
Network Science 6 (2): 265–280, 2018. c© Cambridge University Press 2018

doi:10.1017/nws.2018.4

265

Simulating network intervention strategies:
Implications for adoption of behaviour

JENNIFER BADHAM, FRANK KEE and RUTH F. HUNTER

UKCRC Centre of Excellence (Northern Ireland), Queens University Belfast

University Rd, Belfast BT7 1NN, United Kingdom

(e-mail: research@criticalconnections.com.au, f.kee@qub.ac.uk, ruth.hunter@qub.ac.uk)

Abstract

This study uses simulation over real and artificial networks to compare the eventual adoption

outcomes of network interventions, operationalized as idealized contagion processes with

different sets of seeds. While the performance depends on the details of both the network

and behaviour adoption mechanisms, interventions with seeds that are central to the network

are more effective than random selection in the majority of simulations, with faster or

more complete adoption throughout the network. These results provide additional theoretical

justification for utilizing relevant network information in the design of public health behavior

interventions.
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1 Introduction

Research furthering our understanding of the structure and function of social

networks has provided new opportunities for the design and implementation of

behavior change interventions to improve the health of individuals and populations

(Kim et al., 2015; Valente et al., 2015). Social network interventions involve

purposeful efforts to use social network data to help generate social influence,

accelerate behavior change, and/or achieve desirable outcomes among individuals,

communities, organizations, or populations (Valente, 2012). For example, social

network data can be used to reach new participants, select individuals on the basis

of some network property who may have greater roles in providing information or

support, or focus the intervention on certain groups of people; therefore, improving

the efficiency and effectiveness of public health interventions.

Such interventions work by the spreading or diffusion of knowledge and behavior

across interpersonal ties (Valente & Davis, 1999). Mechanisms that might explain

the effect of networks on health behavior change include conformity to group norms,

social facilitation, social learning, social comparison, social support, coercion, and

competition (Berkman et al., 2014; Latkin & Knowlton, 2015).

Designing interventions that deliberately foster such mechanisms requires (1) some

understanding of the network over which the intervention is to be applied, (2) the

identification of certain individuals or groups within a network to spread or diffuse

the knowledge and/or behavior, and (3) that these individuals or groups are willing

to take part in the intervention and implement the intervention processes.
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A recent review (Valente, 2012) identified four categories of approaches in which

social networks could be used to change behaviors within public health interventions:

• Individuals: identify participants with specific network properties to act as

behavior change agents.

• Segmentation: identify communities for the intervention to be applied to all

members.

• Induction: encourage additional use of the network, for example by encour-

aging participants to talk about specific issues with their friends or asking

participants to nominate potential participants.

• Alteration: change the network, for example, by assigning a support person

for each participant, introducing new people and edges into the network.

The “Individuals” category provides the most basic intervention approach and

includes methods to identify seed participants based on their network position, with

the objective that these participants will then promote the desired health behavior to

their social network via different mechanisms of behavior change. A common real-

world intervention of this type involves using peer nominations to identify leaders

to promote behavior change, and has been shown to increase behavior adoption in

both real-world studies and fitted simulations (Kim et al., 2015; Zhang et al., 2015).

Other network informed intervention approaches, such as identifying peripherals or

bridges to act as seeds, have received only limited attention.

Some network intervention approaches in the other categories can also be

conceptualized as identifying seeds for cascades of behavior adoption; segmentation

identifies groups of people to change at the same time, and induction stimulates peer-

to-peer interaction to create cascades in information/behavioral diffusion. However,

the specific network properties to be used to identify such seeds so as to maximize

the diffusion of the intervention, and thus the behavior, is not clear.

The purpose of this study is to extend the work by Valente (2012) in describing

and classifying these network interventions, so as to investigate the potential impact

of these approaches on the effectiveness of public health behavior, as measured by

speed or reach of behavior adoption. We show that interventions seeded with people

who are most central in the network would lead to greater and faster adoption than

random initial participants over a variety of network structures under two general

diffusion mechanisms.

