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AN APPLICATION OF RECURSION THEORY TO ANALYSIS

LIANG YU

Abstract. Mauldin [15] proved that there is an analytic set, which cannot be represented

by B∪X for some Borel set B and a subset X of a Σ02-null set, answering a question by

Johnson [10]. We reprove Mauldin’s answer by a recursion-theoretical method. We also give

a characterization of the Borel generated ó-ideals having approximation property under the

assumption that every real is constructible, answering Mauldin’s question raised in [15].

§1. Introduction. A set is Jordan measurable if its characteristic function
is Riemann integrable. For example, a null Cantor set is Jordan measurable
but the set of rational numbers in [0,1] is not. Actually, ifA⊆R is bounded,
then A is Jordan measurable if and only if its boundary is null. We use J
to denote the collection of Jordan measurable sets and ó(J) to denote the
ó-algebra generated J. A natural question is what does ó(J) look like? In
[10], Johnson proves the following nice result.

Theorem 1.1 (Johnson [10]). A set A belongs to ó(J) if and only if there is
a Borel set B⊆ A and a null Σ02-set X so that A⊆ B∪X.

In the same paper, he raised the following question.

Question 1.2 (Johnson [10]). Where does ó(J) stand relative to Σ11-sets in
[0,1]?1

It is clear that there is a non-Σ11 set belonging to ó(J). Thus, the question
essentially asks whether there is a Σ11-set not in ó(J). It was answered by
Mauldin in [15] by a set theoretical method; that is, the following theorem.

Theorem 1.3 (Mauldin [15]). There is an Σ11-set A for which there is no
Borel B such that A\B is a subset of a Σ02 set with Lebesgue measure zero.

Actually Johnson’s question can be put in a more general background as
noted by several set theorists (see [15], [1], and [11]).
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16 LIANG YU

Definition 1.4. A collection I 6= ∅ of sets of reals is a ó-ideal if

• for any X ∈ I, Y ⊆ X implies Y ∈ I; and
• if {Xn}n is a sequence sets from I, then

⋃
nXn ∈ I.

A ó-ideal is usually considered as a collection of “small” sets. For example,
the collection of Lebesgue null sets is a ó-ideal.
Borel sets are considered to be “well behaved.” If a set A can be
approximated by a Borel set modulo, an element in a ó-ideal, then A can
also be considered as “well behaved.” For example, a set A can be identified
as a Borel set modulo, aΠ02-null set, if and only ifA is Lebesgue measurable.
To formulate the idea, we need the following definition.

Definition 1.5. Given a ó-ideal I.

(1) A set A is approximable by I if there is a Borel set B and set X ∈ I so
that (A\B)∪ (B\A)⊆ X .

(2) A set A is inner approximable by I if there is a Borel set B⊆A and set
X ∈ I so that A\B⊆ X .

(3) I has approximation property if every Σ11-set is approximable by I.

(4) I has inner approximation property if every Σ11-set is inner approx-
imable by I.

ó-ideals can be fairly wild. Thus, we will restrict our attention to more
“tamed” ó-ideals, that is, those that are Borel-generated.

Definition 1.6. Given a collection Γ of sets of reals. A ó-ideal I is said
to be generated by Γ if for any X ∈ I, there is a Y ∈ Γ∩I so that X ⊆ Y .

Clearly, the collection of Lebesgue null sets is a Π02-generated ó-ideal.
The following fact is well known. We give a detailed proof for the
completeness.

Lemma 1.7. (1) For anyó-idealI, the setX= {X |X is approximable by I}
is a ó-algebra.

(2) For any Borel generated ó-ideal I, a set X is inner approximable by I if

and only if it is approximable by I.

