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Holism, or the Erosion of Modularity:
A Methodological Challenge

for Validation
Johannes Lenhard*y

Modularity is a key concept in building and evaluating complex simulation models. My
main claim is that in simulation modeling modularity tends to degenerate for reasons in-
herent to simulation methodology. The argument will proceed by analyzing the tech-
niques of parameterization, tuning, and kludging. They are—to a certain extent—inevi-
table when building complex simulation models but erode modularity. As a result, the
common account of validating simulations faces a major problem, namely, a problem of
holism. In the conclusion, I will ask to what extent holism sets limits to validation.
1. Introduction. Modularity is used inmany guises and is not a particularly
philosophical notion. It stands for first breaking down complicated tasks into
small and well-defined subtasks and then reassembling the original global
task following a well-defined series of steps.Modularity features prominently
in the context of complex design, planning, and building—from architecture
to software engineering.

Holism is a term more common in philosophy. The Stanford Encyclope-
dia, for instance, includes about 100 entries that mention holism of method-
ological, metaphysical, relational, or other kinds. Holism generically states
that the whole is greater than the sum of its parts, meaning that the parts are
in such intimate interconnection that they cannot exist independently of the
whole or cannot be understood without reference to the whole. Especially
Quine has made the concept popular, not only in philosophy of language but
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also in philosophy of science, where one speaks of the so-called Duhem-Quine
thesis. This thesis is based on the insight that one cannot test a single hypothesis
in isolation but that any such test depends on “auxiliary” theories or hypotheses,
for example, how the measurement instruments work. Thus, any test addresses
a whole ensemble of theories and hypotheses.

Lenhard and Winsberg (2010) have discussed the problem of confirma-
tion holism in the context of validating complex climate models. They ar-
gued that “due to interactivity, modularity does not break down a complex
system into separately manageable pieces” (256). In a sense, I want to pick
up on this work but place the thesis in a muchmore general context. Namely,
I want to point to a dilemma that is built on the tension between modularity
and holism and that occurs quite generally in simulation modeling. The po-
tential philosophical novelty of simulation is debated controversially in phi-
losophy of science (e.g., Humphreys 2009 vs. Frigg and Reiss 2009). The
latter authors deny novelty but concede issues of holism might be an excep-
tion. My article confirms that holism should be a key concept when reason-
ing about simulation. (I see more reasons speaking in favor of philosophical
novelty, though.)

My main claim is as follows: According to the rational picture of design,
modularity is a key concept in building and evaluating complex systems, in-
cluding complex models. In simulation modeling, however, modularity erodes
for reasons inherent to simulation methodology. Moreover, the very condition
for successful simulation undermines the most basic pillar of rational design.
The resulting problem for validating models is one of (confirmation) holism.

Section 2 discusses modularity and its central role for the so-called ra-
tional picture of design. Herbert Simon’s highly influential parable of the
watchmakers will feature prominently. It paradigmatically captures complex
systems as a sort of large clockwork mechanism. I want to emphasize the
disanalogy to how simulation modeling works. Simulation is based on an
iterative and exploratory mode of modeling that erodes modularity.

I will present two arguments that support the erosion claim, one from pa-
rameterization and tuning (sec. 3), the other from klu(d)ging (sec. 4). Both
are, in practice, part and parcel of simulation modeling, and both erode mod-
ularity. The article will conclude by drawing lessons about the limits of val-
idation (sec. 5). Most accounts of validation either explicitly or implicitly
require modularity and are incompatible with holism. In contrast, the explor-
atory and iterative mode of modeling restricts validation, at least to a certain
extent, to testing (global) predictions. The arguments establish the erosion of
modularity as a tendency, not an inescapable fact.

2. The Rational Picture. The design of complex systems has a long tradi-
tion in architecture and engineering. Nonetheless, it has not been covered
much in the literature. One of the exceptions is Frederic Brooks, software
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and computer expert (and former manager at IBM) as well as hobby archi-
tect. Brooks (2010) describes the widely significant rational model of design
that is often adopted in practice. According to the rational picture, the design
process starts with an overview of all options at hand. This agrees with Her-
bert Simon, for whom the theory of design is the general theory of search
through large combinatorial spaces (Simon 1969, 54). The rational model
then presupposes a utility function and a design tree, which spans the space
of possible designs. Brooks rightly points out that these elements are nor-
mally not at hand. Nevertheless, design is conceived as a systematic step-
by-step process. In their voluminous work, Pahl and Beitz (1984, plus re-
vised editions 1996, 2007) try to detail these steps in their rational order. For
the current discussion, it suffices to note that some hierarchical order is a key
element of the rational picture of design. Such order presumes modularity.