2 Methods

We compare the effect of interventions using agent-based simulation, with a

model implemented in NetLogo (Wilensky, 1999). Fifteen network interventions are

included; seven from the Individuals class, two Segmentation, four Induction, and

two random selection methods for comparison (Table 1). To ensure comparability

across simulations, we have not included interventions that alter the network (distinct

class in Valente, 2012) or cannot be operationalized in the form of identification of

seed participants for behavior diffusion.

These interventions were used to select seed adopters in both real and generated

networks. Required network properties were calculated using a combination of

the NetLogo Network extension (Wilensky, 1999), NetLogo R extension (Thiele &
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Table 1. Operationalization of network interventions.

Class and Name Description∗

Baseline

Random Uniform Each node has an equal chance of selection

Random by Degree Nodes selected with probability proportional to degree

Individuals

Ind: Degree Descending order by degree – number of edges to other nodes

Ind: Closeness Descending order by closeness – number of edges that must be

traversed to reach other nodes

Ind: Betweenness Descending order by betweenness values – number of shortest

paths between pairs of nodes that pass through the given node

Group: Degree Nodes which, between them, have edges to the most others

Group: Closeness The nodes which, between them, are closest to all others

Group: Betweenness The nodes which have the most paths between other nodes

passing through at least one

Peripherals Ascending order by closeness

Segmentation

Community Randomly selected from largest community(s) by breaking high

betweenness edges until maximum modularity achieved

Clique Select entire cliques in descending size

Induction

Persuasive Random (uniform) selection, but those selected have twice the

effect of other nodes during contagion (that is, twice the

transmission probability for simple, or count as two neighbors

for complex)

Random Walker Start with a random node, then select a random network neighbor,

then a random neighbor of that node and so on until the

required number of nodes is obtained; allows backtracking

Friends of Popular Select highest degree node, then from those at distance 1, then

from distance 2 and so on

Community Leaders Highest degree from each community

∗For those interventions where nodes are selected according to rank order, random selection

is used for equally ranked nodes if they cannot all be included.

Grimm, 2010) to access R (R Core Team, 2015, v3.2) and the R packages “igraph”

(Csardi & Nepusz, 2006) and “keyplayer” (An & Liu, 2016), which implements

group selection (Borgatti, 2006).

The interventions were simulated over eight different networks: four real-world

networks and four generated networks (including the hypothetical network used

by Valente (2012) to demonstrate the different approaches). The properties of the

networks used are summarized at Table 2. These networks are comparable on

different properties, thereby supporting an analysis of whether the simulation results

are network specific.

The four-real networks were selected for similarity in size to the hypothetical

network, with friendship or social interaction as their key relationship: ham radio

communication (Bernard et al., 1980), nominated friends in a prison (MacRae, 1960),

observed social interaction in a clothing factory (Kapferer, 1972), observed regular

interaction at social activities of a karate club (Zachary, 1977). These were obtained

from the Pajek reposity of UCINet datasets (BKHAMB, PRISON, KAPFTI1, and
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Table 2. Properties of networks used in simulations.

Network Nodes Edges Mean degree Gini degree Transitivity Mean path

Fixed degree 44 86–88 3.9–4.0 0.00–0.03 0.00–0.18 2.7–3.2

Random graph 44 63–141 2.9–6.4 0.13–0.36 0.00–0.22 2.2–4.1

Preferential 44 85 3.9 0.27–0.41 0.03–0.20 2.2–2.9

attachment

Hypothetical 44 63 2.9 0.30 0.21 4.5

Ham radio 41 153 7.5 0.50 0.50 2.0

Prison 67 142 4.2 0.26 0.29 3.4

Tailor shop 35 76 4.3 0.36 0.29 2.5

Karate club 34 78 4.6 0.39 0.26 2.4

ZACHE, respectively, from http://vlado.fmf.uni-lj.si/pub/networks/data/

UciNet/UciData.htm). To ensure comparability of simulation saturation results

within and between networks, only the largest component was retained and each

network was symmetrized if required.