Proof. (1). Suppose that I is a ó-ideal. If X ∈ X , then there is a Borel
set B and a set C ∈ I so that (B\X)∪ (X \B)⊆C. Now let B1 = 2ù \B be a
Borel set and Y = 2ù \X , then Y \B1 = (2ù \X)∩B = B \X and B1 \Y =
(2ù \B)∩X = X \B. So (Y \B1)∪ (B1 \Y) = (B\X)∪ (X \B)⊆ C ∈ I. In
other words, Y ∈ X.
If {Xi}i∈ù ⊆ X, then there is a sequence of Borel sets {Bi}i∈ù such
that for any i ∈ ù, (Bi \Xi)∪ (Xi \Bi) ∈ I. Since I is a ó-ideal, we have
that

⋃
i∈ù(Bi \Xi)∪ (Xi \Bi) ∈ I. Now let B =

⋃
i∈ùBi be a Borel set, then

(B \
⋃
i∈ùXi)∪ (

⋃
i∈ùXi \B) ⊆

⋃
i∈ù(Bi \Xi)∪ (Xi \Bi). So we have that

(B\
⋃
i∈ùXi)∪ (

⋃
i∈ùXi \B) ∈ I.

(2). Clearly, if X is inner approximable by I, then it is approximable by
I. Now suppose that there is a Borel set B and another Borel set C ∈ I

such that (X \B)∪ (B \X) ⊆ C. Then B \C ⊆ X is a Borel set. Moreover,
X \ (B\C)⊆ (X \B)∪C ⊆ C. So X is inner approximable by I. ⊣
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AN APPLICATION OF RECURSION THEORY TO ANALYSIS 17

So for a Borel generated ó-ideal I, it has approximation property if and
only if it has inner approximation property.
Let IF be the ó-ideal generated by Σ

0
2 null sets. Then Johnson’s question

can be reformulated as whether IF has approximation property.
To generalize Johnson’s question, Mauldin raised the following more
general question.

Question 1.8 (Mauldin [15]). For what ó-ideals can one derive similar
results?

Kechris and Solecki [11] gave an answer to Question 1.8 for some “well-
behaved” ó-ideals under AD, Axiom of Determinacy. For example, they
prove the following theorem.

Theorem 1.9 (Kechris and Solecki [11]). Assume AD. If I is a Borel

generated ó-ideal, then I has approximation property if and only if there is no

Σ11-equivalence relation E with uncountably many equivalence classes whose

all, but possibly countably many, equivalence classes are not in I.

The target of this paper is to give a natural answer to Question 1.2 under
ZFC. Furthermore, we obtain a full answer to the generalized Johnson’s
Question 1.8 different than Kechris–Solecki’s under the assumption that
every real is constructible. Namely, we will prove that (see Corollary 3.8)
if every real is constructible, then for any Borel generated ideal I, I has
approximation property if and only if for any x, there is some X ∈ I and
x0 ≥T x such that {z | z⊕x≥h x0} ⊆ X .

§2. An introduction to higher recursion theory. In this section, we give a
brief introduction to higher recursion theory. The higher recursion theory
facts in this section are fairly basic. Sometimes we use them without even
mentioning. For more details, readers may refer to [18] and [3].
For convenience, we identify a real as an element in Cantor space.
For any real x, we use ùx1 to denote the least non-x-recursive ordinal. A
well-known result in higher recursion theory is that the reals in Lùx1 [x] are

exactly the ∆11(x)-reals. We also call a ∆
1
1-real a hyperarithmetic real. We say

that x ≤h y, x is hyperarithmetically reducible to y, if x is ∆
1
1-definable in

y. In other words, x ∈ Lùy1 [y]. A hyperdegree is a ≡h-class. The following
theorem gives a nice characterization of Borel sets.

Theorem 2.1 (Suslin [20]; Kleene [13]). A set of reals is Borel if and only
if it is ∆11(x) for some real x.

Borel sets are considered as “well behaved” and have “regular properties.”
For example, if B is ∆11(x) set without a perfect subset, then B must be
countable. Actually for such B, every member is hyperarithmetic in x.
One of the central results in higher recursion theory is the following so-
called Spector–Gandy’s theorem.

