ] is iW ′ -integrable,
and [(� × IdX )∗ϕ] is iW -integrable and we have

iW ′ ![ϕ] = Lord (Jac iW ′ )◦i−1
W ′ [(i−1W ′)∗ϕ] (10)

and
iW ![(� × IdX )∗ϕ] = Lord (Jac iW )◦i

−1
W [(i−1W )

∗((� × IdX )∗ϕ)]. (11)

Using the equality

(� × IdX ) ◦ i−1W = i−1W ′ ◦ (� × IdY ) (12)

we have

(� × IdY )∗(iW ′ ![ϕ]) = Lord (Jac iW ′ )◦(�×IdX )◦i−1W [((� × IdX ) ◦ i−1W )∗ϕ]. (13)

As iW = IdW × i and iW ′ = IdW ′ × i we have the equality
Lord (Jac iW ′ )◦(�×IdX )◦i−1W = Lord (Jac iW )◦i

−1
W (14)

which induces equality (9).
•AssumeX is a definable subassignment ofY and i : X → Y is the inclusion. Let
ϕ be an exponential constructible function in C(W ′ ×S X )exp. By Axiom 2.17 (see
in particular [7, Section 5.5] and [8, Section 3.5]), the classes [ϕ] and [(� × IdX )∗ϕ]
are respectively iW ′-integrable and iW -integrable with the equalities

iW ′![ϕ] = [iW ′!(ϕ)] and iW ![(� × IdX )∗ϕ] = [iW !
(
(� × IdX )∗ϕ)].

The equality (9) is then implied by the equality

(� × IdY )∗
(
iW ′!(ϕ)) = iW !

(
(� × IdX )∗ϕ) (15)
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which comes from the definition of the pull-back morphism in [7, Sections 5.1 and
5.4] and [8, Sections 3.2 and 3.4] (see in particular Section 2.3.3) and the push-
forward morphism for an injection [7, Section 5.5] and [8, Section 3.5] (see also
Axiom 2.17). Indeed, we write the exponential constructible function ϕ as

ϕ = [p : Z →W ′ ×S X ]E(g)e� ⊗ ϕP
where Z in RDefW ′×SX , g : Z → h[1, 0, 0] and � : Z → h[0, 1, 0] are two definable
maps and ϕP is a Presburger function in P(W ′ ×S X ). Then, the main point is
that the fiber product Z ×(W ′×SX ) (W ×S X ) of p and � × IdX is isomorphic to
the fiber product of iW ′ ◦ p and � × IdY . Indeed, this is a consequence from a
direct computation or from the fact that the fiber product (W ×S X, iW , � × IdX ) is
isomorphic to the fiber product of � × IdY and iW ′ and the result follows from the
classical pull-back lemma in the following diagram

Z ×(W ′×SY ) (W ×S Y ) � Z ×(W ′×SX ) (W ×S X ) ��

��

Z

p

��
W ×S X �×IdX ��

iW

��

W ′ ×S X
iW ′
��

W ×S Y �×IdY �� W ′ ×S Y

.

�

3.1.3. Reduction lemma.

Remark 3.3. Let S be a definable set andW be a definable set in DefS . Let m,
n, and r be some nonnegative integers. The definable sets W [m, n, r] and W ×S
S[m, n, r] are isomorphic, and we identify them in the following.

Lemma 3.4. Let S be a definable set and � : W → W ′ be a definable morphism
in DefS . Let m, n, and r be some nonnegative integers. It is enough to prove Lemma
2.27 in the case X = S[m, n, r] to prove it in the general case.

Proof. Indeed, if X is a definable subassignment of some S[m, n, r] then,
considering the assumption and the diagram

W ×S X
i

��

�×IdX �� W ′ ×S X
i′

��
W [m, n, r]

�×IdS[m,n,r] ��

�W

��

W ′[m, n, r]

�W ′
��

W
� �� W ′

the lemma follows from the extension Lemma 3.2 and the splitting Lemma 3.1. �
3.2. Proof of Theorem 2.28. In this subsection, we assume Lemma 2.27 true and
we prove Theorem 2.28 as a consequence of the extension Lemma 3.2 and the
splitting Lemma 3.1.
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Proof. LetS be a definable set inDefk and � :W →W ′ be a definablemorphism
in DefS . Let f : X → Y be a definable morphism in DefS . We denote by Γf the
graph off, by if : X → Γf the canonical injection. In the following we will identify
canonicallyW ×S Γf with (W ×S Y )×Y X andW ′ ×S Γf with (W ′×S Y )×Y X .
We consider the following commutative diagram