Three network algorithms were used to generate multiple instances of networks

with 44 nodes (size of the hypothetical network) and average degree of approximately

4 (integer similar to real networks). The three algorithms provide different levels of

structure in their degree distribution. The fixed degree networks were generated by

iterating through the nodes, randomly selecting other nodes to pair with until all

had achieved the target degree, except for occasional instances where a self-loop

would have been created (Molloy & Reed, 1995). The random graph networks were

generated by iterating through pairs of nodes, with an edge created with probability

0.093 (Erdös & Rényi, 1960). The preferential attachment networks were generated

from an initial complete graph of size 4, adding the other 40 nodes to the existing

network with four edges each and connection selected with probability proportional

to degree (Barabási & Albert, 1999).

Two rules representing simple and complex contagion (Valente, 1996; Centola &

Macy, 2007) were used in separate sets of simulations to spread behavior adoption to

the remainder of the network. For both rules, behavior is maintained once adopted.

Simple contagion was operationalized probabilistically, where each person who

has already adopted the behavior has a fixed probability of triggering adoption

by each network neighbor. The simulations were run until all people had adopted

the behavior. This rule is an idealized representation of information provision

interventions, for example, where trained peer educators may pass on their new

knowledge informally to network members.

In the complex contagion simulations, each person adopts a behavior once some

threshold proportion of their neighbors has already adopted it (Valente, 1996). These

simulations were run until there were no new adoptions. This rule is an idealized

representation of more sophisticated public health interventions that involve peer

support.

As well as the network and the intervention, two other parameters were varied

for the simulation experiments. The size of the seed group was set to 10%, 15%, or

20% of the network (rounded up), reflecting the common recruitment target of 15%

to establish a critical mass for diffusion of information and peer support (Kelly &
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Table 3. Experimental design: simulation parameters and number of runs.

Parameter Values

Network 8 types: 4 real, 1 hypothetical, 3 generated

Intervention 15 rules

Transmission 2 types: Simple (probabilistic) or Complex (threshold)

Seed group size 10%, 15%, 20% of network

Transmission or Threshold 0.2 to 0.7 by 0.1

Repetitions 100 for most simulation sets

1000 for simple contagion on 3 generated network types

with any of 4 interventions (Random Uniform, Random

by Degree, Persuasive, Random Walker).

Stevenson, 1995). The probability of transmission (simple) or threshold (complex)

was varied between 0.2 and 0.7 in increments of 0.1.

Overall, there were 2,160 parameter combinations tested (8 networks by 15

interventions by 3 seed group sizes by 6 transmission/threshold values). For many

simulation sets, potential variability was limited because the network was given

or the intervention tightly constrained the selection of starting nodes. In addition,

complex contagion is a deterministic process. For the limited variability simulation

sets, 100 simulations were conducted for each parameter combination. However,

1,000 simulations were conducted for simple contagion on the generated networks

for four interventions due to the combined variability of network and behavior

adoption, with a new network instance for each run.

The experimental design is summarized at Table 3, requiring 626,400 simulations

overall in a full factorial design. These simulations were managed with Behav-

iorSpace, the batch simulation tool in NetLogo, and results were analyzed using R

(R Core Team, 2015), particularly the packages dplyr (Wickham & Francois, 2016,

v 0.5.0) and ggplot2 (Wickham, 2009, v 2.1.0).

3 Results

3.1 Simple Contagion: probabilistic transmission

For the simple probabilistic contagion mechanism, all nodes eventually adopt the

behavior. The measure of intervention effectiveness is therefore the speed of satura-

tion, or fewest steps. The Group: Closeness intervention is expected to be the most

effective as, by definition, this intervention starts with the set of nodes that require

the smallest average number of successful transmissions to reach all other nodes.