Theorem 2.2 (Spector [19]; Gandy [7]). Given a set X of reals, the following
are equivalent:
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18 LIANG YU

(1) X is Π11.
(2) There is a Σ1-formula ϕ in set theory language so that ∀x(x ∈ X ↔
Lùx1
[x] |= ϕ(x)).

(3) There is an arithmetical set A⊆ 2ù so that ∀x(x∈X↔∃y∈∆11(x⊕y∈
A)), where x⊕ y is a real z so that z(2n) = x(n) and z(2n+1) = y(n)
for every n.

ByTheorem 2.2, roughly speaking, aΠ11 set can be viewed as a “recursively
enumerable set” over the “inner” model L. Another conclusion of Theorem
2.2 is that a Borel subsetY of a Π11-setX is precisely a “finite subset” ofX in
the sense that all the elements of Y are the ones enumerated into X up to a
“bounded stage” (or a fixed stage less than ù1). This analogy phenomenon
opens a door to enable recursion theorists to enter (or pollute) set theory.
The “halting problem” in the hyperarithmetic theory is Kleene’s O, a
Π11-complete set. We use O

x to denote Kleene’s O relative to x.

Definition 2.3. Let C = {x | x ∈ Lùx1} and C(x) = {z | z ∈ Lùx⊕z1
[x]}. Let

D = {x⊕y | y ∈ C(x)}.

C is the largest Π11 thin set or the largest Π
1
1-set without a perfect subset.

D is also a Π11 set. C(x) is a Π
1
1(x)-set, a Π

1
1-set relative to x. Moreover,

C = {x | ∀z(ùz1 ≥ù
x
1 → z≥h x)}. It is also clear that for any countable set A,

the set DA = {x⊕ y | x ∈ A∧ y ∈ C(x)} has no perfect subset. Readers can
find more details concerning these facts in [18] and [3].
Note that Ox ∈ C(x) for any x.
The following Π11-basis theorem is needed later.

Theorem 2.4 (Guaspari [8]). Suppose that X is a nonempty Π11-set. Then
there is a real x ∈ X ∩C.

For any real x, there is a real y≥T xwith y 6∈C. The following theoremwill
be used so frequently in this paper that we don’t even mention it sometimes.

Theorem 2.5 (Boolos and Putnam [2]; Jensen [9]). For any ordinal α for
which Lα+1 \Lα contains a real, there is a real y ∈ Lα+1 \Lα so that y Turing
computes a well ordering of ù with order type α, and all the reals in Lα. In

particular, for any constructible real x, there is a real y≥T x so that y ∈ C.
2

§3. On ó-ideals having approximation property. We first introduce a
“lightface version” of approximation property.

Definition 3.1. I has lightface approximation property if every Σ11-set is
approximable by I.

Approximation property will be separated from lightface approximation
property by Proposition 3.10.
The following theorem by Martin is quite important to our paper.

2For the proofs, see Proposition 4.3.4 in [3].
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Theorem 3.2 (Martin [14]). Suppose that A is a ∆11-set of reals with a
nonhyperarithmeticmember, thenA ranges over an upper cone of hyperdegrees.

Or there is some real x so that for any y≥h x, there is some z ∈A with z≡h y.

A more recursion-theoretical flavored proof of the theorem can be found
in [21].

Theorem 3.3. Suppose that every real is constructible.

(1) For any Borel generated ó-ideal I, if there is some X ∈ I containing an

upper cone of hyperdegrees, thenI has lightface approximation property.

(2) For any Borel generated ó-ideal I, if C is approximable by I, then there

is some X ∈ I containing an upper cone of hyperdegrees.

