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In recent years, navigation by stellar refraction has received considerable attention, having
advantages of high accuracy, simple construction, and low cost. Nevertheless, there are many
limitations to the precision and application of this method using a traditional measurement
model. This article studies the changing pattern of atmospheric density, the disturbed
atmospheric density model and measurement model of stellar refraction ranging from 20 km
to 50 km. Furthermore, a control algorithm of multiple mode switching and an adaptive
measurement model are proposed. With this method, any refracted starlight from the scope of
between 20 km and 50 km can be captured and the measurement model at the appropriate
height can be automatically established. Due to this, the reliability and practicality of
navigation have been raised considerably. Accuracy of navigation using the adaptive
measurement method is observed to improve by about 14%, using computer simulation based
on an Unscented Kalman Filter (UKF).
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1. INTRODUCTION. In order to realize precise positioning of satellites,
navigation by stellar refraction makes use of the relationship between the refraction
angle and refraction height in the atmosphere, to sense the horizon indirectly and
accurately with a high-precision CCD star sensor (second of arc) (Yang et al., 2010).
Traditional navigation by stellar refraction is limited in application and its
development is seriously held back due to the difficulty of selection of a refraction
navigation star and the fixed height of 25 km in its measurement model (Gounley
et al., 1984). This paper responds to these problems and proposes a measurement
model that is based on multiple models switching, thus making sure that refracted
starlight ranging from 20 km to 50 km can be captured accurately at its corresponding
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height. This is significant for improving the practical accuracy and applicability of
navigation by stellar refraction.

2. GENERAL MEASUREMENT MODEL. Owing to the variety of
atmospheric density, starlight will be refracted when passing through the spherically
layered atmosphere (Lair and Duchon, 1988) as shown in Figure 1. This refraction is
more intense if the starlight is closer to the earth’s surface.
Supposing ρg is the atmospheric density at refraction height hg, the relationship

between refraction angle and refraction height can be given in Equation (1) as follows:

R = k(λ)ρg[2π(Re + hg)/HB]1/2 (1)
where R is refraction angle, HB is the density scale height, Re is earth radius and k(λ)
is the dispersion parameter which is only related to the wavelength λ.
Assuming that atmospheric density changes completely according to the index law,

the density at refraction height hg is given as follows:

ρg = ρ0 exp[−(hg − h0)/HB] (2)
where ρ0 is the atmospheric density at the height h0.
Because Re is much more than hg, Equation (1) can be simplified as:

R ≈ k(λ)ρg[2πRe/HB]1/2 (3)
Associating Equation (2) with Equation (3), Equation (4) is thus:

hg = h0 −HB ln(R) +HB ln[k(λ)ρ0(2πRe/HB)1/2] (4)
The relationship between apparent height ha and refraction height hg is as follows:

ha = [1+ k(λ)ρg]hg + k(λ)ρgRe (5)
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Figure 1. Geometry of starlight refraction.
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Associating Equation (4) with Equation (5), Equation (6) is thus:

ha = h0 −HB ln(R) +HB ln[k(λ)ρ0(2πRe/HB)1/2] + R(HBRe/2π)1/2 (6)
where HB is the density scale height at 25 km. Therefore, Equation (6) is the
measurement model of navigation by starlight refraction at 25 km.

3. DISTURBED ATMOSPHERIC DENSITY MODEL. The measure-
ment model of navigation by stellar refraction is based on the atmospheric density
model. The precision of the measurement model is closely related to the accuracy of
the atmospheric density (Wang and Ma, 2009). Generally, the atmospheric density
decreases exponentially with the increase of altitude, and it is influenced by solar
activity, time, season, latitude, and geomagnetic activities, especially by season,
latitude, and the random changing of atmospheric density. The variety of atmospheric
density is defined as the deviation between real density and its standard, expressed as
Equation (7):

δρ = (ρ− ρCT )/ρCT (7)
where δρ is the variety of atmospheric density; ρ is the real density; ρCT is the standard
value.