W ×S X

IdW×f

��

IdW×if

�����
���

���
���

�

�×IdX �� W ′ ×S X
Id ′W×if

����
���

���
���

�

IdW ′×f

��

W ×S Γf
�×IdΓf �� W ′ ×S Γf

� �

(W ×S Y )×Y X

�W×SY ����
���

���
���

�
�×IdY×IdX �� (W ′ ×S Y )×Y X

�W ′×SY�����
���

���
���

W ×S Y �×IdY ��W ′ ×S Y
The theorem follows from this diagram and the splitting Lemma 3.1 (or very similar
arguments) whose assumptions are satisfied by application of

• the extension Lemma 3.2 for the diagram

W ×S X
IdW×if

��

�×IdX �� W ′ ×S X
Id ′W×if
��

W ×S Γf
�×IdΓf ��W ′ ×S Γf

• the projection Lemma 2.27 (relatively to Y ) for the diagram

(W ×S Y )×Y X
�W×SY

��

�×IdY×IdX �� (W ′ ×S Y )×Y X
�W ′×SY
��

W ×S Y �×IdY ��W ′ ×S Y
.

�

3.3. Proof of the projection lemma for constructible functionswithout exponentials.
We prove in this subsection the projection Lemma 2.27 for constructible functions
in C (W ′ ×S X )-case. The exponential case will be proved in Section 3.4.
3.3.1. Case X = S[0, 0, r]. In this subsection, we prove Lemma 2.27 in the
case X = S[0, 0, r]. We use Remark 3.3 and notations of Lemma 2.27. Let ϕ
be a constructible function in C(W ′ ×S X ). By Proposition 2.8 we write ϕ =∑
i ϕ
(i)
W ′ ⊗ ϕ(i)P , where for each i , ϕ(i)W ′ is a constructible function in C(W ′) and ϕ(i)P

is a Presburger function in P(W ′ ×S X ). In the following, we will simply assume
ϕ = ϕW ′ ⊗ ϕP , the general case follows by summation. By Axiom 2.19, [ϕ] is
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�W ′-integrable if and only if ϕP is W ′-integrable. The pull-back (� × IdX )∗ϕ is
equal to (ϕW ′ ◦ �) ⊗ (ϕP ◦ (� × IdX )), then by Axiom 2.19, we deduce that if ϕ
is �W ′ -integrable then (� × IdX )∗ϕ is �W -integrable and furthermore if � is onto
then this is an equivalence. Under the integrability assumption, �W ′ ![ϕ] is equal to
the class of ϕW ′ ⊗ �W ′!(ϕP ), where �W ′ !(ϕP) is the unique Presburger function in
P(W ′) such that for any w ′ inW ′, for any q > 1

q
(
(�W ′!ϕP)(w ′)) =

∑
x∈Zr

q(ϕP (w ′, x)).

In particular,
�∗ (�W ′![ϕ]) = [(ϕW ′ ◦ �)⊗ (�W ′!(ϕP) ◦ �)].

As well, �W !
[
(� × IdX )∗ϕ

]
is equal to the class

[(ϕW ′ ◦ �)⊗ �W !(ϕP ◦ (� × IdX ))]
where �W !(ϕP ◦ (� × IdX )) is the unique Presburger function in P(W ) such that for
any w inW , for any q > 1

q
(
�W !(ϕP ◦ (� × IdX ))(w)) =

∑
x∈Zr

q
(
(ϕP ◦ (� × IdX ))(w, x)) .

But, for any q > 1 and w inW

q
(
�W !(ϕP ◦ (� × IdX ))(w)) =

∑
x∈Zr

q
(
ϕP(�(w), x)) = q

(
�W ′!ϕP(�(�)))

then by uniqueness �W !(ϕP ◦ (� × IdX )) is equal to �W ′ !(ϕP) ◦ � and we deduce the
equality (2) of Lemma 2.27.