Before proceeding the formal proof, we give an intuitive description why
the theorem is a clear fact to a (higher-) recursion theorist. By Lemma 1.7,
the class of the sets approximable by I is a ó-algebra. So it is sufficient to
consider whether every Π11-set is approximable by I. As said before, a Π11
set Y can be viewed as a recursively enumerable set. And its Borel subsets
can be viewed as those “finite” subsets enumerated up to “a bounded stage.”
So if I contains an element X “cutting off” those members which will be
enumerated into Y quite late, then Y can be decomposed into a “finite”
(and so Borel) subset of Y and a subset of X. Conversely, if there is no such
“cutting off” element X in I, then Y can never be approximated by a Borel
set modulo a member in I. Keeping in mind the idea would be quite helpful
to understand most proofs throughout the paper.
We may turn to the formal proof now.

Proof. (1). By Lemma 1.7, it is sufficient to prove that every Π11-set is
approximable by I. Now fix a Π11-set Y. Let X ∈ I contain an upper cone
of hyperdegrees. Then, by Theorem 2.2, there is a Σ1-formula ϕ so that for
any z,

z ∈ Y ⇔ Lùz1 [z] |= ϕ(z).

By Theorem 2.5 and the assumption that every real is constructible, for
every real z, there must be some real z0 ∈C with z0 ≥T z. By the assumption
on X, we may let x0 be in C so that {z | z ≥h x0} ⊆ X . Then, {z | ùz1 ≥
ùx01 }= {z | z≥h x0} ⊆X . Now let B= {z |ùz1 ≤ù

x0
1 ∧Lùz1 |= ϕ(z)} ⊆Y . By

Lemma 3.7.7 in [3], it is clear that B is Π11(O
x0). Note that if ùz1 ≤ù

x0
1 , then

Lùz1 |= ϕ(z) is equivalent to the fact that there is a real s coding an ordinal
α isomorphic to an initial segment of ùx01 so that for any â ≤ α, Lâ [z] is
not admissible and Lα[z] |= ϕ(z). So it is also Σ11(O

x0) and so a Borel set.
Moreover, Y \B⊆ X .
(2). Now suppose that there is a Borel set B ⊆ C and a Borel set X ∈ I

so that C \B ⊆ X . By the assumption that every real is constructible, we
may fix a real x so that both B and X are ∆11(x) and x ∈ Lùx1 . Let α < ù

x
1

be the ordinal so that x ∈ Lα+1 \Lα and fix a real r ≤T x coding a well
ordering of order type α+1. Now suppose that X does not contain an
upper cone of hyperdegrees. Then the Π11(x)-set {z | z ≥h O

x ∧ z 6∈ X} is
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nonempty. By the Π11(x)-basis Theorem 2.4, there is some real x0 6∈ X so
that x0 ∈ Lùx0⊕x1

[x] = L
ù
x0
1
and x0 >h O

x. Fix an oracle Turing function Φ so

that Φx0 codes a well ordering of ù of order type α+1. Since C\B⊆X , we
have that x0 ∈ B. Define B0 = {x⊕ z | z ∈ B∧Φz ∼= r}. Clearly B0 is Σ11(r).
Since r codes a well ordering, if there exists an f : Φz ∼= r, then the f must be
unique and so ∆11(y⊕ r). Thus, by Theorem 2.2 and the fact that r≤T x, B0
is ∆11(x). Then, by Theorem 3.2, B0 ranges an upper cone of hyperdegrees.
But for any z ∈ B0, we have that ùz1 ≥ù

x0
1 >ù

x
1 and so x ∈ Lùz1 [z]. Thus, the

set {z | z ∈ B∧Φz ∼= r} ranges over an upper cone of hyperdegrees and so
B 6⊆ C, a contradiction. ⊣

Now we may obtain a characterization of the ó-ideals having lightface
approximation property under the assumption that every real is con-
structible.

Corollary 3.4. Suppose that every real is constructible. Then for any Borel

generated ó-ideal I, the following are equivalent:

(1) I has lightface approximation property.

(2) C is approximable by I.