The mean steps over the set of simulations for each parameter combination (100 or

1,000 repetitions) is shown in Figure 1. It is immediately clear that faster saturation

(dark green) is associated with higher transmission probabilities, as expected. In

contrast, the relative size of the seed group has little impact on the time taken

for full adoption (see supplementary materials Figure 3). For each network and

intervention combination, there are 18 sets of simulations (6 probability values and

3 seed group sizes); the average over these 18 sets of the mean steps value provides

an initial indication of relative effectiveness and is displayed at Tables 4 and 5. The

distribution of steps to saturation is available at supplementary materials Figure 4

for selected simulation sets (15% seeds with 0.4, 0.5, or 0.6 transmission probability).
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Fig. 1. Steps to saturation with simple contagion: simulation results. Each colored

cell indicates the mean (over 100 or 1,000 simulations) time steps until all nodes

have adopted the behavior. The number of steps is truncated; values greater than

10 are removed. Each panel includes all the results for simulations with a specific

network or networks generated by the nominated algorithm and proportion of the

network in the seed group. Within each panel, interventions are compared (row) for

six different transmission probabilities (column). (Color online)

Saturation is much slower in the hypothetical network than in the other arti-

ficial networks (Table 4). This likely arises from the longer mean shortest path

(see Table 2), which in turn reflects the lower edge density (because there are fewer

edges for behavior to be transmitted along). The Prison network (Table 5) shows a

similar, but weaker, effect.

Relative effectiveness of different interventions is most clear in the hypothetical

network, where there is substantial variation in duration. In that network, the most

effective interventions are those involving central nodes – by degree, betweenness

or closeness– with the ensemble correction (group version of central nodes). Two

interventions involving high degree nodes without group correction are also effective,
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Table 4. Steps to saturation∗ with simple contagion: Artificial networks

Intervention Fixed degree Random edge Pref attachment Hypothetical

Random uniform 5.8 6.9 6.5 11.4

Random by degree 5.8 7.0 6.2 11.2

Ind: Degree 5.8 6.8 5.8 9.8

Ind: Betweenness 5.6 6.2 5.6 12.0

Ind: Closeness 6.0 6.8 5.8 12.6

Group: Degree 5.1 6.0 5.5 8.9

Group: Betweenness 5.1 6.2 5.6 8.8

Group: Closeness 5.1 6.0 5.6 8.6

Peripherals 6.3 6.4 7.1 13.5

Community 6.8 7.5 6.9 16.8

Clique 6.7 7.3 6.1 13.5

Persuasive 5.0 6.2 5.9 10.6

Random walker 6.7 7.3 6.3 16.5

Friends of popular 6.6 7.2 6.4 17.0

Community leaders 5.5 6.2 5.7 9.6

∗Calculated by first finding the mean value for each simulation set (probability and seed

group size combination), and then reporting the mean of those 18 results. These values

therefore represent the average performance of the intervention over the network, but may

not reflect simulations with the same parameter settings.

whether dispersed across communities (Community Leaders) or based solely on

degree (Individuals: Degree). In contrast, those interventions with seeds that are

connected to each other (Community, Clique, Friends of Popular) are relatively

ineffective, likely because many edges from the seed adopters are “wasted” as they

connect to other seeds. While there are indications of similar relative effectiveness

in the other artificial networks, the pattern is weaker and has some inconsistencies.

In particular, the additional benefit of the group correction for the interventions

involving central nodes is much smaller over the preferential attachment network,

and betweennees (rather than degree) is the effective network property for the

random edge network.

The Persuasive intervention is also relatively effective; it randomly selects seed

nodes but then those nodes have double probability of transmission. For example,

in the simulations with 0.4 as the transmission parameter, the seeds trigger adoption

in their network neighbors with 0.8 probability each time step. This intervention is

not strictly comparable to the others, but it represents those real-world interventions

that focus on opinion leaders within the network, regardless of their network

characteristics. It is likely, of course, that such leaders in the real world will also be

popular, but that combined effect is not simulated.

The broad pattern of intervention efficiency also occurs over real networks;

interventions that involve central nodes result in shorter times to saturation than

interventions with seeds from a single community (Table 5). As with the artificial

networks, the need for the group correction is network dependent, with a larger

impact for the Prison and Tailor shop networks in comparison to the Ham

radio and Karate club networks. The Community Leaders intervention has no

performance benefit over Random Uniform selection for the Ham Radio network. As
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Table 5. Steps to saturation∗ with simple contagion: Real world networks.