3.1. Season and Latitude (Ji, 1995). The complexity of atmospheric density is
mainly manifested in that the atmospheric density differs with time and place. The
latitude and season are particularly important factors. During a year, the variety of
atmospheric density, pressure, wind speed and other factors at the height from 0 km
to 150 km is predictable, within certain limits. The mathematical model of variety of
atmospheric density affected by season and latitude is as follows:

δρcm(H,L,N) = K0(H,M) +
X6
i=1

Ki(H,M)Li (8)

where H is height; L is latitude; M is month. Other coefficients can be calculated
as follows:

K0(H,M) = δρcm1(H,M)
K1(H,M) = 0

K2(H,M) = 0·5n3
K3(H,M) = 0

K4(H,M) = 8·729n1 − 1·489n2 − 1·994n3
K5(H,M) = −11·114n1 + 2·523n2 + 2·203n3
K6(H,M) = 3·538n1 − 0·936n2 − 0·562n3

(9)

In Equation (8), other parameters are as below:

n1 = δρcm2(H,M) − δρcm1(H,M)
n2 = δρcm3(H,M) − δρcm1(H,M)
n3 = −2ucm1(H,M)[1+ δρcm1(H,M)ω3rρCT/PCT ]

(10)

δρcmi(H,M), i=1,2,3, are the default variety of density in corresponding height
in Equation (10). They are from three different latitudes: 0°(i=1), 50°(i=2) and
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90°(i=3). Ucm1(H,M) is the zonal wind on the equator; ω3 is angular velocity of
earth rotation; r is the distance between the position of research and geocenter; ρCT is
standard density; PCT is standard pressure.
The season-latitude component of zonal wind is as follows:

ucm(H,L,M) = −[1/2(1+ δρcm)ω3r]∗[PCT/(sin φ∗ρCT )]∗(∂δρcm/∂φ) (11)

According to Equation (8), the equipotential line of the density variety affected by
season and latitude in January and July can be given as shown in Figure 2. In the
figure, the axis of abscissa is latitude (0°*90°N), and the axis of bank is height
(0*60 km). It can be seen that the variety of atmospheric density is affected
by latitude and height in different seasons. On the specific height, the variety of
atmospheric density will increase with the rising of height. However, there are two
heights of equal density at 8 km and 25 km, where the variety of atmospheric density
is stable, as shown in Figure 2.

3.2. Random Factors. The variety of atmospheric density affected by random
factors reflects its uncertainty. This uncertainty is mainly caused by the changes of
solar activity and geomagnetic processes. At the range of the height H4100 km, the
mathematical model of variety of atmospheric density affected by random factors is as
follows:

δρcπy =X (H,L,M)f1(H)f2(L) + y(H)
∗(−4·493∗10−1 + 1·978∗10−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TCP − 483·92

p
) (12)

f1(H ) is the characteristic function of density variety at a particular height, it can be
given as:

f1(H) = a1 + a2 sin[π(H − 60)/40] (13)

f2(L) is the characteristic function of density variety on a particular latitude, it can be
given as:

f2(L) = 0·92+ 0·08 sin(9L+ a3) (14)

Figure 2. Variety of density affected by season and latitude.
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y(H ) can be ascertained as below:

y(H) =
0 H , 95 km

3·869∗10−6(H − 95)3 + 2·632∗10−4(H − 95)2 95 km 4 H 4 125 km
2·632∗10−2(H − 112) H . 125 km

8<
:

(15)
X(H,L,M) is equal to δρcπ(H,L,M), which is the limit of density variety. It, at height
from 0 km to 150 km and latitude from 0° to 90°, is shown as follows:

δρcπ(H,L,M) =[(1− sin(H − 115))/2]∗{−5·119∗10−5H2 + 6·770∗10−2

+ [q1(H,M)(−5·160∗10−1L3 + 1·216L2) + q2(H)]
∗ cos2[(π|H −H2|)/(H1 − 2|H −H2|)]}
∗{a1 + a2 sin[π(H − 60)/40]}∗{1− 0·08[1− sin(9L+ a3)]}
+ [(1+ sin(H − 112))/2]∗(H − 112)(−1·182∗10−2

+ 5·205∗10−4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TCP − 483·92

p
) (16)

q1(H ), q2(H ), H1(H ), H2(H ) can be chosen from Table 1:

a1, a2, a3 and TCP can be chosen from Table 2:

Table 1. Atmospheric parameter (1).