(3) There is some X ∈ I containing an upper cone of hyperdegrees.

Let

≥h x= {z | z≥h x} and F≥h = {X | (∃x)(≥h x⊆ X)}.

ThenF≥h is a filter which is usually considered as a collection of “large” sets.
Then Corollary 3.4 says that every ó-ideal having approximation property
must contain a “large member” under the assumption that every real is
constructible.
For the general approximation property, we need to relativize the proof
of Theorem 3.3. The following lemma is a partial realization of Martin’s
Theorem 3.2.

Lemma 3.5. Suppose that x ∈ Lùx1 and B is a ∆
1
1(x) set of reals in which

there is a member z>h x, then B ranges over an upper cone of hyperdegrees.

Proof. Fix x ∈ Lùx1 and B to be a ∆
1
1(x) set of reals in which there is a

member z>h x. Fix such a z ∈ B. Since x ∈ Lùx1 , we may let α < ù
x
1 so that

x ∈ Lα+1 \Lα. So if y is a real so that ù
y

1 > α, then x ∈ Lùy1 and so x ≤h y.

In other words, for any y, ùy1 > α if and only if y ≥h x. So we may fix an
oracle Turing function Φ so that Φz codes a well ordering of ù of order
type α+1. Also let r ≤T x code a well ordering of ù of order type α+1.
Define A = {y | Φy ∼= r∧ y ∈ B} and observe that A is ∆11(r). Since r ≤T x,
we have that A is a ∆11(x) set containing z 6≤h x. So, by Theorem 3.2 relative
to x, {x⊕y | y ∈ A} ranges over an upper cone of hyperdegrees. Since every
y ∈ A is hyperarithmetically above x by the fact that x ∈ C and the same
reason as above, we have that A, and so B, ranges over an upper cone of
hyperdegrees. ⊣

Remark. It is an open problem whether Lemma 3.5 holds for arbitrary x.
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Theorem 3.6. For any Borel generated ó-ideal I,

(1) If for any real x, there is some X ∈ I and a countable ordinal α so that

{z | ùx⊕z1 ≥ α} ⊆ X, then I has approximation property.

(2) Suppose that D is approximable by I. Then for any x, there is some

X ∈ I and x0 ≥T x so that {y⊕ z | y≡h x0∧x0⊕ z≥h O
Ox0} ⊆ X.

(3) Suppose that every real is constructible. Then for any x, if C(x) is
approximable by I, then there is some X ∈ I and x0 such that {z |
x⊕ z≥h O

x0} ⊆ X.

Proof. (1). By Lemma 1.7, the class approximable by I is a ó-algebra.
So to show that every Σ11-set is approximable by I, it is sufficient to prove
that for any real x, every Π11(x)-set is approximable by I. Now fix a real x
and a Π11(x)-set Y. Then, by Theorem 2.2 relative to x, there is a Σ1-formula
ϕ so that for any z,

z ∈ Y ⇔ Lùx⊕z1
[x⊕ z] |= ϕ(x,z).

Then fix a countable ordinal α and a set X ∈ I so that {z | ùz⊕x1 ≥ α} ⊆ X .
Let B = {z | ùx⊕z1 ≤ α ∧Lùx⊕z1

[x⊕ z] |= ϕ(x,z)} ⊆ Y . Fix any real r coding

a well ordering of ù of order type α, then B is ∆11(x⊕ r) and so Borel.
Moreover, Y \B⊆ X ∈ I. So I is an inner approximation.
(2). Suppose that there exists some x0 ≥T x, a ∆11(x0)-set B ⊆ D and a
∆11(x0)-set X ∈ I so that D\B⊆ X . Note that the set

Bx0 = {y0⊕ z | y0 ≡h x0∧y0⊕ z ∈ B} ⊆ B=D∩B

is a ∆11(O
x0)-set. Since B ⊆ D, Bx0 is a Borel set without a perfect subset.