Let me illustrate this point. Consider first a simple brick wall. It consists
of a multitude of modules, each with certain form and static properties. These
are combined into potentially very large structures. It is a strikingly simple
example, because all modules (bricks) are similar. A related example is a
building like the auxiliary building of Bielefeld University in front of my
former office that is put together from container modules, some of which
work as office space, others as restrooms, and so on.

These examples illustrate how deeply ingrained modularity is in our way
of building (larger) objects. This applies also to the design of complex (soft-
ware) systems. Some complex overall task is split up into modules that can
be tackled independently and by different teams. The hierarchical structure
ensures the modules can be integrated to make up the envisioned complex
system. Modularity not only plays a key role when designing and building
complex systems, it also is of crucial importance when investigating and
evaluating built systems. Validation is usually conceived in the very same
modular structure: independently validatedmodules are put together in a con-
trolled way for ensuring the bigger system is also valid. The standard account
of how computational models are verified and validated gives very rigorous
guidelines that are all based on the systematic realization ofmodularity (Ober-
kampf and Roy 2010; see also Fillion 2017). In short, modularity is key for
designing as well as for validating complex systems.

This observation is paradigmatically expressed in Simon’s parable of the
two watchmakers. It can be found in Simon’s 1962 paper “The Architecture
of Complexity” that became a chapter in his immensely influential The Sci-
ences of the Artificial (Simon 1969). There, Simon investigates the structure
of complex systems. The stable structures, according to Simon, are the hier-
archical ones. He expressed his idea by recounting the parable of two watch-
makers named Hora and Tempus (90–92). Agre describes the setting in the
following words: “According to this story, both watchmakers were equally
skilled, but only one of them, Hora, prospered. The difference between them
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lay in the design of their watches. Each design involved 1000 elementary
components, but the similarity ended there. Tempus’watches were not hier-
archical; they were assembled one component at a time. Hora’s watches, by
contrast, were organized into hierarchical subassemblies whose ‘span’ was
ten. Hewould combine ten elementary components into small subassemblies,
and then he would combine ten subassemblies into larger subassemblies, and
these in turn could be combined to make a complete watch” (2003, 416).

Because Hora takes additional steps and builds modules, Tempus’s watches
need less time for assembly. However, it was Tempus’s business that did not
thrive, because of an additional condition not yet mentioned, namely, some
kind of noise. From time to time, the telephone rings, and whenever one of
the watchmakers answers the call, all cogwheels and little screws fall apart,
and that watchmaker has to recommence the assembly.Whereas Tempus had
to start from scratch, Hora could keep all the finished modules and work
from there. In the presence of noise, so the lesson goes, the modular strategy
is superior by far. For Simon (and Agre), only modular structures can make
up well-engineered and functioning systems. Presumably, Simon was aware
that the clockwork picture is limited, and he even mentioned that complicated
interactions could lead to a sort of pragmatic holism.1 Do we have to look at
simulation models as a sort of gigantic clockworks? In what follows, I argue
that this viewpoint is seriously misleading. Simulation models differ from
watches in important ways, and I want to focus on this disanalogy.2

3. Erosion ofModularity 1: Parameterization and Tuning. Iwant to dis-
cuss two separate although related arguments, the first from parameterization
and tuning and (in the next section) the second from kluging. Both are, for dif-
ferent reasons, part and parcel of simulationmodeling, and bothmake themod-
ularity ofmodels erode. Parameterization and tuning are key elements of sim-
ulation modeling that stretch the realm of tractable subject matter far beyond
what is covered by theory alone. Therefore, they are indispensable in most
simulation models.

Before I start discussing an example, let me add a few words about termi-
nology. There are different expressions that specify what is donewith param-
eters. The four most common ones are (in alphabetical order): adaptation,
adjustment, calibration, and tuning. These notions describe very similar ac-
tivities but also valuate differently what parameters are good for. Calibration
is commonly used in the context of preparing an instrument, like a one-off
1. This kind of holism, hence, can occur even whenmodules are “independently validated,”
since thesemodules, when connected, could interact with each other in unpredicted ways.
This is a strictly weaker form of holism than the one I am going to discuss.