H(km)

q1(H )

q2(H ) H1(H) H2(H )January April July October

0<5 0 0 0 0 0 100 0
54H<25 0·050 0·040 0·030 0·040 −1·155*10−2 40 15
254H4115 0·175 0·108 0·040 0·108 3·238*10−2 180 70

Table 2. Atmospheric parameter (2).

Scheme a1 a2 a3 TCP(k)

1 0 0 0 1000
2 1 0 0 700
3 −1 0 0 2200
4 0 0·33 0 930
5 0 −0·33 0 1280
6 0·33 0·33 0 830
7 0·33 −0·33 0 970
8 −0·33 0·33 0 1120
9 −0·33 −0·33 0 1670
10 1 0 π 700
11 −1 0 π 2200
12 0 0·33 π 930
13 0 −0·33 π 1280
14 0·33 0·33 π 830
15 0·33 −0·33 π 970
16 −0·33 0·33 π 1120
17 −0·33 −0·33 π 1670
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Figure 4 shows the simulation results calculated by Equation (12), where the axis of
abscissa is density variety, and the axis of bank is height (0*60 km). Figure 3 reflects
the variety at 30° north latitude and 50° north latitude. It can be seen from the figure
that the variety of density affected by random factors can be approximated as a
stochastic process that can be simulated by different parameters at different height,
latitude, and season. In this random process, there is an obvious interval in which the
variety is small. When the height reaches from 20 km to 30 km, the random variety of
atmospheric density is slight, and this means that the status is relatively stable in this
interval.

3.3. Establishment and Verification. Usually, the atmospheric density is approxi-
mately described as an exponential function of height: ρ=Ae−Bh. The general
mathematic model of atmospheric density is as follows:

ρ = 1537·3e−0.1462∗hg (17)

This needs to be modified according to Sections 3.1 and 3.2; Equation (17) is
modified, then a new disturbed model of atmospheric density can be obtained as
follows:

ρ = 1537·3(1+ δρΣ)e−0.1462∗hg (18)

δρΣ = δρcm + δρcn (19)

Figure 3. Variety of density affected by random factors.

Figure 4. Comparison of density.
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where δρΣ is the variety of atmospheric density, including δρcm variety affected by
season and latitude and δρcn variety affected by random factors.
Using the temperature, pressure, wind speed, atmospheric composition and other

data on different latitude and geopotential height given by cira1986 (international
reference atmosphere), the atmospheric density can be calculated as shown in
Figure 4. The solid lines in Figure 4 reflect the average status of atmospheric density at
a specific interval of atmospheric pressure. The axis of abscissa is height (20*50 km),
and the axis of bank is atmospheric density (g/m3). The dotted lines in the figure reflect
atmospheric density calculated by the model in this paper. As the figures show, the
two curves are basically consistent with each other, and the average error is less than
10%. Therefore the new disturbed model of atmospheric density can meet the real
situation, and it is practicable.

4. ADAPTIVE MEASUREMENT MODEL BASED ON MULTIPLE
MODELS SWITCHING. Multiple models adaptive control is used to describe
the uncertainty of a system with multiple models, and the corresponding controller
is built on each model. The main idea of the multiple models switching approach is
that multiple models are built for one system. Furthermore, each model is switched
according to the corresponding requirement.