So we have that Bx0 is countable and only contains reals hyperarithmetic in
Ox0 . Now suppose that there are some z and y≡h x0 with y⊕ z≥h O

Ox0 but
y⊕ z 6∈ X . X is ∆11(x0), so is 2

ù \X . Let

X1 = {y⊕ z | y≡h x0∧y⊕ z 6∈ X ∧y⊕ z≥h O
Ox0}

be a Π11(O
x0)-set. We just need to show that X1 is empty. If X1 is not

empty, then by Theorem 2.4 relative to Ox0 , we have some y0 ⊕ z0 6∈ X
with y0 ≡h x0, y0 ⊕ z0 ∈ L

ù
O
x0⊕y0⊕z0

1

[Ox0], and y0 ⊕ z0 >h O
x0 . Note that

y0 ≡h x0 and y0⊕ z0 >h O
x0 imply that L

ù
O
x0⊕y0⊕z0

1

[Ox0] ⊆ L
ù
y0⊕z0
1
[y0]. And

y0⊕ z0 ∈ L
ù

O
x0⊕y0⊕z0

1

[Ox0] implies that L
ù
y0⊕z0
1
[y0] ⊆ L

ù
O
x0⊕y0⊕z0

1

[Ox0]. Hence

L
ù

O
x0⊕y0⊕z0

1

[Ox0] =L
ù
y0⊕z0
1
[y0]. In otherwords, y0⊕z0 6∈B∪X but y0⊕z0 ∈D,

a contradiction to the fact that D\B⊆ X .
(3). For any real x, fix a real x0 ≥T x so that there is a ∆11(x0)-set B⊆C(x)
withC(x)\B⊆X for some∆11(x0)-setX ∈I. Since every real is constructible,
by Theorem 2.5, we may assume that x0 ∈ Lùx01

. Since B is a Borel set, it

must be countable and so every member in B is hyperarithmetic in x0. Now,
for a contradiction, suppose that there is a real y0 6∈ X with x⊕ y0 ≥h O

x0 .
Since x0 ∈ Lùx01

, there is a countable ordinal α < ùx01 so that x0 ∈ Lα+1 \Lα.

Fix a real r ≤T x0 coding a well ordering ù of order type α+1. Also fix
an oracle Turing function Φ so that Φx⊕y0 codes a well ordering of order
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type α+1. Let X1 = 2ù \X be a ∆11(x0)-set. Define Y = {z ∈ X1 |Φx⊕z ∼= r}
to be a ∆11(x0)-set. Then for any z ∈ Y , x⊕ z ≥h x0 and so x⊕ z ≡h x0⊕ z.
Since y0 ∈ Y , by Lemma 3.5, there must be some real x1 >h x0 so that
for any y ≥h x1, there is some z ∈ Y with x0 ⊕ z ≡h y. Since z ∈ Y , we
have that x⊕ z ≡h x0 ⊕ z. Since every real is constructible, by Theorem
2.5 again, there must be some real y1 ≥h x1 ≥h x with y1 ∈ Lùy11

. Then

there is some z1 ∈ Y so that x⊕ z1 ≡h y1 and so x⊕ z1 ∈ Lùx⊕z11
⊆ L

ù
x⊕z1
1
[x].

Clearly, z1 6≤h x0. So z1 ∈ C(x) \B ⊆ X , a contradiction to the fact that
z1 ∈ Y ⊆ X1. ⊣

Note that (1) and (2) of Theorem 3.6 give some criteria of having
approximation property within ZFC. We may obtain a full description of
having such property under the assumption that every real is constructible.

Lemma 3.7. Suppose that every real is constructible. Then for any set of

reals X and real x, there is a real x0 so that {z | x⊕ z≥h x0} ⊆ X if and only
if there is a countable ordinal α so that {z | ùx⊕z1 ≥ α} ⊆ X.