3.3.2. Case X = S[0, n, 0]. In this subsection, we prove Lemma 2.27 in the case
where X = S[0, n, 0]. We use Remark 3.3 and notations of Lemma 2.27. Let ϕ be a
constructible function in C(W ′ × X ). By Proposition 2.8, ϕ can be written as

ϕ =
∑
i

[pi : Yi →W ′ × X ]⊗ ϕP (i)

with for each i , [pi : Yi →W ′ × X ] in K0(RDefW ′×X ) and ϕP (i) in P(W ′). In the
following, we will simply assume ϕ = [p : Y → W ′ × X ] ⊗ ϕP the general case
follows by summation.
By Axiom 2.18, the class [ϕ] is �W ′ -integrable with

�W ′ ![ϕ] = [�W ′ ◦ p : Y →W ′]⊗ ϕP
and �∗(�W ′![ϕ]) = [Y ×W ′ W → W ] ⊗ (ϕP ◦ �). As well, (� × IdX )∗ϕ is equal
to [Y ×W ′×X (W × X ) → W × X ] ⊗ (ϕP ◦ �) and is �W -integrable. As (W ×
X, �W , � × IdX ) is isomorphic to the fiber productW ×W ′ (W ′ ×X ) of � and �W ′ ,
we deduce similarly to the case X = S[0, 0, r], by the classical pull-back theorem,
that Y ×W ′×X (W × X ) and Y ×W ′ (W × X ) are isomorphic, which induces the
equality (2) of Lemma 2.27.

3.3.3. Case X = S[0, n, r]. The Lemma 2.27 in the case X = S[0, n, r] follows
immediately from the splitting Lemma 3.1 applied to the caseX = S[0, 0, r] in 3.3.1
and the case X = S[0, n, 0] in 3.3.2.
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3.3.4. Case where X is a 0-cell and ϕ = 1W ′×SX . Let X be a 0-cell of base Y in
DefS with center c : Y → h[1, 0, 0]

X = {(y, z) ∈ Y [1, 0, 0] | z = c(y)}.
We denote by � the projection from X to Y which is an isomorphism. The product
W ×S X is also a 0-cell of baseW ×S Y and center cW = c ◦ �Y , where �Y is the
projection from W ×S Y to Y . As well the product W ′ ×S X is a 0-cell of base
W ′ ×S Y , center cW ′ = c ◦ �′Y where �′Y is the projection fromW ′ ×S Y to Y . We
prove Lemma 2.27 for the constructible function ϕ = 1W ′×SX and the diagram

W ×S X �×IdX ��

pW=IdW×�
��

W ′ ×S X
pW ′=IdW ′×�
��

W ×S Y
�×IdY

�� W ′ ×S Y
.

By definition of the pull-back of a Presburger function we have

(� × IdX )∗ϕ = ϕ ◦ (� × IdX ) = 1W×SX .

Then, by the change variable formula [7, Proposition 13.2.1] (see Theorem 2.23),
the class [ϕ] is pW ′ -integrable and the class [(�× IdX )∗ϕ] is also pW -integrable with

pW ′![ϕ] = Lord Jac pW ′◦p−1
W ′ and pW ![(� × IdX )∗ϕ] = Lord Jac pW ◦p−1W .

Remark that by definition of pW and pW ′ , the order ord Jac pW ′ ◦ p−1W ′ is equal
to the order ord Jac � ◦ (�−1 ◦ �′Y ). Similarly, the order ord Jac pW ◦ p−1W is equal
to the order ord Jac � ◦ (�−1 ◦ �Y ). Then, equality (2) of Lemma 2.27 follows from
the equality �Y = �′Y ◦ (� × IdY ).
3.3.5. Case where X is 1-cell and ϕ = 1W ′×SX . Let X be a 1-cell of base Y in
DefS with center c : Y → h[1, 0, 0] and data α : Y → Z and � : Y → h[0, 1, 0]

X = {(y, z) ∈ Y [1, 0, 0] | ord (z − c(y)) = α(y), ac (z − c(y)) = �(y)}.
We denote by � the projection from X to Y . The productW ×S X is still a 1-cell
with baseW ×S Y , center cW = c ◦ �Y and data αW = α ◦ �Y and �W = � ◦ �Y ,
with �Y the projection fromW ×S Y to Y . As well, the productW ′ ×S X is still
a 1-cell with base W ′ ×S Y , center cW ′ = c ◦ �′Y and data αW ′ = α ◦ �′Y and
�W ′ = � ◦ �′Y with �′Y the projection fromW ′ ×S Y to Y . We prove Lemma 2.27
for the constructible function ϕ = 1W ′×SX and the diagram

W ×S X �×IdX ��

pW=IdW×�
��

W ′ ×S X
pW ′=IdW ′×�
��

W ×S Y
�×IdY

�� W ′ ×S Y
.