4.1. Fixed Measurement Model. According to the atmospheric density model
(Equation (18)), the disturbed measurement model can be obtained by associating
Equations (1) and (6). When λ=0·7 μm, k(λ)=2·25*10−7. The refraction model can be
obtained through mathematical transformation:

R = 0·0338(1+ δρΣ)e−0·1518026∗hg (20)
where hg is the refraction height (unit is km), R is refraction angle (unit is second
of arc). The variety of refraction angle based on atmospheric density at different
height is shown in Table 3.
The measurement model for corresponding refraction height can be obtained as

follows:

ha = hg −Hg∗ ln(R) +Hg∗ ln[k(λ)ρg(2πRe/Hg)1/2] + R(HgRe/2π)1/2 (21)
where Hg is the density scale height at refraction height hg; refraction angle R and
atmospheric density ρg changes with refraction height.
Refraction angle decreases as height increases. When the refraction height is beyond

50 km, the refraction angle is lower than the measurement accuracy of the star sensor.

Table 3. Refraction angle at different height.

Height/km Refraction angle/second of arc Ideal value/second of arc

20 318·1*338·1 334·8
25 154·6*165·3 156·7
30 69·8*83·6 73·4
35 30·6*42·8 34·3
40 12·5*21·9 16·1
45 3·4*12·4 7·5
50 2·3*7·8 3·5
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Owing to atmospheric brightness, when the refraction height is lower than 20 km,
the refraction star is barely captured. Therefore the disturbed measurement models’
range is 20 km to 50 km. According to Equations (20) and (21), fixed measurement
models are established at hg=20 km, 25 km, 30 km, 35 km, 40 km, 45 km, and 50 km.

4.2. Multiple Models Switching. According to the seven measurement models
established in the range of 20 km *50 km in Section 4.1, the appropriate model is
picked up automatically on the basis of a switching performance index. The prediction
error of the model is defined as:

ej = hg − ĥg (22)
ĥg is the estimated value of refraction height, which can be calculated by the observed
refraction angle. The performance index Jj(t) is formed by each model’s prediction
error, while each model could be switched according to which model minimises the
performance index. The rationality of this approach lies in that a small prediction
error will cause a small concomitant error.
The performance index is as follows:

Jj(t) = αe2j (t) + β
ðt

0

e−θ(t−τ)e2j (τ)dτ (23)

where α50, β>0, θ>0. Parameters α and β determine the relative importance
of transient measurement and long term measurement in the performance index.
Parameter θ is a “forgetting” factor, which determines the memory length of the
performance index.

4.3. Switching Process. In order to avoid any fast switching, a hysteresis
switching algorithm is used. Assuming prediction model Ij is selected at time t and
Jk=min{Ji(t)} that Jj(T ) is not the minimum, if Jj(t)4Jk(t)+δ, model Ij will also be
selected. But if Jj(t)5Jk(t)+Δ, model Ik will be selected, where Δ is a hysteresis factor
(Shi et al., 2004). The switching process is shown in Figure 5.
The above analysis indicates that when the star sensor captures the refracted

starlight at a height of 20 km to 50 km, the system could automatically select the
corresponding measurement model. Thus the limitation of the traditional model of a
fixed height (25 km) is improved, and the scope of application of the measurement
model of stellar refraction expands to the range of 20 km to 50 km. The accuracy and
application of navigation by stellar refraction is dramatically improved.

5. SIMULATION
5.1. Dynamic Model. A satellite’s movement is affected by many perturbations

which include non-spherical earth gravity, solar gravity, lunar gravity, sunlight
pressure, atmospheric drag, etc. Compared with the earth gravity, these perturbations
are very weak. To model the system states equation, the gravitation and the
disturbances in two-order gravity field terms are taken into account in this paper.
Other disturbances are equal to process noise with a Gaussian distribution. The state
of the satellite can be described by X=[x, y, z, Vx, Vy, Vz]

T, where x, y, and z are
three components of position; Vx, Vy and Vz are three components of velocity in
earth-centred inertial coordinates.
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The state equation is described as:

X
. (t) = f (X (t), 21t) + ω(t) (24)

f (X (t), 2t) =

Vx

Vy

Vz

−μ∗x/r3(1+ 3J2/2∗(Re/r)2(1− 5(z/r)2)) + ωx

−μ∗y/r3(1+ 3J2/2∗(Re/r)2(1− 5(z/r)2)) + ωy

−μ∗z/r3(1+ 3J2/2∗(Re/r)2(1− 5(z/r)2)) + ωz

8>>>>>>>><
>>>>>>>>:

(25)

where r is the size of the satellite position vector; J2 is the disturbances in a two-order
gravity field; ω(t)= [0, 0, 0, ωx, ωy, ωz]

T is the model noise which can be assumed as
a Gaussian white distribution.