Intervention Ham radio Prison Tailor shop Karate Club

Random uniform 7.6 9.2 6.8 5.9

Random by degree 7.5 9.4 6.7 5.6

Ind: Degree 7.2 9.1 6.8 5.1

Ind: Betweenness 7.0 9.1 6.5 5.0

Ind: Closeness 7.3 9.4 6.6 5.1

Group: Degree 6.9 7.9 5.8 4.9

Group: Betweenness 7.3 8.3 6.0 4.9

Group: Closeness 6.9 7.5 5.7 4.9

Peripherals 7.5 7.9 7.0 5.9

Community 7.8 10.6 7.5 7.0

Clique 7.4 10.2 6.9 5.6

Persuasive 7.4 8.5 6.1 5.3

Random walker 7.7 10.5 6.9 6.2

Friends of popular 7.6 11.0 6.9 6.6

Community leaders 7.6 9.0 6.2 4.9

∗Calculated by first finding the mean value for each simulation set (probability and seed

group size combination), and then reporting the mean of those 18 results. These values

therefore represent the average performance of the intervention over the network, but may

not reflect simulations with the same parameter settings.

for the artificial networks, Community, Clique, and Friends of Popular are relatively

ineffective; except that Clique is effective over two networks, Ham radio and Karate

Club.

While the average durations for the 18 parameter combinations provide a broad

pattern, the relative performance must be examined for comparable simulation sets:

each specific combination of transmission probability and seed proportion. From

Figure 1 (and supplementary materials Figure 4), the general pattern observed

in the mean durations (Tables 4 and 5) is a reasonable indicator of relative

effectiveness for comparable simulations, with some noise in the patterns. The

Peripherals intervention is consistently ineffective, as expected because the seeds

are selected to be as far from other nodes as possible (and will therefore require

the maximum number of steps to saturate the network). Those that use a connected

subnetwork (Community, Random Walker, Friends of Popular) have similar results

as Random Uniform; seeds are generally even less effective than Peripherals, perhaps

indicating a tendency for the behavior adoption to be “trapped” in part of the

network. The Clique intervention could be expected to have the same difficult but

does not, perhaps because cliques are small so each simulation was generally seeded

with more than one clique. The group centrality (Group: Degree, Group: Closeness,

and Group: Betweenness), Community Leaders and Persuasive interventions are the

most effective. Except over the Hypothetical and Prison networks, the individual

centrality interventions are also effective.

The overall pattern is not reproduced exactly at a more detailed level; some

reversals occur for specific parameter sets. For example, the Individuals: Closeness

intervention is relatively effective over the Ham Radio network except for the

simulations with transmission probability of 0.7.
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Table 6. Proportion of network adopting∗ with complex contagion: Real world networks.

Intervention Ham radio Prison Tailor shop Karate Club

Random uniform 0.44 0.57 0.55 0.54

Random by degree 0.69 0.61 0.67 0.67

Ind: Degree 0.95 0.70 0.78 0.82

Ind: Betweenness 0.94 0.67 0.79 0.79

Ind: Closeness 0.95 0.66 0.78 0.75

Group: Degree 0.88 0.65 0.75 0.80

Group: Betweenness 0.95 0.69 0.79 0.86

Group: Closeness 0.86 0.62 0.74 0.79

Peripherals 0.17 0.32 0.36 0.32

Community 0.65 0.47 0.70 0.54

Clique 0.85 0.47 0.74 0.66

Persuasive 0.63 0.70 0.70 0.69

Random walker 0.71 0.53 0.66 0.66

Friends of popular 0.62 0.51 0.69 0.60

Community leaders 0.41 0.69 0.61 0.84

∗Calculated by first finding the mean value for each simulation set (threshold and

seed group size combination), and then reporting the average of those 18 results.

These values therefore represent the average performance of the intervention over the

network, but may not reflect simulations with the same parameter settings.

3.2 Complex contagion: adoption with neighborhood threshold

For the complex threshold contagion mechanism, the simulation ends when no new

nodes adopt the behavior. The measure of intervention effectiveness is therefore the

proportion of the network that eventually adopt the behavior. For each network

and intervention combination, there are 18 sets of simulations (six threshold levels

and three seed group sizes); the average over these 18 sets of the mean proportion

adopted is displayed at Tables 7 and 6. The distribution of proportion adopted

is available at supplementary materials Figure 6 for selected simulation sets (15%

seeds with 0.4, 0.5, or 0.6 threshold proportion).