By definition of the pull-back of a Presburger function we have

(� × IdX )∗ϕ = ϕ ◦ (� × IdX ) = 1W×SX .
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Then, by Axiom 2.21, (see Axiom (A7) of [7, Theorem 10.1.1, Proposition 13.2.1]),
the class [ϕ] is pW ′ -integrable and the class [(�× IdX )∗ϕ] is also pW -integrable with

pW ′![ϕ] = L−αW ′−1[1W ′×SY ] and pW ![(� × IdX )∗ϕ] = L−αW−1[1W×SY ].

Then, the equality (2) of Lemma 2.27 follows from the equality

�Y = �′Y ◦ (� × IdY ).
3.3.6. Proof of the projection Lemma 2.27. Using the reduction Lemma 3.4, it is
enough to consider the case where X is equal to the definable set S[m, n, r] form, n,
and r some nonnegative integers. We use Remark 3.3 and notations of Lemma 2.27.
The projection Lemma 2.27 is proved by induction on m. The base case m = 0 is
ever considered in Paragraph 3.3.3 and using the splitting Lemma 3.1, it is enough
to prove the projection Lemma 2.27 for the diagram

W ×S X �×IdX ��

�W
��

W ′ ×S X
�
W ′

��
W

�×IdS[m−1,n,r]
�� W ′

(16)

with m ≥ 1,W ′ = W ′[m − 1, n, r], W = W [m − 1, n, r] and where �W and �W ′

are the canonical projections.
We prove now the case of Diagram (16) using the cell decomposition Theorem
2.10 and the specific cases of 0-cell and 1-cell in Paragraphs 3.3.4 and 3.3.5. As
m ≥ 1, we considerW ′×S X as the productW ′[1, 0, 0] andW ×S X as the product
W [1, 0, 0]. Let ϕ be a constructible function in C(W ′ ×S X ). By Theorem 2.10, we
consider a cell decomposition

(
(W ′ ×S X )i)i∈I ofW ′ ×S X adapted to ϕ, with for

any i in I , a presentation (ZC ′
i
, �′i) of the cell (W

′ ×S X )i

(W ′ ×S X )i
�′i ��

�
W ′

��

ZC ′
i
⊂W ′[1, ni , ri ]

p′i
��

W ′ C ′
i ⊂W ′[0, ni , ri ]

�′i��

(17)

where the diagram is commutative, p′i and �
′
i are the canonical projections and

• if (W ′ ×S X )i is a 0-cell, then the integer ri is equal to 0 and the isomorphism
�′i is equal to Id(W ′×SX )i × 	i where 	i : (W ′ ×S X )i → h[0, ni , 0] is a definable
morphism. The jacobian order of the isomorphism �′i is zero.

• if (W ′ ×S X )i is a 1-cell, then the isomorphism �′i is equal to the isomorphism
Id(W ′×SX )i ×	i × li where 	i : (W ′×S X )i → h[0, ni , 0] and li : (W ′×S X )i →
h[0, 0, ri ] are two definable morphisms. The jacobian order of the isomorphism
�′i is zero.
Taking a refinement of the cell decomposition, we may assume that for any i
in I , ϕ|(W ′×SX )i is either zero or has the same K-dimension as the definable set
(W ′ ×S X )i (see 2.4.2 and also proof [7, Section 11.1]). Furthermore, for any i in
I , there is a constructible function �′

i in C(C ′
i ) such that

ϕ|(W ′×SX )i = (�
′
i)

∗(p′i)
∗�′
i . (18)
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Taking the pull-back by the definable morphism �× IdX , we deduce a cell decom-
position ((W ×S X )i)i∈I ofW ×S X adapted to (� × IdX )∗ϕ. More precisely, for
any i in I , we define the cell (W ×S X )i as the definable set (�× IdX )−1(W ′×S X )i .
This cell has a presentation (ZCi , �i) where

Ci = {(w, x, 	, l) ∈W [m − 1, n + ni , r + ri ] | (�(�), x, 	, l) ∈ C ′
i },

and

• if ZC ′
i
is a 1-cell with center c′i and data α

′
i and �

′
i , then ZCi is the 1-cell in

W [1, ni , ri ] with center ci = c′i ◦ (� × IdS[m−1,n+ni ,ri ]) and data
αi = α′i ◦ (� × IdS[m−1,n+ni ,ri ]) and �i = �′i ◦ (� × IdS[m−1,n+ni ,ri ])

and the presentation morphism �i : (W ×S X )i → ZCi is
�i = Id(W×SX )i × (	i ◦ (� × IdX ))× (li ◦ (� × IdX )).