Proof. The direction from right to left is clear. Now suppose that for any
real x, there is a real x0 so that {z | x⊕ z ≥h x0} ⊆ X . Since every real is
constructible, there is a real x1 ≥h x0 so that x1 ∈ Lùx11

. Then {z | ùx⊕z1 ≥

ùx11 }= {z | x⊕ z≥h x1} ⊆ {z | x⊕ z≥h x0} ⊆ X . ⊣

The following corollary gives an answer to Question 1.8 for Borel
generated ó-ideals under the assumption that every real is constructible.

Corollary 3.8. Suppose that every real is constructible. Then for any Borel

generated ideal I, I has approximation property if and only if for any x, there

is some X ∈ I and x0 ≥T x such that {z | z⊕x≥h x0} ⊆ X.

Proof. The direction from left to right follows from (3) of Theorem 3.6.
Another direction follows from Lemma 3.7 and (1) of Theorem 3.6. ⊣

So Corollary 3.8 converts the set theoretical property, the approximation
property, to be a recursion theoretical property under the assumption that
every real is constructible.
Finally,we separate approximationproperty from lightface approximation
property within ZFC.

Lemma 3.9. For any real y with ù
y

1 =ù
CK
1 and any real x with (ù1)

L[x⊕y] =

(ù1)L[y], there is a real z so that ù
y⊕z

1 =ùCK1 , z ∈ LùO⊕y⊕z
1

[O⊕y], and z 6≤h x.

Proof. Fix the reals y and x as in the assumption. Note that the set
Ay = {y⊕ z | ùy⊕z1 = ùy1} is an uncountable Σ

1
1(y)-set and so there is a

∆11(O
y)-perfect tree T ⊆ 2<ù for which [T]⊆Ay. Since (ù1)L[x⊕y] = (ù1)L[y],

there must be an L[y]-countable ordinal α > ùx⊕Oy

1 ≥ ùx1 . Since T is a
∆11(O

y)-perfect tree, the set {Oy⊕z | z ∈ [T]} ranges over every hyperdegree
greater or equal to Oy. Then by Theorem 2.5 relative to Oy, there is a
real z ∈ [T] so that ùOy⊕z

1 > α (and so z 6≤h x) and z ∈ LùOy⊕z
1
[Oy]. Since

ù
y

1 =ù
CK
1 , we have thatO

y ≡h O⊕y. Hence, ùy⊕z1 =ùy1 =ù
CK
1 , z 6≤h x, and

z ∈ LùO⊕y⊕z
1

[O⊕y]. ⊣
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Let I>ùCK1 = {X | X ⊆ {x | ùx1 >ù
CK
1 }}. Then I>ùCK1

is a Borel generated

ó-ideal, and contains the upper cone ≥h O. By the proof of (1) of Theorem
3.3,3 I>ùCK1

has lightface approximation property.

Proposition 3.10. I>ùCK1
has no approximation property.

Proof. We prove that the set D(O) = {y⊕ z | z ∈ LùO⊕y⊕z
1

[z]} is not

approximable by I>ùCK1
.

Otherwise, there is a real y0 ≥h O and a ∆
1
1(y0)-set B⊆D(O) so that

D(O)⊆ B∪{x | ùx1 >ù
CK
1 }.

Pick a real y1 with ù
y1
1 = ù

CK
1 so that Oy1 ≡h O⊕ y1 ≡h y0.

4 Then the
set {y1⊕ z | z ∈ LùO⊕y1⊕z

1
[z]} ∩B = {y1⊕ z | z ∈ 2ù} ∩B is a thin, and so

countable, ∆11(y0) set. So every member in {y0⊕ z | z ∈ LùO⊕y0⊕z

1

[z]}∩B is

hyperarithmetic in y0. Clearly, (ù1)L[y0⊕y1] = (ù1)L[y1]. So by Lemma 3.9,
there is a real z such that ùy1⊕z1 =ùCK1 , z ∈ LùO⊕y1⊕z

1
[O⊕y1], and z 6≤h y0. In

other words, y1⊕ z ∈D(O)\ (B∪{x | ùx1 >ù
CK
1 }).