For many combinations of network and intervention, the median result is that

all nodes adopt (not shown specifically, but visible for some simulation sets in

supplementary materials Figure 6). That is, for each threshold and seed proportion

combinations, more than half the simulations lead to adoption by all nodes.

Nevertheless, there is sufficient differentiation to suggest that the pattern for complex

contagion has much in common with that for simple contagion.

The individual and group centrality interventions are most effective but, unlike

simple contagion, the group versions do not lead to higher levels of adoption than

the individuals versions. Weighting random selection by degree (Random by Degree)

provides some of the benefit of central seeds (except for the Fixed Degree network,

where such weighting has no effect). The Persuasive intervention is consistently rela-

tively effective (with similar performance as the centrality interventions except over

the Ham Radio network), and the Peripherals intervention consistently ineffective.

Community Leaders, Community, and Clique interventions have mixed results. For

example, Community and Clique perform well over the Ham Radio and Tailor Shop

networks, but poorly on the Prison network, while Community Leaders performs
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Table 7. Proportion of network adopting∗ with complex contagion: artificial networks.

Intervention Fixed degree Random edge Pref attachment Hypothetical

Random uniform 0.59 0.55 0.56 0.54

Random by degree 0.59 0.60 0.69 0.61

Ind: Degree 0.60 0.72 0.81 0.77

Ind: Betweenness 0.52 0.70 0.80 0.63

Ind: Closeness 0.47 0.68 0.79 0.62

Group: Degree 0.52 0.68 0.78 0.79

Group: Betweenness 0.53 0.72 0.81 0.79

Group: Closeness 0.53 0.67 0.77 0.77

Peripherals 0.43 0.36 0.44 0.42

Community 0.37 0.53 0.56 0.35

Clique 0.37 0.57 0.73 0.56

Persuasive 0.73 0.71 0.71 0.66

Random walker 0.38 0.55 0.69 0.42

Friends of popular 0.39 0.55 0.67 0.38

Community leaders 0.59 0.69 0.78 0.79

∗Calculated by first finding the mean value for each simulation set (threshold and seed group

size combination), and then reporting the average of those 18 results. These values therefore

represent the average performance of the intervention over the network, but may not reflect

simulations with different parameter settings.

well on the Prison and Karate Club networks but poorly on the Ham Radio and

Tailor Shop networks.

For detailed analysis of effectiveness, the mean proportion adopted over the

set of simulations for each parameter combination (100 repetitions) is shown in

Figure 2. As expected, a higher proportion of the network as seeds (see supplementary

materials Figure 5) and a lower threshold are both associated with higher saturation;

the former because there are more nodes already adopted to provide network

neighbors that contribute to the pressure to adopt, and the latter because less

pressure is required. At the lowest threshold tested, every intervention on every

network leads to all nodes adopting except for the Peripherals intervention on the

Ham Radio network, which has no diffusion from the seeds. At the other extreme

with a 0.7 threshold, only some interventions are successful in diffusing to new

nodes; with only one set of simulations able to reach saturation, the Individuals:

Betweenness intervention over the Ham Radio network with 20% of the nodes as

seeds. The largest difference in effect between interventions, therefore, arises for

intermediate thresholds, where only some are able to trigger potentially several steps

in an adoption cascade. At a threshold of 0.5, some of the interventions induce more

than three times the adoption level than is achieved by uniform random selection

over almost all networks and seed proportions (not Fixed Degree, and only for

starting proportion of 0.1 for Hypothetical and Prison networks).

Comparing the individual and group centrality interventions with the same

parameter combination, one common pattern is that the group corrected between-

ness (Group: Betweenness) and individual-based degree interventions are the most

effective, generally followed by the other individual centrality interventions then the

other two group corrected interventions. While this occurs for most thresholds and
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Fig. 2. Proportion of network adopting with complex contagion: simulation results.