• if ZC ′
i
is a 0-cell with center c′i , then ZCi is the 0-cell inW [1, ni , 0] with center

ci = c′i ◦ (� × IdS[m−1,n+ni ,ri ])
and the presentation morphism �i : (W ×S X )i → ZCi is

�i = Id(W×SX )i × (	i ◦ (� × IdX )).
For any i in I , we consider the constructible function

�i := (� × IdS[m−1,n+ni ,r+ri ])∗(�′
i)

and we have the equalities

(� × IdX )∗1(W ′×SX )i = 1(W×SX )i
(� × IdX )∗ϕ · 1(W×SX )i = (� × IdX )∗(�′i∗p′i∗�′

i) = �
∗
i p

∗
i �i (19)

thanks to the equality

p′i ◦ �′i ◦ (� × IdX ) = (� × IdS[m−1,n+ni ,r+ri ]) ◦ pi ◦ �i
with pi the canonical projection fromW [1, ni , ri ] toW [0, ni , ri ].
By the additivity axiom (Axiom 2.15), as the cells (W ′ ×S X )i and (W ×S X )i
are disjoint:

• the class [ϕ] is �W ′ - integrable if and only if for any i in I , ϕ1(W ′×SX )i is �W ′ -
integrable, if and only if for any i in I , the class [�′

i ]p
′
i![1ZC ′i

] is �′i - integrable
(applying to Equation (18) and Diagram (17), Fubini axiom (Axiom 2.14),
change variable formula (Theorem 2.23) and projection axiom (Axiom 2.16)),
and in that case

�W ′ ![ϕ.1(W ′×SX )i ] = �
′
i!([�

′
i ]p

′
i![1ZC ′i

]). (20)

• the class [(� × IdX )∗ϕ] is �W - integrable if and only if for all i in I , the class
of (� × IdX )∗ϕ · 1(W×SX )i is �W - integrable, if and only if for any i in I ,
[�i ]pi![1ZCi ] is �i - integrable (by Fubini axiom (Axiom 2.14), change variable
formula and projection axiom (Axiom 2.16) applied to Equation (19), and in
that case

�W ![(� × IdX )∗ϕ · 1(W×SX )i ] = �i!([�i ]pi![1ZCi ]). (21)
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But, by construction, 1ZCi = (� × IdS[m,n+ni ,r+ri ])∗1ZC ′i and by the 0-cell and 1-cell
case in Sections 3.3.4 and 3.3.5 we have the identity

(� × IdS[m−1,n+ni ,r+ri ])∗p′i![1ZCi ] = pi![1ZCi ]
which implies the equality

[�i ]pi![1ZCi ] = (� × IdS[m−1,n+ni ,r+ri ])∗([�′
i ]p

′
i![1ZC ′i

]). (22)

Then, for any i in I , using Section 3.3.3 for the diagram

Ci ⊂W [0, ni , ri ]
�×IdS[m−1,n+ni ,r+ri ] ��

�i

��

C ′
i ⊂W ′[0, ni , ri ]

�′i
��

W
�×IdS[m−1,n,r] �� W ′

with �i and �′i the canonical projections, we deduce that if the class [�
′
i ]p

′
i![1ZCi ]

is �i′ -integrable then (� × IdS[m−1,n+ni ,r+ri ])∗([�′
i ]p

′
i![1ZC ′i

]) equal to [�i ]pi![1ZCi ] is
also �i -integrable and if � is onto, this is an equivalence.
In that case we have the equality

�i!((� × IdS[m−1,n+ni ,r+ri ])∗([�′
i ]p

′
i![1ZC ′i

])

= (23)

(� × IdS[m−1,n,r])∗(�i′ !([�′
i ]p

′
i![1ZCi ])).