2. There are several disanalogies. One I am not discussing is that clockworks lack multi-
functionality.
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calibration of a scale. Tuning has a more pejorative tone, for example, achiev-
ing a fit with artificial measures or fit to a particular case. Adaptation and ad-
justment have more neutral meanings.

Atmospheric circulation is a typical example. It is modeled on the basis of
accepted theory (fluid dynamics, thermodynamics, motion) on a grand scale.
Climate scientists call this the “dynamic core” of their models, and there is
more or less consensus over this part. What climate scientists call ‘the phys-
ics’ means those processes that are not completely specified from the dy-
namic core. These processes include convection schemes or cloud dynam-
ics, among others.

Often, such processes are not known in full detail, and some aspects (at
least) depend on what happens on a subgrid scale. The dynamics of clouds,
for instance, depend on a staggering span of very small (molecular) scales
and much larger scales of many kilometers. Hence, even if the laws that
guide these processes were known, they could not be treated explicitly in
the simulation model because this would require a superfine grid that is com-
putationally not feasible on a global scale. Modeling ‘the physics’ has to
bring in parameterization schemes.3

For example, how do cloud processes work? Rather than trying to inves-
tigate and model all microphysical details, like how exactly water vapor is
entrained into air (building clouds), scientists use a parameter, or a scheme
of parameters, that controls moisture uptake so that known observations are
(roughly) met. Often, such parameters do not have a direct physical interpre-
tation, nor do they need one, like when a parameter stands for a mixture of
(partly unknown) processes not resolved in the model. One then speaks of
using an ‘effective’ parameter. The important property of working parame-
terizations is not accuracy in representation on the small scale.4 Rather, the
parameterization scheme has to be flexible, so that the parameters of such a
scheme can be changed in a way that makes the overall model match some
known data or reference points. Representation then is relevant on a much
larger scale.

From this rather straightforward observation follows an important fact. A
parameterization, including assignments of parameter values, makes sense
only in the context of the larger model. Observational data are not compared
to the parameterization in isolation. The Fourth Assessment Report of the In-
tergovernmental Panel on Climate Change acknowledges the point that “pa-
3. Parameterization schemes and their status in between theoretical and instrumental as-
pects are discussed in the literature on climate simulation models; e.g., Smith (2002),
Stainforth et al. (2007), Gramelsberger and Feichter (2011), or Parker (2014).

4. Of course, physically well-motivated, ‘realistic’ parameterizations increase the cred-
ibility of a model. But if they are not available, more pragmatic parameterizations offer a
way out.
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rameterizations have to be understood in the context of their host models”
(Solomon et al. 2007, 8.2.1.3).

Adapting parameters, however, endangers themodular structure.One par-
ticular parameter value (controlling moisture uptake) is judged according to
the results it yields for the overall behavior (like global energy balance). In
other words, tuning is a local activity that is oriented at global behavior. Fur-
thermore, tuning parameters is not only oriented at the global model perfor-
mance, it tends to blur how the local behavior is brought about. This is be-
cause no model will be perfect, since it contains technical errors, works with
insufficient knowledge, and so on—which is just the normal case in scien-
tific practice. Now, tuning a parameter according to the overall behavior of
themodel thenmeans that the errors, gaps, and bugs compensate against each
other (if in an opaque way). Mauritsen et al. (2012) have pointed this out in
their pioneering article on tuning in climate modeling.

In climate models, cloud parameterizations play an important role, be-
cause they influence key statistics of the climate and, at the same time, cover
major (remaining) uncertainties about how an adequate model should look
(see, e.g., Stevens and Bony 2013). Building parameterization schemes that
work with “physical” parameters (that have a straightforward physical inter-
pretation) is still a big challenge (Hourdin et al. 2013). Over the process of
adjusting the (physical and nonphysical) parameters, these schemes become
inevitably convoluted. The simulation then is based on the balance of these
parameters in the context of the overall model (including other parameteri-
zations). I leave aside that models of atmosphere and oceans get coupled,
which arguably aggravates the problem.