Each colored cell indicates the mean (over 100 simulations) proportion of nodes that

have adopted the behavior when no further nodes will adopt. Each panel includes

all the results for simulations with a specific network or networks generated by the

nominated algorithm and proportion of the network as seed adopters. Within each

panel, interventions are compared (row) for six different thresholds that represent

the proportion of network neighbors that must have already adopted for the nodes

to adopt the behavior (column). (Color online)

networks, the Group: Betweenness intervention is less effective than the other group

centrality interventions for the moderate thresholds on the Karate Club network. The

Karate Club network also has different patterns depending on the seed proportion

(see supplementary materials Figure 5): Group: Closeness and Group: Degree are

always more effective than the individual centrality interventions once saturation

is not being achieved, but Group: Betweenness is similar to the latter for seed

proportion of 0.1 or 0.15, and is at least as effective as the other group centrality

interventions for seed proportion of 0.2.
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The mixed effectiveness across different networks of the Community Leaders

intervention that was apparent for average results (Tables 7 and 6) holds across

parameter sets. While it is generally as effective as the centrality interventions, it is

only of similar effectiveness as Random Uniform for the Tailor Shop network, and on

the Ham Radio network is relatively ineffective for the 0.15 and 0.2 seed proportion

simulations.

There are four interventions that select seeds that are close to each other:

Community, Clique, Random Walker, and Friends of Popular. These potentially have

more edges to the same nodes, and therefore could be relatively effective under

the complex contagion condition, at least for an initial cascade. However, this did

not generally occur. They were effective over the Preferential Attachment, Ham

Radio, and Tailor shop networks, with Clique achieving similar performance as the

centrality interventions. Otherwise, however, these interventions achieved similar or

lower levels of adoption as Random Uniform.

4 Discussion

There is clear benefit in designing interventions that utilize social network structures,

at least for the idealized behavior transmission processes simulated in this study

(see summary at Table 8). Results demonstrated that interventions using network

information to identify seeds are able to deliver substantial gains compared to

random seeds. While the size of the potential benefit or loss varied considerably

across networks and for different simulation parameters, there are some consistent

patterns.

The ranking of intervention approaches by relative effectiveness is reasonably

consistent across networks and simulation parameters. Those interventions with more

central seeds are generally the most effective, with the redundancy correcting group

versions outperforming the individuals versions for simple contagion only, but not

for complex contagion. The Persuasive intervention is also relatively very effective,

but some care must be taken in interpreting this result as there is no theoretical

basis for the operationalization used, with persuasive individuals considered to have

twice the impact as other individuals.

These results have important implications for real-world interventions. The full

network structure must be known to calculate betweenness and closeness, and to

apply the group correction. However, it is relatively straightforward to identify those

individuals with high degree in a real-world intervention. Simply asking a uniform

random sample of individuals to each nominate one of their friends generates a

sample that is biased by degree (and will be weighted by degree with enough steps, see

Noh & Rieger, 2004), which achieves some effectiveness gains for complex contagion.

Further, such a process is relatively robust with in-degree highly correlated with the

number of nominations for 30% samples in small networks and smaller proportions

in large networks (Costenbader & Valente, 2003; Leskovec & Faloutsos, 2006). This

approach has been shown to be effective in public health interventions (Kim et al.,

2015). Alternatively, nominations can be used to identify leaders, capturing elements

of both degree and persuasive interventions (Campbell et al., 2008).

The two idealized contagion processes simulated represent extremes, relying only

on personal factors (simple) or only on social factors (complex). Real-world behavior
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Table 8. Effectiveness of interventions across simulation sets, relative to uniform random

selection.

Simple contagion∗ Complex contagion†

Gain Loss Duration Gain Loss Adoption

Random uniform 0 0 0 0

Random by degree 2 1 79 0

Individuals: Degree 48 3 89 0

Individuals: Betweenness 53 4 85 7

Individuals: Closeness 37 7 82 10

Group: Degree 113 0 84 6

Group: Betweenness 112 0 88 7

Group: Closeness 122 0 83 7

Peripherals 19 36 2 98

Community 0 86 37 33

Clique 13 44 62 17

Persuasive 60 0 86 0

Random walker 0 54 58 21

Friends of popular 0 67 58 25

Community leaders 77 1 75 8

∗ The “Gain” column is the number of simulation sets (from 144: 8 networks, 6 transmission

probabilities, 3 seed group sizes), where the mean steps to saturation is at least 10%

higher than the mean steps for the random uniform intervention with the same simulation

parameters. Similarly, the “Loss” column is the number of simulation sets where mean

saturation is at least 10% slower. The “Duration” figure displays the difference in steps

between the intervention and “Random Uniform” results by network (values from Tables 4

and 5). The network order is “Fixed Degree,” “Random edge,” “Preferential attachment,”