Then, we can conclude that for any i in I , if the class [ϕ.1(W ′×SX )i ] is �W ′ -
integrable then the class [(� × IdX )∗ϕ.1(W×SX )i ] is �W -integrable and this is an
equivalence in the case of � onto. In that case by Equations (20), (21), (22), and
(23), we get for any i in I

�W ![(� × IdX )∗(ϕ.1(W ′×SX )i )] = (� × IdS[m−1,n,r])∗�W ′ !([ϕ.1(W ′×SX )i ]).

By additivity Axiom 2.15 and summation we conclude that if [ϕ] is �W ′-integrable
then the class [(� × IdX )∗ϕ] is �W -integrable and this is an equivalence in the case
of � onto, and in that case

�W ![(� × IdX )∗ϕ] = (� × IdS[m−1,n,r])∗�W ′ !([ϕ]).

Remark 3.5. This achieves the proof of Lemma 2.27 in the C (W ×S X )-case,
which implies that Theorem 2.28 is also true in this setting.We will use both of them
in the proof of Lemma 2.27 in the C (W ×S X )exp-context.
3.4. C (W ′×SX )exp-case. LetX be a definable inDefS , by the reductionLemma
3.4 we can assume that X = S[m, n, r]. Let � : W → W ′ be a morphism in DefS .
Let �W ′ :W ′ ×S X → W ′ and �W :W ×S X → W be the canonical projections.
We consider the diagram

W ×S X
�W

��

�×IdX �� W ′ ×S X
�W ′
��

W
� �� W ′

.
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Let ϕ be a constructible exponential function in C(W ′ ×S X )exp. By additivity, it is
enough to consider the case

ϕ = E(g′)e	
′
[p′ : Y ′ →W ′ ×S X ]⊗ ϕ0 (24)

where g′ : Y ′ → h[1, 0, 0], 	′ : Y ′ → h[0, 1, 0], p′ : Y ′ → W ′ ×S X are defin-
able functions with Y ′ a definable subset of some (W ′ ×S X )[0, n, 0] and ϕ0 is a
constructible function in C(W ′ ×S X ). In particular the pull-back by � × IdX of ϕ
is

(� × IdX )∗ϕ = E(g)e	[p : Y →W ×S X ]⊗ (� × IdX )∗ϕ0 (25)
where p : Y →W × X , g and 	 are the pull-back of p′, g ′ and 	′ by � × IdX .
Furthermore, by definition (see Section 2.7), [ϕ] is �W ′-integrable if and only if
[ϕ0] is �W ′ -integrable and in that case, it follows from Theorem 4.1.1 in [8] and the
uniqueness part of its proof Section 6.3 that

�W ′![ϕ] =
(
�W

′[0,1,0]
W ′

)
!

(
�W

′[1,1,0]
W ′[0,1,0]

)
!

(
E(x)e� ⊗ �′! (p′∗[ϕ0])

)
. (26)

We use the diagram

Y ′

p′

��

�′ �� W ′[1, 1, 0]

�W
′ [1,1,0]

W ′[0,1,0]
��

W ′[0, 1, 0]

�W
′ [0,1,0]

W ′
��

W ′ ×S X �W ′
�� W ′

where x and � are coordinate on the vector bundleW ′[1, 1, 0] and �′ is the definable
function from Y ′ toW ′[1, 1, 0] equal to (�W ′ ◦ p′, g ′ ◦ p′, 	′ ◦ p′). In particular, we
deduce from the case without exponential in Section 3.3, that condition 1 of Lemma
2.27 is satisfied. We have the following commutative diagram

W [1, 1, 0]
�×IdS[1,1,0] ��

�W [1,1,0]W [0,1,0]

��

W ′[1, 1, 0]

�W
′[1,1,0]

W ′[0,1,0]

��

Y
�×IdX [0,n,0] ��

p

��

�

�������������
Y ′

p′

��

�′

		�����������

W × X �×IdX ��

�W



		
		
		
		
		
		
		
		
		
		
		
	

W ′ × X

�W ′

��








































W [0, 1, 0]
�×IdS[0,1,0] ��

�W [0,1,0]W

��

W ′[0, 1, 0]

�W
′[0,1,0]

W ′

��
W

� �� W ′

.
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Using the splitting lemma (Lemma 3.1) to prove the equality (2) of Lemma 2.27

�∗(�W ′![ϕ]) = �W !([(� × IdX )∗ϕ])
it is enough to prove the result for the special cases

W [0, 1, 0]

�W [0,1,0]W

��

�×IdS[0,1,0] �� W ′[0, 1, 0]

�W
′ [0,1,0]

W ′
��

W
�

�� W ′

(27)

W [1, 1, 0]

�W [1,1,0]W [0,1,0]

��

�×IdS[1,1,0] �� W ′[1, 1, 0]

�W
′[1,1,0]

W ′[0,1,0]
��

W [0, 1, 0]
�

�� W ′[0, 1, 0]

.