Tuning is part and parcel of simulation modeling methodology. It poses
great challenges, like finding a good parameterization scheme for cloud dy-
namics, which is a recent area of intense research in meteorology. But when
is a parameterization scheme a good one? On the one side, a scheme is sound
when it is theoretically well motivated; on the other side, the key property of
a parameterization scheme is its adaptability. Both criteria do not point in the
same direction. There is, therefore, no optimum;finding a balance is still con-
sidered an art. I suspect that the widespread reluctance against publishing
about practices of adjusting parameters comes from reservations against as-
pects that call for experience and art rather than theory and rigor.

I want to highlight that nothing in the above argumentation is specific to
climate modeling. The point holds for simulation modeling of some com-
plexity quite generally. For lack of space, I canmention another example only
briefly. Adjusting parameters is also occurring in thermodynamics, an area of
physics with a very sound theoretical reputation. So-called equations of state
find wide applications also in chemical engineering. They are typically very
specific for certain substances and require extensive adjustment of parame-
ters, as Hasse and Lenhard (2017) have described and analyzed. They argue
that being able to process specific adjustment strategies based on parameteri-
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zation schemes is a crucial success condition. Typically, up-to-date equations
of state contain 20 or more adjustable parameters of which only a minority
has physical meaning. The argumentation above applies mutatis mutandis.
Simulation methods have made thermodynamics applicable in many areas
of practical relevance, exactly because equations of state can be adapted to
particular cases of interest.

Let me take stock regarding the first argument for the erosion of modu-
larity. Tuning, or adjusting, parameters is not merely an ad hoc procedure;
rather, it is a pivotal component for simulation modeling. Adjusting param-
eters convolutes heterogeneous parts that do not have a common theoretical
basis. Tuning proceeds holistically on the basis of global model behavior.
How particular parts function often remains opaque. By interweaving local
and global considerations, and by convoluting the interdependence of var-
ious parameter choices, tuning erodes modularity.

4. Erosion of Modularity 2: Kluging. The second argument regarding the
erosion of modularity approaches the issue from a different angle, namely,
from a specific practice in developing software known as kluging (also spelled
kludging).5 “Kluge” is a term from colloquial language that was adopted in
computer slang. In the words of Wikipedia, a kluge is “a workaround or
quick-and-dirty solution that is clumsy, inelegant, difficult to extend and hard
to maintain, yet an effective and quick solution to a problem” (https://en
.wikipedia.org/wiki/Kludge).

Andy Clark, in a similar manner, stresses the important role played by
kluges in computer modeling. For him, a kluge is “an inelegant, ‘botched
together’ piece of program; something functional but somehow messy and
unsatisfying”; it is—Clark refers to Sloman—“a piece of program or ma-
chinery which works up to a point but is very complex, unprincipled in its
design, ill-understood, hard to prove complete or sound and therefore having
unknown limitations, and hard to maintain or extend” (Clark 1987, 278).

Kluges proceeded from programmers’ language into the body of philos-
ophy, guided by scholars such us Clark (1987) and Wimsatt (2007) who are
inspired both by computer modeling and evolutionary theory. The important
point in the current context is that kluges typically function for a whole sys-
tem, that is, for the performance of the entire simulation model. In contrast,
they have no meaning in relation to the submodels and modules: “what is a
kludge considered as an item designed to fulfill a certain role in a large sys-
tem, may be no kludge at all when viewed as an item designed to fulfill a
somewhat different role in a smaller system” (Clark 1987, 279).
5. Both spellings “kluge” and “kludge” are used. There is not even agreement of how to
pronounce the word. In a way, that fits to the very concept. I will use “kluge” but will not
change the habits of other authors cited with “kludge.”
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Because kluging stems from colloquial language and is also not viewed as
good practice, examples are difficult to find in published scientific literature.
This observation notwithstanding, kluging is a widespread phenomenon.
Let me give an example that I know from visiting an engineering laboratory.
There, researchers (chemical process engineers) are working with simula-
tion models of an absorption column, the large steel structures in which re-
actions take place under controlled conditions. The scientific details do not
matter here, because the point is that the engineers build their model on the
basis of a couple of already existing modules, including proprietary software
that they integrate into their simulation without having access to the code.
Moreover, it is common knowledge in the community that this (unknown)
code is of poor quality. Because of programming errors and because of ill-
maintained interfaces, using this software package requires modifications
on the part of the code outside the package. Thesemodifications are not there
for any good theoretical reason, albeit for good practical ones. They make
the overall simulation run as expected (in known cases), and they allowwork-
ing with existing software. Hence, the modifications are typical kluges.