In summary, I>ùCK1 has no approximation property. ⊣

§4. A recursion theoretical solution to Johnson’s question. Recall that IF
is the ó-ideal generated by Σ02 null sets. To answer Johnson’s Question 1.2,
we prove a slightly stronger result.

Theorem 4.1. D is not approximable by IF .

To prove Theorem 4.1, we need some results from algorithmic randomness
theory. Somehow the area can be viewed as “effective measure theory.” For
more details concerning this area, please refer [4] and [17].

Definition 4.2. A real r is calledKurtz-random if r does not belong to any
Π01 null set.

The definition of Kurtz-randomness can be relativized to any real x. We
have the following result.

Theorem 4.3 (Kjos-Hanssen et al. [12]). For any reals x and z ≥T x′, the
Turing jump of x, there is an x-Kurtz random real r≡T z.

Note that if every real is constructible, then by Theorem 4.3 and Corollary
3.4, it is clear that C is not approximable by IF . And so, we may obtain a
negative answer to Question 1.2 under the assumption that every real is
constructible. To derive an answer without additional axioms, we need one
more result from algorithmic randomness theory.

3To prove it within ZFC, just replace x0 with O in the proof.
4For the existence of the real y1.Note that the set {x |ù

x
1 =ù

CK
1 ∧x 6≤h ∅} is an uncountable

Σ11-set. So it is not hard to build an O-recursive perfect tree T ⊆ 2<ù so that for any z ∈ [T],

ùz1 = ù
CK
1 . Now it is a standard fact in higher recursion theory (see Corollary 2.4.10 in [3])

that for any such real z, Oz ≡h O⊕ z. So it is simple, by a zig-zag coding, to see that there is
such a real y1 so that O⊕y1 ≡h y0.
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Theorem 4.4 (Franklin and Stephan [6]). If r0 is Kurtz random and r1 is
r0-Kurtz random, then r0⊕ r1 is Kurtz random.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. By (2) of Theorem 3.6, it is sufficient to prove
that for any real x0 and Σ02(x0)-null set X, there are two reals y ≡h x0 and z
with y⊕ z ≥h O

Ox0 so that y⊕ z 6∈ X . By Theorem 4.3, we may let y ≡T x′0
be an x0-Kurtz random. By Theorem 4.3 again, there is a y-Kurtz random,
and so x0⊕y-Kurtz random, real z≥T OOx0 and so y⊕ z≥T OOx0 . Then by
Theorem 4.4 relative to x0, y⊕ z is x0-Kurtz random and so y⊕ z 6∈ X .
Hence D is not approximable by IF . ⊣

§5. More results and questions. We give some more applications of
Theorem 3.6.
Let IC = {X | ∃Y ∈Σ02(Y is meager ∧X ⊆Y)} be a ó-ideal. By the results
in [5] (also can be found in [18] and [3]), for any real x, there is some
X ∈ IC so that {z | ù

x⊕z
1 ≥ ùOx

1 } ⊆ X . Then by (1) of Theorem 3.6, IC has
approximation property.
Let IT = {X | ∃x(X ⊆ {z | z 6≥T x})}. Clearly, IT is a Borel generated ó-
ideal. By (2) of Theorem 3.6, IT does not even have lightface approximation
property.
We enumerate some questions that we are quite interested in.

Question 5.1. (1) Under ZFC, is there a recursion theoretical charac-
terization of ó-ideals having approximation property?

(2) For some “well behaved” ó-ideals, are there nice recursion theoretical
characterizations?

Concerning Question (2), we may consider those Borel generated ó-ideals
I so that the corresponding set {x | x is a Borel code ∧Bx ∈ I} isΠ11, where
Bx is the Borel set coded by x.
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