“Hypothetical,” “Ham radio,” “Prison,” “Tailor shop,” “Karate club,” with gains (fewer

steps) above the line and purple, and losses (more steps) below the line and yellow.
†The “Gain” column is the number of simulation sets (from 144: 8 networks, 6 thresholds, 3

seed group sizes), where the mean proportion of nodes adopted at the end of the simulation is

at least 10% higher than the mean proportion for the random uniform intervention with the

same simulation parameters. As the random uniform intervention leads to network saturation

for some simulations, the potential maximum is less than 144. Similarly, the “Loss,” column

is the number of simulation sets where mean adoption is at least 10% lower. The “Adoption”

figure displays the difference in adoption between the intervention and “Random Uniform”

results by network (values from Tables 7 and 6). The network order is “Fixed Degree,”

“Random edge,” “Preferential attachment,” “Hypothetical,” “Ham radio,” “Prison,” “Tailor

shop,” “Karate club,” with gains above the line and purple, and losses below the line and

yellow.

transmission is likely to have elements of both. As the centrality interventions are

relatively effective with both processes, it is reasonable to expect that they would

also be effective with more realistic behavior adoption mechanisms that combine

individual and social factors.
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Those interventions that extract subnetworks with the intention of creating

neighborhoods with high levels of adoption (Community, Clique, Random Walker,

Friends of Popular) generally perform poorly, even for complex contagion where the

neighborhood effect could be expected to trigger a cascade.

The relative effectiveness of other interventions varies between networks and type

of contagion. In particular, Community Leaders could be expected to be effective as

it uses nodes with high degree as seeds, but they may be in different communities and

potentially far apart so the benefit may be dispersed. This intervention performed

poorly over two real-world networks under both contagion conditions (Ham Radio

for both, Prison for simple, and Tailor Shop for complex). The variation suggests

that specific structural aspects of the particular network are important for these

interventions.

Further work is required with a selection of networks with similar and dissimilar

properties to potentially derive rules for intervention selection based on specific

network properties. One of the properties to be varied should be the number of

nodes, to assess whether differences in the effectiveness of interventions are affected

by network size.

Some prior level of knowledge of the network structure is required to optimize

the network intervention approach and most effectively focus intervention resources

on a relatively small number of seed participants. Innovative methods are being

used for data collection in large networks (Perkins et al., 2015; Shakya et al., 2017),

but mapping whole social networks is costly and may not be feasible in real-world

interventions. If we are to implement interventions that purposefully utilize inherent

networks to inform intervention design, then we must also develop simple, low-cost

methods to estimate relevant structural properties.

Further, if network interventions are to meaningfully inform public health policy

and practice, then a number of implementation factors must be overcome. For

example, those people identified as the preferred seeds may not wish to participate

in any trial intervention, may withdraw during the study period, or may participate

but not respond to the intervention. In addition, unlike the simulations, people have

relevant characteristics other than their network position, and seeds may be chosen

or excluded for reasons such as access, greater need, presence of other health risks,

or motivation.

5 Conclusion

Utilizing the social network to most effectively deliver a public health behavior

intervention has the potential to increase the reach and sustainability of the

intervention at minimal cost. The best intervention (as defined by selection of seed

adopters) and the potential gain available depend fundamentally on characteristics

of the network and the behavior adoption mechanisms.

For a broad range of networks with around 50 people, interventions that use

those people who are most central in the network as seeds would lead to greater and

faster adoption than random recruitment. Further work is required to test the results

on larger networks, and also to isolate the properties of networks that influence the

effectiveness of specific interventions.
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