Another relevant and common phenomenon is the increasing importance
of ‘exception handling’, that is, of finding effective repairs when the soft-
ware or the model performs in unanticipated and undesired ways. In this sit-
uation, the software might include a bug that is invisible (does not affect re-
sults) most of the time but becomes active under particular conditions.
Often, extensive testing is needed to find out about unwanted behavior that
occurs in rare and particular situations that are conceived of as ‘excep-
tions’—indicating that researchers do not aim at a major reconstruction but
at a local repair to counteract this particular exception.

Presumably all readers who ever contributed to a large software program
are familiar with experiences of this kind. It is commonly accepted that the
more comprehensive a piece of software gets, the more energy new releases
will require in order to handle exceptions. Operating systems of computers,
for example, often receiveweekly patches (i.e., repair updates).Many scientists
who work with simulations face a similar situation, although not obviously so.

Here is an example by personal communication. I have attendedmeetings
of a group of atmospheric modelers. They had released a new generation of
their atmospheric circulation model. Many processes had been refined, new
knowledge added, and so on. The new simulation model worked fine on sev-
eral evaluative criteria. When they connected their new model to the already
existing chemistry module, however, the overall performance deteriorated
in a striking manner. There had to be one or several important mistakes in
the code, the group figured. When they found out the reason, they were sur-
prised. There existed parts in the chemistry module that had been introduced
to balance out shortcomings in a much older version of the atmospheric cir-
culation model. In other words, these parts were kluges in an older version of
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the model but had not been removed and were overlooked because they did
not affect the performance of the newer model. Only later, with the newest
(recent) atmospheric model, the outdated kluges produced unwanted model
behavior and thus became manifest.

Why should these examples be seen as typical instances and not as excep-
tions? Because they arise from practical circumstances of developing soft-
ware, and this is a core part of simulation modeling. Software engineering
is a field that was envisioned as the ‘professional’ answer to the increasing
complexity of software. And I frankly admit that there are well-articulated
concepts that would, in principle, ensure software is clearly written, aptly
modularized,wellmaintained, and superbly documented.However, the prob-
lem is that science in principle differs from science in practice.

In practice, strong and constant forces drive software developers to resort
to kluges. Providing a comprehensive analysiswould require space not avail-
able here. Instead, I refer to the account of Foote and Yoder, prominent lead-
ers in the field of software development, who give an ironic and funny ac-
count of how attempts to maintain a rationally designed software architecture
constantly fail in practice.
5 Publ
While much attention has been focused on high-level software architectural
patterns, what is, in effect, the de-facto standard software architecture is sel-
dom discussed. This paper examines this most frequently deployed of soft-
ware architectures: the BIG BALL OF MUD. A big ball of mud is a casu-
ally, even haphazardly, structured system. Its organization, if one can call it
that, is dictated more by expediency than design. Yet, its enduring popular-
ity cannot merely be indicative of a general disregard for architecture. . . .
Even systems with well-defined architectures are prone to structural erosion.
The relentless onslaught of changing requirements that any successful sys-
tem attracts can gradually undermine its structure. Systems that were once
tidy become overgrown as piecemeal growth gradually allows elements of
the system to sprawl in an uncontrolled fashion. (Foote and Yoder 2000,
2–3)
I would like to repeat the statement from above that there is no necessity for
the corruption of modularity and rational architecture. Again, this is a ques-
tion of science in practice versus science in principle. “A sustained commit-
ment to refactoring can keep a system from subsiding into a big ball of mud,”
Foote and Yoder admit (2000, 3).

RobertMartin, pioneering the “clean code” school, proposes keeping code
clean in the sense of not letting the first kluge slip in. And surely there is no
principled reason why one should not be able to avoid this. However, even
Martin accepts the diagnosis of current practice. Similarly, Richard Gabriel
(1996), another guru of software engineering, makes the analogy to housing
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architecture and Alexander’s concept of “habitability” that aims to integrate
modularity and piecemeal growth into one “organic order.” In any case, when
describing the starting point, he more or less duplicates what I mention above
from Foote and Yoder.

Finally, I want to point out that the nature of kluging resembles what is
discussed in philosophy of science under the heading of opacity (like inHum-
phreys 2009). Highly kluged software becomes opaque. One can hardly dis-
entangle the various reasons that led to particular pieces of code, because
kluges are meaningful only in the particular context at one particular time.
In this important sense, simulation models are historical objects. They carry
around—and depend on—their history of modifications. There are interest-
ing analogies with biological evolution that became a topic when Winograd
and Flores, for instance, come to a conclusion that also holds in our context
here: “each detail may be the result of an evolved compromise betweenmany
conflicting demands. At times, the only explanation for the system’s current
form may be the appeal to this history of modification” (1991, 94).