5.2. Measurement Equation. The number of refracted stars observed by the
satellite is assumed to be 40, distributed uniformly. According to the geometrical
relationship as shown in Figure 1, the observation equation can be described as:

ha =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − u2

q
+ u∗ tan(R) − Re − σ + ν(t) (26)

Calculate prediction error

Calculate performance
index

Determinate minimum J

Switching

Updated parameter

Navigation

No

Yes

Start

Figure 5. Switching process of the adaptive model.
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where u= |rs*us|, rs is the spacecraft position, us is the true direction of starlight and
σ is very small and can be ignored. ν(t) is the measurement noise which also can be
assumed as a Gaussian white distribution. ν(t) and ω(t) are independent of each other.
Their statistical characteristics are shown as below:

E[ω(k)] = E[ν(k)] = 0

E[ω(k)ωT ( j)] = Qkδkj

E[ν(k)νT ( j)] = Rkδkj

E[ω(k)νT ( j)] = 0

(27)

where δkj is the impulse function.
According to Equation (26), the measurement value of ha can be calculated. The

real value of ha needs to be calculated according to Equation (21).
5.3. Results and Analysis Based On UKF. The simulation conditions are as

follows: semi-major axis a=7136·635 km; eccentricity e=1·809*10−3; inclination
i=65°; right ascension of ascending node Ω=30°; argument of perigee ω=30°; the
time passing the perigee t=0. In order to close to a practical application, the filter
cycle T is 3 sec. The initial value of the actual state is X(0)= [4·590*106 m,
4·388*106 m, 3·228*106 m, −4·612*103 m/s, 5·014*102 m/s, 5·876*103 m/s]T. The
initial value of filtering is X(0|0)=X(0)+ [400 m, 400 m, 400 m, 0·8 m/s, 0·8 m/s,
0·8 m/s]T. The covariance matrix of the initial estimate error covariance matrix is
P(0|0)=diag((500 m)2, (500 m)2, (500 m)2, (0·2 m/s)2, (0·2 m/s)2, (0·2 m/s)2). The noise
covariance matrix of discrete system noise is Qk=E[ωωT]=diag(q1

2, q2
2, q1

2, q1
2, q2

2, q1
2),

where q1=1*10−3 m/s, q2=2*10−3 m/s. The covariance matrix of measurement noise
is Rk=E[υυT]= (80 m)2.

5.3.1. Simulation Results. Refraction angle R is the random value in the range
of 1″ to 340″. This means refraction height hg is in the range 20 km to 50 km. Based on
the multiple models switching algorithm, the adaptive measurement model is
automatically selected. Parameter α=1, β=0·1.
Figure 6 shows a comparison of navigation results between the adaptive

measurement model and the traditional model. The solid lines in Figure 6 reflect
the navigation results based on the traditional model, and the dotted lines reflect the
navigation results based on the adaptive measurement model. If filter cycle T is 3 sec,

Figure 6. Comparison of navigation results.
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the variance of the system’s position vector is 216·6 m, and the variance of the system’s
velocity vector is 0·2029 m/s. Comparing the results based on the traditional model,
position accuracy is improved by 13·6%, and velocity accuracy is improved by 14%
after using the adaptive measurement model.
Parameters α and β are two important parameters of the model switching algorithm,

which determine the importance of transient measurement and long term measure-
ment in the performance index. The larger β, the more important to long-term
measurement is the performance index. If α=1, β could be different values. The
navigation results on different filter cycles are shown in Table 4. Character u is
the variance of position estimate, and v is the variance of velocity estimate.
Table 4 shows that the accuracy of navigation decreases with β increasing.