(28)

Indeed, by Equation (26) we have

�∗(�W ′![ϕ]) = �∗
((
�W

′[0,1,0]
W ′

)
!

(
�W

′[1,1,0]
W ′[0,1,0]

)
!

[
E(x)e� ⊗ �′! (p′∗[ϕ0])

])
.

Then, it follows from Lemma 2.27 in the case of Diagram (27) that

�∗(�W ′![ϕ]) =
(
�W [0,1,0]W

)
!

[
(� × IdS[0,1,0])∗

((
�W

′[1,1,0]
W ′[0,1,0]

)
!

[
E(x)e� ⊗ �′! (p′∗[ϕ0])

])]
,

then, it follows from Lemma 2.27 in the case of Diagram (28) that

�∗(�W ′ ![ϕ]) =
(
�W [0,1,0]W

)
!

[(
�W [1,1,0]W [0,1,0]

)
!
(� × IdS[1,1,0])∗

([
E(x)e� ⊗ �′! (p′∗[ϕ0])

])]
,

and finally, as x and � are coordinates in the bundleW ′[1, 1, 0] and are independent
fromW ′ we have

�∗(�W ′![ϕ]) =
(
�W [0,1,0]W

)
!

(
�W [1,1,0]W [0,1,0]

)
!

[
E(x)e� ⊗ (� × IdS[1,1,0])∗

[
�′! (p

′∗[ϕ0])
]]
.

Applying Theorem 2.28 in the case without exponential (see Remark 3.5) we
obtain the equality

(� × IdS[1,1,0])∗
(
�′! (p

′∗[ϕ0])) = �!
(
(� × IdX [0,n,0])∗(p′∗[ϕ0]))

and by commutativity of the diagram we have

(� × IdS[1,1,0])∗
(
�′! (p

′∗[ϕ0])) = �!
(
p∗(� × IdX )∗[ϕ0])

and we can finally conclude

�∗(�W ′!ϕ) =
(
�W [0,1,0]W

)
!

(
�W [1,1,0]W [0,1,0]

)
!

(
E(x)e� ⊗ �!

[
p∗(� × IdX )∗ϕ0

])
,

namely by Equation (24)

�∗(�W ′ ![ϕ]) = �W !([(� × IdX )∗ϕ]).
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We conclude now by the proof of the projection Lemma 2.27 in the cases of
Diagrams (27) and (28).

• As in the Paragraph 3.3.2 the case of Diagram (27) follows by the definition of
the push-forward in the residue variables in [8, Section 3.6].

• Taking pull-back of a cell decomposition as in the proof of the case with-
out exponential (see Section 3.3), the case of Diagram 28 follows directly
from the construction in [8, Section 5.1, Lemma 5.1.1] (sketched in Exam-
ple 2.25) where the set of parameters is W ′[0, 1, 0] for the integration along
�W

′[1,1,0]
W ′[0,1,0] andW [0, 1, 0] for the integration along �

W [1,1,0]
W [0,1,0]. Without giving the

details, the constructions (sketched in Example 2.25) of �W
′[0,1,0]

W ′[1,1,0]!([ϕ]) and

�W [0,1,0]W [1,1,0]!((� × IdS[0,1,0])∗[ϕ]) for a �W
′[0,1,0]

W ′[1,1,0]!-integrable-constructible function
ϕ in C(W ′[1, 1, 0])exp are step by step compatible with the base change from
W ′[0, 1, 0] toW [0, 1, 0], and the projection formula

(� × IdW ′[0,1,0])∗
(
�W

′[0,1,0]
W ′[1,1,0]!([ϕ])

)
= �W [0,1,0]W [1,1,0]!

(
(� × IdS[0,1,0])∗[ϕ])

follows from Equation 3 using above ideas and the case without exponential.
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