Two conditions work in favor of kluging. First, the exchange of software
parts is more or less motivated by flexibility and economic requirements.
This thrives on networked infrastructure. Second, iterations and modifica-
tions are easy and cheap to perform. Because of the unprincipled nature of
kluges, their construction requires repeated testing of whether they actually
work in the factual circumstances. Hence, kluges fit the exploratory and
iterative mode of modeling that characterizes simulations. Furthermore, lay-
ered kluges solidify themselves. They make code hard or impossible to
understand, modifying pieces that are individually hard to understand will
normally lead to a new layer of kluges, and so on. Thus, kluging erodesmod-
ularity. This is another reason why simulation modeling systematically un-
dermines modularity.

5. The Limits of Validation. What does the erosion ofmodularitymean for
the validation of computer simulations? In the context of simulation models
the community speaks of verification and validation, or V&V. Whereas ver-
ification checks the model internally, validation checks whether the model
adequately represents the target system.A standard definition states that “ver-
ification [is] the process of determining that a model implementation accu-
rately represents the developer’s conceptual description of the model and
the solution to the model.” In contrast, validation is defined as “the process
of determining the degree to which a model is an accurate representation of
the real world from the perspective of the intended uses of the model” (Ober-
kampf and Trucano 2000, 3).

Because of the increasing usage and growing complexity of simulations,
the issue of V&V is itself an expanding field in simulation literature. One
example is the voluminous monograph by Oberkampf and Roy (2010) that
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meticulously defines and discusses the various steps to be included in V&V
procedures. A first move in this analysis is to separatemodel form frommodel
parameters. Each parameter then belongs to a particular type of parameter
that determines which specific steps in V&V are required. Oberkampf and
Roy give the following list of model parameter types: “measurable proper-
ties of the system or the surroundings,” “physical modeling parameters,” “ad
hoc model parameters,” “numerical algorithm parameters,” “decision pa-
rameters,” and “uncertainty modeling parameters” (623). The adjustable pa-
rameters I discussed above do not appear in this list. This is not simply amat-
ter of terminology. My point is that these parameters belong to model form
and to model performance at the same time. The performance part of my
claim is clear, since adjusting these parameters is oriented at model perfor-
mance. The crucial point is that these parameters also belong to the model
form, because without assignment of parameters neither the question about
representational adequacy nor the question about behavioral fit can be ad-
dressed. A cloud parameterization scheme makes sense only if its parameter
values have been assigned already, and the same holds for an equation of
state. Before the process of adjustment, the mere form of the scheme can
hardly be called adequate or inadequate. I admit that my claim does not hold
for extreme cases like a purely physically motivated parameterization scheme
whose adequacy can be judged independently of the model behavior. In sim-
ulation models, as I have shown, (predictive) success and adjustment nor-
mally are entangled. The adjustable parameters I discussed above are of a
type that evades the V&V fencing.

The separation of verification and validation thus cannot be fully main-
tained in practice, that is, in the cases in which simulation models employ
adjustable parameters. It is not possible to first verify that a simulation model
is ‘right’ before tackling the ‘external’ question whether it is the right model.
Performance tests, hence, become the main handle for confirmation. This is a
version of confirmation holism that points toward the limits of analysis. This
does not lead to a conceptual breakdown of V&V. Rather, holism comes in
degrees,6 and it is a pernicious tendency (not necessity) that undermines the
verification-validation divide.7

In the current article, I have questioned the rational picture of design that
is so crucially based on modularity. My criticism works, if you want, from
6. I thank Rob Moir for pointing this out to me.

7. My conclusion about the inseparability of verification and validation is in good agree-
ment with Winsberg’s (2010) more specialized claim in which he argues about model
versions that evolve because of changing parameterizations, which has been criticized
by Morrison (2015). As far as I can see, her arguments do not apply to the case made
in this article, which rests on a tendency toward holism rather than a complete concep-
tual breakdown.
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‘within’. It is the very methodology of simulation modeling, and how it
works in practice, that erodes modularity and therefore challenges the ratio-
nal picture.
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