The importance of long term measurement in the performance index will increase
with increasing β, and this will affect the identification error of the adaptive
measurement model. Figure 7 reflects the comparison of navigation results with
different parameters. As shown in the figure, the filter cycle has a great influence on the
accuracy of navigation. If the filter cycle is larger, accuracy of navigation obviously
improves, but this improvement is slow when the filter cycle is smaller.
The atmospheric density model has a great influence on the precision of navigation.

If the accuracy of the atmospheric density model is 0·5%, 1%, 2%, 3%, 4%, and 5%,
the variance of measurement noise can be calculated according to Equation (20) as
shown in Table 5.

Table 4. Navigation results with different parameters.

β

T=1 s T=3 s T=5 s

u/m v/(m/s) u/m v/(m/s) u/m v/(m/s)

0·05 200·3 0·1946 215·7 0·2021 244·5 0·2259
0·1 200·5 0·1948 216·6 0·2029 248·9 0·2293
0·5 202·3 0·1960 223·5 0·2083 255·5 0·2347
1 204·2 0·1973 225·3 0·2097 257·1 0·2359
2 206·1 0·1988 227·1 0·2111 259·0 0·2374
5 208·3 0·2004 227·4 0·2114 260·6 0·2387
10 208·7 0·2007 228·9 0·2126 261·3 0·2392

Figure 7. Comparison of navigation results with different parameters.
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Using the variance of measurement noise, the accuracy of navigation influenced
by atmospheric density can be obtained as shown in Table 6.
As seen from Table 6, the accuracy of the atmospheric density model is an essential

factor affecting the accuracy of navigation by stellar refraction. This effect is more
obvious when the filter cycle is larger. If the accuracy of the atmospheric density model
is 2%, the navigation results meet the accuracy requirements.

5.3.2. Results Discussion. As can be seen from the results, navigation by stellar
refraction can be affected by many factors. The simulation results show that by using
the adaptive measurement model, the accuracy of navigation by stellar refraction
could be improved. Comparing navigation based on the tradition model, the accuracy
can be improved by 14%. Also, the refraction star range captured by star sensor
expands from 20 km to 50 km.
α and β are two important parameters of the model switching algorithm which

determine the importance of transient measurement and long-term measurement.
When the importance of long-term measurement in the performance index is heavier,
namely if the β is larger, it is more difficult to achieve high accuracy navigation.
The accuracy of the atmospheric density model is an influential factor on the

accuracy of navigation. When the accuracy of atmospheric density model decreased to
1%, the accuracy of navigation results will improve by about 80 m.

6. CONCLUSION. For navigation by stellar refraction, the measurement
model is the most crucial element which can decide the results and application of
navigation. Due to the uncertainty of atmospheric density, the relationship between
refraction angle and refraction height is usually hard to describe. After the study of
stellar refraction principles and atmospheric density changes with altitude, latitude,
season and other factors, the adaptive measurement model based on multi-model
switching is established in this paper, which improves on the limitations of the
traditional measurement model.
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Table 5. Measurement noise affected by accuracy of atmospheric density model.

accuracy of atmospheric density model (1σ) 0·5% 1% 2% 3% 4% 5%
measurement noise variance (m2) (62)2 (80)2 (144)2 (205)2 (268)2 (330)2

Table 6. Navigation results affected by accuracy of atmospheric density model.

accuracy of atmospheric density
model (1σ) 0·5% 1% 2% 3% 4% 5%

variance of position estimate (m) T=1 s 191·1 220·2 299·5 367·0 432·1 491·3
variance of velocity estimate (m/s) T=1 s 0·1824 0·2082 0·2781 0·3376 0·3953 0·4485
variance of position estimate (m) T=3 s 199·9 241·7 366·6 467·1 552·5 620·1
variance of velocity estimate (m/s) T=3 s 0·1840 0·2201 0·3306 0·4212 0·5006 0·5656
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